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Interacting spin systems are of fundamental relevance in different areas of physics, as well as in quantum
information science and biology. These spin models represent the simplest, yet not fully understood,
manifestation of quantummany-body systems. An important outstanding problem is the efficient numerical
computation of dynamics in large spin systems. Here, we propose a new semiclassical method to study
many-body spin dynamics in generic spin lattice models. The method is based on a discrete Monte Carlo
sampling in phase space in the framework of the so-called truncated Wigner approximation. Comparisons
with analytical and numerically exact calculations demonstrate the power of the technique. They show that
it correctly reproduces the dynamics of one- and two-point correlations and spin squeezing at short times,
thus capturing entanglement. Our results open the possibility to study the quantum dynamics accessible to
recent experiments in regimes where other numerical methods are inapplicable.
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I. INTRODUCTION

Controlled experimental observation of nonequilibrium
spin dynamics has recently become possible [1–3]. Large
spin systems with long-range interactions have been real-
ized, e.g., with polar molecules [4,5], Rydberg atoms [6–8],
and trapped ions [9–12]. Key aspects of quantum dynamics,
such as the buildup of long-range correlations, entanglement,
and the propagation of information, are insufficiently under-
stood, partly due to the absence of appropriate tools to
calculate the time evolution in complex quantum systems.
Current techniques are not suitable for the investigation

of quantum dynamics in generic large spin systems. For
example, numerical time-dependent density matrix renorm-
alization group (tDMRG) methods [13–15] become ineffi-
cient in higher dimensional systems; perturbative and
Keldysh techniques [16], as well as kinetic theories and
phase space methods [17–19], are limited to weakly
interacting, close-to-equilibrium or short-time situations;
cluster expansions [5] work only for dilute samples with
moderately short-ranged interactions. The development of
new numerical techniques is, therefore, of immediate
relevance. In this work, we advance in this direction by
introducing a semiclassical phase-space method that we
refer to as the discrete truncated Wigner approximation
(DTWA). With this relatively easily programable method,
we can calculate nonequilibrium dynamics in systems of
thousands of spins and in arbitrary dimensions.

The DTWA is a semiclassical method which is based, in
contrast to existing techniques, on the sampling of a
discrete Wigner function. Standard phase-space methods,
such as the truncated Wigner approximation (TWA),
replace the quantum-mechanical time evolution by a semi-
classical evolution via classical trajectories. The quantum
uncertainty in the initial state is accounted for by an average
over different initial conditions [17,18] determined by a
continuous Wigner function. In contrast, the use of discrete
Wigner functions enables us to quantitatively access dynam-
ics in generic spin lattice models, including oscillations
and revivals of single particle observables and correlation
functions that are not captured by the TWA.
This paper is organized as follows: In Sec. II A, the

traditional TWA is reviewed, and in Sec. II B, our DTWA
technique is introduced. Section III contains a benchmark
of the improvement provided by the DTWA via compar-
isons of dynamics of single-spin observables, correlation
functions, and spin squeezing for a model with Ising and
XY interactions. Section IV provides a conclusion and an
outlook.

II. METHOD

A. Semiclassical phase-space sampling

The mapping between the Hilbert space of a quantum
system and its corresponding phase space (known as the
Wigner-Weyl transform) can be accomplished through
the so-called phase-point operators Â. In terms of classical
phase-space variables p and q (we set ℏ ¼ 1 in this paper),
the phase-point operators can be written as [20,21]
hq0jÂðp;qÞjq00i ¼ ½1=ð2πÞD�δfq− ½ðq0 þ q00Þ=2�geip·ðq0−q00Þ
with D the phase-space dimension. They relate the density
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matrix of the quantum system ρ̂ to a quasiprobability
distribution (generally nonpositive) known as the Wigner
function W [21], which is given by Wðp;qÞ ¼
Tr½ρ̂ Âðp;qÞ�. Any operator Ôðp;qÞ can be mapped to a
function over the classical phase space, the so-called Weyl
symbol OWðp;qÞ ¼ Tr½Ô Âðp;qÞ�. To compute the time
evolution of the expectation value of an operator, its time-
evolved Weyl symbol has to be averaged over the phase
space with the corresponding Wigner function: hÔiðtÞ ¼
∬ dpdqOWðp;qÞWðp;q; tÞ. In general, however, it is not
possible to compute the time evolution exactly. The TWA
[17,18] approximates the dynamics by taking only first-
order quantum fluctuations into account. In the Heisenberg
picture, the Wigner function is fixed to its initial state
Wðp;qÞ → Wðp0;q0Þ and the Weyl symbol evolves in
time. The TWA makes the approximation that the Weyl
symbols follow a classical evolution. They are obtained
by solving Hamilton’s equations of motion for pclðtÞ, qclðtÞ
with the initial conditions ðp0;q0Þ, and one puts
OWðp;qÞðtÞ → OW(pclðtÞ;qclðtÞ); thus,

hÔiðtÞ ≈
ZZ

dp0dq0OW(pclðtÞ;qclðtÞ)Wðp0;q0Þ: ð1Þ

Generalizations of this continuous formulation to N spin-
1=2 particles have been developed, e.g., by means of a spin-
coherent state representation, valid up to 1=N corrections.
Generically, the Wigner function is approximated by a
smooth positive Gaussian-like distribution in the collective
spin variables. For example, if all spins are pointing along
the z axis, the Wigner function can be approximately written
as [19]WðS⊥; SzÞ ≈ 1=ðπSÞe−S2⊥=SδðSz − SÞ, with S¼N=2,
S⊥ ¼ ðS2x þ S2yÞ1=2, and Sz the transverse and longitudinal
spin components of the collective classical spin, respectively.
This Wigner function has a clear interpretation: If each
spin initially points along the z direction, the transverse
spin components must fluctuate as hS2⊥i ∼ S due to the
Heisenberg uncertainty principle.
This Gaussian TWA generally captures aspects of the

quantum spin dynamics at short times but lacks important
ones, such as the revivals [see, e.g., Fig. 2(a)], ubiquitous in
discrete quantum systems, and it is mainly limited to dealing
with the collective dynamics [18]. For interactions with
spatial structure, the dynamics quickly takes the system out
of the collective-spin Hilbert space and the TWA breaks
down. In the continuous phase-space picture, ways to over-
come these shortcomings have been proposed using hidden
variables [22] ormore complex representations of theWigner
function [18,23,24]. Here, we propose and test a different
approach, which uses discrete phase spaces for each indi-
vidual spin in conjunction with a Monte Carlo sampling.

B. Discrete phase-space sampling

For systems with discrete degrees of freedom, it is
possible to define a “discrete phase space” in many ways

(see Ref. [20] and references therein). We use four phase
points to describe a single spin-1=2, which we denote as
α≡ ðq; pÞ ∈ fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg, as introduced
by Wootters [20,25]. For each phase-space point, one
can define a phase-point operator Âα, the Weyl symbols
OW

α ¼ trðÔÂαÞ=2 (or inversely Ô ¼ P
α ÂαOW

α ), and the
Wigner function wα, which is the Weyl symbol for the
density matrix. A set of phase-point operators is given
by [20]

Âα ¼ ℘̂ðrαÞ; ℘̂ðrÞ≡ ð1þ r · σ̂Þ=2; ð2Þ

with rð0;0Þ¼ð1;1;1Þ, rð0;1Þ¼ð−1;−1;1Þ, rð1;0Þ¼ð1;−1;−1Þ,
and rð1;1Þ ¼ ð−1; 1;−1Þ. Here, σ̂ ¼ ðσ̂x; σ̂y; σ̂zÞ are the
Pauli matrices. In a many-body system with N spin-1=2
particles, the discrete phase space has 4N points we denote
as α ¼ fα1; α2;…; αNg. Analogously to Eq. (1), we can
now formulate the DTWA on this discrete phase space as

hÔiðtÞ ¼
X
α
wαð0ÞOW

α ðtÞ ≈
X
α
wαð0ÞOW;cl

α ðtÞ; ð3Þ

where wαð0Þ is the initial Wigner function on the discrete
many-body phase space and OW;cl

α ðtÞ is the classically
evolved Weyl symbol (see Appendix A for more on the
classical equations of motion). Numerically, we can solve
Eq. (3) by statistically choosing [according to wαð0Þ] a
large number nt of random initial spin configurations. Each
“trajectory” is evolved in time according to the classical
equations of motion, and the expectation value in Eq. (3) is
estimated via statistical averaging (error ∼ 1=

ffiffiffiffi
nt

p
). We find

that the required nt does not depend on the system size, but
rather on the observable under consideration (see also
Appendix C).
As an example of how to construct the initial Wigner

function, we again consider an initial state with all spins
pointing along the z direction. The initial density matrix
factorizes ρ̂ð0Þ ¼ Q

N
i¼1 ℘̂

½i�ðẑÞ (the superscript ½i� denotes
the Hilbert or phase space for spin i), and thus,

wαð0Þ ¼ ΠN
i¼1w

½i�
αi . Here, w½i�

αi ¼ Tr½℘̂½i�ðẑÞÂαi �=2 is given

by w½i�
ð0;0Þ ¼ w½i�

ð0;1Þ ¼ 1=2, and w½i�
ð1;0Þ ¼ w½i�

ð1;1Þ ¼ 0 for every

spin i (cf. Fig. 1 for an illustration). Note that for this initial
state, all quasiprobabilities are positive, which is important
for the numerical sampling. The sum along each “phase-
space line” of the discrete Wigner function can be asso-
ciated with the probability of a measurement outcome
[20], similarly to the continuous variable case. As shown

in Fig. 1, here w½i�
ð0;0Þ ¼ w½i�

ð0;1Þ ¼ 1=2 means that the prob-

ability to find an individual spin pointing along the þz
direction is 1 (sum over the first row), while the proba-
bilities to find it along þx or −x (sum over each column)
are 50% each. Equally, the probabilities to find it along þy
or −y are 50% each (sum over each of the two diagonals).
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Note that this discrete sampling properly accounts for the
quantum-mechanical probability distribution of the x; y; z
spin components of a qubit in the sense that all moments are
reproduced correctly: hðσ̂x;yÞki¼½1þð−1Þk�=2, hðσ̂zÞki¼1,
with k a positive integer.

III. DYNAMICS USING THE DTWA

To demonstrate the accuracy of the DTWA, we consider
a system of N two-level systems arranged on a lattice with
M sites with dynamics governed by the Hamiltonian

Ĥ ¼ 1

2

X
i≠j

�
J⊥ij
2
ðσ̂xi σ̂xj þ σ̂yi σ̂

y
jÞ þ Jzijσ̂

z
i σ̂

z
j

�
þΩ

X
i

σ̂xj : ð4Þ

We consider an initial product state in which all spins are
aligned along the x axis. The interactions are assumed to
decay as a function of the distance with a decay exponent α
and are allowed to be spatially inhomogeneous: e.g.,
J⊥=z
ij ≡ J½1 − 3 cosðθÞ2�=jrijjα. Here, rij is the vector con-

necting spins on sites i and j, and θ is the angle it makes
with the quantization axis (chosen along z). We discuss
two specific cases: Ising (J⊥ij ¼ 0) and XY (Jzij ¼ 0)
interactions. In addition to the interactions, we allow for
a transverse field with strength Ω. The Ising limit is
naturally realized in experiments with ion traps (both in
1D [10,11] or 2D [12] geometries) and Rydberg atoms in
2D [8]; the XY limit dynamics have been realized in polar
molecules in optical lattices [4,5], magnetic atoms [26],
Förster resonances in Rydberg atoms [27], and as an
effective Hamiltonian in trapped ions with a superimposed
large transverse field [11].
The classical equations of motion (for classical spin

components sx;y;xi ) corresponding to Hamiltonian (4) are
given in Appendix A. The DTWA method simply consists
of a numerical integration of the classical equations of
motion for many different random initial conditions. While

for each site i, the initial condition of the classical spin
component along x, sxi ¼ 1 is fixed, the initial conditions
for the spin components in the orthogonal directions are
randomly chosen as syi ; s

z
i ¼ �1 (as shown in Sec. II B).

The final expectation values of observables are calculated
by averaging the results for the corresponding observable
over all initial conditions, i.e., all trajectories.

A. Ising interactions

We now consider Ising interactions, J⊥ij ¼ 0, Ω ¼ 0, in
Eq. (4). In this limit, exact analytical expressions for the
dynamics exist [28–30] and can be used to benchmark the
DTWA. The dynamics of observables involving the col-
lective spin S ¼ ðhSxi; hSyi; hSziÞT ≡P

nhσ̂ni for a system
with N ¼ 100 spins in a one-dimensional chain with
M¼100 sites (oriented along x) are shown in Fig. 2. We
calculate the time evolution of Sx as well as the collective
correlation functions ΔSx ¼ hS2xi − hSxi2 and RehSySzi.
We consider the case of all-to-all (decay exponent α ¼ 0)
and short-ranged dipolar interactions (α ¼ 3). In the all-to-
all case, hSxi shows revivals at times that are multiples of
π=2J. In contrast to the traditional Gaussian TWA, which
captures only the initial decay of hSxi and misses the
revivals, the DTWA fully reproduces the exact dynamics (a
similar effect has been seen in Ref. [31]). The case α ¼ 3
exhibits an oscillatory dynamics, perfectly accounted for
by the DTWA solution, but not captured by the traditional
TWA. The DTWA calculations for RehSySzi also show
perfect agreement. Deviations are visible for the correlation
ΔSx; however, the oscillatory dynamics is still better
reproduced in the DTWA than in the traditional TWA.
We understand the agreement between the Ising solution

and the DTWA analytically. For a particular spin n, the
exact solution for the time evolution is hσ̂xniðtÞ ¼Q

N
i≠n cosð2tJzinÞ ¼

P
m cos½2tPN

a¼1ðJznamaÞ�=2N , where
m ¼ fm1; m2;…; mNg and each of the ma takes the

(b)

(d) Random configuration

classical evolution

Observable

(a) (c)

FIG. 1. Discrete phase space and the DTWA. (a) Our method considers the quantum uncertainties of N spin-1=2 particles individually,
rather than the noise of the collective spin S ¼ N=2. (b) The quantum physics of a spin-1=2 particle can be fully described by a discrete
four-point Wigner quasiprobability distribution, wðp;qÞ. The probability for a spin to point along the�x,�y, and�z directions (px;y;z

�1 ) is
given by the sum over the vertical, diagonal, and horizontal lines in phase space, respectively [20]. (c) Discrete Wigner function of a spin
pointing along z. (d) The idea behind the DTWA is to (i) randomly sample the phase points for each spin according to wðp;qÞ,
(ii) calculate the time evolution according to classical equations, and (iii) evaluate observables in phase space from the statistical mixture
of nt trajectories.
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values �1. The classical equation of motion for the x
component of spin is sxnðtÞ ¼ cosð2tβnÞ (see Appendix A),
where βn ¼

P
N
i≠n Jins

z
i ðt ¼ 0Þ. Since we initially sample

the z component of the spin to be randomly distributed as
szi ðt ¼ 0Þ ¼ �1, we can identify szi ðt ¼ 0Þ with the param-
eters mi in the exact solution and find that the DTWA
becomes equivalent to the exact solution for large nt and
arbitrary numbers of spinsN. Note that the traditional TWA
approach is valid only in the large-N limit. The compar-
isons with the exact solution, extended to correlation
functions, confirm the excellent agreement of RehSySzi
and show the origin of the discrepancies in other two-point
correlations (see Appendix B and Fig. 2).

B. XY model

Next, we consider the dynamics for the XY model,
Jzij ¼ 0, Ω ¼ 0, in Eq. (4). Here, we study systems with
varying filling fractions n̄ ¼ N=M, a situation relevant for
recent polar molecule experiments [4]. We focus our
attention on the time evolution of spin squeezing, which
is a signature of quantum correlations and entanglement

[32] and is a resource for enhanced sensitivity in quantum

metrology [33]. The spin-squeezing parameter is

ξ≡ ffiffiffiffi
N

p
minn⊥ðΔS⊥Þ=jSj, where S is the total collective

spin, S⊥ ¼ S · n⊥, and the minimum is taken over all unit

vectors n⊥ (directions) perpendicular to the vector S.

On the Bloch sphere, a squeezed state with ξ < 1 shows

an elliptical profile of the spin noise distribution [34,35].
For the XY model, no exact solution exists for generic

spin systems; however, in 1D we can use tDMRG to
calculate the exact dynamics at short times. This technique
works as long as the bipartite entanglement in the system,
quantified by the half-chain von Neumann entropy
SvNðρLÞ ¼ −trðρLlog2ρLÞ (where ρL is the reduced density
matrix of half the spin chain), remains small [36–39].
Surprisingly, we find that for intermediate filling fractions,
due to the inhomogeneity in J⊥ij, the entropy SvN grows
much more rapidly than for n̄ ¼ 1 [see inset in Fig. 3(b)].
Thus, with reasonable computational resources, exact
results could be calculated for only N ≤ 32 and N ¼
100 spins in a system with M ¼ 100 sites.

(a) (c)

TWA

DTWA

exact
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0.01

0.02

1 2 3 4
0.01

0

0.01

0.02
(b) (d)

FIG. 2. Dynamics for Ising interactions. Circles denote the exact solution, dashed lines are traditional TWA results, solid lines denote
DTWA results, for 1D, N ¼ 100 spins. (a),(b) Evolution of hSxi, for all-to-all (decay exponent α ¼ 0) and dipolar (α ¼ 3) interactions,
respectively. Traditional TWA captures only the initial decay and no oscillations or revivals. In contrast, DTWA becomes exact (on top of
the black symbols). (c),(d) The evolution of the correlation functions ΔSx ¼ hS2xi − hSxi2 and RehSySzi for dipolar interactions.
While RehSySzi is exactly captured in DTWA, ΔSx shows deviations. DTWA improves traditional TWA predictions in all panels.
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TWA
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FIG. 3. Dynamics for XY interactions. Circles denote exact, solid lines DTWA, and dotted lines traditional TWA results. (a) Time
evolution of hSxi for the XY model in 1D, for N ¼ 100 spins and with long-range interactions with decay exponent α ¼ 3. In contrast to
the Ising case, DTWA is exact for short times only but can capture longer times than traditional TWA. (b) Time evolution of the spin-
squeezing parameter ξ. The DTWA gives exact results for short times and good estimates for the achievable ξ. (b) Achievable ξ as a
function of the filling fraction (averaged over 1000 random configurations). Exact diagonalization for N < 20, tDMRG otherwise. Inset:
Rapid increase of the entanglement entropy for noninteger filling n̄ < 1 (single configuration), rendering tDMRG calculations
inefficient in this regime.
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Our results for a 1D chain of spins along the x direction
are shown in Fig. 3. In Fig. 3(a), as in the Ising case, first we
analyze the evolution of hSxi. We compare DTWA and
TWA results to an exact tDMRG calculation. Because of
the more complicated XY interactions (the Hamiltonian
contains noncommuting terms in contrast to the Ising case),
we find that DTWA no longer provides an exact solution.
Still, it can capture the evolution on the short time scale
tJ ≲ 0.4, and significantly improves the traditional TWA
result, which, in this example, captures only times tJ ≲ 0.1.
In Fig. 3(b), we show the evolution of the spin-squeezing

parameter ξ for n̄ ¼ 1. We also find here that DTWA agrees
on short times and captures almost all of the spin squeezing
that is created in the time evolution. In Fig. 3(b), we plot the
maximally achievable spin squeezing as a function of the
filling fraction. The DTWA interpolates over the whole
range of filling fractions connecting the exactly tractable
limits. It is interesting to note that while squeezing implies
entanglement (nonseparability) [32], the type of squeezing
we consider here is apparently independent of bipartite
entanglement, in the sense that for smaller SvNðρLÞ we can
have large squeezing and vice versa. We note that the
connection between entanglement or spin squeezing and
discrete phase spaces has been explored in Ref. [40].

C. Spreading of correlations and transverse field

In order to understand more systematically what types of
correlations can be captured by the DTWA, it is instructive
to look at the time evolution of spatial correlations in the
system. In Fig. 4, we analyze the time evolution of
Cyyj ≡ hσ̂y50σ̂y50þji − hσ̂y50ihσ̂y50þji, i.e., a spatial connected

two-point correlation calculated from the center of a system
with N ¼ 100 spins on M ¼ 100 sites. Again, we consider
initially a state with all spins pointing along the x direction.
This leads to the fact that initially Cyyj ¼ 0 for j ≠ 0. We
study how correlations propagate throughout the system
[39,41,42] in the presence of long-range interactions (decay
exponent α ¼ 3). Besides the Ising and the XY model, we
also treat the case of an Ising interaction with a transverse
field (we consider a small Ω=J ¼ 1 and a large Ω=J ¼ 10
field). The addition of a transverse field to the exactly
solvable Ising model adds a noncommuting term in the
Hamiltonian and thus enhances the development of quan-
tum correlations during the dynamics. In this situation, one
has to resort to tDMRG techniques in order to solve for the
full quantum dynamics.
As shown in Fig. 4(a), the dynamics in the pure Ising

case is dominated by oscillations. Here, DTWA can capture
long-range correlation dynamics (j ≫ 1) very well, but the
amplitudes and frequencies of, e.g., nearest-neighbor cor-
relations (j ¼ 1) are not captured correctly. This can be
understood via the error analysis performed in Appendix B
[cf. Eq. (B4)]. When adding a transversal field of order J
[Fig. 4(b)], the agreement becomes worse. In this case, the
total magnetization Sz is no longer a conserved quantity and
the DTWA fails to capture the propagation of correlations
observed in the exact solution. However, as Ω is increased,
the agreement improves and the spreading of correlations
starts to show up also in the DTWA solution. Note that in
the presence of a large transverse field, the conservation of
the total magnetization (now along the transverse field
direction) is restored since transitions induced by the Ising

(a)

(b)

DTWAexact

DTWAtDMRG

Ising

tDMRG DTWA

XYIsing
(d)

DTWAtDMRG

Ising
(c)

FIG. 4. Spreading of correlations. Time evolution of Cyyj in a system with N ¼ 100 spins onM ¼ 100 sites for long-range interactions
with decay exponent α ¼ 3. We consider three models [Eq. (4)]: (a) Ising interactions, (b),(c) Ising interactions plus a transverse field
termΩ

P
iσ̂

x
i , and (d) XY interactions. We compare exact or tDMRG results (left-hand side) with results obtained from the DTWA (right-

hand side).
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term to states that do not preserve it become off resonant.
In this large transverse field limit, the dynamics can be
mapped back to the dynamics in an effective XY model
[11], and although the DTWA cannot correctly reproduce
the oscillation of short-range correlations, it is clearly
capable of perfectly reproducing the spreading of Cyyj
correlations through the system with time.
The frequencies of the oscillations observed in

Figs. 4(a)–4(c) can be understood. Without a transverse
field, the exact solution [cf. Eq. (B2)] shows that the
correlation functions oscillate with frequencies propor-
tional to the sum of the couplings to the other spins. In
the case α ¼ 3 (short range), the oscillations are dominated
by nearest-neighbor couplings. In the case of a strong
transverse field Ω ≫ J, the spins precess rapidly along the
external field and thus the correlation functions oscillate
roughly with that rate, Ω. The case Ω ∼ J is most complex
since it is close to the critical regime for the ground state.
Nevertheless, in this regime the correlations oscillate at a rate
Ω, the only energy scale in this case. An interesting question
to ask is how dynamics is connected to the ground-state
phase transition in this model [39,43]. The DTWA could in
the future be used for studies in this direction.
The failure of the DTWA to capture the spreading of

correlations in generic situations arises from the fact that it
formally corresponds to the lowest-order approximation in
ℏ. Higher-order quantum corrections that induce dynamics
in the Wigner distribution can be incorporated via addi-
tional “quantum jumps” [18]. Although this is out of the
scope of the current work, it is a direction that could lead to
further improvement of the DTWA method and should be
subjected to further investigation.

D. Dependence on range of interactions and
dimensionality

We now check the dependence of the validity of the
DTWA on the range of interactions and the dimensionality
of the system, focusing on the XY model. The results are
summarized in Fig. 5. In Fig. 5(a), we analyze the time

evolution of the spin-squeezing parameter ξ for a N ¼ 20
spin system in 1D (M ¼ 20 sites) for various decay
exponents α and for fixed α and different dimensions.
As expected, we find that longer-ranged interactions lead lo
larger amounts of spin squeezing. Remarkably, for longer-
ranged interactions, the increased squeezing is better
captured within the DTWA (also when analyzing the
relative error). This can be understood in the limit of all-
to-all interactions (α ¼ 0), where, due to the conservation
of the total spin, the XY model becomes equivalent to the
Ising model. In that case, we find (Fig. 2) that the DTWA is
almost exact. For higher-dimensional systems, we find that
the agreement becomes generally better. However, due to
the inhomogeneity of the coupling constants, the 3D case is
difficult to access since the spin squeezing becomes very
small. In Fig. 5(b), we find that for a small 2D system with
α ¼ 1, the agreement is excellent.

IV. CONCLUSION AND OUTLOOK

The discrete truncated Wigner approximation opens the
possibility of computing the dynamics of large spin
systems in regimes where currently there is no other
theoretical tool at hand [see, in particular, Fig. 5(b)].
This is possible since the computational time for a solution
of the mean-field equations only scales polynomially in
time. Furthermore, the Monte Carlo sampling can be
perfectly parallelized, and the number of required samples
for statistical convergence depends only on the observable.
Here, this enables us to make quantitative predictions for
short-time dynamics in systems with up to 6400 spins
[cf. Fig. 5(b)] in two dimensions, a regime that is, for
example, clearly inaccessible to tDMRG methods.
The results show that the DTWA is able to capture the

buildup of spin squeezing (an entanglement witness [32]).
On the other hand, from Eq. (3) and the classical equations
of motion (see Appendix A), it follows that hÔiðtÞ ≈Pnt

α wαð0ÞTr½Ô ⊗N
i¼1 Â

½i�
αiðtÞ�, which resembles the time

evolution of an expectation value computed from a sepa-
rable density matrix. This is not a contradiction, because
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FIG. 5. Range of interactions and higher dimensions (XY model). Circles denote exact diagonalization, solid lines DTWA results.
The time evolution of the spin-squeezing parameter ξ is shown (a) in 1D (N ¼ 20 spins) for different decay exponents α and (b) with
fixed α ¼ 3 and for different dimensions (1D, 20 × 1 × 1 lattice; 2D, 5 × 4 × 1; 3D, 3 × 3 × 2). With increasing range of interactions,
the DTWA improves and spin squeezing increases. (c) DTWA prediction for increasingly large 2D systems (N ≤ 6400) with α ¼ 1.
The exact diagonalization result is shown for the 4 × 4 lattice.
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the phase-point operators Âα are, in fact, not density
matrices. While TrðÂαÞ ¼ 1, it is possible to satisfy
TrðÂ2

αÞ > 1; these conditions might be interpreted as a
statistical mixture with negative probabilities.
The results we present here demonstrate that the DTWA

can be relevant for computing the nonequilibrium dynamics
in a variety of recent experimental setups including polar
molecules [4,5], Rydberg atoms [6–8], trapped ions [9–12],
alkaline earth atoms [44], and solid-state systems, such as
nitrogen-vacancy centers [45–47], plasmonic lattices [48],
and photonic crystals [49].
It would be interesting to extend the DTWA to deal with

open quantum systems and to solve for equilibrium states
by employing an evolution in imaginary time. Another
direction is to try to combine higher-order corrections to the
TWA [18,22] with the idea of discrete phase spaces; this
could lead to an even more powerful method capable of
capturing quantum many-body dynamics for longer time
scales.
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APPENDIX A: CLASSICAL EQUATIONS
OF MOTION

To apply the truncated Wigner approximation, we have
to compute the classical equations of motion for the spin
components of each spin i: sxi ; s

y
i ; s

z
i . In the usual phase-

space representation of quantum dynamics, for individual
spins these can be obtained from the classical Hamiltonian
function:

HC ¼
1

2

X
i≠j

�
J⊥ij
2
ðsxi sxj þ syi s

y
jÞþJzijs

z
i s

z
j

�
þΩ

X
i

sxj ; ðA1Þ

via

_sαi ¼ fsαi ; HCg ¼ 2
X
β

ϵαβγs
γ
i
∂HC

∂sβi
; ðA2Þ

with f:; :g denoting the Poisson bracket and ϵ the fully
antisymmetric tensor.
Alternatively, the same equations of motion can be

obtained via a product ansatz for the phase-point operators.
The exact quantum evolution of any observable Ô is given
by ÔðtÞ ¼ Û†Ôð0ÞÛ, where Û ¼ expð−itĤÞ with Ĥ the
Hamiltonian of the system. The time evolution of a Weyl
symbol on the discrete phase space can thus be written as

OW
α ðtÞ ¼ tr½ÔðtÞÂα�=2 ¼ tr½Ôð0ÞÛÂαÛ

†�=2, where we
use the cyclic invariance under the trace. Thus, in order
to calculate OW

α ðtÞ, we can evolve the many-body phase-
point operator according to the von Neumann equation
dÂα=dt ¼ −i½Ĥ; Âα�. Making a product ansatz for the

phase-point operators, Âα ≈ Â½1�
α1 ⊗ Â½2�

α2 ⊗ … ⊗ Â½M�
αM , and

assuming a general parametrization, Â½i�
αi ½riðtÞ� ¼ ℘½riðtÞ�,

yields a coupled set of differential equations for riðtÞ ≡
ðsxi ; syi ; szi ÞT .
For example, for the Ising interaction Hamiltonian,

HZZ ¼ 1

2

X
n;m

Jnmσznσzm; ðA3Þ

with Jnm ¼ Jmn and Jnn ¼ 0, the classical (mean-field)
equations for the spin components are then given by

_sxn ¼ −2syn
X
m

Jzn;mszm ≡−2synβzn; ðA4Þ

_syn ¼ 2sxn
X
m

Jzn;mszm ≡ 2sxnβzn; ðA5Þ

_szn ¼ 0; ðA6Þ

where we introduce the quantity βα¼x;y;z
n ≡P

mJ
z
n;ms

α¼x;y;z
m ,

which can be interpreted as an effective magnetic field on
spin n induced by the mean-field interactions with the other
spins. Solving these equations yields

s�n ðtÞ ¼ s�n ð0Þ exp
�
�2it

X
j

Jnjs
z
j

�
; ðA7Þ

where s� ¼ ðsxn � isynÞ=2. For completeness, we also give
the classical equations of motion that are used for the XY
interaction in Eq. (4),

_sxn ¼ szn
X
m

J⊥n;msym ≡ sznβ
y
n; ðA8Þ

_syn ¼ −szn
X
m

J⊥n;msxm ≡−sznβxn; ðA9Þ

_szn ¼
X
m

J⊥n;mðsxmsyn − symsxnÞ≡ synβxn − sxnβ
y
n; ðA10Þ

and for dynamics under a transverse field,

_syn ¼ −2Ωszn; ðA11Þ

_szn ¼ 2Ωsyn: ðA12Þ
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APPENDIX B: CORRELATION FUNCTIONS IN
THE ISING MODEL

The time evolution for the Ising Hamiltonian [Eq. (A3)]
can be solved exactly [28–30]. For a local operator at
site k [σ�k ¼ ðσxk � iσykÞ=2], the time evolution can be
calculated as

hσ�k iðtÞ ¼
hσ�k ið0Þ

2N

X
m1…mN
∈f−1;þ1g

exp

�
�2it

XN
j¼1

Jkjmj

�
: ðB1Þ

Here, eachmi takes the values−1 andþ1, and the sum runs
over all 2N possible combinations. Comparing with
Eq. (A7), one sees that DTWA gives the exact time
evolution in this case, when the sum is approximated via
a random sampling of sz taking the values þ1;−1 (see
discussion in the main text).
The same calculation is possible for correlations.

For example, between particle i and j (i < j),

hσ�i σ�j iðtÞexact ¼
hσ�i σ�j ið0Þ

2N−2
X

m1 ::mi−1miþ1 ::mj−1mjþ1 ::mN
∈f−1;þ1g

× exp

�
�2it

XN
a¼1
a≠i;j

Jiama

�

× exp

�
�2it

XN
b¼1
b≠i;j

Jjbmb

�
: ðB2Þ

Note that the two sums with mi and mj are missing. This is
to be compared with the DTWA, which estimates the same
quantity (in the limit nt → ∞) as

hσ�i σ�j iðtÞDTWA ¼ hσ�i σ�j ið0Þ
2N

X
sz
1
…szN∈f−1;þ1g

× exp

�
�2it

XN
a¼1

Jiasza

�

× exp

�
�2it

XN
b¼1

Jjbs
z
b

�
: ðB3Þ

We note that Eqs. (B2) and (B3) are valid for all
combinations of signs þþ, þ−, −þ, and −−. One sees
that the only difference between Eqs. (B2) and (B3) is the
two additional sums with szi ; s

z
j ∈ f−1;þ1g in Eq. (B3).

This gives rise to an error of

hσ�i σ�j iðtÞDTWA ¼ hσ�i σ�j iðtÞexactcos2ð2tJijÞ: ðB4Þ

Since, for example, hS2xi=N2 ¼ 1
N þ 1

N2

P
i≠jðhσþi σþj i þ

hσþi σ−j i þ c:c:Þ, this correlation contains an error.
Analogously, it is straightforward to see that, due to the
conservation of the z component of the spin, there is no
error made when calculating RehSzSyi ¼

P
i≠j 2Rehσzjσ−i i

with DTWA.

APPENDIX C: STATISTICAL CONVERGENCE

The quantum noise in the DTWA calculations is intro-
duced via a Monte Carlo sampling. For the success of the
method in large systems, it is important that the results
converge when increasing the number of sample trajecto-
ries nt. We test, for example, the time evolution of Sx and
the squeezing parameter for different numbers of trajecto-
ries nt, for a small system with XY interactions (α ¼ 1) and
for a large system (see Fig. 6). In all cases, for nt > 4000
the curves are essentially indistinguishable. The maximum
relative difference from the nt ¼ 64000 result in these
calculations decreases as 1=

ffiffiffiffi
nt

p
, as expected, and has the

same magnitude for both the small and the large system.
For the one-particle observable Sx, the convergence with
increasing nt is faster than for the squeezing parameter, a
two-particle observable.
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FIG. 6. Statistical convergence. (a),(c) Time evolution of
the squeezing parameter in DTWA for different number of
trajectories: nt ¼ 500, 1000, 2000, 4000, 8000, 16 000,
32 000, 64 000 from light to dark. (a) Small 4 × 4 system with
XY interactions (α ¼ 1). (c) 20 × 20 system. In both cases, for
nt > 4000, curves are essentially indistinguishable. Panels
(b),(d) show the maximum relative difference of the calculations
from the nt ¼ 64 000 result. The upper line is for the spin-
squeezing parameter, the lower line for hSxi; there are smaller
relative differences for this simple observable. Both differences
decrease as 1=

ffiffiffiffi
nt

p
(dashed line) as expected. Panels (b) and (d)

are for the small and large system, respectively.
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