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We discuss how to formulate lattice gauge theories in the tensor-network language. In this way, we
obtain both a consistent-truncation scheme of the Kogut-Susskind lattice gauge theories and a tensor-
network variational ansatz for gauge-invariant states that can be used in actual numerical computations. Our
construction is also applied to the simplest realization of the quantum link models or gauge magnets and
provides a clear way to understand their microscopic relation with the Kogut-Susskind lattice gauge
theories. We also introduce a new set of gauge-invariant operators that modify continuously Rokhsar-
Kivelson wave functions and can be used to extend the phase diagrams of known models. As an example,
we characterize the transition between the deconfined phase of the Z2 lattice gauge theory and the Rokhsar-
Kivelson point of the Uð1Þ gauge magnet in 2D in terms of entanglement entropy. The topological entropy
serves as an order parameter for the transition but not the Schmidt gap.
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I. INTRODUCTION

Tensor-network (TN) techniques are starting to play an
important role in our understanding of many-body quantum
systems, both on the lattice and in the continuum. They can
be used as a framework to classify the phases of quantum
matter [1–3] or as a powerful numerical ansatz in actual
computations of 1D [4,5] and 2D strongly correlated
quantum magnets [6–8], fermionic systems [9,10], or any-
onic systems [11,12]. They have also recentlymade theirway
into quantum chemistry as a computational tool to study the
structure of molecules from the first principles [13,14].
While numerical simulations based on Monte Carlo

(MC) techniques are still the most successful techniques
in some of these fields, TNs start to provide viable
alternatives to them, particularly in those contexts where
MC simulations has troubles, such as the physics of
frustrated antiferromagnets [15–17] and the real-time
evolution of out-of-equilibrium systems [18–20].
At present, the main limitation of numerical TN tech-

niques is that the cost of the simulations increases rapidly
with the amount of correlations in the system (which is
encoded in the bond dimension D of the elementary
tensors), and thus, TNs tend to be biased toward weakly
correlated phases.

However, the steady improvement of the TN algorithms
[21,22] makes us confident that these limitations will soon
be overcome, and as a consequence, TNs will become more
and more useful in the physics of quantum many-body
systems. Among interesting quantum many-body systems,
we focus here on gauge theories, a context in which TNs
have recently made a spectacular debut [23–27].
Gauge theories (GTs) [28] describe three of the four

fundamental interactions (electromagnetic, weak, and
strong interactions). In particular, strong interactions are
described by an SUð3Þ gauge theory, called quantum
chromodynamics (QCD) [29]. GTs also allow us to
understand emergent phenomena at low energies in
condensed-matter systems, e.g., antiferromagnets [30]
and high-temperature superconductors [31–33].
The phase diagrams of GTs, similarly to those of the

most strongly correlated many-body quantum systems, are
still debated. Still, there are exactly solvable GTs that
display topological phases. Recently, topological states
have been proposed as possible hardware for quantum
computers, and thus, there is an urgent need for clarification
of generic GT phase diagrams where these states could
appear [23,34–37].
Wilson’s formulation of lattice gauge theories (LGTs)

[38] was obtained by substituting the continuous spacetime
with a discrete set of points (the lattice). It provided the
breakthrough that has allowed us to develop numerical
tools based on MC simulations that are able to address the
strong-coupling regime of GTs. These tools are, as today,
the main resource to compare various aspects of QCD at
strong coupling with experiments [39]. Those aspects of
QCD that are hard or impossible to address with MC are
indeed in most of the cases still unclear. For example, the
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mechanism of charge confinement [40], invented to explain
the absence of isolated quarks [41], still stands as a
conjecture in full QCD, four decades since it was first
understood in Abelian models. Furthermore, MC simula-
tions struggle to address hot and dense nuclear matter
[42,43], probed by heavy nuclei collisions at CERN and
RHIC [44,45]. In their current formulation, MC simulations
of LGTs cannot be used to characterize the real-time out-of-
equilibrium dynamics of GTs.
The aim of this paper is twofold. On one side, we

develop the theory of TNs for LGTs with arbitrary groups.
On the other, we provide a constructive approach to LGTs
using the TN formalism (reviewed in Sec. III). In this
framework, TNs are used as a model-building tool that,
given a group G, allows us to design the most general
gauge-invariant theory out of the simple knowledge of the
group-representation matrices. The approach is based on
reformulating very simple results about the theory of group
representations (reviewed in Sec. IV) in the TN formalism.
In particular, we use the approach in which LGTs differ

from standard many-body quantum systems due to the
presence of a large amount of local symmetry constraints
(Sec. V), which arise as a consequence of generalizations of
the Gauss law. One of the guiding principles in designing
LGTs will thus be the possibility of defining such local
symmetry constraints (Secs. VA and V B). In particular, we
identify the “physical Hilbert space” HP as the space of
states that fulfill those constraints (Sec. V C). We show how
these constraints can be naturally embedded in a TN. We
thus construct an exact projector ontoHP as a TN (Sec. VI).
We rederive, with our formalism, the elementary gauge-
invariant operators (Sec. V D) necessary to describe the
dynamics inside HP.
In the course of our discussion, we explain that con-

tinuous groups are associated with infinite-dimensional
local Hilbert spaces, and thus, the TN network construction
for them has infinite bond dimension D and thus is
computationally intractable.
In order to cure this problem, we introduce a scheme that

allows us to truncate, in a gauge-invariant way, the infinite-
dimensional local Hilbert spaces. In this way, we obtain a
version of the KS LGT for (compact) continuous groups
defined on finite-dimensional Hilbert spaces (Sec. VII).
The projector ontoHP for these models can be expressed as
a TN with finite bond dimension and can thus be used in
practical computations.
We review the alternative constructions of LGTs with

continuous gauge symmetry and discrete local Hilbert
spaces, called gauge magnets (or link models) [46–50]
(Sec. VIII). We generalize it to arbitrary groups and we
show that in the non-Abelian case, the gauge magnets are
not equivalent to a local gauge-invariant truncation of the
KS LGT.
At this stage, we are able to introduce a general TN

variational ansatz for LGTs, with both discrete and

continuous groups, that again automatically embeds all
local constraints dictated by the gauge symmetry. The states
described by this ansatz are indeed gauge symmetric by
construction. Gauge-symmetry constraints, indeed, allow
us to restrict the attention to HP, which is still, however,
exponentially large, as shown in Fig. 1. Low-energy states
of local gauge-invariant Hamiltonians are expected to live
only on a small region of HP, in the same way as low-
energy states of generic local Hamiltonians live in a small
region of the unconstrained Hilbert space, since they fulfill
the “area law” for the entanglement [51–54].
We explicitly construct a TN ansatz that allows us to

explore this small corner of HP (Sec. IX). In its simplest
form, the TN ansatz requires the same bond dimension as
the projector onto HP. In this case, D≃ ffiffiffi

d
p

, with d the
dimension of the local Hilbert space, and it allows us to
characterize the physics of generalized Rokhsar-Kivelson
(RK) states [55]. By increasing the bond dimension, one
can gradually explore all the space of gauge-invariant states
HP, as represented in Fig. 1, by increasingly large orange
circles.
The TN ansatz depends on several elementary tensors,

each made by two distinguished parts. One part is com-
pletely determined by the gauge-symmetry constraints,
while the other contains the free parameters to be used

FIG. 1. The Hilbert space H of a quantum many-body system
(represented here by a 3D box) is exponentially large, since it is
the tensor product of the Hilbert spaces of the constituents. Gauge
symmetry allows us to identify a smaller space that we call the
physical Hilbert spaceHP. This space is the subspace spanned by
those states that fulfill all the local constraints imposed by the
gauge symmetry and is represented by a membrane insideH.HP
is smaller than the full H but it is still exponentially large. Low-
energy states of local gauge-invariant Hamiltonians, however, are
expected to live in a small corner ofHP, in the same way as low-
energy states of generic local Hamiltonians live in a small corner
of H [51–54]. For this reason, we design a variational ansatz
based on TNs that allows us to explore this small corner of HP
(orange oval). By increasing the bond dimension of the elemen-
tary tensors in the TN (D↑), we can explore increasingly large
regions of HP, and eventually, for D → ∞, we can cover the
whole HP. The projector on HP and a family of interesting RK
states are obtained exactly with a TN with minimal bond
dimension that scales as D≃ ffiffiffi

d
p

, where d is the dimension of
the local Hilbert space.
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in variational calculations. As in the case of globally
invariant TNs [56–58], our formalism allows us to unveil
interesting connections between gauge-symmetric quantum
states and spin networks [59].
As a further application, we define gauge-invariant

vertex operators [60] for arbitrary gauge theories (Sec. X).
In this way, we open new possibilities to use them as
extensions of the standard Hamiltonians in order to explore
extended phase diagrams of the known models.
We benchmark these new tools in the context of RK

states. In particular, we focus on the recent proposals about
the characterization of quantum phases based on the
analysis of the entanglement scaling of the ground-state
wave function [61–63]. We analyze the well-known tran-
sition between the eight-vertex and the six-vertex models.
In the gauge-theory language, this transition is induced by
applying the vertex operators [60] onto the RK Z2 wave
functions. In this way, we provide an example of a phase
transition between a Z2 gapped spin liquid and a Uð1Þ
algebraic spin liquid that is detected by the topological
entropy but elusive for the lowest part of the entanglement
spectrum (Sec. XI).
All the discussion about connections of our results with

other works in the literature is postponed to Sec. XII, and
we conclude with a summary of our results and an outlook
on future developments in Sec. XIII.

II. SUMMARY OF THE RESULTS

Here, we briefly summarize the most important results of
our paper so that the reader interested in applying our
formalism to specific models will easily find the relevant
material. (i) We derive the TN representation of the
standard KS LGT Hamiltonian for arbitrary compact
groups in Eqs. (18), (19), and (23). (ii) We present an
extra gauge-invariant operator that can be added to the KS
Hamiltonian to explore generalized KS LGTs for arbitrary
compact groups in Eq. (45). (iii) We provide the exact TN
representation for the projector onto HP of the KS LGT
(represented as a hyperplane in Fig. 1) in Fig. 10. It is the
contraction of several copies of elementary tensors C and G
defined in Fig. 11 and Eq. (26). (iv) We describe a
truncation of the Hilbert space of the KS LGT that is
consistent with gauge symmetry in Sec. VII. This trunca-
tion allows us to study LGTs with continuous groups [i.e.,
Uð1Þ and SUðNÞ] with constituents leaving in finite-
dimensional Hilbert spaces. (v) In this way, we introduce
an exact TN representation with finite bond dimension of
the projector onto theHP of an arbitrary LGT. It is encoded
in the TN of Fig. 10 with the C and G tensors defined in
Fig. 15. (vi) We discuss the relation of this truncation
scheme with gauge magnets or quantum link models. We
also build the exact TN representation of the projector onto
HP for gauge magnets. It is the TN of Fig. 10 with the C and
G tensors defined in Fig. 19. (vii) We provide a variational
ansatz for generic states ofHP of all the LGTs discussed as

the TNs of Fig. 20. The ansatz is the contraction of several
copies of sparse tensors that unveils a connection between
the LGT gauge-invariant Hilbert space and spin networks.
(viii) We confirm that the topological entropy detects phase
transitions elusive to standard local order parameters. In
particular, we characterize the transition between two
different topological phases: the 2D eight-vertex and six-
vertex topological phases. These results are presented in
Fig. 24. In Fig. 25, we show that the same phase transition
does not affect the behavior of the lowest part of the
entanglement spectrum.

III. TENSOR NETWORKS

Tensors are multilinear maps X̄a
bc acting among different

Hilbert spaces. In particular, the coefficients of a state of a
quantum many-body system are encoded in the element of
a very large tensor Ti1;…;iN

jψi ¼
X

i1;…;iN

Ti1;…;iN ji1;…; iNi: ð1Þ

In general, the tensor T is too large to be stored on a
computer, and thus, it is useful to express it as the
contraction of smaller elementary tensors. These contracted
tensors are called TNs. When dealing with large TNs, the
formulas become easily large and complex, and it is simpler
to resort to a graphical notation. The graphical notation is
explained already in the literature [6,64–66], but we also
shortly review it here in order to fix the notation we use in
the paper.
In the graphical notation, geometric shapes are associ-

ated with tensors and lines or “legs” attached to them
represent their indexes. As an example, the upper panel of
Fig. 2 represents a tensor with three indexes Xa

bc. A small
dot on the shape allows us to keep track of the index
ordering that is assumed to be clockwise starting from the
dot. Incoming legs, or in-legs (upper indexes), are drawn
with entering arrows, while outgoing legs, or out-legs, are
drawn as outgoing arrows. The Hermitian conjugate of a
tensor X† involves taking the complex conjugate of the
elements and exchanging the in-legs with the out-legs
X† ¼ X̄cb

a . This operation is represented graphically by
mirroring the tensor and inverting the arrows on the lines
(left-hand side of the upper panel of Fig. 2).
A leg connecting two tensors represents their multipli-

cation through the contraction of the corresponding indexes
(summation over all the values of those indexes). An
example is represented on the left-hand side of the lower
panel of Fig. 2, where the tensor W† is contracted with the
tensor W.
In our formulas, we sometime omit explicit summation

and use the Einstein notation, where the summation is
intended over repeated indexes.
A tensor can always be interpreted as a matrix by

dividing its legs into two groups: One group identifies a
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vector’s spaces U and the other V. In this way, the tensor
becomes a map fromU to V. A natural choice is to interpret
U as the collection of in-legs and V as the collection of out-
legs, but this choice is not the only possibility.
An important class of tensors is isometric tensors. For a

specific choice of U and V, they fulfill

WW† ¼ 1V: ð2Þ
In our drawings, triangular shapes always represent

isometric tensors [68].
The lower panel of Fig. 2 illustrates a specific case of a

three-leg isometric tensorW, whereU is spanned by the leg
a and V is spanned by the two legs b and c. This
observation implies that W† is defined as W† ≡ W̄cb

a and
Eq. (2) reads W̄kl

a Wa
bc ¼ δkbδ

l
c. (Remember that there is a

sum over a.) Graphically, the contraction is represented by
the line connecting the two tensors. The result of the

contraction is a four-leg tensor, explicitly written as the
tensor product of two identity tensors represented by
straight lines.
When TNs represent quantum states of many-body

systems, the legs related to the constituents [i1 → iN
in Eq. (1)] are called physical legs and are typically
represented by latin letters, while all the others legs (those
that are contracted) are legs called auxiliary legs and
represented by greek letters.

IV. GROUP THEORY IN THE
TENSOR-NETWORK LANGUAGE

Here, we assume that the reader is familiar with basic
concepts of the representation theory of both finite and
continuous groups, and we list the relevant results for our
paper in order to express them in the TN language. In
particular, while this paper deals with gauge theories with
continuous groups, we develop the formalism by using
discrete groups G. The underlining ideas are indeed
completely independent from whether the group is discrete
or continuous, and we feel that discrete groups allow us to
present these ideas in a simpler way.
Concretely, all the results we present, which involve the

summation over group elements, can be rewritten for
continuous compact groups by substituting the sums with
integrals over the group, defined through the appropriate
invariant measure (see, i.e., Chap. 4 of Ref. [69]).
Here, we remind readers that a collection of elements

fgg closed under multiplication forms a group G. We are
mostly interested in matrix representations of the group G
that are obtained by associating with each group element g
a unitary matrix ΓðgÞ acting on a given vector space. In this
way, the group multiplication table is rephrased into
specific relations between the representing matrices. In
general, given a matrix representation of a group, there is a
well-defined procedure to reduce it to a block-diagonal
form, where each of the blocks constitutes a “smaller,”
independent representation of the same group G. If those
blocks are not further reducible into smaller blocks,
they define an irreducible representation of the group G
that in this paper will be labeled by r. The dimension
and number of the irreducible representations depend
on the group G, and their study is the subject of the theory
of group representations. In the following, we denote by
ΓrðgÞ the matrix representation of g in the irreducible
representation r.
One of the most important results of the theory of group

representations is what is typically called the “great
orthogonality theorem” [70]. It states that given a group
G with elements g, and given any pair of irreducible
representations r and r0, the following relation holds:

ffiffiffiffiffiffiffiffiffiffi
nrnr0

p
jGj

X
g

Γrðg−1ÞijΓr0 ðgÞlk ¼ δikδ
j
lδðr; r0Þ; ð3Þ

(a)

(b)

FIG. 2. Graphic representation of tensors and their contractions.
Tensors are generalized vertexes (geometric shapes) whose legs
are represented by dangling arrows. (a) A tensor with three legs
Xa
bc. The upper indexes are incoming legs while lower indexes are

outgoing legs. Complex conjugation is denoted by mirror
reflection of the vertex. Different colors denote different tensors.
Indexes are ordered clockwise, starting from the solid dot on the
vertex. The contraction of two tensors is denoted by an arrow
joining them. The dagger operation X† involves both the complex
conjugation of the elements of the tensor and the inversion of the
arrows attached to its legs. As a consequence, the order of the legs
also changes X† ¼ X̄cb

a [67]. (b) An isometric tensor (or simply
isometry) is always represented by a triangular vertex. A tensorW
is isometric if there is a specific choice of legs, which identifies
two vector spaces U and V, such that when W is contracted with
W† through the legs in U, the result is the identity tensor in V. In
the figure, U is spanned by the leg a while V is spanned by the
two legs b and c.
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where ΓrðgÞlk are the l and k matrix elements of the
irreducible representation (irrep) r of g, jGj is the number
of elements of G, and nr and nr0 are the dimensions of the
irreps r and r0. We now want to reinterpret this relation in
terms of TN diagrams. As a first step, we need to identify
two vector spaces U and V. U is spanned by the group
elements g. This vector space is called group algebra CðgÞ
and has dimension equal to jGj. V is the vector space
spanned by the direct sum V ¼ ⊕rðVr ⊗ Vr̄Þ. Each Vr is
the defining space of the irrep r. Vr̄ is the defining space of
its conjugate representation, obtained by taking the
Hermitian conjugation of the matrices Γ†

rðgÞ≡ Γrðg−1Þ,
where we have used the property that we are dealing with
unitary representations. The fact that the vector space V has
a direct sum structure is encoded in the δðr; r0Þ factor in the
right-hand side of Eq. (3).
We start by focusing on the above formula in the case

r ¼ r0. In this case, Eq. (3) tells us that the tensor Wr

Wr ¼
ffiffiffiffiffiffiffi
nr
jGj

r
ΓrðgÞlk ð4Þ

is an isometry. The tensor Wr is represented in Fig. 3(a).
The fact that it is an isometry means that

W†
rWr ¼ 1Vr⊗Vr̄

; ð5Þ

as represented in Fig. 3(b).
Each Wr thus allows us to project a vector jgi in the

group algebra CðGÞ onto a vector jðerÞml i of the tensor
product Vr ⊗ Vr̄. This property can be used in two ways.
Reading Eq. (4) from left to right, it tells us that if we know
all the ΓrðgÞ for all the elements g ∈ G, we can collect them
in a three-leg tensor and obtain an isometry that projects
CðGÞ onto Vr ⊗ Vr̄. From right to left, we can obtain the
irrep’s matrices. If we are given the isometry Wr, by acting
onto the vector j~gi ¼ ðjGj= ffiffiffiffiffi

nr
p Þjgi of CðgÞ, we obtain

ΓrðgÞ

ΓrðgÞ ¼ Wrj~gi; ð6Þ

as we represent graphically in Fig. 3(c).
A peculiarity of our notation that we inherit from spin

networks is that each leg of the tensor also carries a
representation index r that is typically superimposed to the
line. In order to avoid confusion, after Fig. 4, we will drop
all the letters labeling the indexes of the tensors (unless
really needed) and keep only the letters related to the
irrep r.
A second result of the theory of group representations is

that
P

rn
2
r ¼ jGj, that is, the direct sum of all the Wr, is a

unitary transformation, as encoded in following relations:

WG¼⊕Wr; WGW
†
G¼1CðGÞ; W†

GWG¼1⊕rðVr⊗Vr̄Þ:

ð7Þ

A graphical representation of the direct sum of Wr
leading to WG is presented in Fig. 4.

A. Symmetric tensors

In the context of many-body quantum systems, sym-
metries play a fundamental role in the classification of
phases. Recently, in the context of TN states, symmetries
have been used to classify gapped phases of 1D systems
[1–3]. For this reason, a strong effort has been devoted to

(a)

(b)

(c)

FIG. 3. (a) The orthogonality relation in Eq. (3) allows us to
identify a set of isometries Wr projecting CðgÞ onto Vr ⊗ V̄r. If
one knows the matrices ΓrðgÞ for all g ∈ G, Wr is defined by
collecting them inside a three-index tensor. The index r identify-
ing the irrep is written on the top of one of the two legs. (b) The
isometric property of the tensorWr. (c) Alternatively, if we know
the Wr isometry, we can obtain the matrices in the r representa-
tion by acting with Wr on a vector proportional to jgi (yellow
circle in the figure). The resulting tensor has two indexes i and j
and is the matrix ΓrðgÞij.
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incorporate the appropriate exact symmetries even when
studying many-body systems with an approximate varia-
tional ansatz. In the context of TNs, a sufficient condition in
order to have symmetric states is that the constituent tensors
are symmetric [57,58,71–73]. As an example, a symmetric
tensor with respect to the group G with one in-leg and two
out-legs obeys the following equation:

Ta0
b0;c0 ¼ Ta

b;cΓ
†
rðgÞa0a Γr00 ðgÞbb0ΓrðgÞcc0 ; ð8Þ

with ΓrðgÞ the matrix of the appropriate unitary represen-
tation of the group G. This relation is sketched graphically
in Fig. 5.
Equation (8) can be satisfied by nonvanishing tensors

only when the tensor product R ¼ r̄ ⊗ r0 ⊗ r00 contains the
trivial representation, that is, the representation where all
group elements are mapped to the identity. It is thus
important to be able to construct explicitly the trivial
representation contained in a given tensor product of
different representations. For continuous groups, this oper-
ation can be done by diagonalizing the corresponding

Casimir operators. Their zero eigenvalues, if present,
identify the trivial factors. The way this operation is done
in practice is explained in detail in Refs. [58,74].
An alternative way, which works both for discrete and

continuous groups, is to explicitly build the projector onto
the trivial representation as a group sum (or integral in the
case of continuous groups). The projector is given by

P0 ¼
1

jGj
X
g

ΓRðgÞ; ð9Þ

as can be found, i.e., in Ref. [69]. We will mostly use this
methods.
A third possibility entails disentangling the symmetry

constraints following the ideas of Refs. [23,75,76]. We
postpone the discussion about this technique until Sec. VI,
where we will provide an explicit example of this
procedure.

V. HAMILTONIAN LATTICE GAUGE
THEORIES FROM THE TENSOR-NETWORK

PERSPECTIVE

Gauge theories originated, at a classical level, in the
description of the electromagnetic interactions between
charged particles and light. The physical processes,
described by the Maxwell equations, depend only on the
electric and the magnetic fields while Maxwell equations
can bewritten in terms of a vector potential, and in this form,
they show some redundancy. The vector potential can be
modified by adding to it the gradient of an arbitrary scalar
potential, without affecting the corresponding electric and
magnetic field, so giving the same physical results.
At a quantum level, the vector potential becomes a full

quantum field and the redundancy appears as a local
symmetry in the action that drives its dynamics. The
generalizations of these ideas to vector potentials describing
non-Abelian “electric andmagnetic” fields and their success
in describing the hadron spectrum gave rise to the modern
gauge theories and to our understanding of particle physics.
Actual calculations away from the perturbative regime

are most of the time carried out numerically in the

(a)

(b)

FIG. 4. (a) The direct sum ofWr is a unitary tensor. It allows us
to change basis from CðGÞ to the direct sum of all the irreps times
their conjugate⊕rðVr ⊗ Vr̄Þ. On the upper part of the figure, we
explicitly draw the collection of all theWr’s. A simplified picture
is shown on the lower part, where the direct sum is implicit in the
absence of the label r attached to the legs of the tensor. We will
use this notation in the following. When we want to representWr,
we will attach r to the leg, while we represent WG by exactly the
same drawing but without the r. From now on, for simplicity, we
will also omit to label the legs with letters. (b) The unitarity ofWG
is encoded in the fact that the contraction over the two legs acting
on ⊕ðVr ⊗ Vr̄Þ gives a delta function in CðGÞ.

FIG. 5. A symmetric tensor is left invariant by the simultaneous
rotation of all incoming legs by Γ†ðgÞ and its outgoing legs by
ΓðgÞ in the appropriate representation. Here, we exemplify the
case of a three-leg tensor with an incoming leg that transforms in
the irrep r and two out-legs that transform under irreps r0 and r00.
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framework of LGTs by discretizing the spacetime on a
lattice. In this formalism, the vector potential is associated
with the links of the lattice, while the charged matter fields
live on the sites.
A Hamiltonian version of the system has been obtained

by identifying one of the lattice directions as “time,” fixing
the temporal gauge, and constructing the Hamiltonian
operator whose matrix elements coincide, in the time-
continuum limit, with those of the transfer matrix in the
time direction [77,78].
In the Hamiltonian formulation, LGTs become many-

body quantum systems, whose constituents are divided in
two groups, gauge bosons attached to the links of an
oriented lattice Λ and matter constituents attached to the
sites s of Λ. Here, we will work on an oriented 2D square
lattice, but what follows can easily be generalized to more
complex orientable lattices.
The original local symmetry of the classical action is

then mapped to a residual local symmetry of the
quantum Hamiltonian. Symmetric Hamiltonians typi-
cally have symmetric eigenstates, and thus, one can
decide to characterize the space of locally symmetric
states. The residual local symmetry is defined in terms
of a set of constraints that the quantum states and
operators should fulfill. As we show in this section, both
the operators used to define the symmetry constraints
and the local constraints have a natural expression in
terms of TN diagrams. In particular, in this section, we
describe the Kogut-Susskind version of the Hamiltonian
LGT (KS).

A. Hilbert space of constituents

The Hilbert space for gauge bosons is the group algebra
CðGÞ. In this case, one can associate a state jgi with any
group element g ∈ G. States representing different group
elements are orthogonal hgjhi ¼ δhg . As a consequence, the
dimension of the local Hilbert space is equal to jGj.
In particular, continuous groups require dealing with
infinite-dimensional Hilbert spaces.
The latticeΛ is oriented, and it is made by L links, so that

the total Hilbert space is CðGÞL. Changing the orientation
of one link sends jgi → jg−1i. Acting with an operatorO on
the state jgi, is equivalent to acting with an operator O† on
the state jg−1i, obtained by reversing the link orientation.
A prerequisite for defining the action of the symmetry

operators is to be able to define the action of left and right
rotations of a state by arbitrary group elements h and
k ∈ G. This transformation is achieved by defining the
operators Lðh−1Þ and RðkÞ, which act on jgi and produce

Lðh−1ÞRðkÞjgi≡ jh−1gki: ð10Þ
This operation is done first by using theWG of Eq. (7) to

change basis from CðGÞ to⊕rðVr ⊗ V̄rÞ. At this stage, the
rotation is performed through the direct sums of the rotation

matrices in each representation, and then, one rotates back
to CðGÞwithW†

G. This operator is expressed graphically in
Fig. 6(b) and reads

Lðh−1Þ ¼ WG⊕r½Γrðh−1Þ ⊗ 1r�;W†
G; ð11Þ

RðkÞ ¼ WG⊕r½1r ⊗ ΓrðkÞ�W†
G: ð12Þ

B. Gauge transformations

Having the operators that perform the left and right
rotations, we are now in the position to define the operators

(a)

(b)

FIG. 6. Gauge boson constituents are defined on the links of an
oriented lattice. Links are represented by dashed lines, and
constituents are small solid circles along these lines (which
should not be confused with tensors, whose legs are solids lines).
(a) In the Kogut-Susskind LGT, each constituent is described by a
state jgi of the group algebra CðGÞ. (b) Left and right rotations
Lðh−1Þ and RðkÞ are introduced in Eqs. (11) and (12). They
transform the state jgi into jh−1gki. Both operators require an
initial change of basis from CðGÞ to ⊕rðVr ⊗ V̄rÞ, obtained
through the WG of Eq. (7) and represented in Fig. 4 (the first
horizontal triangle). One then applies to each of the legs the
corresponding rotation matrix given by ⊕r½Γrðh−1Þ ⊗ ΓrðkÞ�,
with the individual Γr defined in Fig. 3(c) and represented here by
the two vertical triangles. At last,W†

G, represented by the inverted
triangle, allows us to go back to CðGÞ.
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AsðhÞ, the building blocks of local gauge transformations.
In particular, the local transformation rotates all the states of
the links touching a site s by an element h ∈ G. Since the
lattice is oriented, the transformation induced by AsðhÞ is
different for entering s (in-links) and links leaving s (out-
links). All in-links are rotated through RðhÞ, while all the
out-links are rotated on the left by Lðh−1Þ. Concretely,
AsðhÞ at site s, acting on links s1 to s4 ordered counter-
clockwise starting from the left, is defined as

AsðhÞ ¼ RðhÞs1 ⊗ RðhÞs2 ⊗ Lðh−1Þs3 ⊗ Lðh−1Þs4 ; ð13Þ

with L and R defined, respectively, in Eqs. (11) and (12).
Notice that ½AsðgÞ; As

0ðhÞ� ¼ 0 if s ≠ s0, as a consequence
of the commutation between L and R operators defined on
the same links. They are represented graphically in Fig. 7.
A generic gauge transformation is then a product of local
gauge transformations, where for each site s, one chooses a
different element gs to perform the desired rotation. Given a
lattice of Ls sites and a choice of Ls elements hi,
i ¼ 1;…; Ls ∈ G, we obtain the transformation T :

T ðfh1;…; hLs
gÞ ¼

YLs

s¼1

AsðhsÞ: ð14Þ

C. The gauge-invariant Hilbert space

The set of states in the Hilbert space that are invariant
under all AsðgÞ, the building blocks of the gauge trans-
formations, defined by Eq. (13), constitutes the physical
Hilbert space (or gauge-invariant Hilbert space) Hp

Hp ≡ fjϕi ∈ CðGÞL;
AsðgÞjϕi ¼ jϕi∀s ∈ Λ; g ∈ Gg; ð15Þ

where s are the sites of the lattice Λ, L is the number of
links, and g is an arbitrary group element.
An example of a state in Hp is given by

jϕi ¼ jþi⊗L ¼
�

1ffiffiffiffiffiffiffijGjp X
g
jgi

�
⊗L

ð16Þ

since ½Lðh−1ÞjþiRðkÞ� ¼ jþi.
Hp is a subspace of the original tensor-product Hilbert

space CðGÞL, as sketched in Fig. 1. By construction,
all states in Hp are also invariant under any global trans-
formation T , defined in Eq. (14).

D. Gauge-invariant operators

We are now interested in introducing the dynamics of a
LGT, and thus we need to characterize gauge invariant
operators.
Gauge-invariant operators are operators O that commute

with all the AsðgÞ; that is,

½O; AsðgÞ� ¼ 0; ∀ g ∈ G; s ∈ Λ: ð17Þ

We would like to find the “minimal” gauge-invariant
operators, that is, those that constitute the building blocks
for gauge-invariant Hamiltonians, and with as small sup-
port as possible. In order to find them, we take inspiration
from the QED Hamiltonian, whose gauge part can be
written as HQED ¼ E2 þ B2, with E and B being the
electric and magnetic fields. On the lattice, the E2 term
is mapped to a link operator. (Remember that E ¼ −∇V,
with V being a scalar field, so that in a mathematical sense,
E is naturally a one form and thus geometrically attached to
links.) The term B2 is mapped to a plaquette operator,
where plaquettes, the smallest possible closed loops made
by links, are the elementary pieces of the lattice surface.
(Again, remember that B ¼ ∇∧A, with A being a vector
field, and thus, B is naturally identified with a two form,
discretized on plaquettes.)
For this reason, we look for a generalization to an

arbitrary group G of the E operator of electromagnetism, as
a single-link operator, and of the B operator, as an operator
acting on plaquettes of the lattice. We start by the single-
link operator. In an Abelian LGT, any matrix representing
the rotation by a group element commutes with all the
others and thus fulfills Eq. (17). For this reason, we can
choose any ΓregðgÞ þ H:c:. [79] as a link operator [80].
When dealing with non-Abelian LGTs, the only link
operator that commutes with an arbitrary rotation, as
requested by Eq. (17), is an operator proportional to the
identity in each of the irreps, as a consequence of the Schur
lemma [81]. A gauge-invariant link operator acting on a
link sn in the KS LGT thus can be expressed as

FIG. 7. Graphical representation of the operator AsðhÞ, the
building block of gauge transformations in the Kogut-Susskind
LGT. On every link entering a site s, it either rotates the state
of the link through RðhÞ or Lðh−1Þ, depending on whether
the link enters or leaves the site. The forms of L and R are given
in Fig. 6(b).
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E2
sn ¼ ðW†

G⊕r½crIr ⊗ Ir̄�W†
GÞsn ; ð18Þ

with cr arbitrary numbers and WG defined in Eq. (7).
Plaquette operators can be defined as matrix-product

operators whose elementary tensors U act on the Hilbert
space of a single link and an auxiliary Hilbert space.
Specifically, U acts on the tensor product of the
CðGÞ ⊗ Vrm . Vrm is the defining space of the irrep rm
of G that defines how the matter transforms under gauge
transformation [77,78,82]. U is defined as

Usn ¼
X
g

jgihgjsn ⊗ ΓrmðgÞij: ð19Þ

It acts diagonally on the Hilbert space of the link sn and
performs a controlled rotation in the auxiliary space; in
other words, it “reads” the state of the link and rotates
accordingly the state on the auxiliary space rm. The
operator Usn is represented graphically in Fig. 8.
From the definition, we can derive its covariance proper-

ties under the left and right rotations. Indeed, after the

gauge transformation that sends jgi to jh−1gki, a Usn
becomes

U0
sn ≡ ½Lðh−1ÞRðkÞ�U½Lðh−1ÞRðkÞ�†
¼

X
g

jh−1gkihgjsn ⊗ ΓrmðgÞij; ð20Þ

as illustrated in the lower panel of Fig. 8. By redefining
g0 ¼ h−1gk, we obtain

U0
sn ¼

X
g0
jg0ihgjsn ⊗ Γrmðhg0k−1Þij: ð21Þ

Equation (20) together with Eq. (21) show that the Usn
allows us to transfer the rotation on the physical Hilbert
space of the link to corresponding rotations on the
auxiliary space.
This relation is often considered as the defining relation

of a LGT [82], since U can be thought of the equivalent of
the position operator in the group manifold, while L and R
are equivalent to translation operators on the group
manifold.
By appropriately building a close path out of U, we can

get rid of the rotations on the auxiliary legs and thus obtain
a gauge-invariant operator. In particular, we can now
construct the simplest closed path that leads to the plaquette
operator we are after:

(a)

(b)

FIG. 8. (a) The Usn operator of Eq. (19) in the KS LGT. It acts
on the tensor product of the physical space CðGÞ of the link sn
and of an auxiliary space that defines the irrep rm:CðGÞ ⊗ Vrm . It
is built from the contraction of a copy tensor C≡ jgihgj ⊗ hgj
(red circle) and the corresponding rotation matrices ΓrmðgÞij
[defined in Eq. (6)]. (b) The above definition implies that the
Usn transmits the rotation onto the physical index, as induced by
conjugation by L and R, to the auxiliary indexes. This property
allows us to use Usn as a building block of the gauge-invariant
plaquette operator in Eq. (22), where, thanks to the trace, the
rotations attached to the auxiliary indexes cancel.

FIG. 9. The plaquette operator Bp of Eq. (22) constructed as a
matrix-product operator from four Upn

’s, acting on the links
around a plaquette in the KS LGT. As a consequence of the
covariance of the Upn

under conjugation by L and R [see
Fig. 8(b)], it transfers the rotation onto the physical legs to
rotations onto the auxiliary legs. The operator commutes with the
gauge transformations, and, thus, it can be used as a building
block of a gauge-invariant Hamiltonian [see Eq. (23)].
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Bp ¼ trrmðUp1
Up2

U†
p3
U†

p4
Þ; ð22Þ

where we denote by p a plaquette of Λ and by p1;…; p4 the
links around it, ordered counterclockwise. The dagger is
related to the fact that the orientation of the plaquette is in
some cases opposite to the natural orientation of the lattice,
and the trace is intended only over the auxiliary indexes.
The equivalence between Eqs. (20) and (21) guarantees that
the plaquette operator, represented in Fig. 9, commutes
with the gauge transformations that have nontrivial overlap
with it.
Having both gauge-invariant link operators and plaquette

operators, we can now write the generalization of the
E2 þ B2 Hamiltonian of QED for a LGTwith gauge group
G. The Hamiltonian reads

HLGT ¼
X
l

E2
l þ

1

α2
X
p

ðBp þ B†
pÞ; ð23Þ

where α is the coupling constant, and the first sum runs over
links l ∈ Λ while the second runs over plaquettes p ∈ Λ.

VI. PROJECTOR ONTO HP AS A TENSOR
NETWORK

The gauge-invariant Hilbert spaceHp defined in Eq. (15)
is made of those states that fulfill all constraints AsðgÞjϕi ¼
jϕi. This constraint can be obtained through a projector P

P∶ CðGÞL → Hp; P2 ¼ P: ð24Þ

Here, we show that P has an exact TN representation.
The idea is very general and requires the contraction of
several copies of two types of elementary tensors: C tensors
and G tensors. The two have different roles, as shown in
Fig. 10. The C tensors copy the states from the physical legs
to the auxiliary legs so that gauge constraints are decoupled
and are imposed individually by G tensors. There is a Cα;ji;β
for every link. They have all elements at 0 except those
corresponding to α ¼ i ¼ β ¼ j [83–85]. For every site,
there is a Gα1α2

α3α4 that only possesses auxiliary indexes. (All of
its indexes are contracted [86].) It selects, among all states
of the tensor product of the four auxiliary constituents
around a site, only those that fulfill the gauge-symmetry
requirements in Eq. (15).
Concretely, consider a horizontal link (s1 using the

notation of Fig. 7) connecting sites s − 1 and s. Its state
is copied through the corresponding C to two auxiliary
states, one located close to s − 1, α and the other close to s,
β [see Fig. 10(b)]. In this way, we can treat the gauge
constraint defined at the site s − 1 as acting on α rather than
on the link s1; analogously, the gauge constraint at the site s
can be imposed on β rather than on s1. In this way, we have
been able to completely decouple the gauge-symmetry
constraints acting on sites s − 1 and s. Before the copy
tensors, they were acting on the same link s1, while after it,

they act on two different auxiliary sites α and β. This
transformation allows us to address each gauge constraint
individually.
By contracting as many copies of C as there are links on

the lattice with as many copies of G tensors as there are sites
on the lattice, following the pattern in Fig. 10, we obtain the
desired projector P.
Let us write explicitly the tensors C and G. The only

nonzero elements of the copy tensor are Cg;g
g;g ¼ 1, ∀g.

Regarding G, there are several ways to obtain them (all
providing equivalent tensors). Here, we follow the one
inspired by the known TN expressions for the ground states
of quantum doubles [23,75,76,87]. The idea is to disen-
tangle the gauge-symmetry constraint. It originally acts on
four auxiliary sites, and we want to design an appropriate
unitary transformation that transforms it to a single aux-
iliary site operator. In practice, we obtain this unitary
operator by constructing G itself as the result of an
elementary TN contraction, whose building blocks are
unitary tensors that act on two constituents, and perform

(a)

(b)

(c)

FIG. 10. The projector on the gauge-invariant states. (a) The
corresponding TN is defined through the contraction of several
copies of two elementary tensors C, which copies the physical
Hilbert space onto the auxiliary Hilbert space, and G, which
selects only configurations fulfilling the gauge invariance con-
dition. (b) An example of gauge-constraint decoupling at sites
s − 1 and s obtained through the insertion of the copy tensor C.
(c) The projector on the gauge-invariant states for a 4 × 4 square
lattice with periodic boundary conditions.
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controlled rotations. In particular, we define the tensors
CRðα; βÞ and CLðα; βÞ as

CRðα; βÞ ¼
X
g

jgihgjα ⊗ RðgÞβ;

CLðα; βÞ ¼
X
g

jgihgjα ⊗ LðgÞβ; ð25Þ

where α and β specify the location of the constituents in the
virtual lattice. The generic properties of these tensors are
independent on the position of the constituents. They act on
the tensor product CðGÞ ⊗ CðGÞ and transform the state
jg; hi as CR∶ jg; hi → jg; hgi and CL∶ jg; hi → jg; ghi.
The two operators have the following properties:

CL½RðhÞ ⊗ Lðh−1Þ�C†
L ¼ ½RðhÞ ⊗ Id�;

C†
R½RðhÞ ⊗ RðhÞ�CR ¼ ½RðhÞ ⊗ Id�: ð26Þ

These properties can be used in order to simplify the gauge-
symmetry building blocks. Concretely, we now specify one
possible arrangement of C operators that allows us to
simplify the gauge condition. If we define the following
unitary operator Is ¼ C†

Rðα1; α4ÞCLðα4; α3ÞCLðα1; α2Þ by
using the properties (26), we obtain

I†sAsðhÞIs ¼ RðhÞα1 ≡ A0
sðhÞ; ð27Þ

where AsðhÞ are the building blocks of local gauge trans-
formation defined in Eq. (13). The physical interpretation
of this transformation is that we have concentrated a four-
body constraint onto a single-body constraint acting on α1
that is now easy to fulfill. On α1, gauge invariance (15)
indeed requires us to pick the only state that is invariant
under the rotation for an arbitrary group element. The
corresponding state is the state jþi ¼ 1=

ffiffiffiffiffiffiffijGjp P
gjgi.

Every state of the other three auxiliary sites forming
CðGÞ3 is by construction gauge invariant, since after the
unitary transformation, the gauge constraint does not act on
those sites. The projector operator is obtained by the equal
superposition of all the gauge-invariant states. This equal
superposition can be obtained by projecting each of the
three CðGÞ onto ~jþi ¼ P

gjgi. This construction is
sketched in Fig. 11.
Before proceeding, let us summarize what we have

obtained so far. By reexpressing the KS LGT in the
language of TNs, we have been able to provide a TN
prescription for the projector onto the gauge-invariant
Hilbert space Hp. This TN has bond dimension D equal
to the number of elements in the group D ¼ jGj. This
property means that for discrete groups, this TN can be
used in actual computations since it has a finite bond
dimension. Furthermore, the construction can be improved,
as discussed in Sec. VII A, where we explain an alternative
choice of C and G that allows us to express P with a TN

with bond dimension D ¼ P
rnr, where nr is the dimen-

sion of the irrep r. This number is of the order of the square
root of jGj since jGj ¼ P

rn
2
r .

In any case, when we study LGTs with continuous
groups, the bond dimension of the TN is infinite and thus is
not useful for numerical simulations. It provides, never-
theless, an interesting analytical results since it encodes, in
a TN, the exact projector onto the gauge-invariant
Hilbert space.
We now generalize the KS LGT to models that are

described by finite-dimensional local Hilbert spaces while
invariant under continuous groups. We will generalize our
TN construction and obtain a TN expression for P with
finite bond dimension that can be used in actual numerical
calculations.

VII. TRUNCATED LGT

The constructive approach that we have followed so far
allows us to generalize the original KS LGT. Here, we are
departing from the Hamiltonian LGT whose Lagrangian
formulation provides the standard Yang-Mills action in the
continuum limit. However, we would still like to construct
models that are related to the original KS LGT through a
truncation of the local Hilbert space that commutes with
local gauge transformations. In this way, what we have
discussed so far applies as a whole to the truncated
models [46].
Within our formalism, the truncation of the Hilbert space

we are looking for is very natural. We use theWG of Eq. (7)
to pass from CðGÞ to ⊕rWr and to truncate the direct sum
to an arbitrary finite set of irreps. The minimal choice

FIG. 11. The definition of the tensors C and G for the Kogut-
Susskind LGT. The tensor G is obtained by composition of
several copies of unitaries CL and CR described in the main text.
They are followed by the projection onto the states jþi and ~jþi
defined in the main text.
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requires keeping at least two irreps r⊕r0 (the reason why
we need at least two irreps will become clearer in the
following), so that the projector can be written as

WT ≡Wr⊕Wr0 ; ð28Þ

where the Wr are defined in Eq. (4).
After the projection, if the group G is compact, the

Hilbert space on a link becomes finite dimensional. It still
preserves the property of the group algebra that we have
used extensively; namely, in each block, it is the tensor
product of Vr ⊗ Vr̄. We thus can write left and right
rotations L and R as

Lðh−1Þ ¼ ½Γrðh−1Þ ⊗ 1r�⊕½Γr0 ðh−1Þ ⊗ 1r0 �; ð29Þ

RðkÞ ¼ ½1r ⊗ ΓrðkÞlk�⊕½1r0 ⊗ Γr0 ðkÞlk�; ð30Þ

as represented graphically in Fig. 12(b).
As already mentioned, there is a lot of freedom on the

choice of r and r0. A legitimate choice is the one that
minimizes the dimension of the local Hilbert space, since this
dimension takes part in the computational cost of TN
algorithms. In this case, one should choose r0 as the trivial
representation and r as the smallest faithful irrep of the group.
For example, for SUðNÞ groups, the dimension of the local

Hilbert spacewith such a choice isN2 þ 1, whereN is indeed
the dimension of the fundamental representation.
The building blocks of gauge transformations AsðhÞ are

still defined by Eq. (13), with L and R given by Eqs. (29)
and (30), as represented graphically in Fig. 13.
They allow us to define the gauge-invariant Hilbert space

Hp by using Eq. (15).
Gauge-invariant operators have to commute with all the

AsðgÞ defined above. Both single-link operators (electriclike)
and plaquette operators (magneticlike) are just the truncation
with theWT of the corresponding operators in the KS LGT.
The single-link operator is the truncation of Eq. (18)

E2
Tsn

¼ fW†
T⊕r½crðIr ⊗ Ir̄Þ�WTgsn

¼ ½crðIr ⊗ Ir̄Þ⊕cr0ðIr0 ⊗ Ir̄0 Þ�sn ð31Þ

and depends only on the two free parameters cr and cr0 . Here
is where it becomes clear that we need to keep inWT at least
two irreps. The truncation of Eq. (18) to a single irrep is
indeed proportional to the identity.
The truncated plaquette operator is built from Usn in

Eq. (19)

UTsn ¼ W†
TUsnWT ð32Þ

and is represented graphically in Fig. 14.
Depending on the choice of r and r0 inside WT , UTsn

could vanish. In order to see this effect, we have to remind
readers that in the KS LGT, Vrm is chosen as the smallest
faithful irrep. [For SUðNÞ, one chooses the fundamental
irrep of dimension N.] From the above definition of UT in
Eq. (32) and the definition of Usn in Eq. (19), we see that

(a)

(b)

[ ]

FIG. 12. (a) The Hilbert space of a gauge boson in the truncated
KS LGT is obtained by truncating CðGÞ with the isometry WT
defined in Eq. (28). It is isomorphic to ðVr ⊗ V̄rÞ⊕ðVr0 ⊗ V̄r0 Þ.
Each term of the direct sum is a tensor product of two
constituents, so that we represent it by two solid circles on each
link. (b) The operators implementing the left and right rotations
defined in Eqs. (29) and (30) are obtained from those of Fig. 6
after conjugation with WT .

FIG. 13. The operator AsðhÞ that generates the gauge trans-
formations in the truncated KS LGT. It is the result of the
truncation of the operator AsðhÞ of Fig. 7 with WT defined in
Eq. (28). On each link, the operator acts on the constituent closer
to s through a rotation ΓrðhÞ or Γr0 ðhÞ, which is controlled by the
irrep of the neighboring constituent on the same link. It thus
performs controlled operations in between the two constituents of
a link, as suggested by a dot on the controller leg and by an arrow
that joins it with the controlled leg.
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UT entails terms of the kind
P

gΓrðgÞΓr0 ðg−1ÞΓrmðgÞ. These
terms are proportional to the projector onto the trivial
representation defined in Eq. (9), where now the R in
Eq. (9) is given by R ¼ Vr ⊗ Vr0 ⊗ Vrm. This choice
implies that the above terms will be nonvanishing only
if the decomposition of R in a direct sum of irreps contains
the trivial representation.
This consideration implies that in order to have a non-

trivialmodel, a certain care should be takenwhen choosing r
and r0 and that their choice depends on the choice of rm. In
particular, the minimal prescription provides a valid trunca-
tion scheme with nontrivial dynamics, since in that case,
rm ¼ r and r0 is by itself the trivial representation.
Once the UT is nontrivial, it automatically fulfills the

desired commutation relations with the L and R operators
defined in Eqs. (20) and (21), as illustrated once more in
Fig. 14(b). In this way, it can be used to construct the desired
plaquette operators, using the same formula of Eq. (22)
where the U are substituted with the UT just defined.
The Hamiltonian of the truncated LGT thus has the same

form as the one of the KS LGT defined in Eq. (23), with the
appropriate substitution of E2 by E2

T and U inside the
plaquettes by the corresponding UT operators.

A. P in the truncated LGT

In the truncated LGT, we can also consider the projector
onto the Hilbert space of gauge-invariant states

PT∶ ½ðVr ⊗ Vr̄Þ⊕ðVr0 ⊗ Vr̄0Þ�⊗L → Hp; ð33Þ

with Hp defined as in Eq. (15) with the AsðgÞ of Eq. (13)
containing the operators L and R of Eqs. (29) and (30).
Even in this case, this projector can be written as an
exact TN.
The construction is very similar to the one used for the

KS LGT in Sec. VI. There, however, the specific form of G
has been derived by exploiting that, in CðGÞ, we are able to
disentangle the symmetry requirements. In general, we are
unable to perform this disentangling procedure explicitly,
so that here, we introduce a generic approach (which can
also be used for the full KS LGT and indeed provides a TN
with a lower bond dimension). The TN structure of PT is
the same as the one of P in the KS. It consists of the
contraction of various copies of C tensors (one per link) and
G tensors (one per site) following the pattern in Fig. 10.
In particular, the four-leg tensor C copies the physical

states to the auxiliary states, while the gauge-fixing tensor G
selects among the auxiliary states only those that fulfill the
gauge invariance condition AsðgÞjφi ¼ jφi.
With a basis jir; jri; jkr0 lr0 i chosen, with fir; jrg ¼

1;…; dr and fkr0 ; lr0 g ¼ dr þ 1;…; dr þ dr0 of the
Hilbert space of a link ½ðVr ⊗ Vr̄Þ⊕ðVr0 ⊗ Vr̄0 Þ�, the C
tensor copies the left constituent to the left and the right
constituent to the right:

C ¼ jirjrisnhirjrjsn ⊗ jiriαhjrjβ
þ jkr0 lr0 isnhkr0 lr0 jsn ⊗ jkr0 iαjlr0 iβ: ð34Þ

G then acts nontrivially only on VG ≃ ðVr⊕Vr0 Þ⊗2 ⊗
ðVr̄⊕Vr̄0 Þ⊗2. On this space, the requirement of gauge
invariance is equivalent to asking that G be a symmetric
tensor with respect to rotations of elements in the group G;
that is, it fulfills the requirements in Eq. (8), as explicitly
shown in Fig. 15(a).
Furthermore, since we are interested in building the

projector PT, we need to build G out of the equal super-
position of all symmetric tensors acting on the above space.
As explained in Sec. IVA, there are two possible ways of

building a symmetric tensor. The first one consists of
applying the projector onto the trivial irrep defined in
Eq. (9) to the space VG. The projector acts separately in
each block of irreps and involves terms of the type
ð1=jGjÞPgΓr1ðgÞ⊗Γr2ðgÞ⊗Γr3ðg−1ÞΓr4ðg−1Þ with frig ¼
r; r0. It is important to notice that not all of the blocks
contain a trivial irrep, and the projector will then give 0
when acting on those blocks without it. After the action of
the projector, we take the equal superposition of all
symmetric tensors with equal weight. It is important at
this point to find the rank of the previous projector and take
an equal superposition of all possible normalized states
on its support. This equal superposition is obtained by
using the tensor jþi ¼ j1;…; 1|{z}

d0

i, where d0 is the number of

copies of the trivial irrep (the rank of the projector), as is
represented in Fig. 15(b).

(a)

(b)

FIG. 14. (a) The UTsn operator in the truncated KS LGT as
defined in Eq. (32). (b) It has by construction the desired
covariance properties, meaning that rotations on the physical legs
(upper part of the panel) are transmitted to rotations on the auxiliary
legs (lower part of the panel), as described by Eqs. (20) and (21).
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Alternatively, one can use the technology developed in
Ref. [58] for constructing invariant tensors. The idea is to
decompose the tensor G into a Q part (the part that is fully
dictated by the symmetry constraints) and a P part, the part
that contains the variational parameters. The Q part, in our
case, is built out from the Clebsch-Gordan coefficients that
decompose the tensor product of the two irreps r1 and r2
into the direct sum of irreps r5. Then, every r5 is again
decomposed into the tensor product of two irreps r3 and r4.

In general, this observation implies that the tensor P has an
extra index corresponding to r5. The projector is obtained
by taking the equal superposition of all the Q tensors with
different r5; that is, P ¼ jþi. Figure 15(c) contain the
graphical representation of the construction.
For concreteness, we discuss how to construct G for the

KS LGTwithG ¼ SUð2Þ truncated to the sum of the trivial
irrep, plus the product of two J ¼ 1=2 irreps. C copies the
trivial irrep on both sides, while it copies one of the two
J ¼ 1=2 to the left and the other to the right. G is then used
to project onto the invariant states. Each auxiliary site
then lives on VJ¼0⊕VJ¼1=2 that has dimension d ¼ 3.
The possible blocks of the fourfold tensor product
ðVJ¼0⊕VJ¼1=2Þ⊗4 that contain the trivial irrep are those
with an even number of J ¼ 1=2 factors. It follows that
there is one block V⊗4

J¼0, six blocks with V⊗2
J¼0 ⊗ V⊗2

J¼1=2,
and one block V⊗4

J¼1=2. This last block furthermore leads to
two values of r5 (r5 ¼ 0 and r5 ¼ 1) that need to be equally
taken into account. The equal superposition of all these
blocks gives the G necessary to build the projector PT. The
explicit form of G is given in the Appendix.
We conclude this section by discussing the bond dimen-

sion of the TNPT . It clearly depends on the choice of irreps
that one decides to consider in the WT of Eq. (28). In the
minimal case for an SUðNÞ LGT, it is D ¼ N þ 1.

VIII. GAUGE MAGNETS AND QUANTUM
LINK MODELS

The truncated LGTwe have just presented is not the only
LGT with continuous groups, defined on a finite-
dimensional Hilbert space. In particular, a set of models
has been proposed in the literature that has the same
features and is known as gauge magnets (GMs) [47,48].
Here, we briefly recall their construction using the tools
that we have described in the previous sections.
In gauge magnets, the local Hilbert space is the direct

sum Vr⊕Vr. By rewriting the direct sum into a tensor
product of C2 ⊗ Vr, we obtain a natural basis spanned by
fj0i; j1ig ⊗ fjvig in terms of a position qubit times a spin
vector in Vr (more details are given in Sec. VIII A). In this
case, the constituents live in a space of dimension
dGM ¼ 2nr, where nr is the dimension of the irrep r. In
general, dGM is, smaller than dtKS ¼ n2r þ 1, the Hilbert
space of the KS LGT truncated to the same irrep r. For this
reason, GMs, in their simplest version, can be considered
the “minimal LGTs,” that is, the LGT with the smallest
local Hilbert space.
However, the two terms in the direct sum still allow us to

define left and right rotations of the state of a link for an
arbitrary element of the group that, as we have seen, is the
prerequisite for being able to define gauge transformations.
The left and right rotations for the elements h and k inG are
defined through

LðhÞRðkÞ≡ ½ΓrðhÞ⊕1�½1⊕ΓrðkÞ� ¼ ΓrðhÞ⊕ΓrðkÞ: ð35Þ

(a)

(b)

(c)

FIG. 15. (a) The tensor G that is used to build the projector onto
the physical Hilbert space is an invariant tensor under the action
of G, as defined in Eq. (8). The legs of G carry an index of the
irrep, since the Hilbert space on which they act has a direct sum
structure labeled by the irrep r. (b) G can be obtained by using the
explicit form of the projector onto the trivial irrep (9). The red
circle is the copy tensor in the group algebra. After acting with the
projector, we have to take an equal superposition of all vectors in
the trivial irrep space, so as to obtain PT . This equal superposition
requires finding the image of the projector, taking an equal
superposition of vectors spanning such an image state that we
represent by the cyan jþi, and contracting on it all open legs. (c)
Alternatively, one can use the construction introduced in Ref. [58]
for building symmetric tensors. The tensor is then divided into a
piece Q that takes care of correctly matching the various irreps
(made by the Clebsch-Gordan coefficients) and a degeneracy
tensor P, made of free parameters, that assigns a four-leg tensor to
each of the irreps which enter in composition of representations.
In the example we draw, P depends on the irreps r5 that are
contained into the tensor product of r1 and r2. Once more, the
projector PT is obtained by taking a uniform superposition of the
possible values of r5, that is, setting P ¼ jþi.
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The above equation is represented graphically in Figs. 16(c)
and 16(d) and can be rewritten in the tensor-product basis as
LðhÞ ¼ j0ih0j ⊗ ΓrðhÞ þ j1ih1j ⊗ 1 and RðkÞ ¼ j0ih0j ⊗
1þ j1ih1j ⊗ ΓrðkÞ. In this notation, it is clear that
j0i represents the left end of the link while j1i represents
the right end of the link. The above equation allows
us to identify the gauge boson with a boson that can occupy
one of the two extremes of the link. (For a physical
implementation of these ideas with cold atoms, please see
Refs. [88,89].)
The definition of local gauge transformations at a site

slightly differs from the one in the KS LGT of Eq. (13)

AsðhÞ ¼ RðhÞs1 ⊗ RðhÞs2 ⊗ LðhÞs3 ⊗ LðhÞs4 ð36Þ

since it rotates all the links by the element h, independently
if they are entering or leaving the site s. In terms of left and
right constituents, AsðhÞ only acts nontrivially on those
constituents of the links that are located close to s, as
illustrated in Fig. 17.
Once the building blocks of gauge transformations are

defined, the discussion parallels the one for the other LGTs,
and, in particular, we can use the As’s in order to define the
physical Hilbert space of gauge-invariant states Hp.
Furthermore, we use the new AsðhÞ in order to define
gauge-invariant operators, as from Eq. (17). As a result,
all gauge-invariant link operators are defined as E2

Gsn
¼

ðc0Il⊕c1IrÞsn with c0 and c1 arbitrary numbers. The
equivalent of the Usn operator is used to build gauge-
invariant plaquette operators. In the literature, it is possible
to find the specific form for the Usn operators for SUðNÞ,
SPðNÞ, and G2 groups [50,90,91]. Here, we provide a
recipe to generalize it to an arbitrary group G, either
discrete or continuous.
We use a similar construction to the one used for the KS

LGT and define an operator that acts on ðVr⊕VrÞ ⊗ Vrm

UG
sn ¼

X
g

f½j0ih1j ⊗ ΓrðgÞ þ j1ih0j ⊗ Γrðg−1Þ�

⊗ ΓrmðgÞg: ð37Þ

If we now study how UG
sn changes under a left rotation, we

immediately see that

LðhÞUG
snLðh−1Þ

¼
X
g

f½j0ih1j⊗ΓrðgÞþ j1ih0j⊗Γrðg−1Þ�⊗Γrmðh−1gÞg

ð38Þ

(a)

(b)

(c) (d)

FIG. 16. (a) Gauge boson constituents in gauge magnets are
states of the direct sum of two irreps Vr⊕Vr, which can be
identified as the left and the right constituents at the ends of each
link. Graphically, we represent this local Hilbert space as a single
circle embracing the two copies of Vr, each of them being a
smaller circle identified by a different color and position inside
the bigger circle. (b) The legs of the tensors acting on this Hilbert
space are represented by bands rather than lines so that we can
specify operators that only act on one sector as acting on half of
the band. Each subsector is colored differently. (c),(d) The left
and right rotations in the gauge magnets only act on half of the
direct sum, as depicted here and discussed in Eq. (35).

FIG. 17. The operator that generates gauge transformations in
the gauge magnet LGT defined in Eq. (35). It rotates both
incoming and outgoing links by the same group elements. On
every link, it only acts on the constituent that is closer to the site.
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and that under a right rotation,

RðkÞUG
snRðk−1Þ

¼
X
g

f½j0ih1j ⊗ ΓrðgÞ þ j1ih0j ⊗ Γrðg−1Þ� ⊗ ΓrmðgkÞg:

ð39Þ

The definition and the transformation properties of UG
sn are

illustrated in Fig. 18. Once more, UG
sn allows us to transmit

the rotations on the link to rotations onto the auxiliary space.
Thus, we can use it as the building block for a plaquette
operator analogous to the one of the KS LGT in Eq. (22).
The Hamiltonian of a gauge magnet has thus the same

structure as the Hamiltonian for the KS LGT defined in
Eq. (23), where this time, E2 is substituted by E2

G and
plaquette operators are built from the UG

sn operators just
described.
As a final comment, it is important to notice that, in

general, for non-Abelian groups, the gauge magnets and the

truncated LGTs are different models. Indeed, there is no
consistent truncation at the level of a single link that allows
us to map the KS LGT onto the GM. Indeed, such a
truncation would require us to decomposeCðgÞ into a direct
sumof irreps and keeponly twoof them.Unfortunately, such
decomposition cannot be performed in an invariant way. The
group algebraCðGÞ can be decomposed in an invariant way
only as a direct sum of tensor products of irreps [as we have
done through the WG of Eq. (7) in the previous sections].
Any further decompositionof eachof the termsVr ⊗ Vr̄ into
a direct sum of irreps requires a choice of basis in one of the
two factors and thus cannot be invariant under rotations by
elements of G [69].
There is an exception to this rule in the case of Abelian

LGTs where nr ¼ 1, and consequently, dGM ¼ dtKS. In
Ref. [80], we have shown how to construct Abelian GMs as
a specific truncation of the Abelian KS LGT.
Gauge magnets have been independently reformulated in

Ref. [49] as quantum link models. The same authors
generalized them to arbitrary groups and representations
[50,90,91], introducing the concept of rishons. Both the
truncated LGTand the gauge magnets can be understood as
specific quantum link model constructions, where the GM
corresponds to a quantum link model with a single rishon
per link while the truncated LGT corresponds to a quantum
link model with two rishons per link [92]. It is, however,
interesting to point out that some of the link models can be
obtained as a consistent truncation of the KS LGT and
others cannot.

A. PGM for gauge magnets

We now discuss how to obtain the projector PGM onto
the physical Hilbert space HP for gauge magnets as a TN.
The construction is similar to the one used for the other
LGT. In particular, PGM is obtained by contracting as many
copies of tensors C as there are links on the lattice and as
many copies of tensors G as there are sites, following the
patterns of Fig. 10.
The tensor C is a four-leg tensor that copies the state of

physical Hilbert space half into the left auxiliary space and
half into the right auxiliary space. Notice that both
auxiliary spaces need to be extended so that Vr is
embedded in a larger vector space that has at least one
extra orthogonal direction that we call jϕi. Concretely,
having chosen a basis jlijvi with jli ¼ fj0i; j1ig and
jvi ∈ Vr, C has elements

C ¼ j0vih0jij ⊗ jviαhϕjβ þ j1vih1jij ⊗ jϕiαhvjβ; ð40Þ

where jvi ∈ Vr. (Remember that hϕjvi ¼ 0 for all
jvi ∈ Vr.) It follows that the bond dimension of the C
tensor is nr þ 1, with nr the dimension of Vr. We can now
define the operator G that acts on such Hilbert space. Once
more, G needs to be an invariant tensor; that is, it needs to

(a)

(b)

(c)

FIG. 18. (a) TheUG
sn operator in thegaugemagnetLGTdefined in

Eq. (37). It can be defined, once more, as the contraction of three
ΓrðgÞ’s and a copy tensor in CðGÞ (red circle). (b),(c) From the
definition, one can check that it allows us to pass the L and R
rotations on the physical legs, induced by the gauge transformation
of Fig. 17, to analogous rotations onto the auxiliary legs. The
covariance of UG

sn allows us to build a gauge-invariant plaquette
operator, defined as in Eq. (22), where the rotation on the auxiliary
legs cancels by taking the trace onto the auxiliary legs.
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fulfill Eq. (8). Interestingly, the auxiliary Hilbert space is
isomorphic to the auxiliary Hilbert space of the truncated
LGT TN. Nevertheless, since AsðhÞ is defined differently in
the two models, G is different. The symmetry requirements
induced by the gauge transformation on Ash are shown in
Fig. 19(a).
The explicit form of G can be obtained once more using

different techniques, either by using the projector onto the
trivial irrep of Eq. (9), as done in Fig. 19(b), or by using the
standard recipes for constructing symmetric tensors of
Ref. [58], as shown in Fig. 19(c). In the latter case, one
first fuses the irreps r1 and r2 to r5, then r3 and r4 to r6,
and then fuses r5 and r6 to the trivial irrep. In this way, the

Q part of the tensor is well defined, while the P part
depends explicitly on all r6 and r5 compatible with the
incoming irrep. Furthermore, it should be chosen as such to
provide a uniform superposition of all symmetric tensors.
In the Appendix, we provide the explicit tensors for both

Uð1Þ and SUð2Þ gauge magnets.

IX. TENSOR-NETWORK VARIATIONAL ANSATZ
FOR GAUGE-INVARIANT STATES

So far, we have discussed how to construct the projector
onto the gauge-invariant Hilbert space HP defined in
Eq. (15) as a TN. The existence of the projector implies
that any state of the gauge-invariant Hilbert space can be
constructed by acting with P on a generic state jϕi ∈ H.
The challenging problem is still how to express jϕi, since,
in general, it is a state of an exponentially large Hilbert
space. One possibility would be to express jϕi itself as a
TN and then project it with P. However, even in the best
scenario, in which the two states share the same structure as
a TN, this procedure rapidly becomes computationally
intractable since the bond dimension of the combined TN
would be the sum of the bond dimensions for jϕi and jPi.
The alternative is to construct directly all states inHP from

a symmetric variational TN ansatz. This approach has the big
advantage of being a sparse TN so that computations are
much cheaper than in full TNs having the same bond
dimension.
The idea is represented schematically in Fig. 1, where we

show that HP is embedded in H by drawing it as a
membrane inside a 3D box. States described by the
variational ansatz belong to HP and are represented as
orange ovals on it. Their size increases by increasing the
bond dimension of the elementary tensors, as represented
by the label D↑.
Thesimplestgauge-invariant statesare thegroundstatesof

the Hamiltonian (23) in the strong-coupling limit, which
typically are product states. As we increase slightly the
complexity of the ground-state wave function, we find
another simple class of gauge-invariant states. They consist
ofuniformsuperpositionsofallgauge-invariantstatesandare
obtained by acting with P onto a product state jφi ¼ jþi⊗L

jϕi ¼ 1=
ffiffiffiffi
Z

p
P
�Y⊗L

i

jþii
�
; ð41Þ

whereZ is a normalization constant such that hϕjϕi ¼ 1 and
jþi ¼ 1=

ffiffiffi
d

p ðj0i þ � � � þ jdiÞ. These states are an example
of generalized RK states for arbitrary gauge groups [55,93]
andaredescribedbyTNswith thesamebonddimensionasP.
Slight generalizations still allow us to describe a larger

family than RK states by a TN with the same bond
dimension. This result can be done, for example, by
projecting different states than jþi with P with the net
effect of moving away from the equal superposition of all
gauge-invariant states by changing the matrix elements

(a)

(b)

(c)

FIG. 19. (a) In gauge magnet LGT, the tensor G is an invariant
G tensor; i.e., it is left invariant under multiplying all its legs by
ΓrðgÞ. (b) G is obtained, for a finite group, by summing all the
representation matrices through the projector on the trivial
representation. After projecting, the uniform superposition of
all the states of the trivial representation is obtained by closing the
free legs with the product of jþi. (c) For continuous gauge
groups, the projector can either be written as an integral over the
group elements with the appropriate invariant measure or it can be
obtained by using the Clebsch-Gordan coefficients, which trans-
form the product of the four representations into a direct sum of
irreps, and then by projecting onto to the trivial irrep.
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inside C. Alternatively, one could change the weights in the
linear superposition of gauge-invariant states by changing
the tensors G. (We will discuss the operators that allow us to
deform the RK state by acting onto the physical Hilbert
space in Sec. X.) At this point, we have exhausted all
possible gauge-invariant states that can be obtained without
extending the TN.
For this reason, in order to describe all other states inHP,

we have to introduce a more complex variational ansatz,
which consists of a superposition of spin networks [59]. It
is again formed by two types of tensors C and G, and as
before, every bond of the TN is decorated by an irrep index.
There is one C tensor for each link sn of the lattice and one
G tensor for each site of the lattice. The elementary tensors
are contracted following the usual pattern of Fig. 10. The
structure imposed by gauge invariance is exactly the same
as the one discussed for the projector P; we will refer to it
as the “symmetry part” of the TN. Now, however, we add to
each tensor a “degeneracy part.”We promote every element
of the elementary tensors in P to a full tensor acting on the
appropriate degeneracy space. In practise, we attach to
every irrep r a degeneracy space (unconstrained by the
symmetry) of dimension Dr (chosen independently for
each irrep r). Such degeneracy space contains the varia-
tional parameters of the tensor.
We illustrate the construction for the KS LGT, but the

same construction is applicable to all the other cases we
have discussed so far. On each link, the Hilbert space is
isomorphic to

P
rVr ⊗ Vr̄. The tensor C is a three-leg

tensor composed by a symmetry part and a degeneracy part.
The tensor C is represented in Fig. 20(a), where the
symmetry part is just made of lines representing identity
matrices, while the degeneracy part is made by a tensor of
free parameters. Its symmetry part is indeed the same as the
C tensor of an RK state discussed above. Inside each block
defined by the irrep r, it copies the states in Vr to the left and
those in Vr̄ to the right. Its degeneracy part is novel with
respect to the previous examples of RK states. It is made of
matrices of sizeDr ×Dr. These matrices (one per block) are
shown in cyan in Fig. 20(a) and contain the variational
parameters. Turning to tensor G in Fig. 20(b), it is also made
of two pieces, a symmetry part and a degeneracy part. The
symmetry part [once more, the lower piece in the graphical
representation of the tensor in Fig. 20(b)] does not contain
any free variational parameter but simply takes cares of
correctly matching the irreps in such a way that the obtained
tensor is symmetric; that is, it fulfills Eq. (8). In the
graphical representation, the symmetric part is expressed
in terms of the Clebsch-Gordan tensors represented by the
small black circles. With every irrep label, one now
associates a degeneracy tensor (shown in orange) in
Fig. 20(b), which is populated by the variational parameters.
Importantly, the degeneracy tensor is obtained as a sum over
the irreps corresponding to the internal lines of the sym-
metric part (r5 in the figure). The variational state is thus

expressed by the contraction of the various C and G given by
Fig. 20(c), where it is represented for the specific case of a
lattice made by 4 × 4 sites and periodic boundary conditions
are assumed in both directions.

FIG. 20. (a) The C tensor used to build a variational ansatz for a
gauge-invariant state. The tensor acts on a link sn and embeds its
state onto the auxiliary space. It is composed by two parts, a
“symmetry part” that does not contain any variational parameter
(the two lower lines) and a degeneracy part that contains the
variational parameters (the cyan tensors). The tensor has several
blocks labeled by the irrep r. (b) The G tensor only acts on the
auxiliary space, and it has again a block structure. It is divided in
two pieces. The first is responsible for the correct symmetry
properties of G [see Fig. 15(a)]. This part does not contain any
free parameters and is given in terms of the Clebsch-Gordan
coefficients of the group (small black dots). The second part is a
degeneracy part that is formed by a sum of several tensors (one
for each allowed value of r5) acting on Dr1 ⊗ Dr2 ⊗ Dr3 ⊗ Dr4 .
These tensors store the variational parameters of the G tensor in
the appropriate symmetry blocks. (c) Variational ansatz for
gauge-invariant states on a lattice of 4 × 4 sites and periodic
boundary conditions. The network contains one C per link of the
lattice and one G per site. The double lines connecting the tensors
are used to remind readers that each of the elementary tensors has
a double structure, one part dictated by the symmetry and the
other one containing the actual variational parameters. In the
figure, we are assuming the sum over all the irreps r on every
bond of the TN, so that the specific irrep label is omitted.
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As a second example, we can consider the Uð1Þ GM,
whose P is defined in the Appendix. We start with the C
tensor for a generic gauge-invariant state. In this case, the
physical Hilbert space of a link is two dimensional and
involves only two blocks labeled by the irreducible
representations 0 and 1. On the other hand, the auxiliary
Hilbert space has two blocks with arbitrary dimension D0

and D1, so that the auxiliary space is Haux ¼ H0⊕H1. The
nonzero elements of C are Cα0;β0;0, a full matrix that acts on
the sub-block H0 ⊗ H0 of the Hilbert space Haux ⊗ Haux

Cα0;β0;0∶ H0 → H0: ð42Þ

Similarly, Cα1β1;1 is an independent matrix that acts on a
different block of Haux ⊗ Haux

Cα1;β1;1∶ H1 → H1: ð43Þ
The same idea applies to G that now can be thought of as a
collection of six tensors, each of them acting on one of the
only six blocks of the fourfold tensor productQ⊗4

i¼1 ðH0⊕H1Þi (which has 16 blocks) allowed by the
symmetry constraints. Just to give an example, one of the
allowed blocks is H0 ⊗ H0 ⊗ H1 ⊗ H1, where G has
entries Gα0;β0;γ1;δ1 .
Before continuing, we summarize the results of this

section. We have proposed a variational ansatz for states of
the physical Hilbert space HP. The ansatz involves the
contraction of several copies of two families of tensors, C
tensors (one per link) and G tensors (one per site). Each of
those tensors has two components, one completely deter-
mined by the requirements of gauge symmetry and a
second one that contains the free variational parameters.
The resulting TN has bond dimension

D ¼
X
r

nrDr; ð44Þ

where nr is the dimension of the irrep r, Dr is the
dimension of the degeneracy space associated with the
irrep r (which is a free parameter), and the sum over r
extends to all the irreps one needs to consider.
There are several advantages in dealing with such a

symmetric ansatz.Onone side, the ansatz canbemanipulated
with a cost smaller than the cost involved in manipulating a
nonsymmetric ansatz with the same D, since one can work
separately in each block [58]. Also, the ansatz can be used to
obtain approximations of interesting gauge-invariant states
(such as eigenstates of gauge-invariant Hamiltonians) while
exactly preserving the gauge symmetry. Furthermore, the
ansatz allows us to target not only the invariant states but also
covariant states belonging to separate symmetry sectors. A
typical application of this scenario is the characterization of
the effects of background charges on the physics of the gauge
bosons.

X. GAUGE-INVARIANT VERTEX OPERATORS

We have just discussed how one can change, given the
projector P on HP as a TN, the parameters defining C and
G, and thus, one can define a family of RK states. Here, we
want to address the question about what the operators are
that allow us to modify the RK wave function by acting on
the physical Hilbert space. Those operators, in principle,
can be added to the standard LGT Hamiltonian of Eq. (23)
so as to extend it and allow us to explore extended phase
diagrams. The operators that allow us to change the entries
of C are just the E2 operators already discussed. On the
other hand, the operators that allow us to modify the entries
of G act on crosses and thus are codiagonal with G.
In particular, G consists in an isometric tensor followed

by a uniform projection onto the state
Q

⊗jþi, that is,
G≡ ~G

Q
⊗ jþi, as is explicit in Fig. 11. We can now use ~G†

to get to the correct basis of the gauge-invariant configu-
rations and weight each of them differently through a
diagonal tensor Σ

V ¼ ~GΣ ~G†: ð45Þ

In the KS construction of G given in Sec. VI, Σ has jGj3
elements that can be chosen arbitrarily. Both the isometry ~G
and the vertex operator V are represented graphically
in Fig. 21.
In particular, we will use these operators in order to

characterize the transition from the eight-vertex to the six-
vertex model in the next section.

FIG. 21. Left: The isometry ~G can be used to go to the gauge-
invariant states. Now, a diagonal operator in this space commutes
with the gauge transformations and is thus gauge invariant. Right:
The vertex operator described in Eq. (45) is built by concatenat-
ing the tensor ~G, a diagonal tensor Σ (a red circle) [acting on
CðGÞ3], and then ~G†. It acts as a potential for different gauge-
invariant configurations and allows us to favor one with respect to
another.
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XI. BENCHMARK NUMERICAL RESULTS

In this section, we benchmark our proposal against
known analytic results. We start by describing the RK
wave function of the Z2 LGT, which is the exact ground
state of the Hamiltonian (23) for α ¼ 0. In this case, the U
operator is just the standard σz Pauli matrix, while E2 is the
σx Pauli matrix. The Hamiltonian reads

Hz2 ¼
X
l

σxl þ
1

α

X
p

σzp1
σzp2

σzp3
σzp4

; ð46Þ

where p are the plaquettes and l the links of the lattice Λ. In
the limit α → ∞, the ground state becomes the RK state
compatible with the symmetry constraints

σxs1σ
x
s2σ

x
s3σ

x
s4 jψi ¼ jψi; ∀ s ∈ Λ; ð47Þ

where, as usual, s1;…; s4 are the links around a site s. The
above RK state is obtained by contracting a TN withD ¼ 2
of the form of the one in Fig. 10, where C0;0;0 ¼ 1,
C1;1;1 ¼ 1, and G0;0;0;0 ¼ G1;1;1;1 ¼ 1, G0;1;1;0 ¼
G1;0;0;1 ¼ 1, G1;0;1;0 ¼ G0;1;0;1 ¼ 1, G0;0;1;1 ¼ G1;1;0;0 ¼ 1,
where, as always, we denote the indexes by s1;…; s4,
following the pattern of Fig. 7.
As written explicitly in Sec. I of the Appendix, the P on

HP for the Uð1Þ gauge magnet has a very similar tensor
structure. In that case, however, the tensor G misses the last
two entries since G0;0;1;1 ¼ G1;1;0;0 ¼ 0. The Uð1Þ RK state
is the ground state of the following Hamiltonian:

HGM ¼
X
p

½ðap1
ap2

a†p3
a†p4

þ H:c:Þ

− ðap1
ap2

a†p3
a†p4

þ H:c:Þ2�; ð48Þ

with a ¼ j0ih1j; that is, it is the ground state of the gauge
magnet Hamiltonian at its RK point [94–96].
By applying the vertex operators defined in Eq. (45) to

theZ2 RK state, we can switch off the two extra elements in
G, thus effectively interpolating between the Z2 RK state
and the Uð1Þ RK state. In particular, in order to study the
transition between the two models, we parametrize the
elements G0;0;1;1 ¼ G1;1;0;0 ¼ cosðθÞ, with 0 ≤ θ ≤ π=2. At
θ ¼ 0, we have the Z2 RK state, while at θ ¼ π=2, we have
the Uð1Þ RK state.
We characterize the corresponding RK wave functions

for 2D infinite cylinders with circumference L, as sketched
in Fig. 22(a).
For each value of θ, the norm of the state obtained from

the above tensors gives the partition function of the eight-
vertex model, whose phase diagram was uncovered by
Baxter [97]. In particular, in the language of the eight-
vertex model, we follow the line at a ¼ b ¼ c ¼ 1 and vary
d in the range 0 ≤ d ≤ 1. Such a line has also been studied
in Fig. 5 of Ref. [60].
The interest in this specific line stands in the fact that

along it, the model approaches a transition between two

topological phases. At d ¼ 1, the eight-vertex model is in a
Z2 deconfined phase. This phase is the paradigm of a Z2

gapped spin liquid. At d ¼ 0, there is the transition between
the eight- and six-vertex models, so that the system enters
in an algebraic spin-liquid phase. Here, we analyze how to
characterize the two phases and the transition between them
by using our numerical ansatz.

A. Decay of correlations

The correlations across the cylinder are mediated by the
transverse transfer matrix (TM), made by the contraction of
all C’s and G’s along a transverse slice of the cylinder, as
sketched in Fig. 22(b). In particular, at the Z2 LGT point
θ ¼ 0, the TM has only two degenerate nonvanishing
eigenvalues t1 and t2. The first gap Δ1 ¼ − logðt2=t1Þ ¼
0, while all others are infinite. The model thus has zero
correlation length. As we start departing from θ ¼ 0, the two
degenerate eigenvalues start to split so that Δ1 starts to
diverge as Δ1 ∝ expðLÞ. A family of new eigenvalues starts
to appear, and the model acquires a nonzero correlation
length. The decay of correlation functions is thus exponential
in all this region. The new eigenvalues tend to approach t1.
The bigger of them t3 is separated from t1 by a gap
Δ2 ¼ − logðt3=t1Þ. Such gap vanishes when approaching
d ¼ 0 (that is, at θ ¼ π=2) asΔ2 ∝ 1=L, (cf. 23). The model
thus develops algebraic correlations at θ ¼ π=2. Our bench-
mark numerical results agree with this exact picture. All the
eigenvalues are computed by exact sparse diagonalization of

(a)

(b)

FIG. 22. (a) The setup used in our numerical calculations. Each
of the elementary tensors C (cyan) and G (orange) has bond
dimension D ¼ 2, and its matrix elements are those described in
the main text. The elementary tensors are contracted, so as to
provide the quantum states jψi of a 2D infinitely large cylinder of
circumference L. In the drawing, one has to assume periodic
boundary conditions along the vertical direction. Here, we
represent the norm of the state that defines the partition function
Z of a 2D classical model. (b) We compute the spectrum of the
TM across the cylinder (sketched on the left), which characterizes
the decay of the correlations addressed in Sec. XI A, and the
spectrum of the reduced density matrix of half of the cylinder ρ1=2
(shown on the right), which gives access to the entanglement
characterization of the states addressed in Sec. XI B. Both
calculations are performed via sparse exact diagonalization,
and their costs increase exponentially with L, so that we can
address at most systems with L ¼ 20.

L. TAGLIACOZZO, A. CELI, AND M. LEWENSTEIN PHYS. REV. X 4, 041024 (2014)

041024-20



the TMwith a cost that increases exponentiallywithL. These
results give a first check that our numerical techniqueworks,
andwe can nowapply it to characterize the phase transition in
terms of two of the proposed order parameters based on the
scaling of the entanglement entropy: the topological entropy
and the Schmidt gap. Both quantities could be relevant in
understanding the phase diagram of gauge theories. Gauge
theories indeed present phases that cannot be distinguished
by using a local order parameter. A legitimate question is
whether the scaling of entanglement allows us to discern
those eluding phases.

B. Order parameters based on entanglement

We compute the entanglement entropy of the reduced
density matrix of half of the infinite cylinder ρ1=2, sketched
in Fig. 22(b). The spectrum fλng, n ¼ 1;…; DL, of ρ1=2 is
computed using sparse exact diagonalization of the eigen-
vectors of the TM, as explained in detail in Ref. [98]. The
cost of the computation increases exponentially with L. We
are interested in characterizing the scaling of the entangle-
ment entropy as a function of L since we want to extract the
topological entropy γT. In a gapped spin liquid, the
entanglement entropy SA of a region A with boundaries
of length L scales as

S ¼ c1 � Lþ γT þ c2=Lþ � � � ; ð49Þ
where the dots stand for the omission of higher-order
corrections starting with ð1=LÞ2. The constant γT , in the
topological phases, is negative and universal and encodes
the topological entropy [61,62]. In the specific case of a Z2

spin liquid, it is known to be

γT ¼ − logð2Þ: ð50Þ
Equation (49) holds also for the gapless spin-liquid
phase described by the six-vertex model. In a series
of seminal works, Stéphan and co-workers [99,100] have
shown that it is indeed possible to get an exact
expression for γT for the whole phase diagram of the
six-vertex model. In particular, they have expressed it in
the language of the XXZ spin chain defined on a
spacelike section of the cylinder. The eigenvectors of
the Hamiltonian of the XXZ model (51) are indeed equal
to those of the transfer matrix of the six-vertex model
[97]. The entanglement entropy of half of the infinite
cylinder corresponds, in the XXZ model, to the Shannon
entropy of the ground-state wave function of a chain
with periodic boundary conditions and length L. The
XXZ Hamiltonian is given by

H ¼
X
i

σxi σ
x
iþ1 þ σyi σ

y
iþ1 þ Δσziσ

z
iþ1: ð51Þ

In the range −1 < Δ ≤ 1, the Hamiltonian is critical and
the low-energy physics is described by a conformal field
theory with c ¼ 1 describing a free boson compactified

on a circle with radius R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ð2=πÞarccosðΔÞp

. In the
whole phase, the topological entropy is given by [99]

γT ¼ logðRÞ − 1

2
: ð52Þ

The specific point we are studying, called the ice point
of the six-vertex model, corresponds to Δ ¼ −1=2.
The numerical results we have obtained are presented in

Fig. 24. We have only access to modest sizes in the
transverse direction L ¼ 4;…; 20. γT is easy to extract
close to θ ¼ 0 and θ ¼ π=2, where we are able to recover,
from our numerics, its exact analytical value. As a cross-
check, we have further reduced the size of the system and
considered only the smaller cylinders from L ¼ 4;…; 10,
L ¼ 10;…; 16, L ¼ 12;…; 18, and L ¼ 14;…; 20. The
results, obtained with those sets of data (represented by
different symbols in Fig. 24), still provide estimates of γT in
agreement with the theory close to θ ¼ 0, where finite-
size corrections are completely negligible, and close
to θ ¼ π=2, where they are reasonably small (see the
rightmost inset of Fig. 24).
The situation is very different for intermediate values of

θ. Especially in the region between 0.7 ≤ θ ≤ 1.5, we
observe strong crossover effects. The values of γT extracted
from different series of L do not agree, as shown by the fact
that curves made by different symbols are distinct. This

1 1.1 1.2 1.3 1.4 1.5
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L*
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Δ 2)
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FIG. 23. Upper panel: The second gap of the TM represented in
Fig. 22(b) in the Z2 spin-liquid phase closes as θ approaches π=2,
where there is the transition from the Z2 spin-liquid phase to the
Uð1Þ algebraic spin-liquid phase. The collapse of the data for the
Δ2L close to π=2, for the values of L in the range L ¼ 10;…; 16,
confirms that the gap at the transition closes as 1=L as expected.
Thus, what we are studying is a transition from a gapped phase
with an exponential decay of correlations to a gapless phase
governed by an algebraic decay of correlations. Lower panel: On
the other hand, the first gap of the TM Δ1, representing the gap
between the two different topological sectors appearing on the
cylinder, opens exponentially with L as θ tends to π=2. This
behavior is again confirmed by the collapse of our numerical data
for logðΔ1Þ=L, with L in the range L ¼ 10;…; 16.

TENSOR NETWORKS FOR LATTICE GAUGE THEORIES … PHYS. REV. X 4, 041024 (2014)

041024-21



effect could be related to the subleading corrections that
become more important when we approach the transition.
We also observe that for larger systems, the crossover
region shrinks and moves toward the phase transition at
θ ¼ π=2. It looks like that, if we were able to reach the
thermodynamic limit, γT would present a very sharp jump
between the two asymptotic values.
These results give further evidence that, provided one is

able to address large enough systems, γT can be used as an
order parameter, away from a relatively small crossover
region (which furthermore shrinks with increasing system
size). In our specific case, indeed, it allows us to discern
the gapped Z2 spin-liquid phase from the algebraic Uð1Þ
spin-liquid phase at θ ¼ π=2.
We now analyze another possible order parameter based

on the scaling of the entanglement. Li and Haldane in
Ref. [63] suggested that phases could be easier to identify
by considering the scaling of the full entanglement
spectrum rather than focusing on a single number as
the topological entropy. The entanglement spectrum is
the collection of the logarithm of the eigenvalues of the
reduced density matrix logðλnÞ.
In particular, numerical studies of 1D systems have

provided a precise characterization of the scaling of the

lowest part of the entanglement spectrum, the one associated
with the largest eigenvalues of the reduced density matrix
[101,102]. In many cases, the lowest gap of the entangle-
ment spectrum, called the Schmidt gap, vanishes when
approaching a quantum phase transition following universal
scaling laws. The authors have thus proposed to use the
Schmidt gap as an order parameter. This idea is further
supported by the recent results that show that for conformal
invariant critical points, several gaps in the entanglement
spectrum close in a way that allows us to identify the critical
exponents of the underlying conformal field theory [102]. It
is still unclear how general these results are.
For this reason, we have decided to analyze the behavior

of the lowest part of the entanglement spectrum of ρ1=2 of
half cylinders, when approaching the transition at θ ¼ π=2.
In particular, we address the crossover region between
1 ≤ θ ≤ π=2, where the analysis of the topological entropy
is unreliable.
The results are presented in Fig. 25. The main panel

shows the first 100 values of the entanglement spectrum
logðλnÞ as a function of θ in the crossover region.
Surprisingly, nothing strange seems to happen. The spec-
trum presents the plateau structure characteristic of the RK
wave functions. The structure of the first plateau seems
quite stable, and the only effect of increasing θ toward π=2
is to shift the relative height of the plateau to accommodate
the appearance of new ones in the tails. In particular, the
first two eigenvalues are degenerate for all the intervals
considered. The Schmidt gap is indeed constantly 0 and
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FIG. 24. The topological entropy γT defined in Eq. (49) and
extracted from the scaling of the entropy of half infinite cylinders
with respect to their circumference L. The red dots are obtained by
considering the scaling of the entropy in the interval L ¼ 4;…; 10,
blue up-facing triangles L ¼ 10;…; 16, green squares
L ¼ 12;…; 18, and the yellow triangles pointing to the right
L ¼ 14;…; 20. The solid orange line represents the exact value
of γT for the Z2 spin liquid in Eq. (50), while the cyan dashed line
represents its value for the Uð1Þ spin liquid from Eq. (52) with R
associated with Δ ¼ −1=2. We see that for small θ, γT coincides,
independently of the size of the cylinder considered, with the
expected exact value Z2 (left inset). As we move toward the
transition, γT shows a transient oscillation that tends to become
sharper and deeper and move toward π=2 for larger L. At π=2, it
attains again the expected analytical value with very small correc-
tions induced by considering the two different set of data (right
inset). In the main text, we provide a discussion of these results.
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FIG. 25. The behavior of the first 100 eigenvalues λn (n is on
the y axis) of the reduced density matrix of half infinite cylinders
ρ1=2 defined in Fig. 22(b) with L ¼ 16. We plot them as a
function of θ (x axis). θ varies in the crossover range 1 ≤ θ ≤ π=2
identified during the analysis of the topological entropy in
Fig. 24. The entanglement spectrum presents clear plateaux,
footprints of RK wave functions. Nevertheless, its lower part does
not seem to detect the phase’s transition. The first Schmidt gap is
identically 0 everywhere (there are two degenerate eigenvalues),
and the second Schmidt gap increases while approaching the
transition (inset in the figure) for all the L ¼ 10;…; 16.
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does not detect the transition. Even from the plot of the
second Schmidt gap, which increases monotonically with
θ → π=2, we are unable to appreciate that we are approach-
ing a phase transition, as shown in the inset of Fig. 25 for
several values of L. We thus conclude that the low-energy
part of the entanglement spectrum seems to fail to detect the
phase transition between the gapped Z2 spin-liquid phase
and the algebraic Uð1Þ spin liquid occurring at θ ¼ π=2.

XII. PREVIOUS WORK ON THE SUBJECT

Here, we try to list the works that have contributed to our
understanding of various topics and to the final formulation
of our proposal, as we have outlined.
There are several good references for group theory in a

diagrammatic notation. In particular, the literature [67]
deals with continuous groups. Continuous groups and the
specific case of SUð2Þ have been extensively studied in the
literature of TNs [56–58,72,103]. The reader not familiar
with the elementary concepts in the theory of group
representations would benefit from studying the first few
chapters of some of the standard textbooks [69,81]. A nice
summary of relevant material can also be found in the
Appendixes of Ref. [104].
A nice introduction to LGT in the Lagrangian formu-

lation can be found in Ref. [105] and in any of the standard
textbooks on the subject, i.e., Refs. [82,106]. The standard
Hamiltonian formulation was obtained by Kogut and
Susskind [77] and by Creutz [78].
Truncated LGTs were discussed independently by many

authors [46,47,49] that have called them gauge magnet or
quantum link models. Horn originally introduced a model
similar to the one described here in Sec. VII, which we
generalize here to arbitrary continuous and discrete groups.
Later, in Ref. [50], the quantum linkmodels were generalized
to several continuous gauge groups with a different strategy
from the one presented here. In the samework, theywere also
given an interpretation in terms of rishons. In that language,
the truncated LGT we have discussed in Sec. VII when
dealing with continuous groups is a specific quantum link
model with two rishons per link, while the one in Sec. VIII is
a quantum linkmodelwith one rishon per link [107]. Still, the
results we present here can also be applied to discrete groups
and thus provide a further generalization of quantum link
models. Also, they allow us to easily distinguish between
those quantum link models that can be obtained as a
consistent truncation of the KS LGT and those that cannot.
The study of lattice gauge theories with matrix-product

states, the simplest 1D TN structure, has, by now, a quite
long tradition [24–26,108–111]; 2D LGTwith TNs, on the
other hand, have been less studied. LGTs with discrete
groups have been addressed with entanglement renormal-
ization in Ref. [23]; some aspects of them have been
studied in Ref. [85] with categorical TNs, a construction
that has strong connections to the present proposal. There,
however, the emphasis is on Abelian discrete groups and

the LGTs are addressed at the exactly solvable point
obtained at g ¼ 0 while here we discuss a construction
that allows us to tackle generic groups both Abelian and
non-Abelian, discrete and continuous, at any point in the
phase diagram. LGTs have also recently been addressed by
using tensor-renormalization schemes [27,112–114].
There have been several proposals on how to obtain the

gauge-invariant Hilbert space. The original proposal by KS
was to act on a reference state with all possible gauge-
invariant operators. However, there, the states generated are
not necessarily orthogonal, and thus, special care needs to be
taken. Osborne has pointed out Refs. [115,116] to us, which
are related (implicitly) to our work, and we also found the
discussion in Ref. [117] very illuminating. Osborne himself
is working along similar ideas [87], and, in particular, he has
independently worked out operators similar to the ones we
have presented in Eqs. (19) and (25).
In the context of characterizing a family of states (such as

the RK states we have discussed), Osborne has also pointed
out Refs. [118,119]. In condensed matter, in particular, the
recent results presented in Refs. [120,121] have been
obtained by applying similar ideas to the characterization
of singlet states.
At last, we have also used the available literature about

TNs and topological order in order, whenever possible, to
make connections between our ideas and the one presented
in that context. In particular, we have found particularly
useful Refs. [83,104,122].
To our knowledge, the only previous mention of vertex

operators in the context of LGT is the one of Ref. [60];
however, there, the analysis is limited to Z2 and Uð1Þ LGT,
while here, we give a prescription for arbitrary groups.
It is also worth mentioning that there is an alternative

connection between LGTand TN through a map of the low-
energy physics of QCD in the chiral limit to the physics of
specific spin chains, as pursued in Refs. [123,124].
Finally, several groups have recently addressed the

experimental implementation of truncated LGTs [80,88,89,
96,125–130].
With respect to the absence of the closure of the Schmidt

gap across a phase transition, a similar observation was
made in Ref. [100], and while we were preparing the final
version of our manuscript, in Ref. [131], the authors have
provided a plausible argument to understand that this
nonclosure is a quite general phenomenon for phase
transitions between different RK states.

XIII. CONCLUSIONS

In this paper, we have defined a TN framework for
studying LGTs. It allows us to use TNs as both a LGT
model-building tool (and, as such, we have used them to
construct the minimal consistent-truncation scheme for the
KS LGT) and as a practical tool to numerically explore
LGTs, their phase diagrams, and their emerging properties.
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The ansatz we have proposed follows the same spirit as
the one proposed in Ref. [23]. The TN indeed has a
symmetric part that allows us to exactly encode the
constraints imposed by the gauge-symmetry conditions
and a variational part that can be optimized numerically in
order to characterize interesting physical states such as the
low-energy states of gauge-invariant Hamiltonians.
The new framework is also very powerful from the

theoretical point of view. In this paper, we have indeed been
able to derive through it a consistent truncation of the local
Hilbert space of the KS LGT with a continuous group to
finite-dimensional Hilbert spaces. We have also obtained an
explicit alternative construction of gauge magnets and of
their U operators for arbitrary gauge groups [Eq. (37)] that
is also applicable to discrete groups, and the construction of
gauge-invariant vertex operators for arbitrary gauge groups
[Eq. (45)]. We have also been able to show that, differently
from the Abelian case, the non-Abelian gauge magnets
cannot be obtained as a consistent local truncation of the
KS LGT. For this reason, they stand as an alternative
microscopic formulation of LGT. This result does not
exclude the possibility that both gauge magnets and the
KS LGT can encode the same emergent physics. It
excludes, however, that they are locally (where, by locally,
we mean at the level of a single link) unitarily equivalent.
Furthermore, the distinct form of their projectors onto HP
in terms of TN (given explicitly in Secs. 2 and 3 of the
Appendix) also points to the fact that their RK states are
probably different (as we will analyze in a subsequent
paper). This finding is not particularly surprising since the
relation between the low-energy physics of quantum link
models and of standard LGT was already discussed in
Ref. [90] and required the use of dimensional reduction
arguments [so that (Dþ 1)-dimensional quantum link
models are expected in some limit to be equivalent to
D-dimensional standard LGT].
The tools that we have developed here can be used to

analyze the entanglement content of interesting LGT states.
The entanglement, studied in a basis of states belonging to
the original Hilbert space tensor product of the constituents,
does not have a direct physical meaning (since the only
measurable operators in a real GT are gauge-invariant
operators; see the recent discussion in Ref. [132]).
However, it still provides an estimate of the computational
cost of simulating such states using a TN. (See the related
discussion in Ref. [23].)
As a benchmark, we have considered the transition

between the eight-vertex and the six-vertex models in
terms of the RK wave function of the corresponding
LGT. We have shown that, while the transition is cor-
rectly detected by the behavior of the entanglement entropy,
it is hard to detect it by observing the behavior of the Schmidt
gap and the lower part of the entanglement spectrum.
We envisage that the tools that we have developed will

play an important role in the characterization of the real-
time dynamics in LGT and in the quest for finding a model

displaying stable topological phases even at finite temper-
ature. All the recent developments about the characteriza-
tion of topological phases in terms of 2D TN such as the
ones of Refs. [83,122] can be easily applied to our
construction, as we plan to in the near future.
Recently, gauge magnets have received a lot of

attention from the Atomic, Molecular, and Optical
Physics community, due to the possibility of implement-
ing them in experiments based on the emerging new
quantum technologies such as cold atoms, trapped ions,
etc. [80,88,89,96,125–130]. There is still a great deal of
room for improvement on these first proposals, and the
tools we have designed will help in this task. We have
indeed just become aware that a new proposal for
simulating SUð2Þ LGT along the lines of our discussion
has already been independently designed [133].
Furthermore, our analysis is just the starting point in the

development of a TN approach to LGT. In particular,
questions relevant for high-energy LGT like, e.g., taking
the continuous limit, have not been addressed here and
constitute a logical next step to be done. Some such
questions are the subject of an ambitious collaborative
project, coordinated by Osborne, that is open to contribu-
tions and available online [87].
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APPENDIX: THE EXPLICIT FORM OF THE
TENSORS FOR RK STATES FOR Uð1Þ

AND SUð2Þ LGT

1. Uð1Þ
In the case of Uð1Þ, both the local Hilbert space and the

auxiliary space are two dimensional and the tensor C is
given in the computational basis as
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C ¼ j0ij0ih0j þ j1ij1ih1j ðA1Þ
while the tensor G is given in the computational basis

G ¼ j0is1 j0is2h0js3h0js4
þ j1is1 j1is2h1js3h1js4 þ j1is1 j1is2h1js3h1js4
þ j1is1 j0is2h1js3h0js4 þ j0is1 j1is2h0js3h1js4
þ j1is1 j0is2h0js3h1js4 þ j0is1 j1is2h1js3h0js4 : ðA2Þ

2. Truncated SUð2Þ LGT

The truncated SUð2Þ LGT has Hilbert space of dimen-
sion five. In it, we call the vectors as j0i, j11i, j12i, j21i,
and j22i, in order to remember that we have two blocks, the
irrep j ¼ 0 and the irrep j ¼ 1=2, which are a direct sum,
one of dimension one and the other of dimension four,
that is, the tensor product of two two-dimensional spaces.

The TN that encodes the RK states can be highly simplified
by noting that only a part of the Hilbert space needs to be
copied on the left and another part on the right. In
particular, we can write the C tensor as

C ¼ j0ij2ih2j
þ j11ij0ih0j þ j12ij0ih1j þ j21ij1ih0j þ j22ij1ih1j:

ðA3Þ

From the second line, we immediately recognize that C in
the four-dimensional block, that is, the tensor product,
copies the left factor to the left and the right factor to the
right. In this way, the auxiliary dimension is only D ¼ 3.
We now need to select gauge-invariant configurations on
the auxiliary links by using G. We give the expression of the
blocks individually:

G1=2;1=2;1=2;1=2 ¼ 1=2ðj0is1 j0is2h0js3h0js4 þ j1is1 j1is2h1js3h1js4 þ j0is1 j1is2h0js3h1js4 þ j1is1 j0is2h1js3h0js4Þ
þ 1=ð2

ffiffiffi
3

p
Þðj0is1 j1is2h0js3h1js4 þ j1is1 j0is2h1js3h0js4 þ −j0is1 j0is2h0js3h0js4

þ −j1is1 j1is2h1js3h1js4Þ þ −1=ð
ffiffiffi
3

p
Þðj1is1 j0is2h0js3h1js4 þ j0is1 j1is2h1js3h0js4Þ; ðA4Þ

G0;0;0;0 ¼ 1=2ðj2is1 j2is2h2js3h2js4Þ; ðA5Þ

G0;0;1=2;1=2 ¼ 1=
ffiffiffi
2

p
ðj2is1 j2is2h0js3h1js4þ

− j2is1 j2is2h1js3h0js4Þ; ðA6Þ

G0;1=2;0;1=2 ¼ 1=
ffiffiffi
2

p
ðj2is1 j0is2h2js3h0js4

þ j2is1 j1is2h2js3h1js4Þ; ðA7Þ

G0;1=2;1=2;0 ¼ 1=
ffiffiffi
2

p
ðj2is1 j0is2h0js3h2js4

þ j2is1 j1is2h1js3h2js4Þ; ðA8Þ

G1=2;1=2;0;0 ¼ 1=
ffiffiffi
2

p
ðj0is1 j1is2h2js3h2js4

þ −j1is1 j0is2h2js3h2js4Þ; ðA9Þ

G1=2;0;0;1=2 ¼ 1=
ffiffiffi
2

p
ðj0is1 j2is2h2js3h0js4

þ j1is1 j2is2h2js3h1js4Þ; ðA10Þ

G1=2;0;1=2;0 ¼ 1=
ffiffiffi
2

p
ðj0is1 j2is2h0js3h2js4

þ j1is1 j2is2h1js3h2js4Þ: ðA11Þ

3. The SUð2Þ gauge magnet

Similarly to the truncated SUð2Þ, P for the SUð2Þ gauge
magnet is written as a TN with D ¼ 3. The local Hilbert
space with dimension-four tensor C reads

C ¼
X
j¼0;1

j0; jijjih2j þ j1; jij2ihjj: ðA12Þ

The tensor G, on the other hand, reads

G ¼ 1=
ffiffiffi
2

p
ðj2is1 j2is2h0js3h1js4 þ −j2is1 j2is2h1js3h0js4Þ þ 1=

ffiffiffi
2

p
ðj2is1 j0is2h2js3h1js4 þ −j2is1 j1is2h2js3h0js4Þ

þ 1=
ffiffiffi
2

p
ðj2is1 j0is2h1js3h2js4 þ −j2is1 j1is2h0js3h2js4Þ þ 1=

ffiffiffi
2

p
ðj0is1 j1is2h2js3h2js4 þ −j1is1 j0is2h2js3h2js4Þ

þ 1=
ffiffiffi
2

p
ðj0is1 j2is2h2js3h1js4 þ −j1is1 j2is2h2js3h0js4Þ þ 1=

ffiffiffi
2

p
ðj0is1 j2is2h1js3h2js4 þ −j1is1 j2is2h0js3h2js4Þ

þ 1=2ðj1is1 j0is2h1js3h0js4 þ j0is1 j1is2h0js3h1js4 þ −j1is1 j0is2h0js3h1js4 þ −j0is1 j1is2h1js3h0js4Þ
þ 1=ð2

ffiffiffi
3

p
Þðj0is1 j1is2h0js3h1js4 þ j1is1 j0is2h1js3h0js4 þ j1is1 j1is2h0js3h0js4 þ j0is1 j0is2h1js3h1js4Þ

þ −1=ð
ffiffiffi
3

p
Þðj0is1 j1is2h1js3h0js4 þ j1is1 j0is2h0js3h1js4Þ: ðA13Þ
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