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The olfactory system of male moths is exquisitely sensitive to pheromones emitted by females and
transported in the environment by atmospheric turbulence. Moths respond to minute amounts of
pheromones, and their behavior is sensitive to the fine-scale structure of turbulent plumes where
pheromone concentration is detectible. The signal of pheromone whiffs is qualitatively known to be
intermittent, yet quantitative characterization of its statistical properties is lacking. This challenging fluid
dynamics problem is also relevant for entomology, neurobiology, and the technological design of olfactory
stimulators aimed at reproducing physiological odor signals in well-controlled laboratory conditions.
Here, we develop a Lagrangian approach to the transport of pheromones by turbulent flows and exploit it to
predict the statistics of odor detection during olfactory searches. The theory yields explicit probability
distributions for the intensity and the duration of pheromone detections, as well as their spacing in time.
Predictions are favorably tested by using numerical simulations, laboratory experiments, and field data for
the atmospheric surface layer. The resulting signal of odor detections lends itself to implementation with
state-of-the-art technologies and quantifies the amount and the type of information that male moths can
exploit during olfactory searches.
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I. INTRODUCTION

Sex pheromones provide arguably the most striking
example of long-range communication through specialized
airborne messengers [1]. Most Lepidoptera are consistently
attracted to calling females from distances going as far as
several hundred meters, reaching their partners in a few
minutes [2]. This feat is impressive as females broadcast
their pheromone message into a noise-ridden transmission
medium (the turbulent atmospheric surface layer), and
receiver males face the challenge of extracting information
about the female’s location from a signal that is attenuated,
garbled, and mixed with other olfactory stimuli (see Fig. 1).
The pheromone communication system is under strong

evolutionary pressure. This is particularly evident for adult
moths of the family Saturniidae and Bombycidae (e.g., the
Indian Luna and the silk moth, respectively), which have a
lifespan of a few days as adults. Subsisting on stored lipids
acquired during the larval stage, they largely devote their

adulthood to the task of reproduction. The result of natural
selection is an olfactory system exquisitely sensitive to
pheromones: Just a few molecules impinging on the
antenna of a male moth are sufficient to alert the insect
and trigger a change in its cardiac frequency [5]; concen-
trations of a few hundred molecules per cubic centimeter
elicit specific behavioral responses that prelude flight [6].
The quality and the time course of the pheromone signal

matter, in addition to its intensity. As for the quality, the
signal is usually a blend of two or more chemical com-
pounds. Species of closely related families often use similar
components, and discrimination is achieved by different
combinations and/or ratios in the mixture. Pheromone
components of sympatric species that emit similar phero-
mone blends often act as behavioral antagonists [7], and the
discrimination among different blends is extremely fine [8].
The first-order center for the discrimination is the macro-
glomerular complex of the antennal lobe, where detections
from olfactory receptor neurons are integrated [9]. As for
the time course of the signal, turbulence strongly distorts
the pheromone signal, leading to wildly intermittent
fluctuations of concentration at large distances from the
source. As shown in Fig. 1, the signal features alternating
bursts and clean-air periods with a broad spectrum of
durations [10].
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Characterizing the properties of odor detections in
turbulent flows is a challenging and fundamental problem
in statistical fluid dynamics. Furthermore, intermittency
generated by the physics of turbulent transport is crucial
for eliciting the appropriate biological behavior. Insects
exposed to steady, uniform stimuli briefly move upwind,
arrest their flight toward the source, and begin crosswind
casting (the typical response to the loss of olfactory cues).
Males temporarily resume upwind flight when the stimulus

is increased stepwise, and they set into sustained upwind
flight when exposed to repeated pulses [11–13]. Hence, the
statistics of turbulence-airborne odor stimuli is literally
the message sent by female to male moths; it controls their
behavior and defines the information that male moths can
exploit for their searches [14–17]. Therefore, the long-
standing problem of characterizing the statistics of odor
detections during olfactory searches is essential to under-
stand the neurobiological response of insects [18].
Additional motivation for considering the problem stems
from laboratory experiments using olfactometers and/or
tethering. Experiments in Refs. [19,20] have Drosophilae
tethered to a wire and assay their responses (electro-
physiologically and/or behaviorally) to simple odor stimuli,
such as pulses of fixed duration, that are most likely
not representative of those experienced in the wild. To
determine the statistics of physiological stimuli and then
reproduce it in the laboratory would represent major
progress and would significantly impact the design of
future experimental assays.
Here, we address and answer the following questions:

How intermittent is the distribution of pheromones as a
function of the downwind or crosswind distance from
the source? What are the statistical distributions for the
intensity and the duration of odor-laden whiffs, and the
duration of clean-air pockets? What is the dependency on
the sensitivity threshold? How does turbulence affect the
ratio among different components of a blend from emission
to reception? Can emissions from multiple sources, with
different blend ratios, reach the receiver without being
irremediably mixed? Results are obtained by developing a
theoretical Lagrangian approach that predicts the salient
properties of a tracer emitted by a localized source and
transported by a turbulent flow. We focus on a continuously
emitting source, yet methods generalize to periodic emis-
sions. Predictions are successfully tested by numerical
simulations, and laboratory and field experimental data.
Consequences for the neurobiological responses of insects
during olfactory searches and for laboratory protocols of
olfactory stimulation are discussed in the Conclusions.

II. THEORETICAL FRAMEWORK

Definition of the problem.—We consider the emission by
a source of linear size a (at the origin x ¼ 0) of a chemical
substance (or a mixture) at a constant rate of J molecules
per unit time. The environment transporting the chemical
is a turbulent incompressible flow uðx; tÞ ¼ U þ vðx; tÞ.
The mean wind is U ¼ ðU; 0; 0Þ, while v is the turbulent
component. The turbulence level v=U, which is the ratio
between the amplitudes of the turbulent component v and of
the mean flow U, is assumed to be small in the rest of the
paper. We are interested in the time series of the concen-
tration c at a downwind distance x (much larger than a
but still smaller than the correlation length L of the flow)
and crosswind distance y from the source (see Fig. 1).

FIG. 1. The structure of a turbulent odor plume. (a) A two-
dimensional section of a plume from the jet-flow experiment [3].
The shaded area is the projection of the conical average plume,
i.e., the region outside of which crosswind transport is weak and
the odor concentration decays rapidly. (b) A typical time series of
the odor concentration at a given point in space [3]. Red triangles
indicate the occurrence of whiffs, i.e., intervals when the local
concentration is above the threshold cthr indicated by the red
line. For olfactory searches, the threshold is comparable to the
sensitivity of the pheromone receptors of the insects. The blue
line indicates the average concentration C in the regions where
the signal is above the noise level. (c) A two-dimensional section
of two blending plumes from the jet-flow experiment [4]. The two
different chemicals mix as they progress downwind, and the
resulting signal is a blend.
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The concentration cðx; tÞ of the chemical obeys the
advection-diffusion equation

∂cðx; tÞ
∂t þ uðx; tÞ · ∇cðx; tÞ ¼ κ∇2cðx; tÞ þ JhaðxÞ; ð1Þ

where κ is the molecular diffusivity. The function haðxÞ is
the spatial distribution of the source of size a, e.g., a top hat
vanishing outside the source (jxj > a) and normalized to
unity (

R
haðxÞdx ¼ 1).

Quantities of interest.—We derive below the expression
for the following observables of the concentration field c at
a given spatial location (see Fig. 1): (i) the intermittency
coefficient χ defined as the fraction of time the concen-
tration is nonzero. The smaller this number, the longer the
searching insect is exposed to clean air. (ii) Next is the
average concentration C taken over periods of time when
the signal is nonzero. The value of C determines the typical
intensity of concentration in an odor-laden plume and
whether or not that level is detectible by the insect, as
discussed below. (iii) Then, we have the full statistics of
the signal intensity, that is, the probability distribution pðcÞ
of the concentration. Its expression involves C and χ as
fundamental parameters. (iv) Insects are supposed to detect
a signal during those intervals of time when the local
concentration exceeds some sensitivity threshold cthr. We
call those periods “whiffs,” while the complementary
periods when c ≤ cthr are dubbed “blanks,” or “below
threshold.” The temporal structure of the signal is thus
given by pðtwÞ, the probability distribution of the duration
tw of the whiffs, and by pðtbÞ, the probability distribution
of the duration tb of intervals below threshold, which we
obtain below.
The Lagrangian approach.—Lagrangian methods (see

Refs. [21–26] for introduction and reviews) focus on
fluid-parcel trajectories, and the statistics of the concen-
tration field is reconstructed from the properties of a
suitable ensemble of trajectories. Lagrangian approaches
are alternatives to the Eulerian description, where the
main focus is the concentration field itself (as, e.g., in the
fluctuating plume model [10]). The two descriptions are
formally equivalent, yet they lend themselves to physical
approaches that are quite distinct. The Lagrangian refor-
mulation of (1) is

cðx; tÞ ¼ J
Z

t

−∞
dt0

Z
dx0haðx0Þpvðx0; t0jx; tÞ; ð2Þ

where pvdx0 is the probability that a fluid parcel trans-
ported by the flow is around x0 at time t0, given that it is
in x at time t. The index of pv is meant to stress that the
probability is averaged over the molecular noise statistics,
but no average is taken over the fluctuating turbulent flow
v (more details can be found in Ref. [26]). Equation (2)
states that cðx; tÞ is determined by tracing back in time
the trajectories of parcels that end in x at time t. The

ensemble of those trajectories forms a puff whose center
of mass recedes upwind and whose size rðt0Þ typically
grows as t0 → −∞ (see Fig. 2). Depending on the
realizations of v, two cases can be distinguished:
(i) The distance between the center of mass of the puff
and the source never becomes smaller than the size of
the puff. These are pockets of clean air, where the
concentration cðx; tÞ vanishes, as follows from Eq. (2).
(ii) Otherwise, the concentration cðx; tÞ is nonvanishing.
It follows from Eq. (2) that the value cðx; tÞ is propor-

tional to the time of overlap between the puff and the
source. The problem thus reduces to characterizing the
statistics of the corresponding residence time. The turbulent
flow that disperses the puff creates convoluted folds of local
structures having some directions extended while others are

FIG. 2. Scheme of the Lagrangian approach. The concentration
c at a given location x and time t is expressed in terms of the
history of a Lagrangian puff, that is, an ensemble of particles
transported by the turbulent flow, all starting at x at time t and
dispersing backwards in time. The concentration c is determined
by the size of the Lagrangian puff when it hits the source (if it
does): (a) Average values c≃ C correspond to the puff hitting the
source with a typical value of the size; (b) intense concentrations
c correspond to the puff hitting the source with unusually small
sizes; (c) the concentration c vanishes if the puff never hits the
source throughout its history. (d) The sketch of a time series.
From left to right: blank, the concentration c vanishes; whiff, the
puff hits the source with a small size and c passes the threshold of
detection cthr; blank, turbulent diffusion enlarges the size of the
puff and c decays below the threshold, then c vanishes because of
the puff losing contact with the source. The red strips indicate the
regions of the puff overlapping with the source as the puff is
swept by the turbulent flow.
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contracted down to the diffusive scale η of the scalar
concentration field. The specific nature of those structures
is determined by the signs of the Lyapunov exponents of
the flow. Here, though, we are interested in the statistics
of the residence time at the source, the size of which is
a ≫ η. Therefore, we physically expect that the small-scale
structures of the puff are smoothed out by the integrals
appearing in Eq. (2), affecting only constant factors that are
not essential for the specific quantities discussed here.
In particular, if we disregard constants of order unity, a
sufficient characterization of the puffs should be provided
by the dynamics of their center of mass and their overall
size. We shall derive below the consequences of these
physical assumptions and compare the resulting predictions
to numerical and experimental data.
Lagrangian properties of the turbulent flow.—We will

show shortly that the statistics of odor stimuli for the
problem defined above depends on the details of the
turbulent flow transporting the pheromones via three
exponents: α, γ, and β. Power laws are typically observed
in turbulent flows as a consequence of scale-invariance
properties of fluid dynamical equations [27]. The expo-
nents that we define below are related, respectively, to the
dynamics of single-particle, pair dispersion, and rate of
growth of the size of a dispersing puff.
(i) The exponent α controls the distance traveled by a

single particle at short times t as ðktÞ1=α, with k constant.
The crosswind width of the average plume, outside of
which detections are rare, scales with the downwind
distance x as x1=α. In most physical cases, the mean wind
gives the dominant contribution, so that α ¼ 1, k ¼ U, and
the shape of the average plume is conical. However, for
one special case discussed below (the Kraichnan flow),
single-particle dispersion is dominated by diffusion at short
enough times (α ¼ 2), and the standard Ut behavior holds
only at longer times (yet smaller than those needed to reach
the source).
(ii) The exponent γ is related to the dispersion of a pair

of particles as ðk0tÞ1=γ , where k0 is a constant. For the
applications below, the relevant values are γ ¼ 2=3, cor-
responding to the Richardson-Kolmogorov scaling, γ ¼ 2
for ordinary diffusion and γ ¼ 1 for ballistic separation.
(iii) Finally, the exponent β is defined by the scaling

relation for the rate of growth ζr;t ≡ d log r=dt ¼
t−1ðk0t=rγÞβ of a puff of size r at time t after its release.
For homogeneous and stationary flow, β ¼ 1 and ζ depends
only on the size. However, if the flow is inhomogeneous,
the dependency is more complicated. Namely, in the neutral
atmospheric layer, the dynamics explicitly depends on the
height; the height of particles released close to the ground
grows linearly with time. Nonhomogeneous effects of the
height are then conveniently accounted for via the depend-
ency of ζr;t on the time t since the release of the puff (we
show below that β ¼ 2 in this case). The consistency
between the definitions of β and γ is easy to check:

dr=dt ¼ rζr ∼ k0βtβ−1r1−βγ , and integration of the equation
yields r ∼ ðk0tÞ1=γ for any β.

III. RESULTS: THEORY

In this section, we summarize the theoretical results
about intensity and dynamics of the concentration signal.
Derivations are detailed in Appendix A.
The intensity of the concentration signal.—We first

consider statistical objects that quantify the concentration
c of the pheromones at a given time. The intermittency
factor χ is defined as the fraction of time that c is
nonvanishing; the average of the concentration c over that
fraction of time is denoted C. The threshold of detection,
i.e., the minimum concentration that the receiver is able
to sense, is denoted cthr. Intervals when c > cthr are whiffs,
while “blanks” or “below threshold” are the complemen-
tary regions c ≤ cthr when the signal is either absent or not
detectible. The ratioC=cthr controls whether or not a typical
plume is detectible. Using Lagrangian methods, we show in
Appendix A that

χ ¼ Probðc > 0Þ ∼
�
k0x1−γ
U

�ð3−αÞ=γ
f

�
Uyα

kx

�
;

C ¼ hcjc > 0i ∼ J
k

�
k0x
U

�−ð3−αÞ=γ
; ð3Þ

where f is a nondimensional function that decays
rapidly for large arguments, namely, exponentially in the
applications discussed below. Equation (3) indicates
that χ decreases and C remains constant, as y increases.
Therefore, moving crosswind away from the mean-wind
axis, the signal retains its intensity but becomes sparser.
Approaching the source (reducing x), the intensity within a
whiff grows, while the frequency of encounters depends
on γ.
We also show in Appendix A that the concentration c is

inversely proportional to the size of the Lagrangian puff
(see Fig. 2) when it hits the source. Intense concentrations
are associated with flow configurations that leave the puff
atypically small. Using the fact that the occurrence of those
configurations is a rare event that obeys Poisson statistics,
we then show that the tail of the probability distribution
pðcÞ is

pðcÞ ∼ χ

C

�
c
C

�−2þ βγ
3−α

exp

�
−
�
c
C

� βγ
3−α
�
; ð4Þ

for C ≪ c ≪ c0, where c0 is the concentration at the
source. The moments hcni are shown [see Eq. (A9)] to
depend on C and χ in Eq. (3) via the relation hcni ∼ χCn,
consistent with the scaling form (4).
The duration of the whiffs.—Since the behavior of

insects depends on the time course of the odor stimuli,
it is important to characterize the statistics of the whiffs,
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i.e., time intervals when the concentration is above the
threshold cthr of detection. We predict (see Appendix A),
for the distribution of the duration tw of the whiffs,

pðtwÞ ∼
1

τ

�
τ

tw

�
3=2

gwðtwÞ: ð5Þ

The power law −3=2 is cut off by the function gw, constant
for small arguments, decaying exponentially with a rate
T−1
w for tw ≳ Tw. The cutoff Tw is determined by two

physical mechanisms [see Fig. 2(d)]: (i) The flow changes
in time, and its new configuration is more effective at
dispersing the puff, increasing its size and making the
concentration fall below the threshold cthr; (ii) large-scale
velocity fluctuations displace the puff away from the
source. The expression for the corresponding cutoffs T1

and T2 is derived in Appendix A, and Tw is the minimum
between the two. The relative importance of the two
mechanisms depends on the details of the flow transporting
the odors, on the distance to the source, and on the
threshold cthr, as discussed in the examples below.
The power −3=2 in Eq. (5) originates from the wiggling

of the Lagrangian puff in Fig. 2 around the source, leading
to the alternation of whiffs (overlaps with the source)
and blanks (loss of overlap) distributed according to the
properties of a diffusion process. The parameter τ is the
shortest overlap, i.e., the time to diffuse across the size ≃a
of the source. Because of the slow power-law decay −3=2
in Eq. (5), the average duration is determined by the
cutoff: htwi ∼ Tw.
The duration of intervals below threshold.—The distri-

bution of the duration tb for time intervals when the
concentration is below the threshold cthr is derived in
Appendix A as

pðtbÞ ∼
1

τ

�
τ

tb

�
3=2

gbðtbÞ: ð6Þ

Here, gb is approximately constant for durations shorter
than the cutoff Tb, and then it decays exponentially with a
rate T−1

b . The identical −3=2 power laws in Eqs. (5) and (6)
stem from the short-time turbulent diffusion of the
Lagrangian puff (see Appendix A for details), which
symmetrically loses and gains contact with the source.
Note that power laws do not depend on the details of the
flow. The temporal structure of whiffs and blanks then
contains some information that is independent of environ-
mental variations of the intensity, stratification, and other
details of the flow transporting the pheromones.
It follows from Eq. (6) that the average duration of the

blanks htbi ∼ Tb; i.e., it is determined by the cutoff of the
distribution, as for the whiffs. Since detections and non-
detections are mutually exclusive, their averages (and thus
their cutoffs) are not independent, as shown by the exact
relation (A16) derived in Appendix A. Specifically, Eqs. (3)

and (4) indicate that the value ofC and the statistics of tw do
not depend on the crosswind distance; i.e., the whiffs do not
change in their intensity or duration while moving cross-
wind. Their frequency does change, though, which is
reflected in the intermittency factor χ in Eq. (3) and affects
the statistics of the blanks. In particular, the cutoff Tb will
grow while moving crosswind according to Eq. (A16).
Clumps of whiffs.—The visual counterpart of the broad

distribution (5) for the whiffs is their aggregation in clumps,
as in Fig. 1. The short-time diffusion of the Lagrangian puff
discussed above (see Appendix A for full details) implies
that on/off times within a clump have the same statistics as
the time intervals spent above/below zero by a randomwalk
with time step τ. As a result, the total number of whiffs in a
clump of size Tw is typically

ffiffiffiffiffiffiffiffiffiffi
Tw=τ

p
, yet their occurrence is

highly inhomogeneous. Indeed, it follows from the arcsine
law (see, e.g., Ref. [28]) that a time window of extent
Δt ≪ Tw centered around a given whiff typically containsffiffiffiffiffiffiffiffiffiffi
Δt=τ

p
other whiffs. This number is much larger than

ðΔt=TwÞ
ffiffiffiffiffiffiffiffiffiffi
Tw=τ

p
, which would hold for a homogeneous

distribution. We conclude that short whiffs tend to cluster
and to be interspersed by equally short periods below
threshold. Outside of the clusters, large excursions of the
Lagrangian puffs generate long whiffs and blanks.
Whenever the probability of detecting a whiff is of order
unity, Tb ∼ Tw, there is symmetry between whiffs and
blanks; individual clumps are virtually indiscernible.
Conversely, clumps stand out when the detection proba-
bility is small—either because the point of detection lies
outside of the average plume or because the threshold of
detection is large. Clumps are then sparsely distributed
as a Poisson process with an expected waiting time between
clumps of htbi≃htwi=Probðc>cthrÞ≫ htwi [see Eq. (A16)],
as expected from the Poisson clumping heuristics [29].
Effects of the molecular diffusivity.—Differences in

transport among various constituents of a blend are due
to their molecular diffusivity κ. For small volatile com-
pounds, such as pheromones, typical values for κ are of the
order 10−6 m2=s, corresponding to Péclet numbers UL=κ
exceeding unity by several orders of magnitude [30].
Values of κ do depend on the molecules, though, and their
diffusion can thus be different. However, turbulent flows
typically lead to the separation of Lagrangian particles
(the exponent γ is positive). Then, the effects of molecular
diffusion are weak for large Péclet numbers, and they are
felt only at small separations among particles [26]. The
transition between the two regimes of transport occurs at
the diffusive scale, which is in the range of a few
millimeters to a centimeter (thus, below the size of the
source) for relevant flows [30]. We conclude that the
statistics of the concentration depends weakly on κ and,
most importantly, that the species-specific information on
the ratios among constituents of a blend of molecules is
largely preserved as the mixture is carried by turbulent
flow. These conclusions are also supported by experimental
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data on laboratory flows, where the weak dependence
on κ of the concentration statistics was investigated and
quantified [31].
Persistence of odor blends.—When female moths of

different species emit blends composed of the same
constituents but with different ratios, their messages may
interfere and impair the correct decoding by male moths
[(see Fig. 1(c)]. The goal of this section is to clarify the
conditions ensuring that interference does not occur.
We consider a set of sources of size a, spaced by a

distance d ≫ a from each other, emitting different blends
of the same chemical compounds. Each source k ¼ 1; 2;…

releases the chemical species i ¼ 1; 2;… at a rate JðkÞi (all
rates are assumed to be comparable). The Lagrangian
approach prescribes that we should follow the evolution
of a puff released at the detection point and traveling
backwards in time. If the puff hits one and only one source,
then the resulting signal can be unambiguously attributed
to it. Conversely, if the puff traverses two or more sources,
the concentration is a mix of their emissions. Given a
detection threshold cthr, of the same order for all the
components, the probability of receiving a mixed signal
equals the probability that a puff crosses two sources while
keeping the same (small) size. The condition for a proper
identification of the blend is derived in Appendix A and
reads

1≲
�
RðdÞ
rthr

�
γ

¼
�

cthr
CðdÞ

� γ
3−α ¼

�
cthr
CðxÞ

� γ
3−α d

x
: ð7Þ

For typical concentrations, cthr ≃ CðxÞ, and the proba-
bility of receiving a mixed signal reduces to pmix ∼
exp½−ðd=xÞβ� [see Eq. (A17)]: In order to discriminate
two different sources by sampling typical concentrations,
their separation d must be comparable to the distance x
separating the receiver from one source. Our prediction
agrees with experimental observations where the cross
correlation between the concentration of two scalars emitted
by different sources was measured [4]. Conversely, intense
events carry more information and allow us to tell closer
sources apart. Indeed, Eq. (7) shows that whiffs with strong
concentrations c≳ c0ðd=aÞ−ð3−αÞ=γ are unmixed—they
carry the proportion of constituents of only one source at
any given time. Therefore, the larger the threshold of
detection, the greater the power of discrimination (at the
expense of sensitivity and time) and vice versa. Even though
we have not pursued detailed applications here, Lagrangian
methods for the transport of blends can be relevant for
the design of mating disruption for pests and disease-
transmitting vectors [32,33].

IV. RESULTS: NUMERICS AND EXPERIMENTS

To test our predictions, we consider three different types
of turbulent flows.

Kraichnan flow.—This is a stochastic velocity field,
incompressible, homogeneous and isotropic, with
Gaussian statistics, uncorrelated in time, and self-similar
Kolmogorov-Richardson spatial scaling (see Ref. [26] for
review). These properties correspond to the exponents
α ¼ 2, β ¼ 1, and γ ¼ 2=3 defined in our formulation of
the problem. The advantage of this idealized model is that
the Lagrangian Monte Carlo method in Ref. [34] allows the
numerical simulation of the integer moments of concen-
tration for conditions (namely, the ratio a=x between the
size of the source and the distance from it) that are
prohibitive for a fully resolved integration of the fluid-
dynamical equations. In summary, the results for the
concentration statistics along the wind axis are (see
Appendix B for a detailed derivation)

CðxÞ ∼ x−3=2; χ ∼
ffiffiffiffi
x
L

r
; hcni ∼ χCn ∼ x−ð3n−1Þ=2:

ð8Þ

Figure 3(a) shows that the first four moments are in
excellent agreement with the theoretical prediction above.
Jet flow.—This is a laboratory flow qualitatively similar

to wind-tunnel experiments. Even though distances from
the source are moderate compared to olfactory searches,
experimental data still provide a compelling test for our
general theory. For the experimental setup in Ref. [3], the
single-particle motion is governed by large-scale compo-
nents of the flow and α ¼ 1. The main contribution to the
dispersion of Lagrangian puffs arises from rapid, small-
scale velocity fluctuations that induce a diffusive separation
(γ ¼ 2) with diffusivity k0 ∼ va. Stationarity and homo-
geneity of the flow ensure β ¼ 1. The function f in Eq. (3)
is derived in Appendix B. In addition to a crosswind
Gaussian decay, it contains a prefactor ðU=vÞ2 which
reflects the semiconical shape of the average plume, with
aperture angle v=U. The area of impact with the source is
therefore amplified by ðU=vÞ2 with respect to an isotropic
distribution. The expressions just listed imply that along
the wind axis y ¼ 0,

CðxÞ∼ J
vax

; χ∼
Ua
vx

; hcni∼χCn∝x−n−1; ð9Þ

with the rate J ≃ c0Ua2. The scaling of the moments
agrees with experimental data in Fig. 3(b). Figure 3(c)
presents the distribution of the concentration at various
distances along the wind axis, compared to our
prediction (4):

pðcÞ ∼ χ

c
exp

�
− c
C

�
: ð10Þ

Experimental data for the duration of whiffs and blanks
are compared to Eqs. (5) and (6) in Figs. 3(d), 3(e), and 3(f).
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The most likely duration τ is the time to diffuse across the
source τ ∼ a2=k0 ∼ a=v. We show in Appendix B that the
dominant mechanism that cuts off long whiffs is the large-
scale sweeping of the Lagrangian puffs, and there we
provide the expression for the cutoff Tw in the exponential
function gw in Eq. (5). Blanks obey the power-law
predicted by Eq. (6) over nearly two decades. The
Poisson clumping regime is realized at distances where
detections are sparse and thus χ is small, i.e., x ≫ aU=v
along themeanwind axis. In that regime, the exponential in
pðcÞ implies that the average duration of below-threshold

intervals depends exponentially on the threshold cthr≳C:
htbi∼htwiexpðcthr=CÞ. Note that htbi also grows exponen-
tially with the distance to the source, since C ∝ 1=x.
Atmospheric boundary layer.—Finally, we consider the

near-neutral atmospheric surface layer [35], the case most
directly relevant for olfactory searches. Two particular
features of this flow are that (i) the mean wind depends
logarithmically on the height z above the ground, and
(ii) the intensity v of the velocity fluctuations is nearly
constant, yet their correlation length is proportional to z.
The consequence of (i) is that the time to transport particles

(a) (b)

(c) (d)

(e) (f)

FIG. 3. The statistics of the concentration of odors for the Kraichnan flow [26] [panel (a)] and jet-flow experiments [3] (all other
panels). (a) Moments of the concentration for the Kraichnan flow, as a function of the ratio x=a between the distance x to the source and
its linear size a. Solid lines are the theoretical predictions in Eq. (8). (b) Same as in (a), for the jet-flow experimental data, compared to
our predictions (9). (c) The probability density function (pdf) of the concentration (rescaled by its typical value C within the whiffs) at
various distances (shown in the inset) from the source, compared to our prediction (10). Data have been shifted vertically for viewing
purposes. (d) Pdf for the duration tw of the whiffs (time intervals when the concentration remains above a threshold of detection cthr) at
various distances from the source. Solid lines are our predictions (5). Durations are rescaled by their most likely value τ. (e) The pdf for
the duration of the whiffs vs cthr (at x=a ¼ 5), compared to our prediction (5). (f) The pdf for the duration of the blanks (intervals without
detections) at various distances from the source (shown in the inset), compared to our prediction (6).
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from the source to the detection point is approximately
thit ∼ ðx=UÞlog−1ðz=hÞ, where h is the roughness height
[35]. The resulting modification to thit should a priori be
applied to our formulas, but in practice, it is safely ignored
as the logarithmic factor varies slowly. Consequences of
(ii) are more conspicuous as the increase of the correlation
length results in an effective diffusivity ≃vz. Power
counting then gives that z is proportional to time, and
the growth of the effective diffusivity with z implies the
ballistic growth of both the single-particle displacement
and the separation between pairs of particles, i.e.,
α ¼ γ ¼ 1. The rate of growth of a puff of size r is
ζr ∼ ðv2tÞ=r2, which corresponds to β ¼ 2. These scalings
are confirmed by experiments with puffs released in the
atmospheric surface layer [36].
Inserting the values above into Eq. (3), we obtain (see

Appendix B)

χ ∼ cosh−2
�
Uy
vx

�
; C ∼ c0

�
Ua
vx

�
2

; ð11Þ

i.e., that the intermittency factor χ is independent of the
downwind distance x and decays exponentially in the
crosswind direction y, as confirmed in Figs. 4(a) and 4(b).

The figures show experimental data [37,38] for the fluc-
tuation intensity σc=hci ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ−1 − 1

p
, where σc is the stan-

dard deviation of the concentration. Equation (3) also
predicts, for the typical concentration in a whiff,
C ∼ c0ðUa=vxÞ2, where we estimate, again, J ≃ c0Ua2.
Unfortunately, measurements of absolute concentration
are marred by calibration issues [38] so that the prediction
cannot be tested directly. However, Eq. (4) predicts, for
the tail of the distribution, pðcÞ ∼ ðχ=cÞ expð−c=CÞ, and
therefore, the detection probability

Probðc > cthrÞ ∼ χΓð0; cthr=CÞ; ð12Þ
where Γ is the incomplete Gamma function. The latter
quantity is reliably measured, as it depends on ratios of
concentration and is in agreement with data shown in
Fig. 4(c) from two independent field experiments [37,38].
As for dynamical aspects of the signal, atmospheric data

[39] in Fig. 4(d) present a clear power-law distribution of
the duration of the whiffs, in agreement with Eq. (5). The
typical duration of the whiffs, τ ∼ a2U=ðv2xÞ, is predicted
to be independent of the threshold. Comparing the two
possible mechanisms for the cutoff of the whiffs (see
Appendix B), we find that their average duration is
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FIG. 4. Odor statistics in the atmospheric surface layer. (a, b) The intensity of the fluctuations of odor concentration as a function of the
downwind distance x and of the ratio between the crosswind distance y and x, multiplied by the ratio between the mean U and the
turbulent component v of the flow transporting the odors. Solid lines are our predictions, from Eq. (11). (c) The probability of detection,
i.e., that the local concentration of odors is above a certain threshold, vs the value of the detection threshold. The solid line is the
theoretical prediction from Eq. (12). The dashed line is the intermittency factor χ ¼ Probðc > 0Þ in Eq. (11). (d, e) The probability
density functions for the duration of the whiffs (time intervals when the concentration remains above the threshold of detection) and the
upcrossing time intervals, defined as the time elapsed between the beginnings of two successive whiffs [tw þ tb in Fig. 1(b)]. The power
law −3=2 is the theoretical prediction derived here.
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determined by the dispersion due to turbulent mixing
htwi ∼ Cx=Ucthr. The cutoff Tw for the duration of the
whiffs should then linearly increase with the downwind
distance. This prediction is in qualitative agreement with
experimental data (see Fig. 6 in Ref. [38]); a quantitative
comparison would require more statistics, as Tw is domi-
nated by low-probability events. Apparently, the statistics
of blanks was not measured in field experiments. However,
the distribution for the duration of upcrossing intervals tu,
i.e., the time elapsed between the beginning of two
consecutive whiffs, is available from Ref. [39] [see
Fig. 4(e)]. Our theory predicts, for tu, the same distribution
as for the time intervals between odd (or even) zeros of a
random walk, which is again a power law t−3=2u for
τ ≲ tu ≲ Tw, in agreement with experimental data.
We conclude with a summary of the formulas for

the atmospheric boundary layer relevant for the final
discussion:

xthr ≃ aU
v

ffiffiffiffiffiffiffi
c0
cthr

r
; τ≃ a

v

ffiffiffiffiffiffiffi
cthr
c0

r
; htwi≃ a

v

ffiffiffiffiffiffiffi
c0
cthr

r
:

ð13Þ

The first equation gives the largest distance xthr where the
conditions χ ∼ 1 and cthr ≃ CðxÞ are satisfied. The first
condition is verified along the wind axis, while the cross-
wind decay of χ defines the width of the detection cone
vx=U. The average duration htbi of the blanks is compa-
rable to htwi inside the cone y=x < v=U, while htbi ≫ htwi
outside.

V. DISCUSSIONS AND CONCLUSIONS

We first consider the implications of our results for the
olfactory response of insects. The detection region—where
the message sent by female to male moths is least garbled
by the turbulence transporting the pheromones—is defined
by two conditions: (i) The whiffs of pheromones are
sufficiently frequent [that is, the intermittency factor χ
defined in Eq. (3) is not small], and (ii) the typical
concentration C in a whiff is detectible; i.e., its ratio
C=cthr with respect to the detection threshold cthr is not
negligible. Experimental measurements show that B. mori
males respond to air streams containing as little as 200
molecules of bombykol per cm3, corresponding to a
sensitivity threshold cthr ∼ 10−18 M [6]. Measured rates
for the emission of pheromones by female moths are of the
order of a few picograms per second (see, e.g., Ref. [40]),
which correspond to an emission rate J ∼ 10 fmol=s for a
molecular weight of a few hundred Daltons, typical for
most pheromones. The corresponding concentration at the
source is c0 ∼ 1 pM, for a mean windU ∼ 1 m=s and a size
a of the source of a few centimeters, as is typical for
female moths.

The physiological parameters above can be inserted into
the results for the atmospheric surface layer that we derived
here and summarized in Eq. (13). We find that the detection
region is a semiconical volume (with aperture angle
controlled by the ratio between the intensity of turbulent
fluctuations and the mean wind) that extends to downwind
distances xthr ∼ 103 m, in agreement with observations [2].
Hundreds of meters away from the source, the most likely
duration τ of the whiffs is a few milliseconds, which com-
pares well to the shortest pulses detectible by moths [41].
At those distances, whiffs tend to occur in clusters, and a
time window of 1 second centered around a detection ty-
pically contains 10–20 odor encounters. This information-
ridden pattern of stimulation is time integrated at the
level of the projection neurons and plays an important
role in enhancing the behavioral sensitivity and in promot-
ing exploitative sustained upwind flight [41,42]. Upon
approaching the source while staying inside the detection
cone, the duration of the clumps decreases proportionally to
the distance to the source. As a result, the search process is
expected to lead to a statistically self-similar set of flight
trajectories. Outside the detection cone, periods without
any detection of pheromones are typically much longer
than the whiffs. Note that even inside the detection cone,
periods below threshold might be very long and last up to
hundreds of seconds.
Moths switch to exploratory casting when detections

become too sporadic (see, e.g., Ref. [43]). While surges are
straightforward to define as upwind motion, the trajectories
during casting phases are more involved. For example, the
angle of flight with respect to the mean wind, the duration
of crosswind extensions, and their dependencies on the
duration of the ongoing blank period are all factors that
potentially affect the patterns of flight during the casting
phases. In particular, the extent of the memory of past
detections that affect the casting is an open issue. Another
open issue is whether or not spatial information
on the location of previous detections is involved in the
control of the casting (and how, if positive). Search
strategies for olfactory robots (see Refs. [44,45]) have
shown that extended temporal memory and maps of space
do lead to effective searches that alternate surges and
casting phases qualitatively resembling those of insects.
However, neurobiological constraints were not considered.
The upshot is that quantitative data on flight patterns and
their relation to the history of detections are needed to make
progress on the decision-making processes controlling the
casting of insects during their olfactory searches.
Laboratory bioassays with olfactometers and tethered

insects are poised to shed light on the previous issues by
jointly analyzing the time history of odor stimuli and the
virtual flight trajectories of the insects. To ensure that
responses observed in the laboratory are informative about
the actual behavior of insects, though, it is crucial that
stimuli be as close as possible to those experienced by
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insects in the open field. This is the practical level where
our results will be useful: Equations (3)–(6) define a
complete protocol for generating a sequence of odor pulses.
The generation of such stimuli for the neutral atmospheric
boundary layer seems achievable mechanically (see
Refs. [19,20]) or optogenetically [41], i.e., opening or
closing valves that control the delivery of odors or switch-
ing on or off light stimulation. For the former, some care
should be taken in controlling adsorption effects. It is
indeed known that they can lead to delays in the stimulation
(see, e.g., Ref. [46]) that could prevent reproducing fast
frequencies in the few-ms range that are predicted by
Eqs. (5) and (6). No additional stringent limitations seem to
prevent reproducing the statistics of Eqs. (3)–(6) in the
laboratory. Trains of odor stimuli having such distributions
will provide a statistically faithful representation of the
landscape of odor detections created by atmospheric
turbulence during olfactory searches. The protocol we
derived here should then inform the design of future
olfactory stimulation assays.
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APPENDIX A: THEORY

The intensity of the concentration signal.—We first
consider the statistics of the pheromone concentration c
at a fixed time. If the puff hits the source, it overlaps with it
for a time ts, which depends on the size rhit of the puff at the
time thit of the hit. Since trajectories forming a puff are
statistically equivalent and the flow is incompressible, their
weight is uniform. Furthermore, for reasons discussed in
the main text, we neglect small-scale structures, and we
assume that the scaling of the volume of the puff is
statistically determined by its size rhit only; i.e., it is
∝ r3hit. Here and in the sequel, we neglect constants of
order unity. It follows that the concentration c is the random
function

c ∝
�
Jtsr−3hit with probabilityphit;

0 otherwise;
ðA1Þ

of the random variable rhit. The expressions for the
probability phit of hitting the source, thit and ts, follow
from the single-particle dispersion defined in Sec. II. For
rhit ≪ x, we have

ts∼
rαhit
k
; thit∼

x
U
; phit≡

�
rhit
x

�
3−α

f

�
Uyα

kx

�
: ðA2Þ

The expression of phit above is justified by the fact that
single-particle trajectories dispersing as t1=α have (fractal)
dimension α, and the hitting probability then scales with the
codimension 3 − α appearing in phit [27]. For α ¼ 2, phit in
Eq. (A2) gives the well-known expression for the hitting
probability of a random walk with drift, at large distances
from the source [47]. The function f in Eq. (A2) is
nondimensional and decays rapidly as its argument
becomes large, i.e., moving crosswind away from the
wind axis.
While the center of the puff is moving backward in time

toward the source, its size grows as r ∼ ðk0tÞ1=γ . The size
rhit when the puff hits the source is expected to have a self-
similar distribution [27,48]; i.e., its expression reads

pðrhitÞ ¼
1

RðxÞϕ
�

rhit
RðxÞ

�
; with RðxÞ ∼

�
k0x
U

�
1=γ

;

ðA3Þ

denoting the typical size of the puff at thit defined by
Eq. (A2). The precise form of ϕ is unknown and depends
on the details of the turbulent flow, yet its asymptotic
behavior is derived as follows. The probability that the size
rhit is well below its typical value [rhit ≤ r ≪ RðxÞ] is

Z
r

0

pðr0Þdr0 ∼ e−
R

thit
0

ζr;t0dt
0
∼ e−ðk0thitÞβr−βγ : ðA4Þ

The first step in Eq. (A4) states that the probability that a
puff does not grow beyond the size r is given by a Poisson
process with local time rates ζðt0Þ ¼ d log rðt0Þ=dt0. The
crucial physical ingredient justifying the use of Poisson
statistics is that since r ≪ RðxÞ, the total time thit is much
longer than the typical time for growth at the scale r.
Therefore, the total probability is the product of many
largely independent factors. The second step in Eq. (A4)
simply follows from the definition of β. Differentiating
Eq. (A4) with respect to r and replacing t by thit ∼ x=U, we
finally obtain

pðrhitÞ ∼
�

k0x
Urγhit

�
β 1

rhit
exp

�
−
�

k0x
Urγhit

�
β
�

⇒ ϕðρÞ ∼ ρ−1−βγ exp ð−ρ−βγÞ for ρ ≪ 1: ðA5Þ

Equations (A1) and (A2) imply that the mean concen-
tration hci ¼ Jtsr−3hitphit does not depend on rhit, which
reflects the conservation of mass. Conversely, averaging
Jtsr−3hit with respect to Eq. (A3) [which amounts to
replacing rhit by RðxÞ, apart from numerical factors] gives
the conditional average concentration

CðxÞ ¼ hcjc > 0i ∼ J
k
RðxÞα−3 ∼ J

k

�
k0x
U

�−3−α
γ

: ðA6Þ
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Finally, averaging phit in Eq. (A2) over rhit, we obtain, for
the intermittency factor χ,

χ ¼ Probðc > 0Þ ∼
�
k0x1−γ
U

�3−α
γ

f

�
Uyα

kx

�

¼
�
RðxÞ
x

�
3−α

f

�
Uyα

kx

�
; ðA7Þ

which completes the derivation of Eq. (3).
It follows from Eq. (A1) that the distribution pðcÞ of the

concentration contains two terms. The first is the singular
contribution at the origin δðcÞ R ½1 − phit�pðrhitÞdrhit. The
second is the continuous contribution phitpðrhitÞjdrhit=dcj.
The relation between rhit and c is read from the first line
in (A1) and more conveniently recast as

rhit ¼ RðxÞ
�

c
CðxÞ

�− 1
3−α
: ðA8Þ

By using Eqs. (A2), (A3), and (A7), we finally obtain

pðcÞ ¼ ð1 − χÞδðcÞ þ χpþðcÞ with

pþðcÞ ¼ 1

ð3 − αÞC
�
c
C

�−2− 1
ð3−αÞ ϕððcCÞ−

1
ð3−αÞÞR

ϕðuÞu3−αdu : ðA9Þ

Intense concentrations are associated with flow configura-
tions, leaving the puff atypically small [see Eq. (A1)]. Since
those rare configurations obey the Poisson asymptotics
(A5), the tail of the probability distribution pðcÞ is Eq. (4).
Finally, it follows from Eq. (A9) that the moments hcni

depend on C and χ in Eqs. (A6) and (A7) as

hcni ∼ χCn ∝ x−ð3−αÞð1þðn−1Þ=γÞ: ðA10Þ

The duration of the whiffs.—As discussed in the
Introduction, the behavior of insects depends on the time
course of the odor stimuli. It is therefore important to
characterize the statistics of the whiffs, i.e., time intervals
when the concentration is above the threshold cthr of
detection. The complementary intervals when c ≤ cthr are
dubbed “blanks” or “below threshold.” The ratioC=cthr, with
C given by Eq. (A6), determines whether a typical plume is
detectible. We consider a time t� when the concentration
cðx; tÞ just exceeded the threshold cthr. We are interested in
the statistics of the duration tw of the whiff, that is, the time
interval such that the concentration stays above the threshold
for its whole duration and falls below at t� þ tw. The single-
particle exponent is taken as α ¼ 1 since the laboratory and
the atmospheric flow that we analyze below have that value.
Let us now derive our prediction (5) for the distribution

of the duration of the whiffs. From Eqs. (A1), (A2),
and (A8) for α ¼ 1, a threshold cthr ≳ C is associated with
the size of the puff,

rthr ∼

ffiffiffiffiffiffiffiffiffi
J

kcthr

s
¼

ffiffiffiffiffiffiffiffiffiffi
CðxÞ
cthr

s
RðxÞ: ðA11Þ

As time progresses, the turbulent velocity field v, as well as
the probability pv in Eq. (2), evolve. For two times spaced
by tw, the two puffs to be tracked are released from the
same position but with a delay tw, which decorrelates the
trajectories of the two puffs as we proceed to quantify. It is
convenient to discuss separately the effects of the scales of
the turbulent flow that are larger, comparable, or smaller
than rthr.
(i) Large-scale (sizes ≫ rthr) velocity fluctuations trans-

port the puffs almost uniformly, and their major effect is
then to displace the puffs. The differential displacement
between the puffs released at different times can lead to
termination of the whiff by making the later puff (released
at t� þ tw) lose overlap with the source [see Fig. 2(d)].
The typical time for the loss of contact is determined by
analyzing the dynamics of lateral displacements. The
angular size of the puff as seen from the detection point
is rthr=x. The trajectories of particles transported by the
flow form angles (with respect to the direction of the mean
wind) of typical amplitude v=U. The angle fluctuates in
time with a correlation frequency v=L, where L is the
correlation length of the flow. The rate of change of the
angle is thus v2=LU. Finally, we combine the two terms
above and insert the expression (A11) of rthr. We conclude
that the typical time for a lateral displacement of the puffs
leading to a loss of contact with the source is

Tdisplace ∼
UL
v2

rthr
x

≃UL
v2

RðxÞ
x

ffiffiffiffiffiffiffiffiffiffi
CðxÞ
cthr

s
: ðA12Þ

(ii) Scales comparable to the size of the puff rthr are less
effective at displacing puffs, yet they disperse them, i.e.,
enlarge their size. That effect can terminate the whiff by
making rhit > rthr for the later puff released at t� þ tw [see
Fig. 2(d)]. The characteristic time for the growth of the size
of a puff is

Tdisperse¼ ζ−1rthr ;thit ¼
x
U

�
RðxÞ
rthr

�−βγ
¼ x
U

�
CðxÞ
cthr

�βγ
2

; ðA13Þ

where we used the definition of β, thit ≃ x=U and Eq. (A3)
for the second equality and Eq. (A11) for the last. For times
tw ≫ Tdisperse, we can treat successive time intervals of
length Tdisperse as largely independent, again use Poisson
statistics [as for Eq. (A4)], and obtain that the probability
for the size to remain below rthr for the whole interval

ðt�; t� þ twÞ is e−
R

tw
0

ζrthr ;thitdt
0
∼ e−tw=Tdisperse . A similar rea-

soning can be used for (i), and it yields an exponential
decay as well.
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Both physical mechanisms (i) and (ii) lead to a smaller
cutoff as the threshold cthr is increased. Their relative
strength depends on the turbulent flow transporting the
odors, on the distance to the source, and on the threshold
cthr, as discussed in the examples below. The cutoff Tw in
Eq. (5) is the minimum between Tdisplace and Tdisperse.
(iii) Small scales play a crucial role for the dynamics of

two puffs delayed by times tw < Tw. We are interested in
situations where cthr ≫ CðxÞ; i.e., only intense fluctuations
are detectible. In the Lagrangian formulation, those rare
events correspond to puffs reaching rthr, defined in
Eq. (A11), and then maintaining that size for an anomalously
long time. Indeed, the typical time to reach the size rthr is
rγthr=k

0. The time to reach the source is x=U. Using Eqs. (A3)
and (A11), their ratio is ðCðxÞ=cthrÞγ=2 ≪ 1; i.e., most of the
time to reach the source is spent with sizes ∼rthr.
The characteristic time ζrthr ;t ≪ thit for any time t < thit.

The total displacement of the puff at thit is thus the sum of
largely uncorrelated events of typical amplitude rthr and is
analogous to a diffusion process with effective diffusivity

Dthr ∼ r2thr

R thit
0 ζrthr ;t0dt

0

thit
∼ r2thrζrthr ;thit : ðA14Þ

We now consider two puffs released with an initial time
delay tw. The time delay induces an initial spatial separation
∼Utw. For the cases we consider, it can be verified that even
for the smallest times τ in Eq. (5), the initial separation Uτ
is larger than the viscous scale of the flow. Therefore,
velocity fluctuations smaller than the size of the two puffs
are uncorrelated since the very beginning of the trajectories.
At the time when the size rthr is reached, the displacement
of the two trajectories is ≳rthr, and subsequent displace-
ments are then largely independent. We conclude that at
the time thit when the puffs reach the source, their centers
xc are separated as for a three-dimensional diffusion
process with the diffusivity ∼Dthr in Eq. (A14) (we neglect
a factor 2, as we have done for all other constants that are of
order unity).
The beginning of a whiff occurs when the entire source

of size a is barely within the puff released at t�; i.e., the
center of the source is at a distance ∼a from the boundary
of the puff. The end of the whiff occurs when the center
of the source first loses overlap with the puff. The centers
xc of the puffs released at times later than t� are displaced
diffusively with coefficient Dthr, as shown above. We
conclude that tw is distributed as the first exit time for a
diffusing process [28], which obeys the −3=2 power law in
Eq. (5). The shortest time τ in Eq. (5) corresponds to the
fastest exit:

τ≃ a2

Dthr
¼ ζ−1rthr ;thit

�
a
rthr

�
2

∝ x1−2=γ
�
cthr
C

�
1−βγ=2

: ðA15Þ

The time to diffuse across the whole size of the puff is
r2thr=Dthr ¼ ζthr, coinciding with the typical time for the

dispersion of the puff to larger sizes. For cthr ≲ C, the size
of the puff saturates to its typical value RðxÞ [see Eq. (A3)],
with no dependency on the threshold cthr.
The duration of periods below threshold.—The physical

origin of the −3=2 power law in our prediction (6) is
identical to Eq. (5), i.e., the diffusion on rapid time scales of
the Lagrangian puff, which symmetrically loses and gains
contact with the source. We remark again that the power
laws do not depend on features such as intensity, stratifi-
cation, and other details of the flow transporting the
pheromones. It follows from Eq. (6) that the average
duration htbi ∼ Tb; i.e., it is determined by the cutoff of
the distribution, as for the whiffs.
Detection and nondetection intervals are mutually exclu-

sive, so their averages (and cutoffs) are not independent.
In particular, the probability of detection equals the average
fraction of time spent above the threshold cthr:

Probðc > cthrÞ ¼
htwi

htwi þ htbi
⇒ Tb ∼ htbi

¼ htwi
Probðc ≤ cthrÞ
Probðc > cthrÞ

∼ Tw
Probðc ≤ cthrÞ
Probðc > cthrÞ

:

ðA16Þ

Equation (A6) shows that C [and the statistics of tw; see
Eq. (5)] does not change with the crosswind distance; i.e.,
intensity and duration of the whiffs are independent of y.
Their frequency changes, though, as shown by the inter-
mittency factor χ in Eq. (A7) and the statistics of the
intervals below threshold. Namely, Eq. (A16) indicates that
the cutoff Tb grows moving crosswind.
Persistence of odor blends.—We consider a set of

sources of size a, spaced by a distance d ≫ a from each
other, emitting different blends of the same chemical
compounds. Each source k ¼ 1; 2;… releases the chemical
species i ¼ 1; 2;… at a rate JðkÞi (all rates are assumed to be
comparable). Equation (2) states that we should follow the
evolution of a puff released at the detection point and
traveling backwards in time. If the puff hits one and only
one source, then the resulting signal can be unambiguously
attributed to it. Conversely, if the puff traverses two or more
sources, the concentration is a mix of their emissions.
Given a detection threshold cthr, of the same order for all
the components, the probability of receiving a mixed signal
equals the probability that a puff of the size rthr given by
Eq. (A11) crosses two sources while keeping the same size.
Clearly, if rthr ≳ d, mixing of the signals is almost certain.
When rthr ≲ d, the probability of mixing is the product
of the probability that the puff is not dispersed, multiplied
by the probability for a particle starting from one source to
hit the other. The worst-case scenario is when the various
sources are aligned along the mean wind. The probability
of a mixed signal is then the product of phit in Eqs. (A2)
and (A4) (with x replaced by d, y ¼ 0 and r ¼ rthr):
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pmix ≃
�
rthr
d

�
3−α

× exp

�
−
�

k0d
Urγthr

�
β
�
: ðA17Þ

The mixing probability is small if rthr ≪ d or rthr ≪
ðk0d=UÞ1=γ . The right-hand side in the last inequality is
recognized by Eq. (A3) as the typical separation RðdÞ
between particles in the time d=U to travel the distance d
between the sources. Typically, RðdÞ ≪ d for γ ≥ 1, and
the condition for a proper identification of the blend is then
Eq. (7), having used the relation (A6) between the size of
the puff and concentration.

APPENDIX B: NUMERICS AND EXPERIMENTS

To test our predictions, we have considered three
different types of turbulent flows (Kraichnan flow, jet flow,
and neutral atmospheric boundary layer) that we proceed
to discuss.
Kraichnan flow.—Kraichnan flow (see Ref. [26] for

review) is a stochastic velocity field, incompressible,
homogeneous and isotropic, with Gaussian statistics,
uncorrelated in time, and self-similar Kolmogorov-
Richardson spatial scaling. The advantage of this idealized
model is that the Lagrangian Monte Carlo method in
Ref. [34] allows the numerical simulation of the integer
moments of concentration for ratios a=x (the size of the
source over the distance to it) that are prohibitive for a fully
resolved integration of the fluid-dynamical equations.
The (unrealistic) short time correlation of the Kraichnan

flow induces the diffusion of single particles [26]. The
corresponding diffusivity is k ∼ L4=3 ∼ vL, where L is the
correlation length of the flow and v is the typical amplitude
of the Gaussian velocity fluctuations. At short distances,
diffusion dominates over the mean wind U, which takes
over at distances ∼Lv=U. Parameters are chosen to ensure
x ≫ Lv=U so that the time to reach the source is still
thit ≃ x=U. The single-particle exponents defined in Sec. II
are then α ¼ 2 and k ∼ vL. The spatial scaling of the
velocity differences ensures that pair dispersion obeys
the Richardson-Kolmogorov scaling γ ¼ 2=3; the constant
k0 ∼ v=L1=3. This scaling behavior holds as long as the
separation among the particles remains below L (diffusion
sets in at larger separations). Finally, homogeneity and
stationarity ensure β ¼ 1. Inserting the values above into
Eqs. (A6), (A7), and (A10), we obtain Eq. (8).
The cutoff function f in Eq. (A7) is obtained from results

on diffusive processes (see, e.g., Refs. [47] and
Supplemental Material [49]) as fðξÞ ¼ expð−ξ=4Þ. The
scaling of the moments (8) holds when the typical size of
the puffs at thit is larger than the size of the source a.
Otherwise, all the moments hcni tend to coincide with the
probability phit ¼ a=x that a diffusing particle hit a sphere
of size a, starting at a distance x from it. The predictions (8)
for the scaling of the first four moments shown in Fig. 3(a)
are in excellent agreement with the results of numerical
simulations.

The numerical method used to simulate the moments
hcni relies on taking the nth power of Eq. (2) and averaging
over the velocity field to obtain the moments in terms of
Lagrangian trajectories. Using the short correlation of the
Kraichnan flow, the trajectories of n particles generated by
a Monte Carlo method are sufficient to obtain the nth-order
moment [34]. We used a numerical implementation iden-
tical to Ref. [34], which we refer to for details.
The new difficulty is that most trajectories miss the

source and a small fraction of the statistical realizations
contribute. Indeed, Eq. (2) shows that realizations where
at least one of the n particles misses the source do not
contribute to the moments. We circumvented the problem
by using importance sampling [50]. Namely, we chose one
reference particle and sampled its trajectories by generating
a Brownian bridge (see Ref. [51] and Supplemental
Material [49]) between the starting point and the source.
This guarantees that the particle hit the source at least once.
The time of the first passage at the source is generated from
the exact probability distribution, calculated by standard
methods (see Supplemental Material [49] for details). The
remaining n − 1 particles evolve according to the exact
dynamics for their relative separations, as in Ref. [34].
The general idea of importance sampling [50] is that

the quality of a Monte Carlo estimation improves if the
auxiliary distribution is more concentrated on the subset of
events that substantially contribute to the observable being
measured. In our case, the number of statistical samples
required for the Monte Carlo estimation of hcni is reduced
by the factor phit defined in Eq. (A3). For the simulations
in Fig. 3(a), the gain is of the order x=a≃ 104–105 along
the wind axis, and it further increases with the crosswind
distance. Further details on the method can be found in
Supplemental Material [49].
Jet flow.—We now consider experimental data for a

jet flow [3], a setup qualitatively similar to wind-tunnel
experiments. Even though distances from the source are
moderate compared to those for olfactory searches by moths,
experimental data still provide a compelling test for our
general theory. The experimental flow [3] is modeled by the
superposition of a mean flow U≃0.8m=s and a statistically
homogeneous, isotropic flow with correlation length L≃
8 cm and intensity of the fluctuations v=U ≃ 0.25. The
turbulence level is relatively high, which a priori affects our
estimates, viz. the time and the probability of hitting the
source. Nevertheless, we show below that our predictions
agree with experimental data, suggesting that corrections
mainly affect constants of order unity, which we disregarded.
Large-scale fluctuations of the flow decorrelate on a time

scale ∼L=v. At distances x≲ UL=v, the time to reach the
source thit ∼ x=U < L=v, and large-scale diffusion (with
diffusivity ≃vL), which could potentially dominate the
transport of single particles, has not set in yet. For the
experiments in Ref. [3], UL=v is about 30 cm, which is
2–3 times bigger than the largest distance to the source
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where measurements are made. It follows that large-scale
fluctuations induce a ballistic motion of amplitude v in each
realization of the flow (for the relevant times ≲thit). Since
v ≪ U, the ballistic contribution by the mean velocity U is
stronger. Small-scale fluctuations have shorter correlations
and do produce a diffusive motion. However, their diffu-
sivity is ∼va, and the resulting displacement

ffiffiffiffiffiffiffiffiffiffiffi
vathit

p
is

negligible compared to vthit for x≳ Ua=v. Since a is a few
millimeters, we conclude that single-particle parameters
defined in Sec. II are α ¼ 1 and k ¼ U. The main
contribution to the dispersion of Lagrangian puffs stems
from rapid, small-scale velocity fluctuations that induce
a diffusive separation (γ ¼ 2) with diffusivity k0 ∼ va. The
diffusive contribution

ffiffiffiffiffiffiffiffiffiffiffi
vathit

p
dominates Richardson’s

dispersion
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v3t3hit=L

q
for x≲ ðU=vÞ ffiffiffiffiffiffi

aL
p

. The latter takes

over at larger distances. We conclude that for a≲ vx=U≲ffiffiffiffiffiffi
La

p
, the size of the puff grows diffusively, i.e., γ ¼ 2,

k0 ¼ va. Finally, stationarity and homogeneity of the flow
ensure β ¼ 1.
In summary, the parameters defined in Sec. II are α ¼ 1,

k ¼ U, γ ¼ 2, k0 ¼ va, and β ¼ 1. Inserting them into
Eq. (A6) gives, for the conditional average concentrationC,
the expression (9).
The function f in Eq. (A7) is derived as follows. The

probability phit of hitting the source is the probability that a
spherical puff of size rhit, starting at ðx; y; 0Þ (with x ≫ rhit)
and moving with constant velocity ð−U þ vx; vy; vzÞ, hits
the origin. The constancy of the velocity stems from the
ballistic motion discussed above. For a given v, hitting
occurs if at the time thit ≃ x=U, the distance of the center
of the puff from the source is smaller than its radius:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyþ vythitÞ2 þ v2zt2hit

q
< rhit. The probability of satisfying

this inequality in the space ðvy; vzÞ is calculated for a
Gaussian, isotropic distribution of the fluctuations with
standard deviation v ≪ U. Using that the angle formed by
the directions of the mean wind and the starting point of the
puff is small (since v=U is supposed to be small), we obtain

phit ≃
�
Urhit
vx

�
2

e−ðUy
vxÞ2 ; χ ∼

Ua
vx

e−ðUy
vxÞ2 ; ðB1Þ

where we omitted constant factors. Along the axis y ¼ 0,
phit reduces to the ratio between the cross-sectional area of
the puff ≃r2hit and the area ðvthitÞ2, transverse to the wind
axis, spanned by the center of the puff at thit. Comparing
Eq. (B1) to Eq. (A2), we identify the prefactor ðU=vÞ2 for
the function f, which reflects the semiconical shape of the
average plume with aperture angle v=U. The area of impact
with the source is thus amplified by ðU=vÞ2 with respect to
an isotropic distribution. The second equation in (B1) is
obtained using Eq. (A7) and the expression of f just
discussed.

The scaling of the moments in Eq. (9) and the prediction
(10) are obtained by inserting C from Eq. (9) and χ from
Eq. (B1) into Eqs. (A10) and (4).
As for dynamical aspects of the signal of odors, the two

cutoffs discussed in Sec. V read

Tdisperse ∼
ac0
vcthr

; Tdisplace ∼
aUL
xv2

ffiffiffiffiffiffiffi
c0
cthr

r
: ðB2Þ

The latter is shorter than the former for sufficiently small
thresholds, and the cutoff in Eq. (5) is then Tw ¼ Tdisplace.
The cutoff Tb in Eq. (6) for the duration of the blanks
follows from the general relation (A16). The shortest
duration τ in Eq. (A15) is τ ∼ a=v, independent of the
detection threshold and of the distance to the source.
Near-neutral boundary layer.—We finally consider the

near-neutral atmospheric surface layer [35]. This is the case
most directly relevant for olfactory searches by moths, as
they usually search at dusk when convective effects are
weak and no stable stratification is present. The latter is
more typical at night, while strong convective effects might
be present during daytime. Stratification conditions gen-
erally depend on micrometeorological conditions such as
cloud coverage and humidity. We do not address these
aspects here. It is worth noticing that some properties of the
odor landscapes, such as the shape of the probability
density function of the whiff and blank durations, turn
out to be largely insensitive to such details.
Flows in the neutral boundary layer have two special

features with respect to the previous cases: (i) The mean
wind depends logarithmically on the height z above the
ground, viz. UðzÞ ¼ ðv=ϰÞ log½ðz − hÞ=z0�, where v is the
friction velocity, ϰ ≃ 0.4 is the von Karman constant, z0 is
the roughness height, and h is the displacement height
(roughly two-thirds of the canopy height) [35]. Typical
values in the atmospheric surface layer are v∼0.1–0.5m=s,
z0, h ∼ 0.1–1 m depending on whether the land surface is
covered by high grass, pastures, or forests. The conse-
quence of the logarithmic profile is that the time to
transport particles from the source to the detection point
has a logarithmic dependency on the height. In practice, the
resulting modification is safely ignored as the logarithmic
factor varies slowly. We shall also omit the order-unity von
Karman constant. (ii) The intensity v of velocity fluctua-
tions is nearly constant, yet the size of the largest eddies at
height z is ∝ z and their correlation time is z=v. We are
interested in situations where particles are released close to
the ground (heights much smaller than the Monin scale of
the boundary layer [35]). The variance of the displacement
in the height z then behaves as dz2=dt ∼ vz, i.e., ballis-
tically, because of the effective diffusivity ≃vz. The
average height will also systematically increase ballisti-
cally. Note that this last statement is due to particles being
released close to the ground (the growth of the mean height
saturates as its value becomes comparable to the Monin
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scale). Height and time (since the release of the particles)
will therefore grow in parallel. Since the effective diffu-
sivity behaves as vz, fluctuations in the lateral and
longitudinal displacements grow proportionally to t as
well. Along the wind direction, the mean wind U ≫ v
dominates the transport and the hitting time is thit ∼ x=U.
Similarly, the sweeping time of a puff of size rhit across the
source is ts ∼ rhit=U. The separation between a pair of
particles is similarly determined by a height-dependent
diffusion process with coefficient vz and therefore scales
as vt, which gives the exponent γ ¼ 1 and k0 ¼ v. The rate
of growth for a puff of size r is vz=r2 ∼ v2t=r2, yield-
ing β ¼ 2.
In summary, the parameters defined in Sec. II are α ¼ 1,

k ¼ U, γ ¼ 1, k0 ¼ v, and β ¼ 2. These scalings are
confirmed by experiments with puffs released in the
atmospheric surface layer [36]. It follows from Eq. (A7)
and the values above that the typical conditional concen-
tration is given by Eq. (11).
For the intermittency factor χ in Eq. (A7), we need the

form of f. The advection-diffusion equation with mean
wind U and diffusion coefficient vz is solved in the
Supplemental Material [49] by an eigenfunction expansion,
as in the simpler case of constant diffusivity. The analytical
solution confirms the scalings justified above intuitively
and gives

phit ≃
�
Urhit
vx

�
2 1

cosh2ðUy
vxÞ

; χ ∼
1

cosh2ðUy
vxÞ

: ðB3Þ

The probability phit decays exponentially in the crosswind
direction y, determining the semiconical shape of the
average plume, with aperture angle v=U. The second
equation in (B3) is obtained by using Eq. (A7). The
intermittency factor χ is thus independent of x and decays
exponentially in y, as confirmed in Figs. 4(a) and 4(b). The
data from experiments in Refs. [37,38] report the fluc-
tuation intensity σc=hci, where σc is the standard deviation
of the concentration. Using Eq. (A10) for the moments
of the concentration, σc=hci≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ−1 − 1

p
. It follows from

Eq. (B3) that in the average plume, y≲ vx=U, the
fluctuation intensity is order unity, while outside the cone,
it grows exponentially, as observed in the data. Skewness
and kurtosis also grow exponentially with the transverse
distance (in agreement with Figs. 2–4 in Ref. [39]).
The tail of the probability density of the concentration

follows from Eq. (A9) and the scaling function ϕðρÞ in
Eq. (A5). Upon insertion of the appropriate exponents
α ¼ γ ¼ 1 and β ¼ 2, we obtain

pðcÞ≃ χ

c
e−c=C for c≳ C; ðB4Þ

which yields Eq. (12).

As for dynamical aspects of the signal, from the general
expressions (A11), (A3), and (A15), we derive

ζr;thit ∼
x
U

�
v
r

�
2

; rthr≃vx
U

ffiffiffiffiffiffiffiffiffiffi
CðxÞ
cthr

s
≃a

ffiffiffiffiffiffiffi
c0
cthr

r
; τ∼

a2U
v2x

:

ðB5Þ

Comparing the two mechanisms for the cutoff of the whiffs
(see Sec. V), we find that

Tdisperse ≃ ζ−1rthr ;thit ≃
r2thrU
v2x

; Tdisplace ≃ rthr
v

: ðB6Þ

For the second equality, we used UL≃ vx since the
integral scale L is proportional to the height z, and
z=x≃ v=U. The dispersive time is shorter than the dis-
placement time as long as rthr ≲ vx=U, so that Tw ∼ htwi ¼
Tdisperse. The cutoff linearly increases with x when the
threshold is kept proportional to the typical value CðxÞ
(itself ∝ 1=x2), with a prefactor inversely proportional to
the relative threshold. Our prediction is in qualitative
agreement with experimental data (see Fig. 6 in
Ref. [38]); a quantitative comparison would require more
statistics, as Tw is dominated by low-probability events.
Apparently, the statistics of periods below threshold was
not measured in field experiments. However, the distribu-
tion for the duration of upcrossing intervals tu, i.e., the
time elapsed between the beginning of two consecutive
whiffs, is available from Ref. [39]. Our theory predicts for
tu the same distribution as for the time intervals between
odd (or even) zeros of a random walk, which is again a
power law t−3=2u for τ ≲ tu ≲ Tw, in agreement with
experimental data in Fig. 4(e). The average duration Tw
of the blanks follows from Eq. (B6) and the relation (A16).
We conclude with the derivation of the formulas (13)

relevant for the final discussion. The first one gives the
largest distance xthr where the two conditions χ ∼ 1 and
cthr ≃ CðxÞ are satisfied. It follows from Eq. (B3) that the
first condition is verified along the mean wind axis, while
the crosswind decay of χ defines the width of the detection
cone vx=U. Equating C in Eq. (11) to cthr, we obtain xthr in
Eq. (13). The second and third equations in (13) are the
expressions (B5) of τ and (B6) of Tdisplace, estimated at
x ¼ xthr. Finally, it follows from Eq. (A16) that the average
duration htbi of the blanks is comparable to htwi inside the
cone y=x < v=U, while htbi ≫ htwi outside.
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