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Determining community structure is a central topic in the study of complex networks, be it
technological, social, biological or chemical, static or in interacting systems. In this paper, we extend
the concept of community detection from classical to quantum systems—a crucial missing component
of a theory of complex networks based on quantum mechanics. We demonstrate that certain quantum
mechanical effects cannot be captured using current classical complex network tools and provide new
methods that overcome these problems. Our approaches are based on defining closeness measures between
nodes, and then maximizing modularity with hierarchical clustering. Our closeness functions are based on
quantum transport probability and state fidelity, two important quantities in quantum information theory. To
illustrate the effectiveness of our approach in detecting community structure in quantum systems, we
provide several examples, including a naturally occurring light-harvesting complex, LHCII. The prediction
of our simplest algorithm, semiclassical in nature, mostly agrees with a proposed partitioning for the LHCII
found in quantum chemistry literature, whereas our fully quantum treatment of the problem uncovers a new,
consistent, and appropriately quantum community structure.
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I. INTRODUCTION

The identification of the community structure within
a network addresses the problem of characterizing the
mesoscopic boundary between the microscopic scale of
basic network components (herein called nodes) and the
macroscopic scale of the whole network [1–3]. In non-
quantum networks, the detection of community structures
dates back to Rice [4]. Such analysis has revealed countless
important hierarchies of community groupings within real-
world complex networks. Salient examples can be found in
social networks such as human [5] or animal relationships
[6], biological [7–10], biochemical [11], and technological
[12,13] networks, as well as numerous others (see Ref. [1]).
In quantum networks, as researchers explore networks of
an increasingly nontrivial geometry and large size [14–17],
quantum networks analysis and understanding will involve
identifying nontrivial community structures. In this article,
we devise methods to perform this task, providing an
important missing component in the recent drive to unite
quantum physics and complex network science [18,19].

For quantum systems, beyond being merely a tool for
analysis following simulations, community partitioning is
closely related to performing the simulations themselves.
Simulation is generally a difficult task [20], e.g., simulating
exciton transport in dissipative quantum biological net-
works [21–26]. The amount of resources required to
exactly simulate such processes scales exponentially with
the number of nodes. To overcome this, one must in general
seek to describe only limited correlations between certain
parts of the network [27]. Mean-field [28–31] and tensor-
network methods [32,33] assume correlations between
bipartitions of the system along some node structure to
be zero or limited by an area law. Hartree-Fock methods
assume limited correlations between particles [34,35].
Thus, planning a simulation involves identifying a parti-
tioning of a system for which it is appropriate to limit
intercommunity correlations; i.e., it is a type of community
detection.
We apply our detection methods to artificial networks

and the real-world light-harvesting complex II (LHCII)
network. In past works, researchers have divided the LHCII
by hand in order to gain more insight into the system
dynamics [36–38]. Meanwhile, our methods optimize the
task of identifying communities within a quantum network
ab initio and the resulting communities consistently point
towards a structure that is different from those previously
identified for the LHCII. For larger networks, as with our
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artificial examples, automatic methods appear to be the
only feasible option.
Our specific approach is to generate a hierarchical

community structure [39] by defining both internode
and intercommunity closeness. The optimum level in the
hierarchy is determined by a modularity-based measure,
which quantifies how good a choice of communities is
for the quantum network on average relative to an appro-
priately randomized version of the network. Although
modularity-based methods are known to struggle with large
sparse networks [40,41], this work focuses on quantum
systems whose size remains much smaller than the usual
targets of classical community detection algorithms.
While the backbone of our quantum community method

is shared with classical methods, the physical properties
used to characterize a good community in a quantum must
necessarily be very different from the properties used for a
classical system. Here, we show how two quantum proper-
ties are used to obtain closeness and modularity functions:
the first is the coherent transport between communities
and the second is the change in the states of individual
communities during a coherent evolution.
In Sec. II, we begin by recalling several common notions

from classical community detection that we rely on in this
work. This sets the stage for the development of a quantum
treatment of community detection in Sec. III. We then turn to
several examples in Sec. IV, including the LHCII complex
mentioned previously, before concluding in Sec. V.

II. COMMUNITY DETECTION

Community detection is the partitioning of a set of
nodes N into nonoverlapping [42] and nonempty subsets
A;B; C;… ⊆ N , called communities, that together coverN .
There is usually no agreed upon optimal partitioning of

nodes into communities. Instead, there is an array of
approaches that differ in both the definition of optimality
and the method used to achieve, exactly or approximately,
this optimality (see Ref. [3] for a recent review). In classical
networks, optimality is, for example, defined statistically
[43], e.g., in terms of connectivity [1] or communicability
[44,45], or increasingly, and sometimes relatedly [46], in
terms of stochastic random walks [47–49]. Our particular
focus is on the latter, since the concept of transport (e.g.,
a quantum walk) is central to nearly all studies conducted
in quantum physics. As for achieving optimality, methods
include direct maximization via simulated annealing
[10,40] or, usually faster, iterative division or agglomer-
ation of communities [50]. We focus on the latter since it
provides a simple and effective way of revealing a full
hierarchical structure of the network, requiring only the
definition of the closeness of a pair of communities.
Formally, hierarchical community structure detection

methods are based on a (symmetric) closeness function
cðA;BÞ ¼ cðB;AÞ of two communities A ≠ B. In the
agglomerative approach, at the lowest level of the

hierarchy, the nodes are each assigned their own commun-
ities. An iterative procedure then follows, in each step of
which the closest pair of communities (maximum closeness
c) are merged. This procedure ends at the highest level,
where all nodes are in the same community. To avoid
instabilities in this agglomerative procedure, the closeness
function is required to be nonincreasing under the merging
of two communities, cðA∪B; CÞ ≤ max½cðA; CÞ; cðB; CÞ�,
which allows the representation of the community structure
as a linear hierarchy indexed by the merging closeness.
The resulting structure is often represented as a dendrogram
(as shown in Fig. 1) [51].
This leaves open the question of which level of the

hierarchy yields the optimal community partitioning. If a
partitioning is desired for simulation, for example, then
there may be a desired maximum size or minimum number
of communities. However, without such constraints, one
can still ask what is the best choice of communities within
those given by the hierarchical structure.
A type of measure that is often used to quantify the

quality of a community partitioning choice for this purpose
is modularity [53–55], denoted Q. It was originally
introduced in the classical network setting, in which a
network is specified by a (symmetric) adjacency matrix
of (non-negative) elements Aij ¼ Aji ≥ 0 (Aii ¼ 0), each
off-diagonal element giving the weight of connections
between nodes i and j ≠ i [56]. The modularity attempts
to measure the fraction of weights connecting elements in
the same community, relative to what might be expected.
Specifically, one takes the fraction of intracommunity
weights and subtracts the average fraction obtained when
the start and end points of the connections are reassigned
randomly, subject to the constraint that the total

FIG. 1. Hierarchical community structure arising from a quan-
tum evolution. On the left are the closenesses cði; jÞ between
n ¼ 60 nodes. On the right is the dendrogram showing the
resulting hierarchical community structure. The dashed line
shows the optimum level within this hierarchy, according to
the modularity. The particular example shown here is the one
corresponding to Fig. 3(d).
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connectivity ki ¼
P

jAij of each node is fixed. The
modularity is then given by

Q ¼ 1

2m
trfCTBCg; ð1Þ

where m ¼ 1
2

P
iki is the total weight of connections, B is

the modularity matrix with elements Bij ¼ Aij − kikj=2m,
and C is the community matrix, with elements CiA equal to
unity if i ∈ A, otherwise zero. The modularity then takes
values strictly less than one, possibly negative, and exactly
zero in the case that the nodes form a single community.
As we see, there is no natural adjacency matrix asso-

ciated with the quantum network, and so, for the purposes
of modularity, we use Aij ¼ cði; jÞ for i ≠ j. The modu-
larity Q thus measures the fraction of the closeness that
is intracommunity, relative to what would occur if the
internode closeness cði; jÞ were randomly mixed while
fixing the total closeness ki ¼

P
j≠icði; jÞ of each node to

all others. Thus, both the community structure and opti-
mum partitioning depend solely on the choice of the
closeness function.
Modularity-based methods such as those noted above are

intuitive, fast, and for the most part effective, yet we must
note that for classical systems it has been shown that
modularity-based methods suffer from a number of flaws
that influence the overall efficacy of those approaches.
In Refs. [40,41], modularity-based methods show a poor
performance in large, sparse real-world and model net-
works. This is due mainly to the resolution limit problem
[57], where small communities can be overlooked, and
modularity landscape degeneracy, which strongly influence
accuracy in large networks. Another modularity-related
problem is the so-called detectability-undetectability
threshold [58–60] where an approximate bipartition of
the system becomes undetectable in some cases, in par-
ticular, in the presence of degree homogeneity. However, in
the present work we focus on quantum networks whose
size typically remains small compared to classical targets of
community detection algorithms, and for which the derived
adjacency matrices are not sparse. These characteristics
help to limit the known flaws of our modularity-based
approach, making it adequate for our purposes.
Finally, once a community partitioning is obtained,

it is often desired to compare it against another. Here,
we use the common normalized mutual information (NMI)
[61–63] as a measure of the mutual dependence of two
community partitionings. Each partitioning X¼fA;B;…g
is represented by a probability distribution PX ¼
fjAj=jN jgA∈X, where jAj ¼ P

iCiA is the number of
nodes in community A. The similarity of two community
partitionings X and X0 depends on the joint distribution
PXX0 ¼ fjA∩A0j=jN jgA∈X;A0∈X0 , where jA∩A0j ¼P

iCiACiA0 is the number of nodes that belong to both
communities A and A0. Specifically, NMI is defined as

NMIðX;X0Þ ¼ 2IðX;X0Þ
HðXÞ þHðX0Þ : ð2Þ

Here, HðXÞ is the Shannon entropy of PX, and the mutual
information IðX;X0Þ¼HðXÞþHðX0Þ−HðX;X0Þ depends
on the entropy HðX;X0Þ of the joint distribution PXX0 . The
mutual information is the average of the amount of
information about the community of a node in X obtained
by learning its community in X0. The normalization ensures
that the NMI has a minimum value of zero and takes its
maximum value of unity for two identical community
partitionings. The symmetry of the definition of NMI
follows from that of mutual information and Eq. (2).

III. QUANTUM COMMUNITY DETECTION

The task of community detection has a particular
interpretation in a quantum setting. The state of a quantum
system is described in terms of a Hilbert space H, spanned
by a complete orthonormal set of basis states fjiigi∈N .
Each basis state jii can be associated with a node i in a
network and often, as in the case of single exciton transport,
there is a clear choice of basis states that makes this
abstraction to a spatially distributed network natural.
The partitioning of nodes into communities then

corresponds to the partitioning of the Hilbert space
H ¼ ⨁A∈XVA into mutually orthogonal subspaces
VA ¼ spani∈Afjiig. As with classical networks, one can
then imagine an assortment of optimality objectives for
community detection, for example, to identify a partition-
ing into subspaces in which intersubspace transport is
small, or in which the state of the system remains relatively
unchanged within each subspace. In the next two sub-
sections, we introduce two classes of community closeness
measures that correspond to these objectives. Technical
details can be found in the Supplemental Material [64].
In what follows, we focus our analysis on an isolated

quantum system governed by Hamiltonian H, which
enables us to derive convenient closed-form expressions
for the closeness measures. We may expand H in the node
basis fjiigi∈N :

H ¼
X
ij

Hijjiihjj: ð3Þ

A diagonal element Hii is a real value denoting the energy
of state jii, while an off-diagonal element Hij, i ≠ j is a
complex weight denoting the change in the amplitude of the
wave function during a transition from state jji to jii. The
matrix formed by these elements can be thought of as a
jN j × jN j complex adjacency matrix. Within the require-
ment of being Hermitian, in quantum mechanics the fact
that the Hamiltonian may have complex elements leads to a
range of phenomena not captured by real matrices, such as
time-reversal symmetry breaking [19,65]. In the case that
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each jii corresponds to a particle being localized at some
node i that is separated from the others, the Hamiltonian
describes a single-particle spinless walk with an energy
landscape given by the diagonal elements and transition
amplitudes by the off-diagonal elements. Any quantum
evolution can be viewed in this picture, making the single-
particle spinless walk scenario rather general.
A community partitioning based on a Hamiltonian H

could be used, among other things, to guide the simulation
or analysis of a more complete model in the presence of an
environment, where this more complete model may be
much more difficult to describe. Additionally, our method
could be generalized to use closeness measures based on
open-system dynamics obtained numerically.

A. Intercommunity transport

Several approaches to detecting communities in classical
networks are based on the flow of probability through the
network during a classical random walk [46–49,66,67]. In
particular, many of these methods seek communities for
which the intercommunity probability flow or transport is
small. A natural approach to quantum community detection
is thus to consider the flow of probability during a
continuous-time quantum walk and to investigate the
change in the probability of observing the walker within
each community:

TXðtÞ ¼
X
A∈X

TAðtÞ ¼
X
A∈X

1

2
jpAfρðtÞg − pAfρð0Þgj; ð4Þ

where ρðtÞ ¼ e−iHtρð0ÞeiHt is the state of the walker, at
time t, during the walk generated by H, and

pAfρg ¼ trfΠAρg ð5Þ

is the probability of a walker in state ρ being found in
community A upon a von Neumann-type measurement
[68] ΠA ¼ P

i∈Ajiihij is the projector to A subspace.
The initial state ρð0Þ can be chosen freely. The change

in intercommunity transport is clearest when the process
begins either entirely inside or entirely outside each
community. Because of this, we choose the walker to be
initially localized at a single node ρð0Þ ¼ jiihij and then,
for symmetry, sum TXðtÞ over all i ∈ N . This results in the
particularly simple expression

TAðtÞ ¼
X

i∈A;j∉A

RijðtÞ þ RjiðtÞ
2

¼
X

i∈A;j∉A
~RijðtÞ; ð6Þ

where RðtÞ is the doubly stochastic transfer matrix whose
elements RijðtÞ ¼ jhije−iHtjjij2 give the probability of
transport from node j to node i, and ~RðtÞ its symmetriza-
tion. This is reminiscent of classical community detection

methods, e.g., Ref. [49], using closeness measures based on
the transfer matrix of a classical random walk.
We can thus build a community structure that seeks to

reduce TXðtÞ at each hierarchical level by using the
closeness function

cTt ðA;BÞ ¼ TAðtÞ þ TBðtÞ − TA∪BðtÞ
jAjjBj

¼ 2

jAjjBj
X

i∈A;j∈B

~RijðtÞ; ð7Þ

where the numerator is the decrement in TXðtÞ caused by
merging communities A and B. The normalizing factor in
Eq. (7) avoids the effects due to the uninteresting scaling of
the numerator with the community size.
Since a quantum walk does not converge to a stationary

state, a time average of the closeness defined in Eq. (7) is
needed to obtain a quantity that eventually converges with
increasing time. Given the linearity of the formulation, this
corresponds to replacing the transport probability RijðtÞ in
Eq. (7) with its time average:

R̂ijðtÞ ¼
1

t

Z
t

0

Rijðt0Þdt0: ð8Þ

It follows that, as with similar classical community
detection methods [47], our method is, in fact, a class of
approaches, each corresponding to a different time t. The
appropriate value of t depends on the specific application;
for example, a natural time scale might be the decoherence
time. Not wishing to lose generality and focus on a
particular system, we focus here on the short- and long-
time limits.
In the short-time limit t → 0, relevant if tHij ≪ 1 for

i ≠ j, the averaged transfer matrix T̂ijðtÞ is simply propor-
tional to jHijj2. Note that in the short-time limit there is no
interference between different paths from jii to jji, and
therefore, for short times cTt ði; jÞ does not depend on the
on-site energies Hii or the phases of the hopping elements
Hij. This is because, to leading order in time, interference
does not play a role in the transport out of a single node. For
this reason, we refer to this approach as “semiclassical.”
In the long-time limit t → ∞, relevant if t is much larger

than the inverse of the smallest gap between distinct
eigenvalues of H, the probabilities are elements of the
mixing matrix [69],

lim
t→∞

R̂ijðtÞ ¼
X
k

jhijΛkjjij2; ð9Þ

where Λk is the projector onto the kth eigenspace of H.
This thus provides a simple spectral method for building
the community structure.
Note that, unlike in a classical infinitesimal stochastic

walk where each R̂ijðtÞ eventually becomes proportional to
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the connectivity kj of the final node j, the long-time limit in
the quantum setting is nontrivial and, as we see, R̂ijðtÞ
retains a strong impression of the community structure
for large t [70].

B. Intracommunity fidelity

Classical walks, and the community detection methods
based on them, are fully described by the evolution of the
probabilities of the walker occupying each node. The
previous quantum community detection approach is based
on the evolution of the same probabilities but for a quantum
walker. However, quantum walks are richer than this;
they are not fully described by the evolution of the
node-occupation probabilities. We therefore introduce
another community detection method that captures the full
quantum dynamics within each community subspace.
Instead of reducing merely the change in probability

within the community subspaces, we reduce the change
in the projection of the quantum state in the community
subspaces. This change is measured using (squared) fidel-
ity, a common measure of distance between two quantum
states. For a walk beginning in state ρð0Þ, we therefore
focus on the quantity

FXðtÞ ¼
X
A∈X

FAðtÞ ¼
X
A∈X

F2fΠAρðtÞΠA;ΠAρð0ÞΠAg;
ð10Þ

where ΠAρΠA is the projection of the state ρ onto the
subspace VA and

Ffρ; σg ¼ tr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pq �
∈
h
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trfρgtrfσg

p i
ð11Þ

is the fidelity, which is symmetric between ρ and σ.
We build a community structure that seeks to maximize

the increase in FXðtÞ at each hierarchical level by using the
closeness measure

cFt ðA;BÞ ¼ FA∪BðtÞ − FAðtÞ − FBðtÞ
jAjjBj ∈ ½−1; 1�; ð12Þ

i.e., the change in FXðtÞ caused by merging communitiesA
and B. Our choice for the denominator prevents uninter-
esting size scaling, as in Eq. (7).
The initial state ρð0Þ can be chosen freely. Here, we

choose the pure uniform superposition state ρð0Þ ¼
jψ0ihψ0j satisfying hijψ0i ¼ 1=

ffiffiffi
n

p
for all i. This state

was used to investigate the effects of the connectivity on the
dynamics of a quantum walker in Ref. [18].
As for our other community detection approach, we

consider the time average of Eq. (12), which yields

cFt ðA;BÞ ¼ 2

jAjjBj
X

i∈A;j∈B
Re½ρ̂ijðtÞρjið0Þ�; ð13Þ

where ρ̂ijðtÞ ¼ ð1=tÞ R t
0 dt

0ρijðt0Þ. In the long-time limit, the
time average of the density matrix takes a particularly
simple expression:

lim
t→∞

ρ̂ijðtÞ ¼
X
k

Λkρijð0ÞΛk; ð14Þ

where Λk is the same as in Sec. III A.
The definition of community closeness given in Eq. (12)

can exhibit negative values. In this case, the usual definition
of modularity fails [71] and one must extend it. In this
work, we use the definition of modularity proposed in
Ref. [71], which coincides with Eq. (1) in the case of non-
negative closeness. The extended definition treats negative
and positive links separately, and tries to minimize intra-
community negative links while maximizing intracommun-
ity positive links.

IV. PERFORMANCE ANALYSIS

To analyze the performance of our quantum community
detection methods, we apply them to three different net-
works. The first one (Sec. IVA) is a simple quantum
network, which we use to highlight how some intuitive
notions in classical community detection do not necessarily
transfer over to quantum systems. The second example
(Sec. IV B) is an artificial quantum network designed to
exhibit a clear classical community structure, which we
show is different from the quantum community structure
obtained and fails to capture significant changes in this
structure induced by quantum mechanical phases on the
hopping elements of the Hamiltonian. The final network
(Sec. IV C) is a real-world quantum biological network,
describing the LHCII light-harvesting complex, for which
we find a consistent quantum community structure differ-
ing from the community structure cited in the literature.
These findings confirm that a quantum mechanical treat-
ment of community detection is necessary as classical and
semiclassical methods cannot reproduce the structures that
appropriately capture quantum effects.
Below, we compare quantum community structures

against more classical community structures, such the
one given by the semiclassical method based on the
short-time transport and, in the case of the example of
Sec. IV B, the classical network from which the quantum
network is constructed. Additionally we use a traditional
classical community detection algorithm OSLOM [43], an
algorithm based on the maximization of the statistical
significance of the proposed partitioning, whose input
adjacency matrix A must be real. For this purpose, we
use the absolute values of the Hamiltonian elements in the
site basis: Aij ¼ jHijj.

A. Simple quantum network

Here, we use a simple six-site network model to study
ways in which quantum effects lead to nonintuitive results
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and howmethods based on different quantum properties can,
accordingly, lead to very different choices of communities.
We begin with two disconnected cliques of three nodes

each, where all Hamiltonian matrix elements within the
groups are identical and real. Figure 2 illustrates this highly
symmetric topology. The community detection method
based on quantum transport identifies the two fully con-
nected groups as two separate communities [Fig. 2(a)], as is
expected. In contrast, the methods based on fidelity predict
counterintuitively only a single community; two discon-
nected nodes can retain coherence and, by this measure, be
considered part of the same community [Fig. 2(b)].
This symmetry captured by the fidelity-based community

structure breaks down if we introduce random perturbations
into the Hamiltonian. Specifically, the fidelity-based

closeness cFt is sensitive to perturbations of the order t−1,
above which the community structure is divided into the two
groups of three [Fig. 2(c)] expected from transport consid-
erations. Thus, wemay tune the resolution of this community
structure method to asymmetric perturbations by varying t.
Because of quantum interference, we expect that the

Hamiltonian phases should significantly affect the quantum
community partitioning. The same toy model can be used
to demonstrate this effect. For example, consider adding
four elements to the Hamiltonian corresponding to hopping
from nodes 2 and 3 to 4 and 5 (see diagram in Fig. 2). If
these hopping elements are all identical to the others, it is
the two nodes, 1 and 6, that are not directly connected for
which the internode transport is largest (and thus their
internode closeness is the largest). However, when the
phases of the four additional elements are randomized, this
transport is decreased. Moreover, when the phases are
canceling, the transport between nodes 1 and 6 is reduced
to zero, and the closeness between them is minimized [see
Figs. 2(d)–2(f).
The fidelity method has an equally strong dependence

on the phases [see Figs. 2(g)–2(i), with variations in the
phases breaking up the network from a large central
community (with nodes 1 and 6 alone) into the two
previously identified communities.

B. Artificial quantum network

The Hamiltonian of our second quantum network is
constructed from the adjacency matrix A of a classical
unweighted, undirected network exhibiting a clear classical
partitioning, using the relation Hij ¼ Aij. We construct A
using the algorithm proposed by Lancichinetti et al. in
Ref. [72], which provides a method to construct a network
with heterogeneous distribution both for the node degree
and for the communities’ dimension and a controllable
inter-community connection. We start with a rather small
network of 60 nodes with average intracommunity con-
nectivity hki ¼ 6, and only 5% of the edges are rewired
to join communities. The network is depicted in Fig. 3(a).
To confirm the expected, the known classical community
structure is indeed obtained by the semiclassical short-time-
transport algorithm [73] and the OSLOM algorithm [see
Figs. 3(b)–3(e), achieving NMI ¼ 0.953 and NMI ¼ 0.975
with the known structure, respectively.
The quantum methods based on the long-time average

of both transport and fidelity reproduce the main features
of the original community structure while unveiling new
characteristics. The transport-based long-time average
method (NMI ¼ 0.82 relative to the classical partitioning)
exhibits disconnected communities; i.e., the corresponding
subgraph is disconnected. This behavior can be explained
by interference-enhanced quantum walker dynamics, as
exhibited by the toy model in the previous subsection. The
long-time average fidelity method (NMI ¼ 0.85) returns
the four main classical communities plus a number of

FIG. 2. Simple quantum network—a graph with six nodes.
Each solid line represents transition amplitude Hij ¼ 1. For
dashed and dotted lines, the transition amplitude can be either
zero (a)–(c) or the absolute value is the same jHijj ¼ 1 but phase
is (d),(g) coherent (all ones), (e),(h) random expðiφkÞ for each
link, or (f),(i) canceling (1 for dashed red and −1 for dotted
green). Plots show the node closeness for both methods based on
transport and fidelity (only the long-time averages are consid-
ered). [In plots (g)–(i) we use a perturbed Hamiltonian to solve
the degeneracy of the eigenvalues; this explains the nonsym-
metric closeness in (i)].

COMMUNITY DETECTION IN QUANTUM COMPLEX NETWORKS PHYS. REV. X 4, 041012 (2014)

041012-6



single-node communities. Both methods demonstrate that
the quantum and classical community structures are unsur-
prisingly different, with the quantum community structure
clearly dependent on the quantum property being opti-
mized, more so than the different classical partitionings.

1. Adjusted phases

As shown in Sec. IVA, due to interference, the dynamics
of the quantum system can change drastically if the phases
of the Hamiltonian elements are nonzero. This is known
as a chiral quantum walk [19]. Such walks exhibit, for
example, time-reversal symmetry breaking of transport
between sites [19], and it has been proposed that nature
might actually make use of phase-controlled interference in
transport processes [74]. OSLOM, our semiclassical short-
time transport algorithm, and other classical community
partitioning methods are insensitive to changes in the
hopping phases. Thus, by establishing that the quantum
community structure is sensitive to such changes in phase,
as expected from above, we show that classical methods are
inadequate for finding quantum community structure.

To analyze this effect, we take the previous network and
adjust the phases of the Hamiltonian terms while preserving
their absolute values. Specifically, the phases are sampled
randomly from a normal distribution with mean zero and
standard deviation σ. We find that, typically, as the standard
deviation σ increases, when comparing quantum commun-
ities and the corresponding communities without phases,
the NMI between them decreases, as shown in Fig. 3(f).
A similar deviation reflects on the comparison with the
classical communities used to construct the system, shown
in Fig. 3(g). This sensitivity of the quantum community
structures to phases, as revealed by the NMI, confirms the
expected inadequacy of classical methods. The partitioning
based on long-time average fidelity seems to be the most
sensitive to phases.

C. Light-harvesting complex

An increasing number of biological networks of non-
trivial topology are being described using quantum
mechanics. For example, light-harvesting complexes have

FIG. 3. Artificial community structure. (a) Classical community structure used in creating the network. (b)–(e) Community
partitionings found using the three quantum methods and OSLOM. (f),(g) Behavior of the approaches as the phases of the Hamiltonian
elements are randomly sampled from a Gaussian distribution of width σ. The mean NMI, compared with zero phase partitioning (f) and
the classical model data (g), over 200 samplings of the phase distribution is plotted. The standard deviation is indicated by the shading.
Both OSLOM and cT0 are insensitive to phases and thus do not respond to the changes in the Hamiltonian.
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drawn significant attention in the quantum information
community.
One of these is the LHCII, a two-layer 14-chromophore

complex embedded into a protein matrix (see Fig. 4 for a
sketch) that collects light energy and directs it toward the
reaction center where it is transformed into chemical
energy. The system can be described as a network of 14
sites connected with a nontrivial topology. The single-
exciton subspace is spanned by 14 basis states, each
corresponding to a node in the network, and the
Hamiltonian in this basis was found in Ref. [38].
In a widely adopted chromophore community structure

[37], the sites are partitioned by hand into communities
according to their physical closeness (e.g., there are no
communities spanning the two layers of the complex) and
the strength of Hamiltonian couplings (see the top right of
Fig. 4). Here, we apply our ab initio automated quantum
community detection algorithms to the same Hamiltonian.
All of our approaches predict a modified partitioning to

that commonly used in the literature. The method based on
short-time transport returns communities that do not con-
nect the two layers. This semiclassical approach relies only
on the coupling strength of the system, without considering
interference effects, and provides the closest partitioning to
the one provided by the literature (also relying only on the
coupling strengths). Meanwhile, the methods based on the

long-time transport and fidelity return very similar com-
munity partitionings, in which node 6 on one layer and
node 9 on the other are in the same community. These two
long-time community partitionings are identical, except
one of the communities predicted by the fidelity-based
method is split when using the transport-based method. It
is, therefore, a difference in modularity only.
The classical OSLOM algorithm fails spectacularly: it

gives only one significant community involving nodes 11
and 12, which exhibit the highest coupling strength. If
assigning a community to each node is forced, a unique
community with all nodes is provided.
Note that here we have used the LHCII closed-system

dynamics, valid only for short times, to partition it. As
explained in Sec. III, for the purpose of analysis, one could
alternatively use the less tractable open-system dynamics to
obtain a partitioning that reflects the environment of the
LHCII [26]. However, we argue that community partition-
ing, e.g., that based on the closed-system dynamics, is
essential in devising approaches to simulating the full open-
system dynamics.

V. DISCUSSION

We develop methods to detect community structure
in quantum systems, thereby extending the purview of

FIG. 4. Light-harvesting complex II (LHCII). (Top, left) Monomeric subunit of the LHCII complex with pigments Chl-a (red) and
Chl-b (green) packed in the protein matrix (gray). (Top, center) Schematic representation of Chl-a and Chl-b in the monomeric subunit;
here, the labeling follows the usual nomenclature (b601, a602,…). (Top, right) Network representation of the pigments in circular
layout; colors represent the typical partitioning of the pigments into communities. The widths of the links represent the strength of the
couplings jHijj between nodes. Here, the labels maintain only the ordering (b601 → 1; a602 → 2;…). (a)–(c) Quantum communities as
found by the different quantum community detection methods. Link width denotes the pairwise closeness of the nodes.
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community detection from classical networks to include
quantum networks. Our approach involves the development
of a number of methods that focus on different character-
istics of the system and return a community structure
reflecting that specific characteristic. The variation of the
quantum community structure with the property on which
this structure is based seems greater than for classical
community structures.
All of our methods are based on the full unitary dynamics

of the system, as described by the Hamiltonian, and account
for quantum effects such as coherent evolution and inter-
ference. In fact, phases are often fundamental to character-
izing the system evolution. For example, Harel and Engel
[74] have shown that in light-harvesting complexes inter-
ference between pathways is important even at room
temperature. In our light-harvesting complex example (see
Sec. IV C), the ab initio community structures provided
by the long-time measures propose consistent communities
that stretch across the lumenal and stromal layers of the
complex, absent in the structure proposed by the community.
Since we consider time evolution, the averaging time t

acts as a tuning parameter for the partitioning methods.
In the case of transport, it transforms the method from a
semiclassical approach (t → 0) to a fully quantum-aware
measure (t → ∞), For all times, the complexity of our
algorithms scales polynomially in the number of nodes
jN j, at worst OðjN j3Þ if the diagonalization of H is
required. This allows the study of networks with node
numbers up the thousands and tens of thousands, which is
appropriate for the real-world quantum networks currently
being considered.
As with classical community structure, there are many

possible definitions of a quantum community. We restrict
ourselves to two broad classes based on transport and
fidelity under coherent evolution, both based on dynamics,
though in the limits considered in this paper, the close-
nesses and thus quantum community structure can be
expressed purely in terms of static properties. We end by
briefly discussing some other possible definitions based on
statics (the earliest classical community definitions were
based on statics [75]). The first type is based on some
quantum state jψi, e.g., the ground state of H. We might
wish to partition the network by repeatedly diving the
network in two based on minimally entangled bipartitions.
This could be viewed as identifying optimum communities
for some cluster-based mean-field-like simulation [31]
whose entanglement structure is expected to be similar
to jψi. The second type is based directly on the spectrum
of the Hamiltonian H. We might partition the Hilbert
space into unions of the eigenspaces of H by treating the
corresponding eigenvalues as 1D coordinates and applying
a traditional agglomerative or divisive clustering algorithm
on them. Note that the resulting partitioning would nor-
mally not be in the position basis.

The use of community detection in quantum systems
addresses an open challenge in the drive to unite quantum
physics and complex network science, and we expect such
partitioning, based on our definitions or extensions such as
above, to be used extensively in making the large quantum
systems currently being targeted by quantum physicists
tractable to numerical analysis. Conversely, quantum mea-
sures have also been shown to add novel perspectives to
classical network analysis [76].
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