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Adoption of innovations, whether new ideas, technologies, or products, is crucially important to
knowledge societies. The landmark studies of adoption dealt with innovations having great societal impact
(such as antibiotics or hybrid crops) but where determining the utility of the innovation was straightforward
(such as fewer side effects or greater yield). Recent large-scale studies of adoption were conducted within
heterogeneous populations and focused on products with little societal impact. Here, we focus on a case
with great practical significance: adoption by small groups of highly trained individuals of innovations with
large societal impact but for which it is impractical to determine the true utility of the innovation.
Specifically, we study experimentally the adoption by critical care physicians of a diagnostic assay that
complements current protocols for the diagnosis of life-threatening bacterial infections and for which a
physician cannot estimate the true accuracy of the assay based on personal experience. We show through
computational modeling of the experiment that infection-spreading models—which have been formalized
as generalized contagion processes—are not consistent with the experimental data, while a model inspired
by opinion models is able to reproduce the empirical data. Our modeling approach enables us to investigate
the efficacy of different intervention schemes on the rate and robustness of innovation adoption in the real
world. While our study is focused on critical care physicians, our findings have implications for other
settings in education, research, and business, where small groups of highly qualified peers make decisions
about the adoption of innovations whose utility is difficult if not impossible to gauge.
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I. INTRODUCTION

Social scientists have long investigated the “forces”
driving the successful adoption of new ideas, technologies,
and products [1–4]. The availability of social media has

increased researchers’ ability to study the social aspects of
the adoption process on a scale and depth unimaginable
even a decade ago [5–7]. However, many studies have
restricted their attention to the investigation of the large-
scale adoption among heterogeneous populations of prod-
ucts, such as online apps, with low societal impact [5]. In
contrast, the landmark studies of adoption investigated the
adoption of innovations with high societal value (such as
new drugs [2,3] or new hybrid crops [8]) but within
populations of individuals with heterogeneous personal,
social, and professional characteristics. Indeed, one of the
driving forces of these latter studies was the investigation of
the impact of the subjects’ differing personal and profes-
sional demographics on the process of adoption [2,9–11].
Importantly, numerous situations with great societal

impact exist where the adoption process takes place within
small groups of highly trained professionals. A school’s
teachers determine whether a new teaching method is
adopted or not [12]. A hospital’s physicians determine
whether a new diagnostic method is adopted or not. In these
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and many other cases, there is clear societal interest in
harnessing social networks to accelerate the adoption of the
best practices and the obsolescence of poor practices [13].
Here, we investigate the adoption of a diagnostic method

within a homogeneous group of critical care physicians
who are assigned to teams according to a predetermined
schedule and that are responsible for the treatment of
specific patients. Because of its nature, our study limits the
influence of confounders (such as the role of marketing or
traditional forms of adoption promotion) and avoids the
long time scales necessary in a larger, multicenter study. In
addition to the homogeneity of the study population, our
study has two additional features that clearly distinguish it
from the landmark studies of adoption. First, knowledge of
the innovation is spread almost entirely by peer-to-peer
interactions. Second, physicians cannot possibly determine
the efficacy of the innovation based on their personal
experience and must trust the information provided by
peers or by the research literature.
We collect experimental data on adoption over a 244-day

period and model the data to identify the mechanisms
driving adoption. We then use this understanding to design
an intervention scheme that could be used to accelerate the
adoption of the best practices.

II. EXPERIMENTAL PROTOCOL

We examine the adoption of the serum procalcitonin
(PCT) assay. PCT is the prohormone of calcitonin and is a
marker for the presence and severity of bacterial infection
and sepsis in critically ill patients [14]. The PCT assay
renders a result in a considerably shorter amount of time
(2–3 h) than a microbial culture (approximately 48 h), the
current standard of care [15,16]. PCT-based management
can safely avoid extraneous antibiotic use in patients with
community-acquired pneumonia and guide antibiotic
management in patients with sepsis, even with negative
microbial cultures [17–19]. Despite the evidence from
randomized controlled trials that demonstrate that PCT
can be used to avoid extraneous antibiotic utilization with-
out worsening patient outcomes [20], PCT assay use has not
been incorporated into clinical practice guidelines as a
strong recommendation, suggesting that there remains
significant controversy regarding its use [16,21]. In addition,
the fact that adopters do not have to abandon the current
standard practice makes adoption of the PCT assay a
particularly useful real-world experimental condition.
We study adoption among a population of 36 pulmonary

and critical care physicians who provide high-intensity
critical care coverage in the medical intensive care unit
(ICU) at Northwestern Memorial Hospital [Fig. 1(a)]. At
any given time, some of these physicians are on duty as part
of independent multidisciplinary teams assigned to treat
different groups of patients. The department creates the
shift schedule prior to the study commencing. Each team
conducts daily rounds during which team members

exchange information about each patient and make treat-
ment decisions.
We have arranged with the hospital not to publicize the

availability of the PCT assay prior to or during our
experiment, thereby ensuring that physicians across the
hospital are not aware of test availability, except for two
study co-authors (C. H.W. and R. G.W.) who are consid-
ered adopters at the start of the experiment. On the first day
of the experiment, we expose one additional ICU attending
physician and one fellow to information regarding clinical
indications for the PCT assay and inform them of its
availability. This exchange occurs in one-on-one meetings
lasting approximately 10 min.

A. Practical and ethical constraints
on protocol design

The gold standard for biomedical experimentation is a
randomized double-blind trial with control groups. Because
of the real-world nature of our experimental setting, we are
severely limited in our ability to randomize certain features
of the experimental setup or to establish traditional control
groups. In the following, we detail interventions that
could, in principle, be implemented but, in practice, were
impractical.

1. Randomization of the innovation

The effect of the degree of efficacy of an innovation on
adoptions is very important. While it would be useful to
investigate the degree of efficacy of the innovation on
physician adoption, for ethical reasons, we could not assign
some physicians to use the actual PCT assay and others to
use a “placebo assay.” Life-or-death decisions are made
daily by physicians based on the results of tests such as the
PCT that suggest the presence of a bacterial infection.

2. Randomization of communication patterns

We choose to initiate the experiment on a random
date soon after IRB approval is obtained. In this
manner, the selection of the participants to be exposed
to information about the PCT assay is random. Other
aspects of the information propagation process, however,
cannot be randomized or perturbed. For example, we could
not randomly suppress a communication pathway, as this
suppression would affect patient care [22]. Randomization
of the shift schedule would also be extremely difficult to
implement. Clinical schedules are often the result of the
particular clinical needs of an ICU or department as well as
physician preferences [23]. Finally, we could randomly
invite participants to meetings after the intervention is
employed in which we intervene by allowing them to
interact outside the work-shift schedule. However, these
meetings would unblind the participants to the study and
add a degree of external influence that we do not believe is
necessary.
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3. Control groups

The difficulty of maintaining blinding and of obtaining
approval for conducting network experiments that may
affect patient care forces us to focus on a single unit at a
single hospital. Fortunately, we can consider all the other
units in the hospital as control groups, since they are not
seeded with knowledge of the innovation. While obtaining
results for units at other hospitals might be helpful to
demonstrate the generalizability of our results, experi-
menting at two institutions would be impractical, as it
would require the two institutions to be simultaneously
ready to adopt the same innovation and yet that both agree
not to publicize this innovation.

While our protocol is constrained by a number of
practical and ethical issues, it nonetheless enables us to
control the experimental conditions to a large degree.
Specifically, our study focuses on a homogeneous pop-
ulation of physicians trained in pulmonary and critical
care medicine who are blinded to the study (except the two
co-authors).

B. Data collection

We collect data on ICU physician schedules and all PCT
and microbial culture orders until the end of the academic
year (244 days). For control comparisons, we also collect
PCT and microbial culture orders from all other inpatient

FIG. 1. Experimental conditions of innovation adoption in the medical ICU at Northwestern Memorial Hospital. (a) Schematic of
attending and fellow physician schedules. On weekdays (shifts 1 and 2), each of two ICU teams include one attending physician (blue),
one fellow (green), and several residents (not pictured). On weekends (shifts 3 and 4), each team has one attending physician, but a
single fellow is assigned to both. A third team is established on 1/1/2012 (not pictured). (b) Cumulative fraction of microbial cultures
(dashed black line) and PCT assays (solid black line) ordered during the experiment. Cumulative microbial culture orders increase
linearly (y ¼ 0.004x, correlation coefficient ¼ 0.997, solid green line), as expected for the gold standard for diagnosing bacterial
infection. A quadratic increase in cumulative PCT orders (y ¼ −2 × 10−4 þ 1.6 × 10−5x2, correlation coefficient ¼ 0.979, solid red
line) supports the hypothesis that adoption of the PCT assay increases over time. (c) Rate of adoption of the PCT assay among the
physicians in the study. Two physicians are adopters prior to the start of the experiment. Adoption of the PCT assay increases over time
(solid line) but is slower than the increase in the number of distinct physicians who have already been on shift (dashed line). The data
suggest that adoption requires exposure over multiple shifts before adoption occurs. (d) Distribution of adopters according to number of
exposures by a unique physician prior to adoption. An exposure is defined as being on shift with a unique adopter. The empirical
distribution (striped bars) is compared with the expected distribution if the data were generated by a Poisson process (white bars) and
with the expected distribution according to Rogers’s categorization of adopters (black bars). In Rogers’s categorization, we classify
innovators and early adopters, early majority, late majority, and laggards as physicians who adopted after zero, one, two, and three prior
exposures, respectively. (Rogers’s framework does not consider nonadopters.)
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units in the hospital. By inference from the empirical data,
we define adopters as attending or fellow physicians who
are consistently associated with PCT orders during the
observation period. (For the results of the analysis using an
alternative definition of the adopter, see the Supplemental
Material [24]). We assume that physicians who become
adopters are unable to revert to nonadopter status. The
reason for this decision is that most physicians are not on
duty for long enough to enable us to determine with
statistical confidence if a physician has reverted.

III. EXPERIMENTAL RESULTS

First, we compare the time dependence of the number of
PCT assay orders during the observation period with the
number of microbial culture orders [Fig. 1(b)]. As expected
for a widely adopted standard practice, we find an approx-
imately constant rate of orders for microbial cultures. As
expected for a test whose adoption is ongoing during the
observation period, we find an accelerating rate of orders
for PCT assays.
Confirming ongoing adoption, we find that the cumu-

lative number of adopters among the study cohort of 36
physicians displays a concave time dependence [Fig. 1(c)].
This nonlinear pattern is at least partially due to the
structure of the network of contacts imposed by the
work-shift schedule. Since communication between physi-
cians about the PCT assay is assumed to occur only during
a shared work shift, a plateau can occur whenever adopters
are absent from the system. Indeed, a plateau is observed in
both number of PCT orders and number of adopters during
the first several months of the study. This plateau is likely
the result adopters only working on a few shifts during this
period. At the end of the experiment, 20 physicians have
met our definition of being an adopter (56% of the cohort).
Rogers’s seminal work on the diffusion of innovations

classifies individuals into five archetypes: innovators, early
adopters, early majority, late majority, and laggards [1].
These archetypes can be characterized by the typical
number of exposures to the innovation prior to adoption
and thus can be understood in the context of a Poisson
process occurring in an unstructured population. We
calculate the number of exposures (defined as prior shared
work shifts with a unique adopter) needed for a physician to
become an adopter [Fig. 1(d)]. We find that the distribution
of the number of exposures needed by a physician to
become an adopter is consistent with Rogers’s typology [1]
(p ¼ 0.74, chi-square test) and with a Poisson process with
parameter λ ¼ 2.5 (p ¼ 0.76, chi-square test). These
results are consistent with past findings of adoption in
unstructured populations. However, adoption in our experi-
ment is occurring due to contacts that are imposed by the
shift schedule. This constraint implies that our data hold the
potential to enable us to select among mechanistic models
responsible for the observed dynamics.

IV. MODELING RESULTS

To attempt to understand the mechanism underlying
adoption in our study, we analyze models that can explain
the dynamics of the adoption process. A basic model
assumes that the dynamics of adoption [Fig. 1(c)] follow
a homogenous Poisson process. However, the time dynam-
ics of adoption are not consistent with a Poisson process
(p < 0.01, Monte Carlo hypothesis testing on coefficients
of quadratic fit) (Supplemental Material Fig. 1 [24]).
A reason for the failure of the Poisson model is the fact

that diffusion of the innovation in our experiment is
occurring due to contacts that are imposed by the shift
schedule. While diffusion of innovations within social
networks is still mostly modeled as a contagion process
[25–27], we hypothesize that opinion dynamics and
decision-making mechanisms [28–32] would provide a
more plausible explanation of the adoption process in this
context—small teams of qualified individuals making
important decisions. We therefore investigate both con-
tagion and opinion models and compare their ability to
describe and predict the outcomes of our experiment.
Since attending physicians and fellows make the most

important decisions regarding medical intensive care unit
(MICU) patient care, we assume they would be the most
relevant for modeling the adoption process. (Other health
professionals, e.g., resident physicians, medical students,
and nurses, are part of MICU multidisciplinary teams.) If
our assumption is correct, we would expect to observe only
minimal leakage of information to other patient-care areas
of the hospital—either due to resident physicians rotating in
those other areas or due to diffusion of information outside
the work-shift network. Indeed, we find that the rate of PCT
assay use among attending physicians outside the MICU
(29=376 ¼ 7.7%) is an order of magnitude lower than the
rate for MICU attending physicians (16=22 ¼ 73%). We
believe this result validates our decision to model the
propagation of PCT assay adoption using only attending
physicians and fellows through the work-shift schedule.

A. Contagion models

Dodds and Watts introduced a set of models [25,26],
denoted as generalized contagion models, that generalize
and interpolate between the two standard classes of con-
tagion models: independent interaction [27] and threshold
[25]. In contagion models of adoption, adopters are
infected and infectious, and nonadopters can be modeled
as immune, unexposed, or exposed. If an adopter j comes
into contact with a nonadopter i, then with probability Pinf,
agent i receives a positive “dose” δ, drawn randomly from
some distribution fðδÞ of dose sizes; otherwise, δ ¼ 0. We
denote the adoption state of a given individual i at a given
time as BiðtÞ, while the adoption threshold is denoted by
Bi
adopt. A nonadopter starts as an unexposed individual with

a value Biðt ¼ 0Þ ¼ 0 and maintains a memory of the doses
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TABLE I. Summary of performance for all models and for different lengths of the training segment. Recall that the final number of
adopters in the experiment is 20. BIC refers to the Bayesian information criterion. Probability <0.05 indicates that the model is not
compatible with the experimental data. Lower BIC values indicate that the model provides a better description of the experimental data
for the same value of T training. The persuasion model performs significantly better than the contagion models in all the metrics, and also
for any training periods equal to or longer than 100 days.

Model
T training
(days)

Estimated
parameter
values

Average (Standard Deviation)
final number
of adopters

Probability
final number

of adopters ¼ 20

Probability final
number of

adopters [17–23]

Probability
sum square

residuals <100
BIC
score

Persuasion 75 Badopt ¼ 0.5
R ¼ 0
P ¼ 0.1
M ¼ 0

24.9 (1.5) <10−3 0.165 <10−6 18.42

100 Badopt ¼ 0.5
R ¼ 0
P ¼ 0.1
M ¼ 0

21.8 (1.5) 0.255 0.866 <10−6 2.73

125 Badopt ¼ 0.5
R ¼ 0
P ¼ 0.1
M ¼ 0

21.8 (1.5) 0.277 0.998 0.283 2.57

150 Badopt ¼ 0.5
R ¼ 0
P ¼ 0.1
M ¼ 0

19.0 (1.2) 0.199 1.0 2.1 × 10−3 3.23

175 Badopt ¼ 0.5
R ¼ 0
P ¼ 0.1
M ¼ 0

19.0 (1.2) 0.222 0.999 0.48 3.01

Contagion
multiple dose

75 Pinf ¼ 0.8
Pimm ¼ 0
dose ¼ 0.2

24.6 (2.4) 0.02 0.366 5.8 × 10−5 7.82

100 Pinf ¼ 0.8
Pimm ¼ 0
dose ¼ 0.2

21.8 (1.1) 0.085 0.97 6.9 × 10−4 4.93

125 Pinf ¼ 0.7
Pimm ¼ 0
dose ¼ 0.2

17.4 (1.3) 0.043 0.75 0.010 6.29

150 Pinf ¼ 0.7
Pimm ¼ 0
dose ¼ 0.2

16.2 (1.8) 0.021 0.484 <10−6 7.73

175 Pinf ¼ 0.7
Pimm ¼ 0
dose ¼ 0.2

16.6 (1.7) 0.036 0.556 0.081 6.65

Contagion
single dose

75 Pinf ¼ 0.1
Pimm ¼ 0

21.0 (3.3) 0.11 0.68 2 × 10−4 4.41

100 Pinf ¼ 0.1
Pimm ¼ 0

18.8 (3.0) 0.124 0.746 7.3 × 10−4 4.17

125 Pinf ¼ 0.1
Pimm ¼ 0

15.6 (2.3) 0.028 0.335 5.1 × 10−3 7.15

150 Pinf ¼ 0.1
Pimm ¼ 0

14.7 (2.2) 0.016 0.202 3.6 × 10−4 8.27

175 Pinf ¼ 0.1
Pimm ¼ 0

16.0 (2.2) 0.033 0.4 2 × 10−4 6.82

(Table continued)

ADOPTION OF A HIGH-IMPACT INNOVATION IN A … PHYS. REV. X 4, 041008 (2014)

041008-5



received over some time period T, thus recording her
current belief Bi in the innovation. (Note that we assume
here that T is much longer than the observation period.)
Susceptible individuals become adopters if at some time
Bi > Bi

adopt, where the adoption threshold Bi
adopt of agent i

is drawn randomly from a distribution gðBadoptÞ. We present
here results for the case where Badopt ¼ 1 for all individuals.
(See Table I for results with Badopt drawn from a uniform
distribution.) If δ > Bi

adopt, then this model reverts to a
standard susceptible-infected model [Fig. 2(a)] [25–27].
We select two distinct cases within the generalized

contagion model: independent interaction (single dose
needed for adoption) and threshold (multiple doses needed
for adoption). We generate 1000 independent realizations
of each case using the physician interactions imposed by
the ICU work schedule, and the empirical adoption and
exposure initial conditions—the two initial adopters are set
to Biðt ¼ 0Þ ¼ 1, whereas Biðt ¼ 0Þ ¼ 0 for the rest of the
population. We then allow the dynamics to take place
among the physicians working together, in chronological
order and as dictated by the shift schedule.
In the single-dose model, if an infected and a susceptible

physician are on duty together, then the susceptible
physician will become infected with probability Pinf or
remain susceptible with probability 1 − Pinf. A physician
that becomes infected does not return to the noninfected
state for the rest of the simulation. A physician has a
probability Pimm of being immune. Immune physicians
cannot change state and do not affect the states of other
physicians. The single-dose model is characterized by two
parameters Pinf and Pimm.
In the multiple-dose model, physicians remember expo-

sure doses received over some period of time. A susceptible
physician on duty with an infected physician receives an

exposure dose δ with probability Pinf. If the cumulative
value of all doses “remembered” by a susceptible physician
exceeds the exposure threshold Badopt, then the physician
becomes infected. The multiple-dose model is thus char-
acterized by two additional parameters δ and Badopt;
however, we can set Badopt ¼ 1 without loss of generality.
For both contagion models, we obtain the corresponding

simulated time evolution for the number of adopters. We
then identify the parameter values that yield the best fit to
the experimental data (the set of parameter values that
renders the minimum sum of square distances between
experimental and simulated curves) and obtain the mean
number of adopters as a function of time [Fig. 2(b) and
Supplemental Material Figs. 2 and 3].

B. Persuasion model

Next, we consider a set of models inspired by the opinion
models of Deffuant et al. and of Hegselmann and Krause
[33,34]. In opinion models such as those, belief takes
continuous values, and therefore, they can be formalized in
a manner similar to the generalized contagion models.
Again, we assume that an agent i has belief Bi, lying
between 0 (no belief in the suitability of the innovation) and
1 (true believer in the suitability of the innovation) [35].
As in contagion models, above a threshold value Bi

adopt,
where 0 < Bi

adopt < 1, the agent believes enough in the
suitability of the innovation to start using it, i.e., becomes
an adopter [Fig. 2(a)]. Opinion models differ primarily
from contagion models in that influence flows bidirection-
ally between agents and in proportion to the difference in
their beliefs. Specifically, interactions between an adopter
and a nonadopter result in movement of the beliefs of
both individuals toward the initial mean belief of the two
agents—the adopter receives a negative dose, whereas the

TABLE I. (Continued)

Model
T training
(days)

Estimated
parameter
values

Average (Standard Deviation)
final number
of adopters

Probability
final number

of adopters ¼ 20

Probability final
number of

adopters [17–23]

Probability
sum square

residuals <100
BIC
score

Contagion
multiple dose
(threshold from
uniform distribution)

75 Pinf ¼ 1.0
Pimm ¼ 0.1
dose ¼ 0.95

32.3 (2.1) <1 × 10−3 0.0 <10−6 18.42

100 Pinf ¼ 0.5
Pimm ¼ 0.1
dose ¼ 0.3

23.4 (2.8) 0.058 0.499 8.4 × 10−5 5.69

125 Pinf ¼ 0.6
Pimm ¼ 0.2
dose ¼ 0.2

16.9 (2.3) 0.064 0.575 0.015 5.50

150 Pinf ¼ 0.7
Pimm ¼ 0.6
dose ¼ 0.7

13.8 (2.28) 0.006 0.123 7.3 × 10−5 10.23

175 Pinf ¼ 0.5
Pimm ¼ 0

dose ¼ 0.15

16.0 (2.1) 0.037 0.385 0.05 6.59
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nonadopter receives a positive dose. We further generalize
traditional opinion models by assuming that (i) interactions
between two adopters lead to both receiving a reinforcing
positive dose, (ii) adopters can resist a decrease in their
beliefs, (iii) nonadopters have different degrees of initial
openness to adopting innovations Biðt ¼ 0Þ, and (iv) the
difference in beliefs of interacting individuals is not
bounded (that is, there is no bounded confidence, as in
Ref. [33]). We denote our generalization of opinion models
as a “persuasion” model.
The time evolution of the belief of an agent behaving

according to the persuasion model is controlled by four
parameters, each with a value in the range [0, 1]. The
agent’s persuadability P quantifies the extent to which the

belief of an agent may change (in any direction) after
interaction with an agent in a different state; mutual
encouragementM quantifies the extent to which an adopter
increases her belief after interaction with another adopter;
and resistance R quantifies the extent to which an adopter
resists a decrease in her belief and the adoption threshold
Badopt. Additionally, the initial conditions for nonadopters
are randomly set to a value Bi in the range [0, Badopt]. We
allow the dynamics to take place among the physicians
working together, in chronological order and as dictated by
the network. When two physicians with beliefs B1 and B2

interact, their beliefs are updated. If both physicians are
nonadopters, no persuasion occurs, so the beliefs remain
unchanged:

(d)
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FIG. 2. Computational modeling of the adoption experiment. (a) Schematic of the adoption interaction dynamics between two
physicians in the study. Each physician enters each interaction with a belief level Bi in the innovation with range [0, 1] represented as a
dial. If Bi ≥ Badopt, the physician is an adopter (red dial). We assume an adopter can expose other physicians to knowledge about the
innovation (the PCTassay) only during a shared work shift. As a result of the interaction, physicians may change their opinion. (b) Mean
number of adopters over time for the different adoption models and their corresponding best-fit parameters (contagion with multiple
doses Pinf ¼ 1, Pimm ¼ 0, and dose ¼ 0.2; contagion with a single dose Pinf ¼ 1 and Pimm ¼ 0; and persuasion Badopt ¼ 0.5, P ¼ 0.1,
M ¼ 0, and R ¼ 0) determined for 1000 simulations compared to experimental data (black line). (c) To test the prediction power of the
models, we fit the contagion (with single and multiple doses) and persuasion models to the data for a training period (gray area;
T training ¼ 125 days is illustrated). We determine the best-fit set of parameter values (contagion with a single dose Pinf ¼ 0.1 and
Pimm ¼ 0; contagion with multiple doses Pinf ¼ 0.1, Pimm ¼ 0, and dose ¼ 0.4; and persuasion Badopt ¼ 0.5 (fixed), R ¼ 0 (fixed),
P ¼ 0.1, and M ¼ 0). We then use these optimal parameter values and the empirical conditions at the end of T training as new initial
conditions to simulate the models for the remainder of the experiment (244 − T training), using 1000 independent realizations of each
model. (d) Distribution of the final number of adopters predicted by the three models considered. We indicate the experimentally
observed final number of adopters with the arrow. These data show that the persuasion model is the only one consistent with the
experimental data. See the main text and Table I for more details on the model comparisons and performance.
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B1ðtþ 1Þ ¼ B1ðtÞ;
B2ðtþ 1Þ ¼ B2ðtÞ:

If both physicians are adopters, then their beliefs are
increased due to mutual encouragement:

B1ðtþ 1Þ ¼ B1ðtÞ þM;

B2ðtþ 1Þ ¼ B2ðtÞ þM;

Finally, if physician 1 is an adopter but physician 2 is a
nonadopter, then their beliefs are updated to

B1ðtþ 1Þ ¼ B1ðtÞ − RP½B1ðtÞ − B2ðtÞ�;
B2ðtþ 1Þ ¼ B2ðtÞ þ P½B1ðtÞ − B2ðtÞ�:

For simplicity, we set Badopt to the same value for all
physicians in the cohort and estimate its value from the
data. Even though our model allows for any value of R,
based on the fact that adopters do not revert to being
nonadopters in our data, R is set to 0, leaving three
parameters to be fitted. By systematically investigating
parameter space, we find that any one of the remaining
three free parameters can be fixed without any loss in the
model’s ability to reproduce the experimental data
(Supplemental Material Fig. 4 [24]). This feature of the
persuasion model mirrors the presumed characteristics of
the physicians in our population: While we choose the same
values for the parameters for all physicians, we are
modeling a number of different individuals with their
own, differing, personal beliefs and “persuadabilities.”
Had we found that the model only works in a small region
of parameter space, we would be highly suspicious, given
the fact that physicians are assumed to have differing
individual beliefs. We set Badopt ¼ 0.5 and R ¼ 0 for all the
simulations presented here. (See Supplemental Material
Figs. 4 and 5 for examples [24] of other best fits and
landscapes when fixing different pairs of parameters in the
persuasion model.)
For each pair of values of P and M, we generate 1000

independent realizations of the persuasion model using the
empirical shift network of physicians and the empirical
adoption and exposure initial conditions [the two initial
adopters are set to Biðt ¼ 0Þ ¼ 1, with Biðt ¼ 0Þ ¼ 0 for
the rest of the population] and obtain the corresponding
simulated time evolution for the number of adopters. From
that parameter exploration, we identify the set of parameter
values that yield the best fit to the experimental data and
obtain the mean number of adopters as a function of time
[Fig. 2(b) and Supplemental Material Fig. 4 [24]]. We
observe that the best fit is considerably better for persuasion
than for any of the contagion models. These features are at
least partially due to the impossibility of the contagion
models to replicate the initial plateau, where there are no
new adopters.

C. Model selection

Next, we investigate the ability of the contagion and
persuasion models to be predictive of the time evolution of
the number of adopters. Specifically, we fit each of these
cases to the experimental data for a training period with
duration T training and then determine to what extent the
models (using best-fit parameters from the training period)
predict the evolution of adoption for the remaining 244 −
T training days of the experiment. The experimentally
observed adoption status for all physicians on day
T training is used as the initial condition for the prediction
simulations [Fig. 2(c); 1000 independent realizations].
Since we cannot a priori know what is the optimal

duration of the training period, and in order to test the
robustness of the models’ predictions, we repeat all
calculations for five distinct values: T training ¼ 75, 100,
125, 150, and 175 days. (See a complete summary of the
results in Table I.) Clearly, the more data available to
estimate model parameters, the more accurate the estimates
of the parameters should be. Indeed, one finds that the
parameter estimates rapidly converge as T training increases
for all models. Moreover, the longer the duration of the
training period T training (or, equivalently, the shorter the
duration of the prediction period 244 − T training), the more
accurate one expects the predictions of a model to be. We
find this effect to be the case for the persuasion model but
not for either of the contagion models, for which perfor-
mance does not improve with increasing T training (Table I).
For concreteness, we focus here on the case T training ¼

125 days when discussing model performance [Figs. 2(c)
and 2(d)]. The probability that the models will return the
experimentally observed final number of adopters is 2.8%
for the contagion model with a single dose, 4.3% for the
contagion model with multiple doses, and 27.7% for the
persuasion model (Table I). The probability that the models
will predict a final number of adopters at least as large as
that experimentally observed (that is, the p value for the
models) is 0.043 for the contagion models with single and
multiple doses and 0.58 for the persuasion model. These p
values show that we can reject the contagion models at the
95% confidence level but not the persuasion model.

V. MODELING OF INTERVENTIONS

In order to establish the practical impact of our findings,
we next explore how the persuasion model can be used to
design interventions that lead to faster and more robust
adoption. Knowledge translation interventions where all
physicians are exposed to an innovation in a general,
impersonal manner (e.g., reading a journal or guideline,
attending a conference) are known to have low efficacy
[36]. However, the resources, cost, and time required to
intervene on all physicians individually is impractical.
Interventions that intermittently target physicians, such
as encouraging or prompting them to change their behavior,
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are incrementally effective models of knowledge trans-
lation [37–44], but they have not been developed and
deployed based on a mechanistic understanding of adop-
tion as a social process.
Our experimental data suggest that the physician contact

network imposed by the shift schedule gives rise to long
time periods in the experiment during which no adoption
can occur because few or no adopters are on duty [Fig. 1(c)].
It thus follows that by designing interventions that target
additional physicians whenever it is known that no adopters
will be on shift for someperiod of time, one could potentially
speed up the spread of adoption andmake the outcomemore
robust. Specifically, in our proposed intervention strategy,
we audit the experimental data to identify all five-day
periods during which no adopters are present (“adoption
pause”). We then select one team member at random and
simulate prompting that physician with information about
the PCT assay.

We study the impact of this intervention strategy by
performing 1000 simulations of the persuasion model on
the experimental shift schedule with the best-fit parameters
and a prompting intervention impact ΔI. We observe that
for ΔI=Badopt ¼ 0.8, there is an acceleration in the rate of
adoption throughout the simulations, leading to a signifi-
cantly higher mean number of final adopters compared to
the persuasion model without this intervention (22.8� 3.0
vs 20.8� 2.3 final adopters, p < 0.01, student’s t test)
[Figs. 3(a) and 3(b)]. Additionally, we find that as ΔI
increases, a concomitant increase in the number of adopters
occurs during the experiment, again leading to an increased
number of final adopters [Fig. 3(c)]. We determine that the
average number of interventions per simulation needed to
avoid a five-day adoption pause is 0.5. Regarding the
specific moment when the interventions occur, we observe
that they tend to occur around day 20 [Fig. 3(d)]. The
implication of these results is that a small number of

FIG. 3. Using the persuasion model to predict the impact of a prompting intervention. (a) Effect of a prompting intervention (see the
main text) on the dynamics of innovation adoption for the persuasion model with best-fit parameters and the experimental work-shift
schedule and initial conditions. The intervention (dashed line) accelerates adoption during the simulation, leading to a significantly
higher mean final number of adopters compared to the model without intervention (solid line) (22.8 [3.0] vs 20.8 [2.3] final adopters,
p < 0.01, student’s t test). (b) Number of additional adopters created by the prompting intervention on the persuasion model as a
function of prompt magnitude Δ=Badopt on two different days during the experiment. (c) Distribution of the final number of adopters in
the persuasion model with (dashed line) and without (solid line) intervention (p < 0.01, Kolmogorov-Smirnov test). (d) Distribution
of intervention days obtained for the 1000 realizations of the persuasion model with prompting intervention. Inset: Exploded view of the
intervention day distribution. For all four panels, the length of the adoption pause is five days. For (a), (b), and (d), the prompting
intervention impact is ΔI ¼ 0.8Badopt. See Supplemental Material Fig. 8 for details [24] of other cases.
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interventions at an early point in the process may be all that
is necessary in order to increase the adoption of a worth-
while innovation.
We also explore the impact of varying the adoption pause

length (e.g., 1, 7, and 10 days). We find that a shorter
adoption pause (therefore requiring more interventions)
leads to a faster acceleration of the adoption process and
more adopters. On the other hand, allowing adoption
pauses ≥7 days does not lead to a significant increase in
the number of adopters during or at the end of the process,
regardless of the size of the intervention prompt. These
results suggest a strategy for determining the optimal
magnitude of the prompt or the length of time needed to
achieve adoption criticality. (See also Supplemental
Material Figs. 6–8 [24].) The intervention we explore here
is arguably the simplest imaginable. Other, more sophis-
ticated interventions, such as seeding more physicians,
modifying the work schedule to maximize the exposure of
nonadopters to adopters, or using knowledge about indi-
vidual physicians’ intrinsic persuadability, would likely
lead to a more robust intervention.

VI. DISCUSSION

Our results are remarkable in that they enable us to select
from among a number of mechanistic models for describing
the adoption of innovations. Our study clearly rejects the
notion that adoption, within a homogenous group of highly
trained professionals, propagates as a standard contagion
process. Rejection of contagion-type models for adoption
of an innovation with a low burden for potential adopters is
particularly significant. Contagion models would seem
most suited for this simplified situation, where individuals
are not asked to abandon their current practice or place a
value on the innovation prior to deciding on its adoption.
Given the failure of contagion models in our experiment,
they are even less likely to explain adoption in more
complex contexts, where the risk of adoption is not
negligible. In such a complex system, individuals must
ponder the innovation more intensely, either because
adoption demands the total replacement of standard prac-
tice, because the cost associated with adoption is high, or
because the agent must personally be able to assess the
suitability of the innovation. The persuasion model pro-
vides a satisfactory explanation of the adoption of a low-
burden and high-impact innovation and is a plausible model
for innovations involving greater burdens to adoption.
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