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The quantum evolution that occurs after a metallic lead is suddenly connected to an electron system
contains information about the excitation spectrum of the combined system. We exploit this type of
“quantum quench” to probe the presence of Majorana fermions at the ends of a topological super-
conducting wire. We obtain an algebraically decaying overlap (Loschmidt echo) LðtÞ ¼ jhψð0ÞjψðtÞij2 ∼
t−α for large times after the quench, with a universal critical exponent α ¼ 1

4
that is found to be remarkably

robust against details of the setup, such as interactions in the normal lead, the existence of additional lead
channels, or the presence of bound levels between the lead and the superconductor. As in recent quantum-
dot experiments, this exponent could be measured by optical absorption, offering a new signature of
Majorana zero modes that is distinct from interferometry and tunneling spectroscopy.
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I. INTRODUCTION

The original example of Anderson’s orthogonality catas-
trophe [1] was a vanishing overlap between two quantum
states of a large number of noninteracting electrons, one
with and one without a localized impurity potential VðrÞ.
This phenomenon governs the electronic response when
x rays are absorbed in a metal [2,3]: The core hole
generated in the absorption process acts as a localized
potential, and the time-dependent response of the system
after this change in the Hamiltonian was perhaps the first
nontrivial example of a quantum quench in a many-electron
system. Quantum quenches have been of great interest
recently as a basic question about nonequilibrium physics
appearing in many contexts [4–9].
The point of the present work is to study a quantum

quench in an electron system that supports Majorana
fermion excitations [10–12], specifically a topological
superconducting nanowire [13–15] of the type sought in
recent experiments [16–22]. The quench consists of sud-
denly connecting the nanowire to an ordinary metallic lead.
The behavior of the many-electron wave function at long
times after the quench is significantly altered by the
presence of the Majorana excitation: The wave-function
overlap with the initial state (the Loschmidt echo) decays
with a universal power law, unlike in the Anderson
orthogonality case where the exponent is nonuniversal.
This effect of the Majorana fermion can be distinguished

from effects of ordinary fermions, either trapped or
extended, and can be understood as resulting from an
induced change in the effective boundary condition of the
ordinary fermions in the metallic lead.
The detailed analysis of the long-time behavior after the

quench is possible because the quench’s effect of changing
the boundary condition on the metallic lead, from normal
reflection to Andreev reflection, is represented by a known
operator in boundary conformal field theory (BCFT) [23].
We also find that interactions in the metallic lead, which
produce a Luttinger-liquid state, do not modify the universal
exponent indicating a Majorana fermion—in the same
regime of parameters where the zero-bias conductance
anomaly is stable, and similarly, the result is impervious
to the presence of additional channels or localized states.
We confirm the predictions of the field theory numeri-
cally, both by free-fermion methods and density-matrix
renormalization-group (DMRG) simulations [24–27].
While much of our presentation focuses on the basic

phenomena resulting from the quantum quench, recently a
similar quench of tunneling into a quantum dot (QD) in the
Kondo regime was achieved experimentally by optical
absorption [7]. We discuss some conditions for a possible
experiment using optical absorption in a (non-Kondo)
quantum dot. We believe that such a measurement is
conceptually distinct from previously proposed detection
methods for solid-state Majorana excitations including,
e.g., interferometry, tunneling spectroscopy, current noise,
and the 4π periodic Josephson effect [28–35]. The presence
of Majorana fermions in a system results in a strong
modification of the absorption edge singularity, which is
one of the classic features of metallic electrons. The
universal nature of the Majorana signature can serve to
distinguish it from other processes like, e.g., the Kondo
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effect or consequences of disorder, which depend on the
experimental parameters of the setup.
The remainder of this paper is organized as follows.

Section II introduces the basic model of Kitaev [13] of a
spinless p-wave superconducting wire that, in one phase,
supports Majorana-edge zero modes. At time t ¼ 0, the
wire is suddenly tunnel coupled to the end of a non-
interacting metallic one-dimensional (1D) wire in its
ground state. The long-time dynamics is analyzed using
the low-energy limit of the coupled wires, and the decay of
the Loschmidt echo is determined in a boundary conformal
field theory approach by the scaling dimension of the
operator that changes boundary conditions on the normal
wire. The change of boundary conditions can be derived
from observing that, when the normal wire is written in
terms of a pair of Majorana fermions, one of the Majorana
fermions undergoes a phase shift as a result of Andreev
reflection at the junction. The resulting predictions are
numerically confirmed for both ordinary and topological
phases of the model.
Section III shows that the Majorana effect on the long-

time overlap exponent is as stable to interactions in the lead
as the zero-bias tunneling conductance anomaly, and also to
the presence of additional channels, which is an important
factor in current experiments. Some of these predictions are
also verified numerically using DMRG simulations.
Section IV describes some features of a possible experiment
using the optical absorption of a quantum dot between the
normal lead (NL) and the superconducting wire, and it
discusses effects of additional localized electron states as
modeled by such a quantum dot. Finally, Sec. V provides a
discussion of the results and explains how the theoretical
analysis of the quench in terms of a change in boundary
condition can be generalized to other kinds of topological
1D systems, including those with parafermionic excitations.

II. MAJORANA-INDUCED QUENCH DYNAMICS
IN A NONINTERACTING METALLIC LEAD

A. Spinless normal metal—superconductor junction

We consider the quench dynamics of a NL suddenly
coupled to a (topological) superconductor (TSC). To
illustrate our main ideas, we start our discussion with a
simple spinless p-wave superconductor as introduced by
Kitaev [13],

HSC ¼ −J
XL−1
i¼1

ðf†iþ1fi þ H:c:Þ − μ
XL
i¼1

�
f†i fi −

1

2

�

þ Δs

XL−1
i¼1

ðf†iþ1f
†
i þ fifiþ1Þ; ð1Þ

with a uniform positive coupling J and real superconduct-
ing gap Δs (superconducting phase ϕ ¼ 0). This so-called
Kitaev chain is tunnel coupled (J0 ≪ J),

Ht ¼ −J0ðc†1f1 þ H:c:Þ; ð2Þ

to a noninteracting metallic lead

HL ¼ −J
XL−1
i¼1

ðc†iþ1ci þ H:c:Þ: ð3Þ

The dispersion relation of the Kitaev chain reads
ωk ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J cos kþ μÞ2 þ 4Δ2

ssin2k
p

, and the problem is
known to have a quantum phase transition at jμj ¼ 2J,
separating a topologically trivial phase (jμj > 2J) from a
topological phase that hosts Majorana zero modes at the
edges (jμj < 2J).
We initially prepare the system in the ground state

jψ0i ¼ jΩiSC ⊗ jΩiL for decoupled lead and supercon-
ductor (J0 ¼ 0). At time t ¼ 0, the coupling J0 is suddenly
turned on so that the system is brought far from equilibrium
[Fig. 1(a)]. The wave function at time t > 0 is simply
given by the unitary evolution jψðtÞi ¼ e−iHtjψ0i with
H ¼ HSC þHL þHt.
Most of our discussion will focus on the behavior at large

times, which is dominated by the only low-energy excita-
tion of the topological superconductor—the Majorana zero
mode. In what follows, we require that the time be larger
than the inverse of the bandwidth such that a field theoretic
continuum theory applies. Assuming that the massive
degrees of freedom in the superconductor can be integrated
out then yields an effective Majorana boundary term for the
metallic lead.

FIG. 1. Physical setup. (a) Local quantum quench considered in
this paper: At time t ¼ 0, a one-dimensional metallic (normal)
lead is connected to the end of a topological superconductor
with Majorana zero modes at both ends. (b) Cartoon representa-
tion of the low-energy fixed point (large-time behavior) for a
single-channel noninteracting lead. Only one of the Majorana
channels in the normal lead ψðxÞ ¼ (ξðxÞ þ iηðxÞ)=2 experien-
ces a π=2 phase shift corresponding to the Andreev reflection
ψ†
Rð0Þ ¼ ψLð0Þ at the junction.
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This coupling to a Majorana fermion introduces a typical
energy scale that we denote by T⋆ in the following. In a
finite system, the overlap of the Majorana modes from
opposite ends of the Kitaev chain leads to another small
(yet nonzero) energy scale δM for the Majorana excitations.
We expect to start seing the effects of this overlap in the
post-quench dynamics for large times t > t1 ∼ 1=δM. In the
following, we will assume the thermodynamic limit L →
∞ though, where the time scale t1 → ∞ diverges because
of the exponentially decaying overlap of the Majorana
modes (δM ∼ e−αL). Thus, we can safely set δM ¼ 0 and be
left with a single energy scale T⋆ in the problem—the
normal lead being scale invariant in the scaling limit.

B. Low-energy description and flow from free to fixed
boundary conditions in the Ising model

Given these prerequisites, we can linearize the dispersion
relation of the metallic lead near the Fermi energy. The
Hamiltonian (3) then takes the familiar form

HL ¼ −ivF
Z

∞

0

dxðψ†
R∂xψR − ψ†

L∂xψLÞ; ð4Þ

with the Fermi velocity vF ¼ 2J at half-filling. In order to
analyze the effective boundary terms due to the super-
conductor, it is very convenient to “unfold” the normal lead
and define a right-moving field ψðxÞ on the real line:
ψðxÞ ¼ ψRðxÞ for x > 0 and ψðxÞ ¼ ψLð−xÞ for x < 0.
When the Kitaev chain is in the topological phase
(jμj < 2J), and assuming that it is fully gapped throughout,
we can integrate out the massive degrees of freedom of the
superconductor to obtain the low-energy Hamiltonian for
the chiral fermonic field ψðxÞ,

H ¼ −ivF
Z

∞

−∞
dxψ†∂xψ þ iκγðψ† þ ψÞð0Þ; ð5Þ

which describes a Majorana zero mode γ (γ2 ¼ 1 and
γ† ¼ γ), coupled with strength κ ∝ J0 to the fermion ψðxÞ
describing the normal lead, with regularization ψð0Þ≡
(ψð0−Þ þ ψð0þÞ)=2. Note that, in principle, Eq. (5) con-
tains other effective boundary terms (less relevant in the
renormalization-group sense) that turn out to be important
only in the absence of the Majorana zero mode—i.e., when
the superconductor is in the trivial phase (see Sec. II D
below). For the sake of simplicity, we will ignore these
other terms in the following.
To proceed, we then decompose ψ into Fourier modes

ψðx; tÞ ¼
Z

dωeiωðx−tÞψωðxÞ; ð6Þ

where we set vF ¼ 1. The diagonalization of this non-
interacting problem can be expressed in terms of a
scattering matrix

�
ψωð0þÞ
ψ†
−ωð0þÞ

�
¼ ŜðωÞ

�
ψωð0−Þ
ψ†
−ωð0−Þ

�
: ð7Þ

The precise form of the matrix ŜðωÞ is not important (see,
e.g., Ref. [36] for a related calculation). What matters is that
since T⋆ ¼ κ2 is the only energy scale of the problem, Ŝ has
to be a function of ω=T⋆. In the renormalization-group
(RG) language, this amounts to saying that the boundary
perturbation in Eq. (5) has dimension Δ ¼ 1

2
and is there-

fore relevant. From the explicit form of ŜðωÞ, one finds that
at high energies (ω ≫ T⋆), ŜðωÞ is the identity matrix: This
corresponds to the boundary condition ψð0þÞ ¼ ψð0−Þ for
the fermion in the lead [or ψRð0Þ ¼ ψLð0Þ before folding].
At low energies (ω ≪ T⋆), the relevant boundary pertur-
bation iκγðψ† þ ψÞð0Þ drives the system into a new RG
fixed point (or more precisely, a new conformally invariant
boundary condition)

Ŝð0Þ ¼
�

0 −1
−1 0

�
; ð8Þ

which corresponds to the Andreev reflection condition
ψ†ð0þÞ ¼ ψð0−Þ after the canonical transformation
ψ → iψ , ψ† → −iψ†. This boundary condition governs
the low-energy properties of the junction and, in particular,
yields the zero-bias tunneling conductance G ¼ 2e2=h
[31].
In our context of quantum quenches, it is very instructive

to analyze this noninteracting setup purely in the language
of Majorana fermions. Let us introduce ψ ¼ ðξþ iηÞ=2,
with ξ and η real Majorana fermions: fξðxÞ; ξðx0Þg ¼
2δðx − x0Þ and fηðxÞ; ηðx0Þg ¼ 2δðx − x0Þ. In terms of these
Majorana fermions, Eq. (5) now reads

H ¼ −
i
4

Z
∞

0

dxðξR∂xξR − ξL∂xξLÞ

−
i
4

Z
∞

0

dxðηR∂xηR − ηL∂xηLÞ þ iκγξð0Þ: ð9Þ

Our scattering problem can therefore be mapped onto two
Majorana chains (or equivalently, two independent Ising
models), where one of the copies, ηðxÞ, decouples from the
boundary Majorana γ and thus does not contribute to the
dynamics. The remaining Hamiltonian can be identified
with an Ising spin chain with a boundary magnetic field κ
which induces a flow from free to fixed boundary con-
ditions. The equations of motion can readily be solved in
frequency space in terms of the scattering matrix ξωð0þÞ ¼
SξðωÞξωð0−Þ with

SξðωÞ ¼
iω − T⋆=2
iωþ T⋆=2 ; ð10Þ

so that ξð0þÞ ¼ −ξð0−Þ and ηð0þÞ ¼ ηð0−Þ at low energy,
corresponding to full Andreev reflection [Fig. 1(b)]. The
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boundary entropy drop [37] associated with this RG flow is
simply given by ln

ffiffiffi
2

p
, where d ¼ gUV=gIR ¼ ffiffiffi

2
p

is the
quantum dimension of the Majorana fermion γ that was free
at high energy and that becomes fully hybridized with the
normal lead at low energy. This will turn out to have crucial
consequences on the quench dynamics of the system.

C. Quench dynamics and Loschmidt echo

In this paper, we will characterize the dynamics of the
system using the time-dependent overlap (fidelity, or
Loschmidt echo) LðtÞ ¼ jhψð0ÞjψðtÞij2 that encodes how
far the system is from its initial state at a given time t. Based
on pure scaling, it is natural to expect LðtÞ to be a universal
function of tT⋆ only [38] since t acts effectively as the
inverse of a typical energy scale. For large times, the fact
that the (boundary of the) system is flowing to a completely
new (boundary) RG fixed point leads to an algebraic decay
LðtÞ ∼ t−α that can be interpreted as a time-dependent
version of the celebrated Anderson orthogonality catastro-
phe [1]. The corresponding critical exponent can be
conveniently computed using boundary conformal field
theory (BCFT). The key idea is to interpret the Loschmidt
echo in imaginary time

Lðt ¼ −iτÞ ¼ jhψ0je−Hτjψ0ij2; ð11Þ

as the square of a partition function of a two-dimensional
(2D) statistical problem at its critical point—two copies of
the Ising model in our case—in the half-plane x ∈ ½0;∞Þ,
y ∈ ð−∞;∞Þ. The quantum quench then amounts to
changing the boundary condition at x ¼ 0—i.e., applying
some sort of boundary magnetic field—for y ∈ ½0; τ�.
For large τ, this boundary condition flows to a confor-
mally invariant one, and this geometry can be thought of as
the two-point function of a boundary-condition-changing
(BCC) operator in the BCFT language [23]. This leads
to the identification α ¼ 4hBCC [38], where hBCC is the
dimension of the corresponding BCC operator (see
Appendix A for more details). This formula α ¼ 4hBCC
is completely general and allows us to rely on well-
established conformal field theory results to compute the
asymptotic behavior of LðtÞ. Note, however, that marginal
perturbations have to be treated separately as they modify α
in a continuous fashion (see Secs. II D and III D).
Applied to our problem, this line of reasoning yields

LðtÞ ∼
t≫ðT⋆Þ−1

t−1=4; ð12Þ

where the exponent 1=4 ¼ 4hBCC corresponds to an oper-
ator changing boundary conditions from ψð0þÞ ¼ ψð0−Þ to
ψ†ð0þÞ ¼ ψð0−Þ in the c ¼ 1 Dirac fermion theory, with
dimension hBCC ¼ 1

16
. Using the Ising formulation of the

previous section, the exponent hBCC ¼ 1
16

can also be
thought of as the dimension of the spin operator, which

is well known to correspond to changing boundary con-
ditions from free to fixed in the Ising model [23].
Note that the exponent resulting from this boundary

condition is half as large as one would obtain from the
boundary condition of a δ ¼ π=2 phase shift on a normal
fermion, as here only one of the two Majorana degrees of
freedom picks up that phase shift, e2iδ ¼ −1. If charge were
conserved (which is not the case in the present model
because of the superconductor), this exponent would
correspond to the flow of one-half an electron charge to
the vicinity of the boundary [39,40].
The power-law dependence (12) is characteristic of

Majorana zero modes, and we argue in the remainder of
this paper that it holds for more realistic systems, including
several channels and interactions in the metallic lead.

D. Topologically trivial case

When the superconductor is in a topologically trivial
phase, it is natural to expect the Loschmidt echo to remain
unity in the limit of an infinite gap—in other words,
nothing happens when the tunneling is suddenly turned
on. In actual systems, however (and in the numerical
simulations that will be described below), the gap in the
superconductor is finite. It is thus crucial to understand the
dynamics for a metallic lead suddenly coupled to a gapped
phase with gap Δ, be it a superconductor or not. Integrating
out the gapped phase then yields the effective boundary
term for the metallic lead

H ¼ −ivF
Z

∞

−∞
dxψ†∂xψ þ VðΔÞψ†ð0Þψð0Þ; ð13Þ

where the amplitude of the boundary perturbation can be
estimated in perturbation theory as VðΔÞ ∼ ðJ0Þ2=Δ. It
turns out that superconductivity is not important in the
context of this single-channel model, as Cooper-
pair-tunneling processes, described by an effective boun-
dary term iδðxÞψ∂ψ þ H:c: [36], are irrelevant at low
energies (large times). This term and other ones involving
higher-order derivatives were thus dropped in Eq. (13).
The potential scattering term in Eq. (13) can be thought of

as a singular gauge potential AðxÞ ¼ VðΔÞδðxÞ, which can
be gauged away by enforcing a phase shift ψð0þÞ ¼
eiVðΔÞψð0−Þ. This phase shift yields a power-law decay
of the Loschmidt echo LðtÞ ∼ t−α, with an Anderson
orthogonality exponent α ¼ ðVðΔÞ=2πÞ2 that can readily
be computed from bosonization, for instance. Therefore, for
a quench involving a nontopological superconductor with a
large yet finite gapΔ (or any ordinary gapped phase, for that
matter), we expect the large-time scaling

LðtÞ ∼ t−Const=Δ
2

; ð14Þ

where the (small) exponent is nonuniversal. Importantly, in
the presence of Majorana zero modes, boundary terms such
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as VðΔÞψ†ð0Þψð0Þ do not influence the universal
result (12).

E. Numerics

In order to check our predictions for the large-time
dynamics, we compute numerically the Loschmidt echo for
the Hamiltonian H ¼ HL þHSC þHt given by Eqs. (1),
(2), and (3). Since the system is noninteracting, the
Loschmidt echo can be expressed as a determinant, thus
allowing a computation on fairly large systems. We refer
the reader to Ref. [41] and to Appendix B for technical
details on the numerical method.
Results of the simulations are shown in Fig. 2 (numerical

parameters are given in the caption). The thick lines are for
μ ¼ 0.5 and different values of J0, where the supercon-
ductor is in the topological phase and supports Majorana
fermions at its ends. The double logarithmic plot of
Loschmidt echo versus rescaled time tT⋆ ¼ tðJ0=JÞ2 dem-
onstrates the predicted universal power-law decay LðtÞ ∼
t−1=4 (compare dashed line), with nicely collapsing curves
for different values of J0. Both the universal collapse and
the power-law behavior are signatures of the presence of
Majorana zero-modes at the ends of the Kitaev chain in this
regime.
In the case of a trivial superconductor, μ ¼ 1.5 (thin

lines), the curves do not collapse and they show very slow
decays that can be explained by the fact that the gap in the
superconductor is large but finite. Figure 3 shows that these

decays follow power laws ∼t−αðΔÞ, with small exponents
αðΔÞ depending on the actual gap Δ of the system. For
large Δ, this dependence is α ∼ Δ−2, as demonstrated in the
inset, consistent with the prediction (14).

III. STABILITY OF THE EXPONENT

A. Effect of interactions in the metallic lead

A remarkable feature of Eq. (12) is that it is robust, with
the same exponent, against quite strong interactions in the
lead. To demonstrate this, we add an interaction between
electrons on adjacent sites,

HI ¼ U
XL−1
i¼1

�
c†i ci −

1

2

��
c†iþ1ciþ1 −

1

2

�
; ð15Þ

to the lead Hamiltonian in Eq. (3). In the scaling limit, the
lead can then be described in terms of a Luttinger liquid,
with Luttinger parameter g−1 ¼ 2 − ð2=πÞ arccosU [42]. In
the corresponding low-energy description, the unfolded
chiral (right-moving) fermionic field ψðxÞ can be boson-
ized [43] as ψðxÞ ¼ ðχ= ffiffiffiffiffiffi

2π
p Þeiϕ, where χ is a Klein

factor—yet another Majorana fermion—introduced to
make sure that ψðxÞ anticommutes with γ (see also
Ref. [36] for a discussion of the bosonization of the
Majorana boundary interaction). The Hamiltonian of the
interacting lead then reads

HL ¼ g
4π

Z
dxð∂xϕÞ2; ð16Þ

FIG. 3. Loschmidt echo after a quench of the tunneling between
a (noninteracting) normal lead and a topologically trivial gapped
phase with gap Δ. We choose L ¼ 4000, J0 ¼ 1

2
, and Δs ¼ 0 to

obtain a trivial band insulator with gap Δ ¼ μ − 1. The Losch-
midt echo exhibits a clear power-law behavior as a function of
time, with a small exponent that scales as Δ−2 (inset). Results for
a nonzero superconducting gap Δs ≠ 0 show exactly the same
physics.

FIG. 2. Loschmidt echo for a quench of the tunneling between a
noninteracting normal lead and the Kitaev model for a spinless
1D p-wave superconductor. We work with J ¼ 1

2
, Δs ¼ 1.0, and

L ¼ 4000. When the superconductor is topologically nontrivial,
the Majorana zero modes at its edges induce a universal decay
t−1=4 of the Loschmidt echo (dashed line). The data for different
values of the tunneling J0 collapse once properly rescaled
by T⋆ ¼ ðJ0=JÞ½2g=ð2g−1Þ�. Inset: Loschmidt echo for an interac-
ting normal lead with Luttinger parameter g ¼ 3

2
, μ ¼ 0.5,

Δs ¼ 2.5, and L ¼ 200 (total system size N ¼ 2L ¼ 400 sites)
from DMRG.

UNIVERSAL NONEQUILIBRIUM SIGNATURES OF … PHYS. REV. X 4, 041007 (2014)

041007-5



while the coupling to the Majorana becomes

iκγðψ† þ ψÞð0Þ ∼ κσx cosϕ; ð17Þ
after bosonization, where we have introduced the Pauli
matrix representation σx ¼ iγχ. This perturbation has
dimension Δ ¼ ð1=2gÞ and is hence relevant if g > 1

2
[36,44] (see also Ref. [45] for an example application).
For g < 1

2
, the Majorana term is irrelevant and the universal

behavior of the Loschmidt echo is lost, just as in the
quantized zero-bias conductance.
When the perturbation is relevant, the corresponding

energy scale induced by the perturbation is given by
T⋆ ∼ κ2g=ð2g−1Þ, and one still expects the dynamics to scale
as tT⋆. Like in the free-fermion case, the effective boundary
condition for the lead excitations flows from ψð0þÞ ¼
ψð0−Þ to ψ†ð0þÞ ¼ ψð0−Þ, corresponding, respectively, to
Neumann and Dirichlet boundary conditions for the boson
ϕ. This is consistent with the boundary sine-Gordon
interaction (17), which pins down the value of ϕð0Þ as
κ → ∞. The associated boundary-condition-changing
operator has dimension hBCC ¼ 1

16
regardless of the

Luttinger parameter [46,47], so Eq. (12) holds for an
interacting lead as well.

B. t-DMRG results

In order to check that signatures of Majorana persist in
the presence of interactions in the lead (with g > 1=2), we
use a DMRG algorithm [24] to simulate the time evolution
[25,26] in terms of matrix product states (MPS) [27]. We
adapt the bond dimension χ of the MPS in order to keep the
discarded weight ϵ below 10−7 throughout the whole time
evolution, with a Trotter time step dt ¼ 0.1 and a fourth-
order Trotter decomposition. We stop the simulations when
χ ∼Oð700Þ. Results for U ¼ −0.5, corresponding to a
Luttinger parameter g ¼ 3

2
, are shown in the inset of Fig. 2.

Even though the rapid buildup of entanglement in the
system makes it difficult to access the power-law regime
(12), we observe a clear collapse of our numerical data
for different values of J0 when rescaled using T⋆∼
ðJ0Þ2g=ð2g−1Þ, consistent with our expectations. Repulsive
interactions (U > 0, g < 1) unfortunately seem to require
us to work with larger superconducting gaps and smaller
time steps in order to converge and observe the same
physics, thus making this real-time DMRG approach rather
impractical. We expect that recently introduced DMRG
approaches aimed at computing the Fourier transform of
the Loschmidt echo hψð0ÞjψðtÞi rather than the echo itself
(see e.g., Ref. [48] for a related calculation) may be more
efficient to extract the large-time behavior (12).

C. Interacting case with two channels (spinful)

In an actual experiment, the wire contains several
channels, and it is natural to wonder if our prediction also
applies to that case. We first set out to investigate the effect

of a second lead channel in the presence of interactions in
the lead. In the next section, we turn to the full multichannel
case, restraining ourselves from a discussion of interaction
effects.
Let us consider an interacting two-channel lead (spinful

Luttinger liquid), where we think of the two channels as
corresponding to two spin states, σ ¼ ↑, ↓. Note that in the
presence of spin-orbit coupling, the labeling of the channels
as being spin up and down could be slightly misleading, but
we will nevertheless refer to the two channels in this way
for convenience. It can be described by the Luttinger liquid
Hamiltonian

HL ¼
Z

∞

0

dx
X
α¼c;s

vα
2

�
1

Kα
ð∂xΦαÞ2 þ Kαð∂xθαÞ2

�
; ð18Þ

where α ¼ c, s labels the charge and spin modes of the
fields Φα and θα, with velocity vα (set to unity in the
following), and Luttinger parameter Kα.
We will concentrate here on the case where the lead has

SU(2) symmetry (Ks ¼ 1)—ignoring spin-orbit coupling
for the sake of simpler arguments. For the generic case of a
two-channel Luttinger liquid with broken SU(2) symmetry,
similar conclusions can be drawn.
The coupling to a topological superconductor has been

studied in detail in Refs. [36,44] and was argued to drive
the system to a RG fixed point dubbed A ⊗ N, correspond-
ing to Andreev reflection for, say, the up channel, while the
down channel experiences normal reflection. In the boso-
nization language, this corresponds to the conformally
invariant boundary condition Φ↑ð0Þ ¼ 0, θ↓ð0Þ ¼ 0. In
terms of the spin and charge modes, this yields Φcð0Þ ¼
−Φsð0Þ and θsð0Þ ¼ θcð0Þ. In order to understand the
large-time dynamics of the system after the quantum
quench, we need to simultaneously diagonalize the bulk
and the boundary conditions. The bulk can be easily
diagonalized by introducing the new right and left
movers, Φc ¼

ffiffiffiffiffiffi
Kc

p ðφR
c þ φL

c Þ, Φs ¼ φR
s þ φL

s , θc ¼
ð1= ffiffiffiffiffiffi

Kc
p ÞðφR

c − φL
c Þ, θs ¼ φR

s − φL
s , so that the Hamil-

tonian reads HL ¼ R
∞
0 dx

P
α¼c;s½ð∂xφ

R
α Þ2 þ ð∂xφ

L
α Þ2�.

The low-energy A ⊗ N boundary condition at x ¼ 0,
however, becomes fairly complicated,

�
φL
c ð0Þ

φL
s ð0Þ

�
¼

� 1−Kc
1þKc

− 2
ffiffiffiffi
Kc

p
1þKc

− 2
ffiffiffiffi
Kc

p
1þKc

Kc−1
1þKc

��
φR
c ð0Þ

φR
s ð0Þ

�
: ð19Þ

This boundary condition can be diagonalized by a unitary
transformation that leaves the bulk Hamiltonian
unchanged,

ϕR=L
1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Kc
p ð

ffiffiffiffiffiffi
Kc

p
φR=L
c þ φR=L

s Þ;

ϕR=L
2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Kc
p ð−φR=L

c þ
ffiffiffiffiffiffi
Kc

p
φR=L
s Þ: ð20Þ
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It is easy to check that these new bosons satisfy A ⊗ N
boundary conditions as well: ϕR

1 ð0Þ ¼ −ϕL
1 ð0Þ, ϕR

2 ð0Þ ¼
ϕL
2 ð0Þ. The boundary-condition-changing operator from

N ⊗ N (UV) to A ⊗ N (IR) thus corresponds to changing
the boundary condition of ϕ1 from Neumann to Dirichlet. It
thus has dimension hBCC ¼ 1

16
as in the single-channel case.

Therefore, we expect the large-time behavior of the
Loschmidt echo to remain the same as in the noninteracting
spinless case, Eq. (12). In the absence of spin-rotation
symmetry, a similar calculation leads to the same con-
clusion (see Appendix D in Ref. [44] for a related
calculation in a different context).

D. Multichannel case

We now consider the situation when several channels ψ i
are present in the lead, neglecting interactions. In the
single-channel case, Andreev reflection is only possible
through the Majorana zero mode since the superconducting
term ψ∂xψð0Þ is irrelevant in the renormalization-group
sense (see Sec. II D). With several channels present, terms
like ψ iψ jð0Þ with i ≠ j are allowed, representing standard
Cooper pair-creation and annihilation processes. These are
marginal and have to be discussed. After a rotation of the
lead channels, ~ψ i ¼

P
j
~Uijψ j, only a single-lead mode ~ψ0

couples to the Majorana zero mode, and the terms of
interest generated at the boundary can be written as

iκγð ~ψ†
0 þ ~ψ0Þð0Þ þ

X
i;j

λij ~ψ i ~ψ jð0Þ þ H:c:; ð21Þ

where we have assumed the gap to be large such that terms
as discussed in Eq. (13) can be neglected.
The above situation arises, e.g., in the typical semi-

conductor wire setup for Majorana zero modes [14–16],
where one channel of the superconducting wire is topo-
logical and has essentially a p-wave-type gap, while the
remaining channels carry the ordinary superconducting
correlations inherited from the proximity coupled s-wave
superconductor.
The first term in Eq. (21) contributes −1=4 to the decay

exponent of the Loschmidt echo at large times, in analogy
to the single-channel case. The remaining boundary terms
will, in general, modify this result, just in the way they
would hide the zero-bias conductance peak in a transport
experiment. Fortunately, the Andreev reflection process
underlying these terms relies on the transport of two
electrons between lead and superconductor, and it is
therefore strongly suppressed by a tunneling barrier
between the two subsystems, λij ∼ J02, whereas κ ∼ J0.
Since the boundary terms λij ~ψ i ~ψ jð0Þ are marginal, the
corrections to the exponent of the Loschmidt echo should
depend continuously on λij and vanish as jλijj → 0. We
expect these corrections to scale as ∼jλijj2, so overall the
Loschmidt echo will be modified to t−1=4þO½ðJ0Þ4�, with
corrections that are strongly suppressed by a weak barrier.

Therefore, in the tunneling regime, Eq. (12) is again
recovered up to a reasonable accuracy.

IV. EXPERIMENTAL CONSIDERATIONS AND
QUANTUM-DOT SETUP

A. Experimental considerations

At this point, the Loschmidt echo may appear to the
reader as a purely theoretical quantity that would be hard to
access experimentally. There is, however, an increasing
number of proposals to measure the Loschmidt echo in
various local and global quantum quenches—generalizing
the well-known x-ray edge setup [2,3], using mostly
quantum-dot optical absorption [49–52] and Ramsey inter-
ferometry techniques [53,54].
The most promising setup in our context is based on an

experiment recently realized to measure post-quench
Kondo correlations induced by optical transitions on a
quantum dot [7]: When a photon is absorbed by a dot
electron, the sudden change in the electronic structure can
be understood as a local quench between a Fermi reservoir
and an effective Kondo impurity. It turns out that the
absorption spectrum is essentially the Fourier transform of
the Loschmidt echo [50]. This yields an edge singularity
AðωÞ ∼ θðω − ω0Þðω − ω0Þα=2−1 in the low-energy absorp-
tion spectrum, with α the exponent that characterizes the
power-law decay of the Loschmidt echo at large times.
The inclusion of a quantum dot between a metallic lead

and a topological superconductor could be used in a similar
way to induce a quantum quench involving aMajorana zero
mode. Quantum dots can naturally be incorporated in most
of the normal metal-topological superconductor setups that
are currently being pursued, even though the actual
experimental realization may be challenging. Here, we
discuss two of the most important cases.
The first one is the archetypical Majorana setup based on

a spin-orbit coupled semiconducting wire that is proximity
coupled to an s-wave superconductor and subjected to a
parallel magnetic field [14,15]. When a normal lead is
connected to one of its two ends, gate electrodes under-
neath define tunnel barriers that can create a quantum dot
directly at the junction [16]. The second type of setup is
based on an experimentally established topological
phase—the quantum spin Hall effect [55]. A pair of counter-
propagating edge states exists at the boundary of this two-
dimensional system [56,57], which can be turned into a
one-dimensional topological superconductor when coupled
to an ordinary s-wave superconductor [58]. Uncoupled parts
of the edge can serve as a lead, in which tunnel barriers—
and thus a quantum dot—can be created by depositing
ferromagnetic insulators on the edge.
The actual experimental realization may be challenging

though. Consider, for example, the semiconductor wire
setup. The estimated topological gap that can be achieved,
e.g., for InSb is of the order of about 1 K. We require the
tunnel broadening (T�) of the Majorana to be considerably
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smaller, say, 0.2 K. At the same time, the temperature
should again be considerably smaller than the width of the
Majorana peak, say, 50 mK. This is challenging but
generally within reach of current experiments. The temper-
ature requirement might be hard to achieve though if the
(weak) radiation heats the sample too fast for the cooling
rate. Just as in a transport setting, the topological super-
conductor needs to be long enough so that the splitting of
the two Majoranas at opposite ends forms the smallest
energy scale, δM ≪ 0.2 K. In addition, a large control over
the quantum dot is required: The level spacing should be
larger than the bandwidths of the superconductor and metal
so that only the quantum dot absorbs light, and the quench
is thus really local. At the same time, the tunnel couplings
have to be adjusted suitably. For more experimental
considerations, we refer the reader to Ref. [7].
Knowing that a quantum-dot setting allows for a meas-

urement of the Loschmidt echo, it is natural to ask whether
and how the additional presence of a quantum dot alters the
Loschmidt echo in the first place. Without a Majorana zero
mode, it is known that the Kondo effect dominates the
dynamics [7,50], while with a Majorana mode, the Kondo
effect competes with the Majorana coupling. It turns out
that the Majorana always “wins” [59] at low energy or large
time, and we argue, in the following, that the long time
behavior of the Loschmidt echo is given again by Eq. (12).

B. Quench dynamics with a quantum dot:
Noninteracting toy model

It turns out that the influence of the quantum dot can—to
a large extent—already be understood from a simple model
without interactions on the lead or dot. It is a generalization
of the low-energy Hamiltonian in Eq. (5) that includes an
extra QD level d with energy ϵd,

H ¼ −i
Z

dxψ†∂xψ þ ϵdd†dþ λ1½ψ†ð0Þdþ d†ψð0Þ�

þ iλ2γðd† þ dÞ; ð22Þ

coupled to both the normal lead and the Majorana zero
mode. Following Refs. [49–51], an optical transition on the
dot can be understood as an effective quantum quench of
the tunneling λ1.
While the above noninteracting model may seem arti-

ficial in its form, Eq. (22) for λ2 ¼ 0 (also known as the
resonant-level model) exhibits a sort of “Kondo physics” at
low energies—it corresponds to the so-called Toulouse
point of the anisotropic Kondo problem [60]. It is thus the
simplest example to study the interplay between Kondo and
Majorana physics.
In order to analyze the long-time post-quench dynamics,

it is very convenient to write both the lead and the
dot excitations in terms of Majorana operators, ψ ¼
ðξþ iηÞ=2, d ¼ ðaþ ibÞ=2. Then, the problem reduces
to two independent Majorana problems, H ¼ Hξ þHη,

Hξ ¼ −
i
4

Z
dxξ∂xξþ i

λ1
2
ξð0Þb;

Hη ¼ −
i
4

Z
dxη∂xη − i

λ1
2
ηð0Þaþ iλ2γa; ð23Þ

where we set ϵd ¼ 0 for simplicity. The scattering matrix
for ξðxÞ is formally equivalent to Eq. (10), leading to
ξð0þÞ ¼ −ξð0−Þ as a low-energy boundary condition. For
the field ηðxÞ, the situation is slightly more complicated.
When the coupling to the Majorana vanishes, λ2 ¼ 0, the
solution is essentially the same as for ξðxÞ, and we obtain
ηð0þÞ ¼ −ηð0−Þ at low energies as well. If, on the other
hand, λ2 ≠ 0, the scattering matrix for ηðxÞ is modified to

SηðωÞ ¼
iω − λ2

1

2
ð ω2

ω2þ4λ2
2

Þ
iωþ λ2

1

2
ð ω2

ω2þ4λ2
2

Þ
; ð24Þ

so now ηð0þÞ ¼ ηð0−Þ at low energies.
In terms of the complex fermion ψðxÞ, the boundary

conditions at low energies (ω → 0) are

ψð0þÞ ¼ e2iδψð0−Þ for λ2 ¼ 0; ð25Þ

ψ†ð0þÞ ¼ ψð0−Þ for λ2 ≠ 0; ð26Þ
with δ ¼ ðπ=2Þ for ϵd ¼ 0 [in the general case,
e2iδ ¼ (iϵd − ðλ21=2Þ)=(iϵd þ ðλ21=2Þ)]. This corresponds
to a Kondo-type boundary condition (no Majorana) and
an Andreev boundary condition (with a Majorana), respec-
tively. We can therefore observe, in this very simple
example, how the Majorana coupling “wins” at low
energies over the Kondo coupling.
After a quench in λ1, this leads to a large-time behavior

of the Loschmidt echo, given by

Lλ2¼0ðtÞ ∼ t−2ðδ=πÞ2 ; ð27Þ

Lλ2≠0ðtÞ ∼ t−1=4: ð28Þ

Note that a phase like e2iδ as in Eq. (25) can, in principle,
also occur in Eq. (26). But in the latter case, it can be
readily absorbed by a canonical transformation
ψ ↦ e−iδψ , ψ† ↦ eiδψ†.
In the renormalization-group picture, this simple non-

interacting model provides a very intuitive explanation of
the IR fixed point: Indeed, one can easily see from Eq. (23)
that if λ2 ¼ 0, the “Kondo” fixed point λ1 → ∞ enforces
ηð0Þ ¼ (ηð0þÞ þ ηð0−Þ)=2 ¼ 0 and ξð0Þ ¼ (ξð0þÞ þ
ξð0−Þ)=2 ¼ 0 so that ψð0þÞ ¼ −ψð0−Þ. If λ2 ≠ 0, as we
have seen above, the Majorana coupling term is more
relevant in the RG sense and prevails over the λ1 coupling at
low energies. Introducing a new fermion operator ~d ¼
ðγ þ iaÞ=2 so that iλ2γa ¼ λ2ð2~d† ~d − 1Þ, the fixed point
λ2 → ∞ will polarize the effective fermion ~d and enforce
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h ~d† ~di ¼ 0 at low energies. Therefore, the IR boundary
condition satisfied by the Majorana field ηðxÞ remains free
ηð0þÞ ¼ ηð0−Þ, implying ψ†ð0þÞ ¼ ψð0−Þ. This simple
picture is summarized in Fig. 4. This suggests that only
the parity of the number of Majorana fermions at the
boundary matters: The quantum dot can be thought of as
adding two Majorana fermions a, b at the boundary, thus
leaving the total parity (odd) unchanged.

C. Quench dynamics with a quantum dot: General case

To understand how this physical picture translates to a
more realistic setup, we consider an Anderson impurity
tunnel coupled to a (spinful) normal lead and a Majorana,
say, polarized along the spin ↑ (assuming spin-rotation
symmetry, for simplicity),

H ¼ HL þ Un↑n↓ þ ϵdðn↑ þ n↓Þ
þ λ1

X
σ

ðψ†
σð0Þdσ þ H:c:Þ þ iλ2γðd†↑ þ d↑Þ; ð29Þ

where HL refers to the interacting lead Hamiltonian in
Eq. (18) and we assume that the interaction energy U is the
dominant energy scale (Kondo regime).
If λ2 ¼ 0, the system is known to flow to a Kondo low-

energy fixed point ψσð0þÞ ¼ e2iδσψσð0−Þ—after unfolding
the lead, where δσ is the phase shift for the spin σ electrons.
After a quench in λ1, this leads to a large-time behavior of
the Loschmidt echo similar to Eq. (27), with two inde-
pendent contributions coming from the two spin channels,
where the phase shifts δ↑, δ↓ can be tuned by applying a
magnetic field on the quantum impurity. This is the case

that was studied experimentally in Ref. [7]. At the particle-
hole symmetric point, δ↓ ¼ δ↑ ¼ ðπ=2Þ so that LðtÞ ∼ t−1.
Once λ2 ≠ 0, the Kondo and Majorana couplings com-

pete. It was recently conjectured [59] for this model, based
on a perturbative RG analysis and on DMRG simulations,
that the Majorana coupling dominates at low energies and
that the boundary condition characterizing the IR physics is
A ⊗ N (corresponding to Andreev reflection for the spin-
up channel, while the down channel experiences normal
reflection), just as in the absence of the quantum dot. In
Appendix C, we give further arguments as to why this is
indeed the case. The BCC operator changing the boundary
condition from N ⊗ N to A ⊗ N again has dimension
hBCC ¼ 1

16
, so the Loschmidt echo still behaves as in

Eq. (28) in this case.
However, we note that we have implicitly assumed that

the spin-down channel, subject to normal reflection at low
energies, actually satisfies ψ↓ð0þÞ ¼ ψ↓ð0−Þ, without any
phase shift. It is hard to argue that this is true, in general, in
the context of the Kondo effect—even though qualitative
arguments tend to indicate that this is indeed the case [59],
and it might be that the spin-down channel in the boundary
condition A ⊗ N feels some phase shift due to the quantum
dot. In this case, the Loschmidt echo would have
two contributions, LðtÞ ∼ t−1=4t−2ðδ↓=πÞ2 . Nevertheless, we
emphasize that the phase shift δ↓ would be tunable by
applying a magnetic field on the dot and that it could be
independently measured in the absence of the Majorana
coupling. Hence, the universal Majorana signature ∼t−1=4
could still be extracted in this case.

V. CONCLUSION

To conclude, we have argued that the presence of
Majorana bound states at the edge of topological super-
conductors can be probed using local quantum quenches.
TheMajorana zeromode acts as a quantum impurity, thereby
inducing a sort of Anderson orthogonality catastrophewith a
universal, “quantized” exponent for the wave-function over-
lap, LðtÞ ¼ jhψ0jψðtÞij2 ∼ t−1=4. This exponent was shown
to be as robust as the zero-bias anomaly in the tunnel
conductance against interactions in the normal lead and
additional channels. The most promising setup to measure
this exponent involves optical absorption of a quantum dot
between the lead and the superconductor, inducing an
effective quantum quench. This robustness can be traced
back to the irrelevance of the phase degree of freedom in the
boundary condition ψ†ð0þÞ ¼ ψð0−Þ since these can be
absorbed by a simple Uð1Þ transformation. In contrast, the
phase δ in the boundary condition ψð0þÞ ¼ e2iδψð0−Þ
strongly influences the dynamics and generally depends
on many nonuniversal details. An interesting problem for
future investigation would be to check whether disorder
effects complicate the distinction between the topological
and the nontopological case in the same way as in the
typical transport setting [61–63].

FIG. 4. Cartoon representation of the low-energy fixed points
(large-time behavior) for a simplified spinless NL-QD-(T)SC
junction with a noninteracting lead and a superconductor in a
trivial (a) or topological (b) phase. When the superconductor is in
a topological phase, the Majorana zero mode at its edge becomes
hybridized with “half” of the quantum dot, by decomposing the
dot fermion as d ¼ ðaþ ibÞ=2. As a result, only one of the two
Majorana channels in the normal lead ψðxÞ ¼ (ξðxÞ þ iηðxÞ)=2
experiences a π=2 phase shift corresponding to Andreev reflec-
tion ψ†

Rð0Þ ¼ ψLð0Þ at the junction. This has crucial conse-
quences on the dynamics after a local quantum quench of the
tunneling between the dot and the normal lead.
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Finally, we mention that similar quantum quenches
could be used to probe edge modes in other kinds of
(symmetry-protected) topological 1D systems. One could,
for example, consider an antiferromagnetic spin-1 chain,
which is gapped [64] and known to host fractionalized spin-
1
2
edge excitations protected by spin-rotation symmetry

[65]. Suddenly coupling these excitations to a Fermi
reservoir should lead to Kondo correlations in the time
dynamics similar to those observed in Ref. [7].
Moreover, our results also apply when the lead is

replaced by a Majorana edge state, e.g., at the edge of a
pþ ip superconductor [66], or the neutral sector of the
ν ¼ 5

2
Moore-Read state [67]. In this setting, Majorana zero

modes naturally appear bound to vortex cores in the bulk,
and the quench could be induced by a gate that forces the
edge state inwards, coupling it to one such zero mode [68].
To see how this concept generalizes to other (non-Abelian)

topological states, consider, for example, a quench involving
a Z3 parafermionic zero mode [69] coupled to a gapless Z3

parafermionic theory. For the former, an experimental
realization was proposed in Ref. [70,71], while the latter
appears both at the edge of the Read-Rezayi ν ¼ 13

5
state

modulo the charged boson [72] and at the edge of the
“Fibonacci superconducting phase” introduced in Ref. [71].
We expect theZ3 parafermionic edge zero mode to act as

a boundary magnetic-field perturbation, with dimension
Δ ¼ 2

5
, for the gapless Z3 parafermionic theory (describing

the critical point of the 2D Q ¼ 3-state Potts model, just
like the gapless Majorana theory describes the critical point
of the Ising model). The conformally invariant boundary
conditions of the Potts model are well known and classified
[73], and the boundary-condition-changing operator from
free to fixed in the Q ¼ 3 Potts model has dimension
hBCC ¼ 1

8
[74]. This would lead to a Loschmidt echo

decaying as LðtÞ ∼ t−1=2. We expect that other kinds of
edge zero modes, including higher-order parafermions,
could be analyzed from this quench perspective in the
same way. The general lesson appears to be that quantum
quenches give surprisingly precise and robust information
about localized topological excitations.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF
THE LOSCHMIDT ECHO FROM BCFT

In this appendix, we provide more details on the
calculation of the asymptotic behavior of the Loschmidt

echo LðtÞ ∼ t−α from boundary conformal field theory
(BCFT). Let us consider a 1D quantum system on the
half-line x ∈ ½0;∞Þ in a pure state jψ0i, which is the
ground state of a gapless Hamiltonian H0 with energy E0,
given a free boundary condition at x ¼ 0. At time t ¼ 0, we
abruptly change the Hamiltonian to H1, where H1 differs
from H0 by a boundary term acting at x ¼ 0. This can be
interpreted as adding a sort of boundary magnetic field
hB ≠ 0 toH0 (in our context, this corresponds to adding the
Majorana coupling). The Loschmidt echo then reads
LðtÞ ¼ jhψ0je−itH1 jψ0ij2. To proceed, we first perform a
Wick rotation t ¼ −iτ and express jψ0i using the relation

jψ0i ¼ lim
l→∞

e−lðH0−E0Þjαi
hψ0jαi

; ðA1Þ

valid for any generic state jαi not orthogonal to jψ0i. One
can therefore rewrite the Loschmidt echo as

Lðt ¼ −iτÞ ∝ jZ0;1ðτÞj2; ðA2Þ

where Z0;1ðτÞ ¼ liml→∞hαje−lH0e−τH1e−lH0 jαi can be
interpreted as the partition function of a 2D classical
statistical mechanics problem in the half-plane
x ∈ ½0;∞Þ, y ∈ ð−∞;∞Þ, critical in the bulk (H0 being
gapless), with y the imaginary-time direction. In that
language, the imaginary-time evolution operators T0;1ðλÞ ¼
e−λH0;1 now correspond to transfer matrices with different
boundary conditions at x ¼ 0 (free for T0, and “boundary
magnetic field hB” for T1). The quantum quench thus
amounts to changing the boundary condition at x ¼ 0 for
y ∈ ½0; τ� in a two-dimensional conformal field theory. The
corresponding geometry is sketched in Fig. 5. For a generic

Critical Stat. Mech. 
system

(2D CFT)

FIG. 5. Geometry of the partition function Z0;1ðτÞ of the 2D
statistical mechanics problem in the half-plane x ∈ ½0;∞Þ,
y ∈ ð−∞;∞Þ, associated with the analytic continuation Lðt ¼
−iτÞ of the Loschmidt echo in imaginary time. The quantum
quench then amounts to changing the boundary condition at
x ¼ 0 for y ∈ ½0; τ�.
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boundary perturbation in H1, this partition function
remains very complicated, but for large τ, one expects
the boundary condition to flow to a conformally invariant
one—roughly speaking, the boundary magnetic field hB
flows to infinity. The geometry of the partition function
Z0;1ðτÞ then coincides precisely with the definition of the
two-point function of a BCC operator ϕ0→1 in the BCFT
language [23]. For large τ—compared to all the crossover
scales in the problem—we can thus write

Z0;1ðτÞ ∼ hϕ1→0ðx ¼ 0; y ¼ τÞϕ0→1ðx ¼ 0; y ¼ 0Þi:
ðA3Þ

Therefore, we expect Z0;1ðτÞ ∼ τ−2hBCC , where hBCC is the
scaling dimension of the operator ϕ0→1. Going back to the
Loschmidt echo in real time, this yields α ¼ 4hBCC, as
claimed in the main text.
To illustrate this construction on a concrete example, let

us go back to the single-channel noninteracting case. As
discussed in Sec. II, the Hamiltonian H0 can be written as
two independent massless Majorana theories. The corre-
sponding 2D statistical mechanics problem is thus given by
two decoupled copies of the critical Ising model, with total
central charge c ¼ 1 ¼ 1

2
þ 1

2
, and the quantum quench

corresponds to adding a finite boundary magnetic field to
one of these copies for y ∈ ½0; τ�, with free boundary
conditions elsewhere. The other copy of the Ising model
does not couple to the Majorana zero mode and can
therefore be dropped. A finite magnetic field at the
boundary of the Ising model is not a conformally invariant
boundary condition, but it is well known to flow to a
“fixed” boundary condition, and the corresponding critical
exponent is given by the spin operator hBCC ¼ 1

16
[23].

APPENDIX B: FREE-FERMION NUMERICS

In this appendix, we provide technical details on the
numerical evaluation of the Loschmidt echo for the non-
interacting (quadratic) system described in Sec. II. The
whole system can then be solved using Bogoliubov de
Gennes equations. Let us start with the Hamiltonian Hq
after the quench, which we rewrite as

Hq ¼ ð c† c ÞHBdG

�
c

c†

�
− E0; ðB1Þ

with c ¼ ðc−Lþ1;…; c0; c1;…cLÞ a vector of destruction
operators. Here, we have replaced the notation of Sec. II
using c−iþ1 ¼ fi. By adjusting the scalar E0, the 4L × 4L
matrix HBdG can be chosen to be Hermitian and to obey
particle-hole symmetry (PHS), HBdG ¼ −τxH�

BdGτx. We
now diagonalize the Bogoliubov de Gennes Hamiltonian
HBdG ¼ VqΛV

†
q, with Λ a diagonal matrix of eigenener-

gies. Because of PHS, we can choose the eigenvectors and
their order such that Vq obeys τxV�

qτx ¼ Vq, implying the

following energy ordering: Λ ¼ diagð−E1;…;
−E2L; E1;…; E2LÞ with all Ei > 0. Then, q† with

�
q†

q

�
¼ V†

q

�
c

c†

�
; ðB2Þ

is the vector of creation operators of the system excitations,
such that

Hq ¼
X2L
i¼1

2Eiq
†
i qi −

X2L
i¼0

Ei: ðB3Þ

For the evaluation of the Loschmidt echo, we also need the
eigenvectors Vd for the situation before the quench
(J0 ¼ 0), which can be obtained in the same way. Then,
the excitations d†i of the initial Hamiltonian can be
expressed in terms of the excitations q†i of the quenched
Hamiltonian

�
d†

d

�
¼ V†

dVq

�
q†

q

�
¼

�
A B

B� A�

��
q†

q

�
: ðB4Þ

The Loschmidt echo is given by the overlap of the initial
many-body ground state jψdi, with the actual state of the
system at time t, after propagation with the Hamiltonian
Hg, which governs the dynamics after the quench,

LðtÞ ¼ jhψdje−iHqtjψdij2: ðB5Þ

As is discussed in detail in Appendix A of Ref. [41], the
Loschmidt echo can be expressed in terms of determinants
of matrices,

LðtÞ ¼ N ðtÞ
N ð0Þ ¼

j detðNðtÞ þMÞj2
j detðNð0Þ þMÞj2 ; ðB6Þ

with Mjl ¼ hψqjd†jd†l jψqi and NðtÞ
jl ¼ hψqjd†jdlðtÞjψqi.

Here, jψqi denotes the ground state of the system after
the quench. Using Eq. (B4) and the fact that all destruction
operators qi negate the ground state jψqi, we obtain

Mjl ¼
X
k

bjkalk ¼ ðBATÞjl; ðB7Þ

NðtÞ
jl ¼

X
k

e−iEktbjkb�lk ¼ ðBDtB†Þjl; ðB8Þ

in terms of the matrices A, B and their elements aij, bij, as
well as the diagonal matrix Dt ¼ diagðe−iEktÞ. Inserting
these expressions into Eq. (B6) and crossing out a factor
detB, we obtain, as a final expression,

LðtÞ ¼ j detðAT þDtB†Þj2
j detðAT þ B†Þj2 : ðB9Þ
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Note that this last simplification is crucial for the numerical
stability since detB can become vanishingly small for large
systems. Furthermore, during the numerical evaluation,
great care is required to achieve the correct ordering of the
eigenstates and to guarantee their symmetry property
τxV�τx ¼ V.

APPENDIX C: STABILITY OF THE IR
KONDO FIXED POINT AND BOUNDARY

ENTROPY COUNTING

In Sec. IV, we argued that the large-time behavior after a
quench of the tunneling between a quantum dot and a
normal lead was dominated by Majorana physics if the
quantum dot is also tunnel coupled to a topological
superconductor (NL-QD-TSC junction).
Another way to state this result is to claim that the Kondo

fixed point is unstable upon coupling to a single Majorana
fermion. Proving this is actually almost trivial when the
lead is noninteracting. Even in strongly interacting
quantum impurity problems that flow to a Kondo fixed
point, say, the Anderson model in the Kondo regime, the
(conformally invariant) field theory describing the low-
energy Kondo point is very simple: Restricting ourselves to
a single channel, it consists of a massless chiral fermion
(for a noninteracting lead) satisfying the boundary
condition ψð0þÞ ¼ e2iδψð0−Þ, with δ a phase shift. This
boundary condition can be very conveniently implemented
through a scattering potential VðδÞ at x ¼ 0 so that the
Hamiltonian at the fixed point reads

H⋆ ¼ −ivF
Z

dxψ†½∂x þ iVðδÞδðxÞ�ψ ; ðC1Þ

where VðδÞ≃ 2δþ � � � The precise relation between V and
δ depends on the regularization of the Dirac delta function,
but this is irrelevant for our discussion. The only thing that
matters is that the scattering potential can be interpreted as a
gauge potential that can be gauged away by enforcing
ψð0þÞ ¼ e2iδψð0−Þ. Let us now couple the system to a
single Majorana fermion γ: The most relevant perturbation
then corresponds to the perturbed Hamiltonian

H ¼ H⋆ þ λiγðψ† þ ψÞð0Þ; ðC2Þ
which has dimension Δ ¼ 1

2
and is therefore relevant. This

(trivially) proves that the Kondo fixed point is unstable
when coupled to a Majorana mode. Moreover, since the
perturbed Hamiltonian is still quadratic, one can readily
compute the scattering matrix (7) to show explicitly that the
perturbation drives the boundary condition from Kondo
ψð0þÞ ¼ e2iδψð0−Þ to Andreev ψ†ð0þÞ ¼ ψð0−Þ.
When the lead is interacting, this remains true whenever

the perturbation λiγðψ† þ ψÞð0Þ is relevant, that is, when-
ever its scaling dimension Δ satisfies Δ < 1. So as long as
the Majorana fixed point is stable in the first place [44], the

quantum dot does not modify the nature of the low-energy
fixed point. Going back to the original problem of coupling
a spinful Luttinger liquid to a quantum dot and a Majorana
zero mode, one can also see that the A ⊗ N fixed point is
more stable than the Kondo fixed point using boundary
entropy counting. The entropy drop going from the UV
fixed point to the Kondo fixed point satisfies

ΔS ¼ ln gKondo − ln gUV ¼ − ln 2 ðC3Þ

since the impurity with 2 degrees of freedom that is free at
high energies becomes hybridized (screened) with the wire
at the Kondo fixed point. On the other hand, the g factor of
the A ⊗ N fixed point satisfies

ΔS ¼ ln gA⊗N − ln gUV ¼ − ln
2ffiffiffiffi
Δ

p ðC4Þ

since the quantum dot is fully polarized at the A ⊗ N
fixed point, and the energy drop associated with a change
from Neumann to Dirichlet boundary conditions (in the
bosonization language) is 1

2
lnΔ < 0 since Δ < 1. A RG

flow from Kondo to A ⊗ N can only exist if the associated
g factor decreases along the flow, that is,

gKondo
gA⊗N

¼ 1ffiffiffiffi
Δ

p > 1: ðC5Þ

We therefore find that as long as Δ < 1, the A ⊗ N fixed
point is more stable than the Kondo fixed point.
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