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The effective Lagrangian for Nambu-Goldstone bosons (NGBs) in systems without Lorentz invariance
has a novel feature that some of the NGBs are canonically conjugate to each other, hence describing 1
dynamical degree of freedom by two NGB fields. We develop explicit forms of their effective Lagrangian
up to the quadratic order in derivatives. We clarify the counting rules of NGB degrees of freedom and
completely classify possibilities of such canonically conjugate pairs based on the topology of the coset
spaces. Its consequence on the dispersion relations of the NGBs is clarified. We also present simple scaling
arguments to see whether interactions among NGBs are marginal or irrelevant, which justifies a lore in the
literature about the possibility of symmetry breaking in 1þ 1 dimensions.
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I. INTRODUCTION

In studies of any macroscopic physical systems, the
behavior of the system at low temperatures, small energies,
and long distances is determined predominantly by micro-
scopic excitations with small or zero gap. It is, hence,
important to develop a general theory to discuss gapless
excitations. Barring special reasons, however, we generally
do not expect any gapless degrees of freedom in a given
system. The important exceptions are (1) a Fermi liquid
with the Fermi level within a continuous band, (2) second-
order phase transitions with scale (and often conformal)
invariance, (3) states protected by topological reasons such
as edge states of topological insulators or quantum Hall
states, and (4) Nambu-Goldstone bosons (NGBs) of spon-
taneous symmetry breaking. The first three cases are
discussed extensively in the literature. We focus on the
last case in this paper because a general theory, so far, has
surprisingly been lacking, despite its importance and long
history.
Spontaneously broken symmetry is a common theme

through all areas of physics. The examples are numerous:
Bose-Einstein condensates of cold atoms, superfluids of
4He or 3He, crystal lattices, neutron stars, ferromagnets,
antiferromagnets, liquid crystals, chiral symmetry in QCD,
and cosmic inflation. The universal feature is that it

guarantees the existence of gapless excitations when the
relevant symmetries are continuous. Once promoted to
gauge symmetries, it is the basis to discuss superconduc-
tivity, the Englert-Brout-Higgs mechanism, and cosmic
strings. The crucial question is the following: What is the
general theory that can describe the number of NGB
degrees of freedom, their dispersion relations, and their
interactions among each other and to other degrees of
freedom? Ideally, the theory does not depend on specifics
of a given system or perturbation theory but is rather
determined by symmetries alone, so that it is applicable
even when the system is strongly coupled or we lack
understanding of the microscopic description.
In systemswith Lorentz invariance, the general theory has

already been established back in the 1960s by the celebrated
Nambu-Goldstone theorem [1–3] and later with “phenom-
enological Lagrangians” by Callan, Coleman, Wess, and
Zumino [4,5]. It is important to formulate the theory using
Lagrangians because a Lagrangian is a self-contained pack-
age to describe a system. It determines the degrees of
freedom, equations of motion, Noether currents for sym-
metries, and commutation relations and provides the basis
for perturbation theory using Feynman diagrams and many
nonperturbative methods based on path integrals. In com-
parison, theHamiltonian formalism [6,7] requires additional
input: what the degrees of freedom are and what their
commutation relations (or Poisson brackets) are. Especially
when at least one of these two is not clear at the beginning of
the discussion, which turns out to be the case for our
purposes, the Lagrangian formulation is essential.
However, many systems we are interested in are not

Lorentz invariant. A finite temperature violates Lorentz
invariance because the Boltzmann weight depends on the
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energy, which is the time component of the energy-
momentum four-vector and hence requires a specific choice
of the reference frame. A chemical potential needed to
describe systems with finite densities couples to the charge
density, which is also the time component of a conserved
four-current. Often, the surrounding environment violates
Lorentz invariance as well. In all of these cases, rotational
invariance may still be present, while Lorentz invariance is
certainly not there.
It is, therefore, of foremost importance to develop a

general theory of NGBs based on symmetry principles
alone without assuming Lorentz invariance. We develop
such a theory in this paper.
NGBs without Lorentz invariance have been discussed

for their obvious importance, as discussed above. The
nonrelativistic [8] analog of one aspect of the NG theorem,
that which ensures the appearance of at least one NGB, was
already discussed back in the 1960s [9–12]. However, the
number and the dispersion of the NGBs have only been
studied on a case-by-case basis until quite recently.
The Nambu-Goldstone theorem says that there must be

one gapless excitation for every broken-symmetry gener-
ator, assuming Lorentz invariance. Moreover, Lorentz
invariance constrains the dispersion relation for gapless
excitation to be ω ¼ ck, where c is the speed of light.
However, these predictions are known to be false in

systems without Lorentz invariance. A classic example is a
ferromagnet. When spins line up macroscopically due to
the nearest-neighbor interaction, it spontaneously breaks
the SO(3) spin-rotational symmetry with three generators
down to the unbroken SO(2) axial symmetry with only
one generator. Despite the two spontaneously broken
symmetries, the ferromagnet exhibits only one NGB.
Moreover, its dispersion is quadratic rather than linear.
In contrast, an antiferromagnet supports two NGBs with a
linear dispersion, although it shows the same symmetry-
breaking pattern SOð3Þ → SOð2Þ.
More recent examples appeared in relativistic field theo-

ries with nonzero chemical potentials, where examples of an
“abnormal number of Nambu-Goldstone bosons” are iden-
tified in many contexts [13–19]. Also, spinor Bose-Einstein
condensates in cold-atom systems added a number of new
examples and realized some of them in the actual experi-
ments [20,21]. The dispersion of the softest NGB immedi-
ately modifies the thermodynamic property of the system at a
low temperature. For example, the low-temperature heat
capacity behaves as CðTÞ ∝ Td=z for the NGB with the
dispersion ω ∝ kz in dþ 1 dimensions. In general, the low-
energy dynamics of systems with spontaneous symmetry
breaking is governed by NGBs, and hence, it is clearly
important to establish a general theorem that predicts the
correct number, dispersion, and interactions of NGBs.
In their pioneering work [22], Nielsen and Chadha

established an inequality that relates the number of
NGBs to their dispersion relations. In their approach,

NGBs are classified as type I (type II) if their dispersion
in the long-wavelength limit behaves as ω ∝ k2n−1
(ω ∝ k2n). Based on the analytic property of correlation
functions, Nielsen and Chadha proved that the number of
type-I NGBs plus twice the number of type-II NGBs is
greater than or equal to the number of broken-symmetry
generators. Note that their conclusion is merely an
inequality, and hence, it does not give any lower or upper
bound for each type of NGB. Also, their classifica-
tion breaks down when the dispersion is anisotropic,

e.g., ω∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxÞ2þCðkyÞ4

q
. (See Sec. VI A for an example.)

In a relatively recent paper, Schäfer et al. [14] pointed
out the importance of expectation values of the commu-
tators of the broken generators in reducing the number of
NGBs. They showed that the number of NGBs must be
equal to the number of broken generators if h½Qa;Qb�i ¼ 0
for all combinations of broken generators. Although their
argument is physically plausible, it contains a few ques-
tionable points. They identified the NG state associated
with the charge Qa as QajΨ0i (jΨ0i is the quantum many-
body ground state) and discussed the possibility of linear
dependence among such vectors. However, it is well known
that, once symmetries are spontaneously broken, broken
generators themselves are ill defined. We should rather
use commutation relations of generators with other local
quantities.
Nambu [23,24] was probably the first to obtain the

correct insight into this problem. He observed that the
nonzero expectation value h½Qa;Qb�i makes zero modes
associated with these generators canonically conjugate to
each other, and hence, the number of NGBs is reduced by 1
per such a pair. However, he did not prove this claim on
general grounds.
With these previous works in mind, the current authors

unified all of the above observations into a simple and well-
defined form by proving them using field theory [25]:

nA ¼ dimG=H − rankρ; ð1Þ

nB ¼ 1

2
rankρ; ð2Þ

nNGB ¼ dimG=H − 1

2
rankρ; ð3Þ

nA þ 2nB ¼ dimG=H; ð4Þ

iρab ≡ h½Qa; j0b ð0Þ�i: ð5Þ

Equation (3) was conjectured earlier in Ref. [26] and was
also obtained independently in Ref. [27]. Here, nA and nB
represent the numbers of type-A and type-B NGBs,
respectively, and nNGB ≡ nA þ nB is the total number of
NGBs. Equations (3) and (4) follow from Eqs. (1) and (2).
jμaðxÞ is the conserved current associated with a broken
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charge Qa¼
R
ddxj0aðxÞ. The Lie group G represents the

original symmetry of the system, and H is its unbroken
subgroup, so that dimG=H represents the number of
broken-symmetry generators. Clearly, the symmetry-
breaking pattern G → H is not sufficient to fix the number
of NGBs, and we need additional information [the matrix
ρ in Eq. (5)] about the ground state.
The definitions of type-A and type-B NGBs are not

based on their dispersion relations but on their symplectic
structure, as we will discuss in detail later. For now, we just
note that, generically, type-ANGBs have a linear dispersion
and type-B NGBs have a quadratic dispersion, but there
are exceptions. Therefore, Eq. (4) can be understood as the
equality version of the Nielsen-Chadha theorem for
most cases.
The above-explained theorem by Schäfer et al. can also

be understood as the special case where the matrix ρ
vanishes, and hence, nNGB ¼ dimG=H from Eq. (3). The
matrix ρ must always vanish in the Lorentz-invariant case,
because ½Qa; j0bð~x; tÞ� ¼ ifabcj0cð~x; tÞ in the absence of
central extensions and jμcð0Þ is a Lorentz vector, which
cannot have an expectation value without breaking the
Lorentz symmetry.
In order to prove the counting rule of NGBs and clarify

their dispersion relations, we develop the nonrelativistic
analog of the phenomenological Lagrangian à laRefs. [4,5],
following Leutwyler’s works [28,29]. We derive an
explicit expression of the effective Lagrangian for a general
symmetry-breaking patternG → H. In this process, we find
a set of terms that have not been taken into account in the
literature.
This fully nonlinear effective Lagrangian contains only a

few parameters that play the role of coupling constants
between NGBs. By analyzing the scaling law of the
dominant interaction, we discuss the stability of the
symmetry-broken ground state. In sufficiently high dimen-
sions, the system is essentially free, as expected. However,
it turns out that, in general, internal symmetries can be
spontaneously broken even in 1þ 1 dimensions. This is
one of the aspects enriched by the absence of Lorentz
invariance—in a Lorentz-invariant theory, the well-known
Coleman theorem [30] prohibits that possibility.
The explicit form of the effective Lagrangian leads to

another nontrivial prediction, that is, a no-go theorem for a
certain number of type-A and type-B NGBs. One might
think that any combination of nA and nB subject to Eq. (4)
should be possible. However, for given G and H, possibil-
ities are quite restricted, because type-B NGBs are
described by symplectic homogeneous spaces, which are
special types of coset spaces that admit the so-called Kähler
structure, if G is semisimple. We will discuss how the
possible numbers for type A and type B can be completely
enumerated for any given G and H.
This paper is organized as follows. In Sec. II, we discuss

the most general form of the effective Lagrangian for

nonrelativistic systems and derive differential equations
for the coefficients appearing in the effective Lagrangians
by paying careful attention to the gaugeability of the
symmetry G. We present an analytic solution of the
differential equations in terms of the Maurer-Cartan form
in Sec. III. We also clarify the obstacle to gauge Wess-
Zumino-Witten terms and algebras with central extensions.
Analyzing the free part of our effective Lagrangian, we
prove the counting rule in Sec. IVand derive their dispersion
in Sec. V. We discuss the interaction effect and spontaneous
symmetry breaking in 1þ 1 dimensions in Sec. VI.
In Sec. VII, we present the mathematical foundation of

the canonically conjugate (presymplectic) structure among
some NGBs. With this preparation, we completely classify
the presymplectic structure and prove a no-go theorem that
prohibits a certain combination of type-A and type-BNGBs
in Sec. VIII. It is followed by concrete demonstration
thorough familiar examples in Sec. IX.
We will not discuss the counting of NGBs associated

with spacetime symmetries. For those symmetries, the
number of NGBs is reduced not only by forming canoni-
cally conjugate pairs but also by other mechanisms, e.g.,
linear dependence among conserved currents. Hence, the
above counting rule does not hold. See Refs. [31–34] for
more details. Nevertheless, we explain how to impose the
Galilean symmetry, if it exists, on the effective Lagrangian
in Sec. X.
For the reader’s convenience, we present a peda-

gogical introduction to the cohomology of Lie algebra in
Appendix A. We also review how to couple matter fields to
NGBs in Appendix B. Finally, we clarify a confusion in the
existing literature on the relation between type-B NGBs
and the time-reversal symmetry in Appendix C.

II. EFFECTIVE LAGRANGIAN FOR
NONRELATIVISTIC SYSTEMS

In this section, we describe the general effective
Lagrangian for NGBs on the coset space G=H. One way
of deriving the effective Lagrangian is to integrate out all
high-energy modes from an assumed microscopic model.
However, there is an alternative universal approach, which
is more convenient for our general discussion. Namely, we
simply write down the most general Lagrangian that has the
assumed symmetry [35]. Clearly, the Lagrangian derived
from the former approach always falls into this general
form, and all terms allowed by symmetry should be
generated at least in the process of renormalization.
We assume rotational invariance of space but no Lorentz

invariance. There are terms that have not been considered
traditionally. The Lagrangian is considered to be an
expansion in the number of derivatives to study long-range
and low-energy excitations of the system. We restrict
ourselves to terms up to second order in derivatives because
they are sufficient to read off the number and dispersion
relations of NGBs for most purposes. To work out
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symmetry requirements on the functional forms of each
term in the Lagrangian, differential forms turn out to be
very useful.

A. Coset space

Suppose that the symmetry group G of a microscopic
Lagrangian is spontaneously broken down to its subgroup
H. The set of the degenerate ground states forms the coset
space G=H. The low-energy effective Lagrangian is the
nonlinear sigma model with the target space G=H. We
consider only exact symmetries (i.e., without anomalies or
explicit breaking). We also set ℏ ¼ 1 throughout the paper.
Except in Sec. X and a few examples in Sec. VI A, we
assume that G and H are compact Lie groups for internal
symmetries.
Let πa (a ¼ 1;…; dimG=H) be a local coordinate of

G=H. By definition, the number of fields always equals
the number of broken generators dimG=H. Every point on
this space is equivalent, and we pick the origin πa ¼ 0
as our ground state. The NG field πað~x; tÞ is a map π:
Rdþ1 → G=H. (d is the spatial dimension.)
πa’s form a nonlinear realization of G. They transform

under ϵiQi as

δϵπ
a ¼ ϵihai ðπÞ: ð6Þ

Generators hai ðπÞ can be viewed as vector fields on G=H

hiðπÞ ¼ hai ðπÞ∂a; ∂a ≡ ∂
∂πa ; ð7Þ

and their Lie bracket is identified with the commutation
relation

½hi; hj�≡ ðhbi ∂bhaj − hbj∂bhai Þ∂a ¼ fijkhk: ð8Þ
Here, i; j; k;… refer to generators of G.
In general, we will look for the most general Lagrangian

Leffðπ; _π;∇rπ; π̈a;∇r _π
a;∇r∇sπ

a;…Þ that only changes by
total derivatives under the transformation in Eq. (6). A
particularly useful choice of the nonlinear realization is
given by the Callan-Coleman-Wess-Zumino coset con-
struction [4,5], which we introduce in Sec. III A.
If the symmetry can be gauged, parameters of symmetry

transformations are local ϵiðxÞ, and we may introduce
gauge fields that transform as

δϵAi
μðxÞ ¼ ½DμϵðxÞ�i ¼ ∇μϵ

iðxÞ þ fjkiA
j
μϵkðxÞ; ð9Þ

where Ai
μ ¼ ðAi

t; ~A
iÞ and ∇μ ¼ ð∇t; ~∇Þ. However, not all

symmetries can be gauged. Such examples are discussed
in Sec. III E. In order to keep the full generality, we first
proceed without gauging the symmetry. We will then
discuss the local symmetry and clarify the obstruction.

B. Derivative expansion and symmetry requirements

We postulate the locality of the microscopic Lagrangian;
i.e., it does not include terms containing fields at two

separated points ð~x; tÞ and ð~x0; t0Þ. Then, the effective
Lagrangian obtained by integrating our higher-energy
modes should stay local [36].
To study the low-energy structure of the effective

Lagrangian systematically, we employ the derivative
expansion. Namely, we expand the Lagrangian in the
power series of the time derivative ∇t and the spatial
derivative ∇r (r; s ¼ 1;…; d). We do not require Lorentz
invariance but we do require spatial rotational symmetry.
Because of the lack of the Lorentz invariance, the space
and time derivatives may scale differently. For example,
Oð∇2

t Þ and Oð∇2
rÞ may not be of the same order in a

derivative expansion. We also assume the broken sym-
metries are internal symmetries, and hence, the NG fields
are spacetime scalars.
To avoid possible confusion, we use ∇r to represent the

spatial derivative and ∇t or a “dot” to represent the time
derivative. ∂a ≡ ∂=∂πa (a ¼ 1;…; dimG=H) refers to the
derivatives with respect to internal coordinates of G=H.
With these cautions in mind, we find the most general

form of the effective Lagrangian [28] up to the second order
in derivatives in 3þ 1 dimensions and above:

Leff¼caðπÞ _πaþ
1

2
ḡabðπÞ _πa _πb−1

2
gabðπÞ ~∇πa · ~∇πb: ð10Þ

In 1þ 1 dimensions, there is no spatial rotation, and
therefore, we can add three more terms:

~caðπÞ∇xπ
a þ ~gabðπÞ _πa∇xπ

b þ ~babðπÞ _πa∇xπ
b: ð11Þ

Also, in 2þ 1 dimensions, there is an invariant antisym-
metric tensor ϵrs, and therefore,

− 1

2
babðπÞϵrs∇rπ

a∇sπ
b ð12Þ

is allowed. gab, ḡab, and ~gab are symmetric, and bab and ~bab
are antisymmetric with respect to a and b. Terms that
contain π̈a, ∇r _π

a, and ∇r∇sπ
a can be brought to the above

form by integration by parts.
We discuss that the caðπÞ term can be interpreted as the

Berry phase in Sec. III F. The terms in Eqs. (11) and (12)
have not been taken into account in Ref. [28]. However,
they preserve the assumed rotational invariance in 1þ 1 or
2þ 1 dimensions and therefore are allowed, in general. We
present an example of them in Sec. III B 4.
There are two subtleties about the terms ~caðπÞ and

babðπÞ. First, the energy functional derived by the
Lagrangian (10) plus the terms in Eq. (11) isZ

ddx

�
1

2
ḡab _πa _πb þ

1

2
gab∇xπ

a∇xπ
b − ~ca∇xπ

a

�
: ð13Þ

In the Fourier space, the second term is Oðk2xÞ and the last
term is OðkxÞ. Thus, the energy is minimized by a nonzero
kx and the translational symmetry will be spontaneously
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broken. Although the OðkxÞ term and the Oðk2xÞ term
balance against each other, this solution may still be
consistent with the derivative expansion if the coefficient
of the OðkxÞ term is somehow small. Since our main
interest is in the situation with unbroken translational
symmetry, we will not discuss the consequences of this
term any further.
Second, ~caðπÞ and babðπÞ cannot be Wess-Zumino-

Witten-type terms (see Sec. III E). They appear in the
energy functional, unlike the terms caðπÞ and ~babðπÞ,
which are linear in the time derivative. In order for
the energy to be well defined,

R
dx~caðπÞ∇xπ

a andR
d2xð1=2ÞbabðπÞϵrs∇rπ

a∇sπ
b cannot possess the ambi-

guity of 2πk (k ∈ Z). Another way of putting it is the
Wick rotation. In the case of caðπÞ and ~babðπÞ, the factor
of i from their time derivative ∂t and from dt in the
integral measure cancel each other out under the Wick
rotation and the ambiguity of the action remains to be an
integer multiple of 2πi. However, if either ~caðπÞ or babðπÞ
were a Wess-Zumino-Witten-type term, the absolute value
of the path-integral weight would not be well defined
after the Wick rotation due to the lack of a time
derivative.
Our task is to determine coefficients caðπÞ, ~caðπÞ,

gabðπÞ, ḡabðπÞ, ~gabðπÞ, babðπÞ, and ~babðπÞ by imposing
the global symmetry G.
Under global transformation (6), the first term of the

Lagrangian (10) transforms as

δiðca _πaÞ ¼ ðhbi ∂bca þ cb∂ahbi Þ _πa: ð14Þ

By requiring that this combination is a total derivative
∇tðei þ cahai Þ, we find

ð∂bca − ∂acbÞhbi ¼ ∂aei: ð15Þ

Similarly, for ~caðπÞ, bðπÞ, and ~bðπÞ, we have

ð∂b ~ca − ∂a ~cbÞhbi ¼ ∂a ~ei; ð16Þ

ð∂abbc þ ∂bbca þ ∂cbabÞhci ¼ ∂ae0ib − ∂be0ia; ð17Þ

ð∂a
~bbc þ ∂b

~bca þ ∂c
~babÞhci ¼ ∂a ~e0ib − ∂b ~e0ia: ð18Þ

Here, ~eiðπÞ, e0iaðπÞ, and ~e0iaðπÞ are also related to the change
of the Lagrangian by total derivatives ∇tð~ei þ ~cahai Þ,
∇r½ϵrsðe0ib þ babhai Þ∇sπ

b�, and ∇t½ð~e0ib þ ~babhai Þ∇xπ
b�−

∇x½ð~e0ib þ ~babhai Þ _πb�.
In contrast, the second term of Eq. (10) must be invariant

by itself; i.e., they cannot change by a surface term:

δiðgab ~∇πa · ~∇πbÞ
¼ ðhci ∂cgabþgcb∂ahci þgac∂bhci Þ ~∇πa · ~∇πb ¼ 0: ð19Þ

If the left hand side of Eq. (19) were a total derivative∇rΛr
i ,

Λr
i would take the form fiaðπÞ∇rπ

a. However, ∇rΛr
i then

contains a term ∇2
rπ

a, which was absent in Eq. (19). Thus,
Λr
i has to be 0. Therefore,

hci ∂cgab þ gcb∂ahci þ gac∂bhci ¼ 0: ð20Þ

The same equation holds for ḡabðπÞ and ~gabðπÞ:

hci ∂cḡab þ ḡcb∂ahci þ ḡac∂bhci ¼ 0; ð21Þ

hci ∂c ~gab þ ~gcb∂ahci þ ~gac∂bhci ¼ 0: ð22Þ

In summary, coefficients in the effective Lagrangianmust
obey the differential equations (15)–(18) and (20)–(22)
in order that the Lagrangian has the symmetry G. We also
have to derive the differential equations for eiðπÞ, ~eiðπÞ,
e0iaðπÞ, and ~e0iaðπÞ, and it can easily be done by using the
mathematical technique we introduce in the next section.

C. Geometric derivation

1. Equations on cðπÞ’s and gðπÞ’s
Here, we rederive the above differential equations by

using differential geometry, to set up notations and
introduce useful mathematical tools for later calculation.
The terms in the effective Lagrangian can be viewed as
one-forms

cðπÞ ¼ caðπÞdπa; ð23Þ

~cðπÞ ¼ ~caðπÞdπa; ð24Þ

symmetric tensors

gðπÞ ¼ gabðπÞdπa ⊗ dπb; ð25Þ

ḡðπÞ ¼ ḡabðπÞdπa ⊗ dπb; ð26Þ

~gðπÞ ¼ ~gabðπÞdπa ⊗ dπb; ð27Þ

and two-forms

bðπÞ ¼ babðπÞdπa ∧ dπb; ð28Þ

~bðπÞ ¼ ~babðπÞdπa ∧ dπb ð29Þ

on the manifold G=H. Note that cðπÞ, ~cðπÞ, bðπÞ, and ~bðπÞ
do not necessarily exist globally.
In the following, we use Cartan’s magic formula that

relates the Lie derivative LX, the exterior derivative d, and
the interior product iX:

LXω ¼ ðdiX þ iXdÞω: ð30Þ
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Equation (30) is true for arbitrary forms ω and vector fields
X [37,38].
We require the Lie derivative of the effective Lagrangian

along a vector hi to be a total derivative

LhiLeff ¼ dΛi: ð31Þ

Let us first focus on the one-form c. To fulfill the
symmetry requirement

Lhic ¼ dðihicÞ þ ihidc ¼ dðei þ ihicÞ; ð32Þ

we need

ihidc ¼ dei: ð33Þ

Equation (33) is nothing but Eq. (15). In the same way, one
can obtain

ihid~c ¼ d~ei; ihidb ¼ dei0; ihid
~b ¼ d~ei0; ð34Þ

which correspond to Eqs. (16)–(18). Note that the defi-
nitions of ei, ~ei, ei0, and ~ei0 in Eqs. (33) and (34) fix them
only up to a constant or a closed one-form. We will come
back to this ambiguity shortly.
Finally, Eqs. (20)–(22) are nothing but the Killing

equation for G-invariant metrics

Lhig ¼ 0; Lhi ḡ ¼ 0; Lhi ~g ¼ 0: ð35Þ

If πa transforms irreducibly under the unbroken symmetry
H, the invariant metric on G=H is unique and g, ḡ, and ~g
may differ only by an overall factor. In general, they may
differ by overall factors for each irreducible representation
[see Eq. (84)].

2. Equations on eiðπÞ’s and e0iðπÞ’s
In order to solve Eqs. (15)–(18), we have to specify the

functions eiðπÞ and ~eiðπÞ and one-forms e0iðπÞ ¼ e0iaðπÞdπa
and ~ei0ðπÞ ¼ ~e0iaðπÞdπa. Now, we show that they obey the
differential equations

Lhiej ¼ fijkek þ zij; ð36Þ

Lhi ~ej ¼ fijk ~ek þ ~zij; ð37Þ

Lhie
0
j ¼ fijke0k þ dz0ij; ð38Þ

Lhi ~e
0
j ¼ fijk ~e0k þ d~z0ij; ð39Þ

where zij and ~zij are constants and z0ijðπÞ and ~z0ijðπÞ are
functions. For example, given the initial condition eið0Þ
and the constants zij, we can solve Eq. (36) to find eiðπÞ.
If possible, we always remove zij, ~zij, z0ijðπÞ, and ~z0ijðπÞ

from Eqs. (36)–(39) by shifting eiðπÞ and ~eiðπÞ by

constants and e0iðπÞ and ~e0iðπÞ by closed one-forms using
the above-mentioned ambiguity. However, they cannot
always be completely removed. For example, zij cannot
be eliminated when the second cohomology of the Lie
algebra H2ðgÞ is nontrivial. (See Appendix A for a brief
review of this subject.) In Sec. III E, we show that the
nontrivial zij corresponds to a central extension of the Lie
algebra.
To derive Eq. (36), we first note that the Lie derivative of

the two-form dc vanishes:

Lhidc ¼ d2ei þ ihid
2c ¼ 0: ð40Þ

We also use the commutativity Lhid ¼ dLhi and a property
of the interior product

Lhi ihj ¼ fijkihk þ ihjLhi : ð41Þ

Combining Eqs. (40) and (41) with Eqs. (33), we obtain

dðLhiejÞ ¼ LhiðdejÞ ¼ LhiðihjdcÞ
¼ fijkðihkdcÞ þ ihjðLhidcÞ
¼ dðfijkekÞ; ð42Þ

which proves Eq. (36). Exactly the same derivation applies
to Eqs. (37)–(39).

D. Local symmetry

Here, we discuss the case where the symmetry G can
be gauged. Since gauge fields appear in covariant deriv-

atives, it is natural to assume that Ai
μ ¼ ðAi

t; ~A
iÞ is of the

same order as ∇μ ¼ ð∇t; ~∇Þ in derivative expansion.
Equation (10) is then replaced by the sum of the following
terms [28,29]:

Lð0;1Þ
eff ¼ caðπÞ _πa þ eiðπÞAi

t; ð43Þ

Lð0;2Þ
eff ¼ 1

2
ḡabðπÞ _πa _πb

− h̄iaðπÞAi
t _π

a þ 1

2
k̄ijðπÞAi

tA
j
t ; ð44Þ

Lð2;0Þ
eff ¼ −

1

2
gabðπÞ ~∇πa · ~∇πb

þ hiaðπÞ~Ai · ~∇πa − 1

2
kijðπÞ~Ai · ~Aj: ð45Þ

Here, kijðπÞ and k̄ijðπÞ are symmetric with respect to i
and j.
As discussed before, one can add

Lð0;1Þ
eff

0 ¼ ~caðπÞ∇xπ
a þ ~eiðπÞAi

x; ð46Þ
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Lð1;1Þ
eff

0 ¼ ~gabðπÞ _πa∇xπ
b − ~hiaðπÞðAi

t∇xπ
a þ Ai

x _π
aÞ

þ ~kijðπÞAi
tA

j
x; ð47Þ

Lð1;1Þ
eff

00 ¼ ~babðπÞ _πa∇xπ
b þ ~e0iaðπÞðAi

t∇xπ
a − Ai

x _π
aÞ

þ ~aijðπÞAi
tA

j
x ð48Þ

in 1þ 1 dimensions, and

Lð2;0Þ
eff

0 ¼ − 1

2
babðπÞϵrs∇rπ

a∇sπ
b − e0iaðπÞϵrsAi

r∇sπ
a

−
1

2
aijðπÞϵrsAi

rA
j
s ð49Þ

in 2þ 1 dimensions. Here, ~kijðπÞ is symmetric and aijðπÞ
and ~aijðπÞ are antisymmetric.
We require that the action Seff ½π; A� ¼

R
ddxdtLeff is

invariant under the local transformations π0ðxÞ ¼ πðxÞ þ
δϵπðxÞ and A0ðxÞ ¼ AðxÞ þ δϵAðxÞ, where δϵπa and δϵAðxÞ
are defined in Eqs. (6) and (9). Here, we assume that the
infinitesimal parameters ϵiðxÞ vanish as jxj → 0. The
invariance of the action can be reexpressed as

0 ¼ δϵSeff ½π; A�

¼
Z

ddxdt

�
δSeff
δπa

δϵπ
a þ δSeff

δAi
μ
δϵAi

μ

�

¼
Z

ddxdtϵiðxÞ
�
δSeff
δπa

hai − ðDμÞij
δSeff
δAj

μ

�
; ð50Þ

where ðDμÞij ¼ δi
j∇μ þ fikjAk

μ. Therefore, the effective
Lagrangian must satisfy

hai ðπÞ
δSeff
δπa

¼ ðDμÞij
δSeff
δAj

μ

: ð51Þ

This condition leads to the differential equations we have

derived above. For example, Eq. (51) for Lð0;1Þ
eff is

0 ¼ _πb½hai ð∂acb − ∂bcaÞ − ∂bei�
þ Aj

t ½hai ∂aej − fijkek�; ð52Þ

which leads to the differential equations for caðπÞ and
eiðπÞ:

hai ð∂acb − ∂bcaÞ ¼ ∂bei ; ð53Þ

hai ∂aej ¼ fijkek: ð54Þ

Similarly, for Lð0;1Þ
eff

0,

hai ð∂a ~cb − ∂b ~caÞ ¼ ∂b ~ei; ð55Þ
hai ∂a ~ej ¼ fijk ~ek: ð56Þ

We can easily work out all the other terms in the effective
Lagrangian in the same way.

Symmetric terms Lð0;2Þ
eff , Lð2;0Þ

eff , and Lð1;1Þ
eff

0 can be
compactly expressed as

Lð0;2Þ
eff ¼ 1

2
ḡabðπÞDtπ

aDtπ
b; ð57Þ

Lð2;0Þ
eff ¼ −

1

2
gabðπÞ ~Dπa · ~Dπb; ð58Þ

Lð1;1Þ
eff

0 ¼ ~gabðπÞDtπ
aDxπ

b: ð59Þ

Here, Dμπ
a ¼ ∇μπ

a − hai A
i
μ is the covariant derivative and

gabðπÞ, ḡabðπÞ, and ~gabðπÞ are G-invariant metrics of G=H,
obeying the Killing equation (35). To verify Eqs. (57)–(59),
one has to use the Lie bracket [Eq. (8)] several times.

Similarly, antisymmetric terms Lð2;0Þ
eff

0 and Lð1;1Þ
eff

00 can
also be written by the covariant derivative:

Lð2;0Þ
eff

0 ¼ − 1

2
babðπÞϵrsDrπ

aDsπ
b; ð60Þ

Lð1;1Þ
eff

00 ¼ ~babðπÞDtπ
aDxπ

b: ð61Þ

In addition, the two-form bðπÞ obeys the following
equations:

ihidb ¼ dei0; ð62Þ

Lhie
0
j ¼ fijke0k; ð63Þ

ihie
0
j þ ihje

0
i ¼ 0; ð64Þ

and ~bðπÞ obeys

ihid
~b ¼ d~e0i; ð65Þ

Lhi ~e
0
j ¼ fijk ~e0k; ð66Þ

ihi ~e
0
j þ ihj ~e

0
i ¼ 0. ð67Þ

These differential equations are almost identical to those
we derived before, except for the following two constraints.
1. zij, ~zij, z0ijðπÞ, and ~z0ijðπÞ in Eqs. (36)–(39) have to
vanish. 2. Additional constraints [Eqs. (64) and (67)] must
be satisfied. Thus, the requirement of the local invariance is
stronger than the global symmetry. If these additional
constraints are not fulfilled, the symmetry cannot be
gauged. See Sec. III E for a detailed discussion of examples
that violate at least one of these conditions.
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III. SOLUTION WITH MAURER-CARTAN FORM

In this section, we present the exact analytic solutions to
the differential equations derived in the previous section.
We initially assume the two conditions listed in Sec. II D,
namely, when the symmetry is gaugeable. Since the end
result can be understood without technical details, readers
without interest in the derivation can directly go to
Sec. III C, where we summarize our result. We obtain
the same result using an alternative formalism of gauging
the right translation byH in Sec. III D. Finally, in Sec. III E,
we discuss the additional terms allowed when the sym-
metry is not gaugeable.

A. Preliminaries

The Callan-Coleman-Wess-Zumino coset construction
is a famous and useful formalism to achieve a non-
linear realization and building blocks of the effective
Lagrangian [4,5].
The coset spaceG=H can be parametrized asUðπÞ ¼ eiΠ

with Π ¼ πaTa. Here, Ti is a faithful representation of the
Lie algebra g. Throughout this paper, we use the following
notation. 1. i; j; k;… refer to generators g, including both
broken and unbroken ones. 2. a; b; c;… refer to broken
generators g=h. 3. ρ; σ; λ;… refer to unbroken generators h.
IfG is compact, we can always find a unitary representation
of G such that Ti’s are Hermitian and orthogonal
trðTiTjÞ ¼ λδij. As a result, the structure constants become
fully antisymmetric; i.e., fijk ¼ −fikj ¼ 0. However, it is
not always convenient to work in this orthogonal basis,
especially whenG is not semisimple, and in this section, we
only use fijk ¼ −fjik, which follows just by the antisym-
metric property of commutators.
The transformation law of NG fields under the action of

g ∈ G is defined through the decomposition of the product
gUðπÞ into the form

gUðπÞ ¼ Uðπ0ðπ; gÞÞhgðπÞ; hgðπÞ ∈ H: ð68Þ

Now, we define an important g-valued one-form on
G=H, the so-called Maurer-Cartan one-form:

ωðπÞ≡−iUðπÞ†dUðπÞ

¼
X∞
n¼0

ð−iÞn
ðnþ 1Þ! ½Π; ½Π;…; ½Π;|{z}

n

dΠ�…��. ð69Þ

In the following, we use the notation ωðπÞ ¼ ωaðπÞdπa ¼
ωiðπÞTi ¼ ωi

aðπÞdπaTi and A ¼ AiTi ¼ Ai
μTidxμ.

Infinitesimal transformation hai ðπÞ is defined by π0a ¼
πa þ ϵihai ðπÞ þOðϵ2Þ for g ¼ eiϵ

iTi. To find their explicit
expression, we compare the order-ϵ terms in Eq. (68):

ihiω≡ hai ðπÞωaðπÞ ¼ νi
jðπÞTj − Tρk

ρ
i ðπÞ; ð70Þ

where kρi ðπ; gÞ is defined by hgðπÞ ¼ eiϵ
ikρi ðπ;gÞTρ and

νi
jðπÞTj ≡UðπÞ†TiUðπÞ

¼
X∞
n¼0

ð−iÞn
n!

½Π; ½Π;…; ½Π|{z}
n

; Ti�…��: ð71Þ

By solving Eq. (70), we can compute hai ðπÞ around the
origin as

haρðπÞ ¼ πbfbρa þ
1

2
πbπcfbρσfcσa þOðπ3Þ; ð72Þ

habðπÞ ¼ δab þ
1

2
πcfcba þOðπ2Þ: ð73Þ

Note, in particular, that habð0Þ ¼ δab and h
a
ρð0Þ ¼ 0 at π ¼ 0,

meaning that the broken generator ha shifts πa and that
the unbroken generator hρ does not change the ground
state.
The transformation law of the Maurer-Cartan form

follows from the definition (68):

ωðπ0Þ ¼ −iðhgU†g†ÞdðgUh†gÞ
¼ hgωðπÞh†g − ihgdh

†
g: ð74Þ

It is convenient to decompose the Maurer-Cartan forms
ω ¼ ω⊥ þ ω∥, where ω⊥ ¼ ωaTa are in g=h while ω∥ ¼
ωρTρ are in h. Since hgdh

†
g ∈ h, we have

ω⊥ðπ0Þ ¼ hgω⊥ðπÞh†g; ð75Þ

ω∥ðπ0Þ ¼ hgω∥ðπÞh†g − ihgdh
†
g: ð76Þ

Their infinitesimal versions are

Lhiω
aðπÞ ¼ −fρbakρi ðπÞωbðπÞ; ð77Þ

Lhiω
ρðπÞ ¼ −fλσρkλi ðπÞωσðπÞ − dkρi ðπÞ: ð78Þ

When we gauge the symmetry G by introducing gauge
fields that obey the transformation rule in Eq. (9), the
Maurer-Cartan form no longer transforms covariantly, i.e.,
does not obey Eq. (75) for local transformation. Instead, the
combination

ðω⊥ÞaDπa ≡ ðω⊥Þaðdπa − hai A
iÞ

¼ ½−iU†ðd − iAÞU�⊥ ð79Þ

transforms covariantly.
It is also straightforward to verify the following useful

relations:
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dωkðπÞ ¼ 1

2
fijkωiðπÞ ∧ ωjðπÞ; ð80Þ

Lhiνj
kðπÞ ¼ fijlνlkðπÞ − fρlkk

ρ
i ðπÞρjlðπÞ; ð81Þ

dνikðπÞ ¼ fjlkωjðπÞνilðπÞ: ð82Þ

Finally, we note that the last line of Eqs. (69) and (71) is
written in terms of commutation relations. Therefore, the
Maurer-Cartan form ωðπÞ and generators hiðπÞ do not
fundamentally depend on a specific choice of the repre-
sentation of Ti.
With these preparations, we now present our analytic

solutions to the differential equations derived in Sec. II one
by one.

B. Explicit solutions

1. gðπÞ’s
As the first example, here, we show that

gðπÞ ¼ gabð0ÞωaðπÞ ⊗ ωbðπÞ ð83Þ
is the solution to the Killing equation (35). If NGBs
transform irreducibly under the unbroken subgroup H,
constants gcdð0Þ must be proportional to δcd. In the most
general case, gcdð0Þ has to be invariant under unbroken
symmetries; namely,

fρacgcbð0Þ þ fρbcgacð0Þ ¼ 0; ð84Þ
which can be derived from the Killing equation (35) at the
origin π ¼ 0 with the help of Eq. (72).
To see that gðπÞ in Eq. (83) is the solution of Eq. (35), we

use Eq. (77):

Lhig ¼ Lhi ½gcdð0ÞωcðπÞ ⊗ ωdðπÞ�
¼ gcdð0Þ½ðLhiω

cÞ ⊗ ωd þ ωc ⊗ ðLhiω
dÞ�

¼ −kρi ½gedð0Þfρce þ gceð0Þfρde�ωc ⊗ ωd: ð85Þ

The combination in the square brackets vanishes thanks to
Eq. (84). Solution (83) also respects the initial value since
ωa ¼ dπa at π ¼ 0. Hence, Eq. (83) is the unique solution
of Eq. (35).
The same is true for ḡabðπÞ and ~gabðπÞ; i.e.,

ḡðπÞ ¼ ḡabð0ÞωaðπÞ ⊗ ωbðπÞ; ð86Þ

~gðπÞ ¼ ~gabð0ÞωaðπÞ ⊗ ωbðπÞ; ð87Þ

with

fρacḡcbð0Þ þ fρbcḡacð0Þ ¼ 0; ð88Þ
fρac ~gcbð0Þ þ fρbc ~gacð0Þ ¼ 0: ð89Þ

2. eiðπÞ’s
We now prove that

eiðπÞ ¼ νi
jðπÞejð0Þ ð90Þ

is the solution of Eq. (36) when zij ¼ 0. By multiplying
ekð0Þ to Eq. (81), we get

Lhi ½νjkðπÞekð0Þ�
¼ fijl½νlkðπÞekð0Þ� − ½fρlkekð0Þ�kρi ðπÞνjlðπÞ: ð91Þ

The second term vanishes because Eq. (36) at π ¼ 0
implies

fρjkekð0Þ ¼ 0: ð92Þ

Therefore, Eq. (90) satisfies the differential equation (36).
Combined with νijð0Þ ¼ δji [see Eq. (71)], we conclude that
Eq. (90) is the unique solution that is consistent with the
initial value.
Similarly,

~eiðπÞ ¼ νi
jðπÞ~ejð0Þ; fρik ~ekð0Þ ¼ 0 ð93Þ

is the solution of Eq. (37).

3. cðπÞ’s
Next, we claim that

cðπÞ ¼ −ωiðπÞeið0Þ þ dχ; ð94Þ

is a solution of Eq. (33), where χ is a smooth function. First,
we multiply ekð0Þ to Eqs. (80) and (82) to get

d½ωkðπÞekð0Þ� ¼
1

2
fljkωlðπÞ ∧ ωjðπÞekð0Þ; ð95Þ

deiðπÞ ¼ d½νijðπÞejð0Þ� ¼ fjlkωjðπÞνilðπÞekð0Þ:
ð96Þ

Further operating ihi to the former equation, we have

ihidcðπÞ ¼ ihid½−ωkðπÞekð0Þ�
¼ −fljk½ihiωlðπÞ�ωjðπÞekð0Þ;
¼ fjlkνilðπÞωjðπÞekð0Þ − ½fjρkekð0Þ�kρi ðπÞωjðπÞ
¼ deiðπÞ: ð97Þ

In the derivation, we use Eqs. (70), (92), and (96).
Therefore, cðπÞ in Eq. (94) indeed obeys the differential
equation. The undetermined part dχ is a total derivative
term in the Lagrangian.
Similarly, ~cðπÞ ¼ −ωiðπÞ~eið0Þ up to a closed one-form.
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4. e0iðπÞ’s and bðπÞ’s
In the same way, it is not difficult to verify that

ei0ðπÞ ¼ e0bcð0Þνbi ðπÞωcðπÞ; ð98Þ

~e0iðπÞ ¼ ~e0bcð0Þνbi ðπÞωcðπÞ ð99Þ

are the solutions of Eqs. (38) and (39) and that

bðπÞ ¼ −e0cdð0ÞωcðπÞ ∧ ωdðπÞ þ dχ0; ð100Þ

~bðπÞ ¼ −~e0cdð0ÞωcðπÞ ∧ ωdðπÞ þ d~χ0 ð101Þ

are the solutions of Eq. (34). Constants e0iað0Þ and ~e0iað0Þ
have to satisfy

e0ρað0Þ ¼ 0; e0abð0Þ þ e0bað0Þ ¼ 0;

fρace0cbð0Þ þ fρbce0acð0Þ ¼ 0 ð102Þ

and

~e0ρað0Þ ¼ 0; ~e0abð0Þ þ ~e0bað0Þ ¼ 0;

fρac ~e0cbð0Þ þ fρbc ~e0acð0Þ ¼ 0. ð103Þ

One can see that a condition for the gaugeability (64) is
indeed fulfilled since

ihie
0
jðπÞ¼ e0bcð0Þνbj ðπÞ½ihiωcðπÞ� ¼ e0bcð0Þνbj ðπÞνci ð104Þ

is antisymmetric with respect to i and j, thanks to the
second relation of Eq. (102).
Among constants e0iað0Þ that satisfy the above condi-

tions, those which can be written as

e0iað0Þ ¼ fiakCk; fρikCk ¼ 0 ð105Þ

give only a total derivative term in the Lagrangian. Indeed,
from Eq. (80) and fρikCk ¼ 0, it follows that

d½Ckω
k� ¼ fabkCkω

a ∧ ωb: ð106Þ

For example, for G=H ¼ SOð3Þ=SOð2Þ ¼ S2, the choice
e0abð0Þ ¼ ϵab satisfies all conditions in Eq. (102). In this
case, ϵabωa ∧ ωb is nothing but the θ term:

θ

4π
~n ·∇x~n ×∇y~n ð107Þ

up to an overall factor, which is expected since ϵab can be
written as fabz ¼ ϵabz. (Cz ¼ 1, and Cx ¼ Cy ¼ 0.)
An example of babðπÞ terms that are not a total derivative

is given by the coset SUð3Þ=Uð1Þ × Uð1Þ. We use the
standard notation of Gell-Mann matrices λi (i ¼ 1;…; 8)
and set Ti ¼ λi=2. In this case,

ω1 ∧ ω2; ω4 ∧ ω5; ω6 ∧ ω7 ð108Þ

are candidates for babðπÞdπa ∧ dπb, but we have to pay
attention to

dω3 ¼ ω1 ∧ ω2 þ 1

2
ðω4 ∧ ω5 − ω6 ∧ ω7Þ; ð109Þ

dω8 ¼
ffiffiffi
3

p

2
ðω4 ∧ ω5 þ ω6 ∧ ω7Þ: ð110Þ

Therefore, only one of the three in Eq. (108) is not a total
derivative and affects the equation of motion.

C. Summary of the Lagrangian

Let us summarize what we have shown above. We found
explicit analytic solutions for differential equations derived
in Sec. II under the assumptions that the symmetries can be
gauged. (See the conditions discussed in Sec. II D.)
In 3þ 1 dimensions, the most general effective

Lagrangian that has the internal symmetry δϵπ
a¼

ϵiðxÞhai ðπÞ and δϵAi
μ ¼ ∇μϵ

iðxÞ þ fjkiA
j
μϵkðxÞ as well as

the spatial rotation is given by

Leff ¼ caðπÞ _πa þ eiðπÞAi
t

þ 1

2
ḡabðπÞDtπ

aDtπ
b − 1

2
gabðπÞ ~Dπa · ~Dπb ð111Þ

to the quadratic order in derivatives. Here, Dμπ
a ¼ ∇μπ

a −
hai ðπÞAi

μ is the covariant derivative. The coefficients caðπÞ,
eiðπÞ, gabðπÞ, and ḡabðπÞ are given by

caðπÞ ¼ −ωi
aðπÞeið0Þ; ð112Þ

eiðπÞ ¼ νi
jðπÞejð0Þ; ð113Þ

gabðπÞ ¼ gcdð0Þωc
aðπÞωd

bðπÞ; ð114Þ

ḡabðπÞ ¼ ḡcdð0Þωc
aðπÞωd

bðπÞ: ð115Þ

Here, ωi
aðπÞTi ¼ −iUðπÞ†∂aUðπÞ [UðπÞ ¼ eiπ

aTa] is the
Maurer-Cartan form. The function νi

jðπÞ is defined by
νi

jðπÞTj ¼ UðπÞ†TiUðπÞ. The generator hai ðπÞ can also be
solved from hai ðπÞωb

aðπÞ ¼ νi
bðπÞ.

The Lagrangian contains only a few parameters
(coupling constants) eið0Þ, gabð0Þ, and ḡabð0Þ. They
have to be invariant under unbroken-symmetry
transformation; i.e.,

fρij ejð0Þ ¼ 0; ð116Þ
fρacgcbð0Þ þ fρbcgacð0Þ ¼ 0; ð117Þ

fρacḡcbð0Þ þ fρbcḡacð0Þ ¼ 0. ð118Þ
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If we further demand the Lorentz invariance, ḡabð0Þ ¼
c−2gabð0Þ and eið0Þ ¼ 0, so that the Lagrangian is
reduced to

Leff ¼
1

2
gabðπÞDμπ

aDμπb: ð119Þ

Equation (119) is exactly the leading-order term of the
standard chiral perturbation theory. Therefore, our effective
Lagrangian equally applies to Lorentz-invariant systems.
In 2þ 1 dimensions, one can add

− 1

2
babðπÞϵrsDrπ

aDsπ
b ð120Þ

to the effective Lagrangian (111), where

babðπÞ ¼ −e0cdð0Þωc
aðπÞωd

bðπÞ ð121Þ

with constraints [Eq. (102)] on e0abð0Þ.
Similarly, in 1þ 1 dimensions, the following terms are

allowed:

~ca∇xπ
a þ ~eiAi

x þ ~gabDtπ
aDxπ

b þ ~babDtπ
aDxπ

b; ð122Þ

where

~caðπÞ ¼ −ωi
aðπÞ~eið0Þ; ð123Þ

~eiðπÞ ¼ νi
jðπÞ~ejð0Þ; ð124Þ

~gabðπÞ ¼ ~gcdð0Þωc
aðπÞωd

bðπÞ; ð125Þ

~babðπÞ ¼ −~e0cdð0Þωc
aðπÞωd

bðπÞ; ð126Þ

with constraints [Eqs. (89), (93), and (103)] on coupling
constants.

D. Gauging H rather than modding

It is well known (see Ref. [39] for a review) that the coset
construction on G=H is equivalent to that on G with the
right translation byH gauged. Here, we use the notationH
that commutes with the left translation by G, as opposed to
H ⊂ G, that does not commute with G. The gauging of the
unbroken H symmetry eliminates unwanted NGBs. Using
this method, it is now somewhat more transparent to derive
the action in the differential-geometric method above
because the transformation laws are linear.
We first consider U ¼ eiΠ with Π ¼ πaTa þ πρTρ for all

generators of g. Namely, Tρ ∈ h and Ta ∈ g=h. Under the
global symmetry G, U transforms as the left translation

UðπÞ → gUðπÞ ¼ Uðπ0Þ: ð127Þ
On the other hand, we require a local symmetry under the
right translation by H

UðπÞ → UðπÞhðxÞ: ð128Þ
Note that gauging the right translation of H is different
from the gauging we studied in the previous sections that
corresponds to the left translation.
The point here is that one can always take the gauge

πρ ¼ 0. In order for U to stay in this gauge, the global
transformation needs to be accompanied by a gauge
transformation

UðπÞ → gUðπÞh†gðπÞ ¼ Uðπ0Þ ð129Þ
with a suitable choice of hg ∈ H. The end result is therefore
equivalent to writing the theory on G=H.
We introduce a gauge field A ¼ AρTρ ¼ Aμdxμ for the

right-translation gauge group H so that the Lagrangian is
invariant under both the globalG and the localH. Note that
we use a different symbol from the gauge field Ai in the
previous section [see, e.g., Eq. (79)] for the left translation
under G. The Maurer-Cartan form ω ¼ −iU†dU is invari-
ant under the global G, while it transforms as

ω → −ih†U†dðUhÞ ¼ h†ωh − ih†dh: ð130Þ
On the other hand, the gauge field transforms as usual:

A → h†Ahþ ih†dh: ð131Þ
Then, the combination

ωþA ð132Þ
is gauge covariant. As before, we decompose the Maurer-
Cartan forms ω ¼ ω⊥ þ ω∥, where ω⊥ ¼ ωaTa are in g=h
while ω∥ ¼ ωρTρ are in h. Then, the inhomogeneous
transformation occurs only on ω∥:

ω⊥ → h†ω⊥h; ð133Þ

ω∥ þA → h†ðω∥ þAÞh: ð134Þ

Therefore, we can build an invariant Lagrangian just by
focusing on local H invariance on ω⊥ and ω∥ þA.
We introduce the notation for the pullback of Maurer-

Cartan forms to space and time:

π�ω ¼ ω̄dtþ ~ω · d~x ¼ −iU†∂iUð _πidtþ∇πi · d~xÞ:
ð135Þ

They are decomposed as

ω̄ ¼ ω̄aTa þ ω̄ρTρ; ð136Þ

~ω ¼ ~ωaTa þ ~ωρTρ: ð137Þ

The general Lagrangian at the second order in the time
derivative is
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Leff ¼
1

2
ḡabð0Þω̄aω̄b þ 1

2
ḡρσð0Þðω̄ρ þAρ

t Þðω̄σ þAσ
t Þ

−
1

2
gabð0Þ~ωa · ~ωb − 1

2
gρσð0Þð~ωρ þ ~A

ρÞ · ð~ωσ þ ~A
σÞ:

ð138Þ

ḡabð0Þ, ḡρσð0Þ, gabð0Þ, and gρσð0Þ are all constants subject
to H invariance, as in the previous section [see Eqs. (117)
and (118)].
Because the Lagrangian is quadratic in A, we can

integrate it out and find

A ¼ −ω∥: ð139Þ

In addition, we can perform a gauge transformation in H
to remove all πρ without a loss of generality. Then, the
Lagrangian reduces to the form

Leff ¼
1

2
ḡabð0Þω̄a⊥ω̄b⊥ − 1

2
gabð0Þ~ωa⊥ · ~ωb⊥; ð140Þ

which can be easily verified to be the same as what we
derived in earlier sections.
So far, everything is well known. Now come the new

terms we discussed in previous sections.
We first discuss terms with a single derivative. If the

generator Ta ∈ g=h commutes withH, ωa → h†ωa⊥h ¼ ωa

and hence is invariant. Therefore, we can add it to the
Lagrangian. On the other hand, if the generator Tρ ∈ h
commutes withH, it generates a U(1) subgroup, and hence,

ωρ → h†ωρh − iðh†dhÞρ ¼ ωρ − idðlog hÞρ: ð141Þ

Namely, the shift is a total derivative. It is also allowed as
a term of the Lagrangian. In addition, the combination
(ωρ þAρ) is invariant. Therefore, the following terms are
allowed:

Lð0;1Þ
eff ¼−eað0Þωa−eρð0Þωρ− ēρð0ÞðωρþAρÞ: ð142Þ

The last term is removed after integrating over Aρ together
with the quadratic terms. Therefore, we only need to
consider the first two terms, which are nothing but

Lð0;1Þ
eff ¼ −eið0Þωi

a _π
a; ð143Þ

which we derived in Eq. (94).
The antisymmetric tensor can also be included in the

same fashion:

Lð2;0Þ
eff

0 ¼ − 1

2
e0abð0Þ~ωa × ~ωb⊥

−
1

2
e0ρσð0Þð~ωρ þ ~A

ρÞ × ð~ωσ þ ~A
σÞ: ð144Þ

e0abð0Þ is invariant underH [see Eq. (102)]. The second line

is again eliminated by integrating out ~A
ρ
, and the first line

again can be shown to be the same as the previous result.
The central extension or Wess-Zumino-Witten terms,

however, cannot be written using Maurer-Cartan forms
because they are not gaugeable, as we discuss in the
following section.
The advantage of this formulation is that the only

question is to find H-invariant tensors. It is, therefore,
easier to generalize to higher-derivative terms than solve
the differential equations. In that case, integration over the
gauge field needs to be done by an order-by-order basis
because the Lagrangian is no longer quadratic in the
gauge field.
Note that we integrate out the gauge fieldsA to show the

equivalence to the results in the previous sections.
However, they can be kept in the Lagrangian as non-
dynamical auxiliary fields. For some applications, such as
large-N expansion, it is more convenient to keep them.

E. Central extensions and Wess-Zumino-Witten term

We have presented our analytic expressions of the
effective Lagrangian in terms of Maurer-Cartan forms,
assuming that the symmetryG is gaugeable. The conditions
for the gaugeability are summarized in Sec. II D. In this
section, we discuss examples in which at least one of these
conditions is violated, making it impossible to gauge the
symmetry.

1. Central extensions

Let us consider the caseG ¼ Uð1Þ × Uð1Þ andH ¼ feg.
The NG fields φa (a ¼ 1, 2) independently change by a
constant under G. In such a case, the effective Lagrangian
may contain

caðφÞ _φa ¼ C
2
ϵabφ

a _φb; ð145Þ
with C a constant.
Here, we explain that the one-form c ¼ ðC=2Þϵabφadφb

ends up with nonzero zij’s in Eq. (36). To that end, we first
compute eaðφÞ following the definition in Eq. (33):

dc ¼ C
2
ϵabdφa ∧ dφb; ð146Þ

ihadc ¼ Cϵabdφb ¼ dea; ð147Þ

where ha ¼ ∂a. Therefore, ea ¼ Cϵabφb up to a constant.
Their Lie derivative is

Lhaeb ¼ ∂aeb ¼ −Cϵab: ð148Þ

Comparing Eq. (148) with Eq. (36), we see zab ¼−Cϵab ≠ 0. Therefore, the symmetry G cannot be gauged.
The Lagrangian
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Lð0;1Þ
eff ¼ C

2
ϵabφ

a _φb þ CϵabφbAa
0 ð149Þ

changes not only by a surface term ∇tðCϵabϵaφbÞ=2 but
also by ϵazabAb

0 ¼ −CϵabϵaAb
0.

To make a connection to central extensions, we note that
conserved charges of the internal symmetry G are domi-
nated by Qa ¼

R
ddxj0a ¼

R
ddxCϵabφb. Their commuta-

tion relation can be computed by using the commutation
relation ½φ1ð~x; tÞ;φ2ð~x0; tÞ� ¼ −C−1δdð~x − ~x0Þ as

½Qa;Qb� ¼ −iϵabCΩ; ð150Þ

where Ω is the volume of the system. Naively, the shift
symmetries φa → φa þ ϵa for a ¼ 1 and a ¼ 2 commute
with each other but Noether charges do not. The right-hand
side of Eq. (150) is the central extension of the g ¼ uð1Þ ×
uð1Þ algebra.
The shift symmetry ψ 0 ¼ ψ þ c (c ∈ C) of the free-

boson Schrödinger field theory [40]

L ¼ i
2
ðψ† _ψ − _ψ†ψÞ − 1

2m
~∇ψ† · ~∇ψ ð151Þ

cannot be gauged due to the same reason, although the
phase rotation ψ → ψeiϵ can be gauged.
The central extension is possible only when the second

cohomology of the Lie algebraH2ðgÞ is nontrivial. Namely,
G must have at least two Abelian generators that commute
with all the other generators. [See Appendix A for a brief
review ofH2ðgÞ.] Therefore, the corresponding terms in the
Lagrangian are always of the form −ð1=2Þzabφa _φb, where
φa are the NG fields for such Abelian generators, which
leads to the extended algebra ½Qa;Qb� ¼ izabΩ.
Note that the coefficient C is quantized when G=H is

compact. See the discussion at the end of Sec. VII D.

2. Example of ~z0ijðπÞ
Wenowgive an example of nonzero ~z0ijðπÞ in Eq. (39).We

take G¼Uð1Þ3¼fðφ1;φ2;φ3Þjφi∈ ½0;2πÞg and H¼feg.
The effective Lagrangian may contain

Lð1;1Þ
eff

00 ¼ ~babðφÞ _φa∇xφ
b ¼ k

3ð2πÞ2 ϵabcφ
c _φa∇xφ

b;

ð152Þ

which can be regarded as the two-form ~b ¼ ðk=3!Þð2πÞ−2×
ϵabcφ

cdφa ∧ dφb. The one-form ~ea0ðφÞ can be computed as

d ~b ¼ k
3!ð2πÞ2 ϵabcdφ

a ∧ dφb ∧ dφc; ð153Þ

ihad
~b ¼ d

�
k

2ð2πÞ2 ϵabcφ
bdφc

�
¼ d~ea0: ð154Þ

Therefore, ~ea0ðφÞ ¼ ðk=2Þð2πÞ−2ϵabcφbdφc up to a closed
one-form.
Let us check conditions for gaugeability summarized in

Sec. II D one by one. First, Eq. (64) is satisfied since

iha ~eb
0 ¼ k

2ð2πÞ2 ϵabcφ
c ð155Þ

is antisymmetric with respect to a and b. However,

Lha ~eb
0 ¼ d

�
− k
2ð2πÞ2 ϵabcφ

c

�
¼ d~z0ab: ð156Þ

Hence, ~z0abðφÞ ¼ −ðk=2Þð2πÞ−2ϵabcφc ≠ 0 up to a constant.
This nonzero ~z0ab is the obstruction to gauge the symmetryG.
Note that the coefficient k must be an integer to ensure

that the Lagrangian changes only by integer multiples of 2π
under the periodic shift φa → φa þ 2π, because the inte-
grand eiS in the path integral must be single valued even
though the action S itself is multivalued. (See the discussion
at the end of Sec. VII D.) On the other hand, this type of

term is not allowed in Lð2;0Þ
eff

0¼−ð1=2ÞbabðπÞϵrs∇rπ
a∇sπ

b

in Eq. (49) because the Hamiltonian must be single valued.

3. Wess-Zumino-Witten term

In general, we can write a similar term whenever
H3

dRðG=HÞ [37,38] is nontrivial. (Here and below, Hn
dR

refers to de Rham cohomology, the space of closed but not
exact n-forms.) Then, there is a nontrivial closed three-form
ω3 on G=H. Because ω3 is locally exact ω3 ¼ d ~b, we can
take the (1þ 1)-dimensional spacetime that is Wick rotated
and compactified to Euclidean space S2 ¼ ∂B3 as a
boundary of a three-ball B3, and we can have

Z
B3

ω3 ¼
Z
S2
~b ð157Þ

as a part of a Lagrangian or a Hamiltonian.
Note that there is, in general, more than 1 B3 in G=H

whose boundary is S2 ¼ ∂B3. Therefore, the action is
defined only up to an integral of ω3 over a closed three-
surface in G=H. To ensure that eiS=ℏ in the path integral is
single valued, the difference may only be integer multiples
of 2πℏ [41]. It requires a quantization condition on the
coefficient of terms of this type. The same quantization
condition can be obtained from the requirement of the
associativity of the group elements [42].
An important example is the Wess-Zumino-Witten

term [43]. This term exists for any compact simple G and
H ¼ feg because H3

dRðGÞ ¼ R. It is defined with

ω3 ¼
k

12π
tr½ðU−1dUÞ3� ¼ kλ

24π
fabcωa ∧ ωb ∧ ωc;

ð158Þ
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with k an integer, which is sometimes referred to as the
level. Here, we normalize Ta as tr½TaTb� ¼ λδab so that the
structure constant is completely antisymmetric. In order for
the path integral eiS to be single valued, k must be an
integer in 1þ 1 dimensions. (See the discussion at the end
of Sec. VII D.) Also, because of this ambiguity of 2πk, the
Wess-Zumino-Witten term cannot be used to construct a
bðπÞ term since it takes part in the energy functional, as
noted before.
Consider the transformation UðπÞ → Uðπ0Þ ¼ gUðπÞ.

Obviously, for a global g, ω3 does not change. However,
~b can change. To see this possible change in ~b, let us
temporarily regard g ¼ eiv as local and consider infinitesi-
mal change up to the linear order in idv ¼ g−1dg

12π

k
δðd ~bÞ ¼ trf½U−1dU þ U−1ðg−1dgÞU�3 − ðU−1dUÞ3g

¼ 3 tr½g−1dgðUdU−1Þ2�
¼ 3idtr½vðUdU−1Þ2�; ð159Þ

and hence,

δ ~b ¼ ik
4π

tr½vðUdU−1Þ2�: ð160Þ

Now, we can set v to be constant. Then, we see that

δ ~b ¼ ik
4π

tr½vðUdU−1Þ2� ¼ − ik
4π

dtr½vUdU−1� ð161Þ

is indeed a total derivative.
There is no compact way to write ω3 ¼ d ~b, but the

following trick works for a power-series expansion in π. By
defining Uτ ¼ eiτΠ for a real parameter τ, it is easy to show

∂
∂τU

−1
τ dUτ ¼ iU−1

τ ðdΠÞUτ; ð162Þ

and therefore,

∂
∂τ tr½ðU−1

τ dUτÞ3� ¼ −3idtr½ΠdUτ ∧ dU−1
τ �: ð163Þ

We can integrate the both sides and find

~b ¼ − ik
4π

Z
1

0

dτtr½ΠdUτ ∧ dU−1
τ � ð164Þ

to obtain an explicit form in a power-series expansion in Π.
To the leading order in π, we find

~b ¼ kλ
24π

fabcπadπb ∧ dπc þOðπ4Þ: ð165Þ

Since πa shifts under the G transformation, we can see that
~b changes by a total derivative.

It is well known that the Wess-Zumino-Witten term
cannot be gauged. To clarify the obstruction, we now
compute ~ei0ðπÞ:

ihdd
~b ¼ kλ

4π
ðihdωaÞ

�
1

2
fabcωb ∧ ωc

�

¼ kλ
4π

νaddω
a ¼ − kλ

4π
dðνadωaÞ; ð166Þ

where we use Eqs. (70) and (80). (Since we assume all
generators are broken, terms with indices ρ; σ;… should be
neglected.) The last equality can be shown backward:

dðνadωaÞ ¼ ðdνadÞ ∧ ωa þ νaddω
a

¼ ðfabcωbνcdÞ ∧ ωa þ νaddω
a

¼ −νcdfabcωa ∧ ωb þ νaddω
a

¼ −2νcddωc þ νaddω
a ¼ −νcddωc; ð167Þ

where we use Eq. (82) in the first line. Comparing Eq. (166)
with Eq. (34), we find

~e0a ¼ − kλ
4π

νcaω
c ð168Þ

up to an exact one-form.
Having obtained e0aðπÞ, let us now check the gauge-

ability condition. First, the Lie derivative of e0aðπÞ satisfies

Lha ~e
0
b ¼ − kλ

4π
½ðLhaν

c
bÞωc þ νcbðLhaω

cÞ�

¼ −
kλ
4π

ðfabdνcdωc þ 0Þ ¼ fabc ~e0c; ð169Þ

meaning that z0abðπÞ does vanish, according to Eq. (38).
However, since

iha ~e
0
b ¼ − kλ

4π
νcbðihaωcÞ ¼ − kλ

4π
νcbν

c
a ¼ − k

4π
δab; ð170Þ

iha ~e
0
b is symmetric, rather than antisymmetric, with respect

to a and b, and therefore does not satisfy Eq. (67).
Therefore, the Wess-Zumino-Witten term cannot be made
gauge invariant.
In the derivation of Eqs. (169) and (170), we use

Eqs. (70), (71), (77), and (81).
Another example of this type is G=H ¼ Uð1Þ ×

SOð3Þ=SOð2Þ ¼ S1 × S2 with H3
dRðG=HÞ ¼ H1

dRðS1Þ×
H2

dRðS2Þ ¼ R. Parametrizing the coset space with φ for
S1 and the unit vector ~n for S2, we can write

Lð1;1Þ
eff

0 ¼ k
φ

4π
~n · ð _~n ×∇x~nÞ: ð171Þ

Under a constant shift of φ by 2π, the change is a total
derivative in space, and hence, the Lagrangian is U(1)
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invariant. However, for a local shift of φ, it changes the
Lagrangian and hence is not an invariance.
Note that the shift of φ by 2π does not change eiS in the

path integral because

Z
dtdx

1

4π
~n · ð _~n ×∇x~nÞ ∈ Z ð172Þ

is the winding number of S2 → S2, as long as k ∈ Z.

F. Berry’s phase

Finally, we discuss the interpretation of the linear time-
derivative term of the effective Lagrangian as the Berry
phase. Terms of our interest are

L ¼ caðπÞ _πa þ eiðπÞAi
t

¼ −ωi
aðπÞ _πaeið0Þ þ eið0ÞνijðπÞAj

t : ð173Þ

We apply a set of infinitesimal external fields Ai
t ¼ μiðtÞ

that slowly depend on time. NG fields πa condense in such
a way that fπagdimG=H

a¼1 minimize the potential

VðtÞ≡−eið0ÞνijðπÞμjðtÞ ð174Þ

at each time. Now, we consider a closed path μiðtÞ in the
parameter space fμigdimG

i¼1 . NG fields adiabatically depend
on time through external fields, i.e., πa ¼ πaðμðtÞÞ. Under
this process, the ground state jΨ0i evolves as

jΨðtÞi ¼ eiπ
aðμðtÞÞQa jΨ0i; ð175Þ

where Qa ¼
R
ddxj0að~x; tÞ are broken generators. Note that

πa here is a c number, not an operator, that is fixed by μiðtÞ.
The Berry phase acquired under this cyclic process is

ΘBP ¼
Z

dti

�
ΨðtÞ

���� ddt
����ΨðtÞ

	

¼ −
Z

dtωi
aðπðμðtÞÞÞ

dπaðμðtÞÞ
dt

hΨ0jQijΨ0i

¼ −
Z

dtddxωi
aðπÞ _πaeið0Þ; ð176Þ

where eið0Þ ¼ hΨ0jQijΨ0i=Ω ¼ hΨ0jj0i ð~x; tÞjΨ0i due to
the translational invariance of the ground state. Again,
we have used the fact that the Maurer-Cartan form ωi

aðπÞ
only depends on the commutation relation and not on
the specific representation. Equation (176) reproduces the
caðπÞ _πa term of the effective Lagrangian, except for the ~x
dependence of πa.
To treat the coordinate dependence properly, we intro-

duce external fields μi ¼ μið~x; tÞ that are slowly varying
over both space and time. In this case, the ground state is
given by

jΨðtÞi ¼ eiΠðtÞjΨ0i; ð177Þ

ΠðtÞ ¼
Z

dtddxj0að~x; tÞπa½μð~x; tÞ�: ð178Þ

To compute the Berry phase, we have to evaluate commu-
tation relations

hΨ0j½Π; ½…; ½Π|{z}
n

;∇tΠ�…��jΨ0i

¼
Z

dtddx½ _πahΨ0j½Π; ½…; ½Π|{z}
n

; j0að~x; tÞ�…��jΨ0i

− πa ~∇ · hΨ0j½Π; ½…; ½Π|{z}
n

; ~jað~x; tÞ�…��jΨ0i�: ð179Þ

Here, we use the current conservation ∇tj0ð~x; tÞ þ
~∇ · ~jað~x; tÞ ¼ 0. The second line vanishes since we assume
the rotational symmetry of the ground state. Also, due to
the translational symmetry of the ground state, the
expectation value of the commutator in the first line
does not actually depend on ~x or t. Using the current
algebra ½j0i ð~x; tÞ; j0jð~x0; tÞ� ¼ ifijkj0kð~xÞδdð~x − ~x0Þ, one can
easily show Eq. (176) with the proper coordinate depend-
ence of πa.

IV. NUMBER OF NAMBU-GOLDSTONE BOSONS

In the next two sections, we will make use of the
effective Lagrangian developed in the previous section to
derive several rigorous results on the number of NGBs. To
be consistent with the assumed broken symmetries, in this
section and the next sections, we assume 2þ 1 or higher
dimensions.
In order to discuss the number and dispersion relations of

NGBs, we focus on the free part of the Lagrangian. We will
justify ignoring the interaction terms in Sec. VI A. Keeping
only the quadratic terms in π in Eq. (111) and setting
Ai
μ ¼ 0, we find

Leff ¼
1

2
fabkekð0Þ _πaπb

þ 1

2
ḡabð0Þ _πa _πb − 1

2
gabð0Þ ~∇πa · ~∇πb: ð180Þ

Note that the bðπÞ term does not contribute to the free part.
When zij in Eq. (36) does not vanish, eiðπÞ and ciðπÞ

receive a contribution from zij:

eiðπÞ ¼ eið0Þ þ πb½fbikekð0Þ þ zbi� þOðπ2Þ; ð181Þ

caðπÞ ¼ cað0Þ þ
1

2
πb½fabkekð0Þ þ zab� þOðπ2Þ: ð182Þ
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[The condition [Eq. (92)] should also be replaced by
fρibebð0Þ þ zρi ¼ 0.] Including this contribution, we have

Leff ¼
1

2
σab _π

aπb þ 1

2
ḡabð0Þ _πa _πb − 1

2
gabð0Þ ~∇πa · ~∇πb;

ð183Þ

where σab ≡ fabkekð0Þ þ zab.

A. Derivation 1

The parameter eið0Þ is related to the expectation value
of the conserved charge density. From Noether’s theorem,
the conserved current associated with δiπ

a ¼ hai can be
derived as

j0i ðxÞ ¼ eiðπÞ − ḡabðπÞhai ðπÞ _πb: ð184Þ

Note that the conserved-current operators are free of
anomalous dimensions even in the presence of interactions
because j0i → Zj0i would violate the commutation relations
½j0i ðxÞ; j0kðyÞ� ¼ ifiklj0l ðxÞδðx − yÞ. The absence of the
anomalous dimensions is the nonrenormalization theorem
of conserved currents. Therefore, its expectation value is
that of the origin

hj0i ðxÞi ¼ eið0Þ: ð185Þ

We present explicit calculations in Sec. VI B and an
alternative argument in Sec. VI C to support this point.
Now, let us define a real and antisymmetric matrix ρ by

iρab ¼ h½Qa; j0bðxÞ�i: ð186Þ

Assuming the translational invariance of the ground state,
ρab is independent of x. We see that ρab is related to the first
term in the effective Lagrangian:

ρab ¼ −ih½Qa; j0bðxÞ�i
¼ fabihj0i ðxÞi þ zab ¼ σab: ð187Þ

One can always block diagonalize ρ by an orthogonal
matrix as

ρ ¼

0
BBBBB@

iσyλ1

. .
.

iσy
λmO

1
CCCCCA; λα ≠ 0ðα¼ 1;…;mÞ:

ð188Þ

Here, σy is the Pauli matrix and m ¼ ð1=2Þrankρ. On this
basis, the first term of the effective Lagrangian becomes

Xm
α¼1

λαπ
2α _π2α−1 ¼ λ1π

2 _π1 þ � � � þ λmπ
2m _π2m−1: ð189Þ

In the presence of these single time-derivative terms, one
can neglect Oð∇2

t Þ terms at a sufficiently low energy.
Therefore, λαπ

2α (no sum) is, in fact, a canonically
conjugate valuable to π2α−1. They together represent 1
low-energy degree of freedom, rather than 2. We call those
NGBs that are generated by a pair of canonically conjugate
generators type B, while the rest are type A. By definition,
the number of type-A and type-B NGBs is given by

nA ¼ dimG=H − rankρ; nB ¼ 1

2
rankρ: ð190Þ

Equation (190) proves the counting rules in Eqs. (1) and
(2). As a corollary, the number of NGBs always falls into
the range

1

2
dimG=H ≤ nNGB ≤ dimG=H: ð191Þ

Equation (191) is obvious since 0 ≤ rankρ ≤ dimG=H.
Note that our definitions of type-A and type-B NGBs are

not based on the dispersion relation. They are instead
classified based on the structure of time derivatives that
defines the presymplectic structure (see, e.g., Ref. [44]), as
we discuss in Sec. VII. These canonically conjugate rela-
tions among fields are the close analogs of Poisson brackets
in the Hamiltonian formalism [6,7]. Note, however, that
they had to provide the Poisson brackets in order to
reproduce the microscopic theory, while in our case, we
derive the commutation relations from the first principles for
each possibility we can classify.

B. Derivation 2

Another way of deriving the same result is to make use of
the canonical commutation relation. Let us go back to the
first term of the Lagrangian 1

2
σabπ

b _πa. Here, we assume
that σ is block diagonalized as

σ ¼

0
BBBB@

iσyλ01

. .
.

iσyλ0m
O

1
CCCCA; λ0α ≠ 0ðα¼ 1;…;mÞ:

ð192Þ

We denote by σ0 the 2m × 2m upper left part of the matrix
σ, which has the full rank.
When we neglect the Oð∇2

t Þ term of the effective
Lagrangian, there are m constraints of the second class
in the system. By following Dirac’s quantization procedure,
one can derive the equal-time commutation relation
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½πað~x; tÞ; πbð~x0; tÞ� ¼ iðσ0−1Þbaδdð~x − ~x0Þ ð193Þ
for 0 ≤ a ≤ 2m and 0 ≤ b ≤ 2m. By definition,
nA ¼ dimG=H − rankσ0 and nB ¼ ð1=2Þrankσ0. In this
approach, we have to prove that rankσ0 ¼ rankρ.
The Noether current in Eq. (184) can be expanded

around the origin as

j0aðxÞ ¼ eað0Þ þ σabπ
bðxÞ þOðπ2Þ: ð194Þ

By neglecting the contribution from higher-order terms,

ρab ≡−ih½Qa; j0bð~x; tÞ�i

¼ −i
Z

ddx0h½j0að~x0; tÞ; j0bð~x; tÞ�i

¼ σ0acðσ0−1Þcdσ0db ¼ σ0ab: ð195Þ

Therefore, rankσ0 ¼ rankρ.
Finally, let us comment on the locality of the effective

Lagrangian. Even if the microscopic model does not have
long-range interactions, long-range interactions among
NGBs may be mediated by other gapless degrees of
freedom in the system. When the effective Lagrangian
fails to be local, would-be NGBs may acquire a gap and the
counting rule may not hold. (See Ref. [45] for more
details.)
Moreover, if we allow nonlocal effective Lagrangians, the

classification of types A and B becomes ambiguous. As an
example, let us take a free theory of a type-BNGBdescribed

by a local Lagrangian Leff ¼
P

a;b¼1;2ðσ=2Þϵabπa _πb −P
a¼1;2ðg=2Þ ~∇πa · ~∇πa in 3þ 1 dimensions. After integrat-

ing out the field π2, one finds a nonlocal effective
Lagrangian in terms of π1:

Leff ¼
1

2

Z
d3xd3x0 _π1ð~x; tÞ σ2

4πgj~x − ~x0j _π
1ð~x0; tÞ

−
g
2

Z
dx ~∇π1ð~x; tÞ · ~∇π1ð~x; tÞ: ð196Þ

This nonlocal Lagrangian can still describe the mode with
the same quadratic dispassion ω ¼ ðg=σÞk2, but now, it is
described by a single field π1 and hence may be classified as
type A. Therefore, the classification of types A and Bmakes
sense only when we restrict ourselves to local effective
Lagrangians.

V. DISPERSION RELATION

In this section, we discuss the dispersion relation of
NGBs. In particular, we show that type-A NGBs generi-
cally have linear dispersions, while type-B NGBs are
quadratic.
The linearized effective Lagrangian in Eq. (183) leads to

the equation of motion Gabπ
bðk;ωÞ ¼ 0, where

G ¼ iσωþ ḡð0Þω2 − gð0Þk2: ð197Þ

The dispersion relations of NGBs are determined by
solving detG ¼ 0. If type-A and type-B NGBs do not
coexist, the situation is pretty simple. When σ ¼ 0 (only
type A), the dispersion is always linear since ω2 has to
balance with k2. In contrast, when σ has the full rank
(only type B), we can ignore ḡð0Þω2 ≪ iσω in the low-
energy limit, and the dispersion is quadratic by the same
argument.
Note that gð0Þ must always be full rank as long as we

consider an internal symmetry group G, because the field-
transformation rule in Eq. (6) does not explicitly depend on
coordinates, and thus, there are no symmetries that prohibit
the appearance of the Oðk2Þ term. In Sec. VI A, we explain
examples of NGBs associated with spacetime symmetries
that lack theOðk2Þ term, but for now, let us focus on internal
symmetries.
When type-A and type-B NGBs do coexist, and espe-

cially when there are NGBs of the same representation
under H, the metrics gð0Þ and ḡ may mix them and the
discussion of the dispersion becomes complicated. To
discuss the dispersion even in such a general situation,
here, we develop a perturbation theory for small ω.
Assuming that gð0Þ is positive and nonsingular, we

can always write it as gð0Þ ¼ Z2, with Z a symmetric,
positive, and nonsingular matrix. Substituting this expres-
sion into G, we have

G0 ≡ Z−1GZ−1 ¼ iΣωþ Z−1ḡð0ÞZ−1ω2 − k2; ð198Þ

where Σ ¼ Z−1σZ−1. Because Σ is still real and antisym-
metric, one can always find an orthogonal matrix O such
that

Σ¼OΛOT; Λ¼

0
BBBB@

iσyλ001

. .
.

iσyλ00m
O

1
CCCCA: ð199Þ

Here, λ00α > 0 for α ¼ 1;…; m ¼ ð1=2Þrankρ. Now,
detG ¼ 0 is equivalent to detG00 ¼ 0, where

G00 ≡OTG0O ¼ iΛωþ Ḡω2 − k2 ð200Þ

and Ḡ ¼ OTZ−1ḡð0ÞZ−1O.
We regard Oðω2Þ terms as a small perturbation.

Following the standard procedure for the degenerate
perturbation theory, we diagonalize the bottom right n ×
n (n≡ dimG − 2m) block of Ḡ:

EFFECTIVE LAGRANGIAN FOR NONRELATIVISTIC SYSTEMS PHYS. REV. X 4, 031057 (2014)

031057-17



Ḡ ¼

0
BBBBBBB@

� � � � � � � � � �
..
. � ..

. ..
. � ..

.

� � � � � � � � � �
� � � � � s1 0

..

. � ..
. . .

.

� � � � � 0 sn

1
CCCCCCCA
: ð201Þ

Asterisks stand for unknown elements. This diagonaliza-
tion is compatible with the above transformation of Σ,
since all relevant components of Λ vanish.
The upper left 2m × 2m block has a nonzero unperturbed

term that reads

λ00αωσy þ k2σ0 ¼ 0 ⇔ ωαðkÞ ¼
k2

λ00α
ð202Þ

for α ¼ 1;…; m. The off-diagonal component ωσy is
reminiscent of the presymplectic structure in Eq. (189).
Therefore, these modes with quadratic dispersion may still
be called type-B NGBs, although, strictly speaking, fields
describing these modes are, in general, a mixture of type-A
and type-B NG fields, according to the definition in
Sec. IVA.
On the other hand, in the bottom right n × n block,

where the zeroth-order term vanishes, the linear order
correction gives

sξω2 − k2 ¼ 0 ⇔ ωξðkÞ ¼ � kffiffiffiffisξp ð203Þ

for ξ ¼ 1;…; n. Because there is no presymplectic structure
in this block, these linear dispersions can be regarded as
type-A NGBs. Our ground state is stable only when all of
sξ > 0. Note that the mixing between upper and lower
blocks induces only negligible corrections of Oðω3Þ.
We have shown here that generically type-A NGBs have

a linear dispersion and type-B NGBs have a quadratic
dispersion. Therefore, the equality version of the Nielsen-
Chadha theorem is now proven.
When the Oð∇2Þ term of the effective Lagrangian is

somehow absent, type-A NGBs may have a quadratic
dispersion and type-BNGBs may have a quartic dispersion.
As explained above, that never happens for internal
symmetries, but there are examples of NGBs originated
from spacetime symmetries that lack the Oð∇2Þ term. See
Sec. VI A for more details.

VI. STABILITY OF THE SYMMETRY-BREAKING
GROUND STATE

In identifying the degrees of freedom and reading off
their dispersion relations, in previous sections, we used
the perturbation theory and studied the quadratic part of
the effective Lagrangian. One may be concerned that the
interactions may upset the conclusion. Namely, the

question is whether the cubic and higher terms can modify
the dynamics at long distances, which is equivalent to the
question about the stability of a long-range order.

A. Scaling of interactions among NGBs

Here, we examine the scaling law of the most relevant
interactions among NGBs to see the stability of the
symmetry-breaking ground state.
We start with the situation when there are only type-A

NGBs. In order to keep the free action

Z
ddxdt

�
ḡabð0Þ

2
_πa _πb − gabð0Þ

2
~∇πa · ~∇πb

�
ð204Þ

invariant, NG fields πa should transform as π0aðα~x; αtÞ ¼
αð1−dÞ=2πað~x; tÞ. In 1þ 1 dimensions, we should include
~gabð0Þ _πa∇xπ

b in the free action, but it does not change the
scaling law. Note again that the bðπÞ and ~bðπÞ terms do not
have the free part, and the ~caðπÞ term causes an instability
to a translational symmetry-broken phase, as discussed
before, and hence, we do not consider them here. The most
relevant interactions ddxdt∇2

t π
3 and ddxdt∇2

rπ
3 then scale

with αð1−dÞ=2. Therefore, if the spatial dimension d is
greater than 1, all interactions are irrelevant and the system
flows into the free fixed point. In this case, the symmetry-
breaking ground state is stable and one can understand the
property of the system via the standard perturbation theory.
On the other hand, when d ¼ 1, the interaction is marginal,
so that broken symmetries are restored and the low-energy
spectrum may get gapped.
This result is consistent with the Coleman theorem that

guarantees the absence of continuous symmetry breaking in
1þ 1 dimensions for the Lorentz-invariant case gab ¼ ḡab
[30]. Superfluids in 1þ 1 dimensions are in the Kosterlitz-
Thouless phase, which possesses only a quasi-long-range
order (power-law decay) and has a gapless density wave.
The S ¼ 1=2 antiferromagnetic chain also shows a quasi-
long-range order and supports gapless excitations called
des Cloizeaux-Pearson modes. These gapless excitations
are qualitatively different from free NGBs; rather, they can
be understood as Tomonaga-Luttinger liquids [46]. In
contrast, the S ¼ 1 antiferromagnetic chain is believed to
be in the Haldane phase and to be gapped.
We can easily extend our analysis for other types of

dispersion. Although spacetime symmetries are not the
main focus of the current paper, type-A NGBs that
originated from spontaneously broken spacetime sym-
metries sometimes have weird dispersions. In such a case,
the criteria we have derived for internal symmetries may be
violated. For example, in a rotating superfluid in 2þ 1
dimensions, a vortex lattice breaks the magnetic translation.
The NG bosons, the so-called Tkachenko mode, are
described by the effective Lagrangian
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Z
d2xdt

�
A
2
_φ2 − B

2
ð∇2φÞ2

�
: ð205Þ

Note that the term ð∇φÞ2 is prohibited by symmetry
transformation δφ ∝ ~x [32]. In this case, it is easy to see
that the dominant interaction is marginal, which destroys
the long-range phase correlation even at T ¼ 0 [47]. This
conclusion makes contrast with the usual superfluids or
crystals in 2þ 1 dimensions, which are stable at T ¼ 0.
Another example is a helical magnet. Because of the spin-
orbit coupling, the spin rotation must be accompanied by
the spatial one. The helical (spiral) order breaks some
combination of the rotation and translation. It turns out that
there is only one gapless mode [48], which is described by

Z
d3xdt

�
A
2
_φ2 − B

2
ð∇zφÞ2 − C

2
½ð∇2

x þ∇2
yÞφ�2

�
: ð206Þ

Again, the terms ð∇xφÞ2 and ð∇yφÞ2 are prohibited by
symmetry. As a result, the dispersion of the NGB is

anisotropic ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB=AÞk2z þ ðC=AÞðk2x þ k2yÞ2

q
, which is

an example of NGBs that cannot be classified as either type
I or type II, although it can be unambiguously classified as
type A. All interactions are irrelevant at T ¼ 0, but there are
marginal interactions at a finite temperature, despite the fact
that usually broken symmetries are stable at a finite
temperature in three dimensions.
Let us go back to the usual case z ¼ 1 and instead

consider a finite temperature. When T > 0, all imaginary-
time dependences drop out at a sufficiently long-distance
and low-energy scale, leaving only the n ¼ 0 component of
the Matsubara frequency. Then, the free part of the action is

just −T R
ddx½gabð0Þ=2� ~∇πa · ~∇πb and fields transform as

π0aðα~xÞ ¼ αð2−dÞ=2πað~xÞ. The most relevant interaction
ddx∇2z

r π
3 scales as αð2−dÞ=2, so that the stability condition

is given by d > 2, which is nothing but the Mermin-Wagner
theorem.
Next, we discuss the case where only type-B NGBs are

present. To keep the free action

Z
ddxdt

�
σab
2

_πaπb þ gabð0Þ
2

∇πa ·∇πb
�

ð207Þ

invariant, NG fields should obey the scaling law
π0aðα~x;α2tÞ¼α−d=2πað~x;tÞ. We could add ~gabð0Þ _πa∇xπ

b

in 1þ 1 dimensions, but it is clearly higher order in
derivatives. In this case, the most relevant interactions
ddxdt∇tπ

3 and ddxdt∇2
rπ

3 scale as α−d=2. Therefore, the
theory is essentially free in all dimensions, and hence,
broken symmetries can never be restored. This conclusion
might sound surprising for high-energy theorists, but
actually, it is a well-known fact in condensed-matter physics
[49]. We will come back to this point in Sec. VI C.

Type-A NGBs with a quadratic dispersion ω ∝ k2

(z ¼ 2) and type-B NGBs with the same dispersion have
a completely different effect on broken symmetries. The
former destroys the order parameter if d ≤ 2, while the
latter does not do anything if d > 0.
The discussion for a finite temperature for type-B NGBs

is identical to the type-A case, since all imaginary-time
dependences drop out. We summarize our result in Table I.

B. Fluctuation of order parameters

The stability of the symmetry-breaking ground state
can also be discussed by evaluating the quantum correc-
tion to the expectation value of order parameters. The
infrared divergence originated from gapless NGBs tends to
destroy the symmetry-breaking order parameters in lower
dimensions.
Again, assuming that the free theory is a good starting

point, we express the expectation value of order parameters
in terms of the free Green functions Gabðx − yÞ ¼
hTπaðxÞπbðyÞi. For example, the Noether charge density
j0i ð~x; tÞ plays the role of the order parameter for charges
Qa for which h½Qa; j0bðxÞ�i ≠ 0 for some b. The current
density j0i ð~x; tÞ in Eq. (184) can be expanded in terms of
NG fields as

j0i ¼ ekð0Þ
�
δki þ πbfbik þ

1

2
faijfjbkπaπb þOðπ3Þ

�

− ḡabð0Þ½ _πaδbi þ Cab
icdπ

c _πd þOð∇tπ
3Þ�; ð208Þ

where Cab
ρcd ¼ fcρaδbd for unbroken currents (i ¼ ρ) and

Cab
ecd ¼ fceaδbd þ ð1=2Þδaefcdb for broken currents (i ¼ e).

Therefore, the dominant contribution to the expectation
value is given by

hj0i i≃ ekð0Þ
�
δki þ

1

2
faijfjbkGabð0Þ þ � � �

�
: ð209Þ

For superfluids, ψð~x; tÞ≃ ffiffiffiffiffi
n0

p
eiθð~x;tÞ is the order param-

eter, and its expectation value with quantum fluctuation is

heiθð~x;tÞi ¼ e−ð1=2Þhθð~x;tÞ2i ¼ e−ð1=2ÞGð0Þ: ð210Þ

(Note that θ itself is not a good quantity to look at since
it does not have the assumed periodicity of 2π.) As one

TABLE I. The stability condition for the symmetry-breaking
ground state in d spatial dimensions, obtained by evaluating
the scaling law of interactions and the infrared divergence for
NGBs.

T ¼ 0 T > 0

Only type-A NGBs d > 1 d > 2
Only type-B NGBs d > 0 d > 2
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can see, we need jGab
0 ð~x ¼ 0; t ¼ 0Þj ≪ 1 in order for the

quantum correction to be small compared to the
classical value.
We can easily evaluate Gabð0Þ by scaling. When only

type-A NGBs appear, iðG−1
0 Þabð~k;ωÞ ¼ ḡabω2 − gabk2 and

Z
ddkdωGabð~k;ωÞ ∝

Z
Λ

0

dkkd−2; ð211Þ

T
X
n

Z
ddkGabð~k; iωnÞ ∝ T

Z
Λ

0

dkkd−3; ð212Þ

for T ¼ 0 and T > 0, respectively. Here, we have intro-
duced the ultraviolet cutoff Λ. Therefore, for the conver-
gence of the infrared contribution, we need d > 1 at zero
temperature and d > 2 at a finite temperature. Similarly,

when only type-B NGBs appear, iðG−1
0 Þabð~k;ωÞ ¼

−iσabω − gabk2 and

Z
ddkdωGabð~k;ωÞ ∝

Z
Λ

0

dkkd−1; ð213Þ

T
X
n

Z
ddkGabð~k; iωnÞ ∝ T

Z
Λ

0

dkkd−3: ð214Þ

Therefore, there is no infrared divergence, even at 1þ 1
dimensions at zero temperature. These results are con-
sistent with those summarized in Table I.
In Sec. IVA, we discussed the nonrenormalization

theorem of hj0i ð0Þi. However, Eqs. (209) and (213) may
appear to indicate that hj0i ð0Þi receives a finite correction
due to quantum fluctuations. Now, we show that it is not the
case by explicitly evaluating the magnetization of ferro-
magnets at the one-loop level. The effective Lagrangian
(183) for the coset G=H ¼ SOð3Þ=SOð2Þ reads

L ¼ i
2
e0ðz̄ _z− _̄zzÞ þ ḡ0 _̄z _z−g0 ~∇ z̄ · ~∇z ð215Þ

to the quadratic order in z ¼ ðπ1 þ iπ2Þ= ffiffiffi
2

p
. According to

Eq. (208), the magnetization including the fluctuation is
j0z ¼ e0 − e0z̄z − iḡ0ðz̄ _z− _̄zzÞ. Therefore,

hj0zi ¼ e0 −
X
n

Z
ddk
ð2πÞd

e0 þ 2ḡ0iωn

−e0iωn þ ḡ0ω2
n þ g0k2

: ð216Þ

We can perform the Matsubara summation using the
standard trick and find

hj0zi ¼ e0 − nðωÞ þ nðω0Þ; ð217Þ

where nðϵÞ ¼ ðeβϵ − 1Þ−1 is the Bose distribution function,

ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e20 þ 4g0ḡ0k2

p − e0
2ḡ0

¼ g0
e0

k2 þOðk4Þ ð218Þ

is the dispersion of the gapless Goldstone mode (magnon),
and

ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e20 þ 4g0ḡ0k2

p
þ e0

2ḡ0
¼ e0

ḡ0
þOðk2Þ ð219Þ

is the dispersion of the gapped mode. [The existence of
the gapped mode is questionable since this solution
balances the Oð∇tÞ term and the Oð∇2

t Þ term of the
effective Lagrangian. It is easily eliminated from calcu-
lation by taking the limit ḡ → 0.] Since nðωÞ ¼ nðω0Þ ¼ 0
at T ¼ 0, the one-loop correction to the expectation value
of the magnetization vanishes in the ground state. Clearly,
the finite-temperature correction is dominated by magnons
and is proportional to Td=2 at low temperature, which is
known as Bloch’s law [50].
So far, we have only considered the case where only one

type of NGB appears, since both of our above arguments
are essentially based on scaling. However, in general, type-
A and type-B NGBs can coexist. In such a case, there is no
field transformation that keeps all of the free parts invariant
unless type-A and type B NGBs are somehow completely
decoupled. When they interact, we have no choice but to
respect the scaling rule of the softer modes (type-B NGBs).
Then the free Lagrangian of type-A NGBs are not kept
invariant and their velocities diverge in the infrared limit.
In the next section, we present some arguments that can

be used in type-A and type-B coexisting cases.

C. Spontaneous symmetry breaking in 1þ 1 dimensions

The usual argument for ferromagnets in 1þ 1 dimen-
sions is as follows [49]. As the ferromagnetic order
parameter Sz commutes with the Hamiltonian H, one
can simultaneously diagonalize H and Sz and obtain
quantum many-body eigenstates jΨE;Mi labeled by the
eigenvalue of H and Sz. Since jΨE;Mi is an eigenstate,
there is no quantum fluctuation of order parameter
hΨE;MjS2z jΨE;Mi ¼ hΨE;MjSzjΨE;Mi2. From the transla-
tional invariance of the ground state, it follows that
hΨE;Mj½Sx; j0yð~x; tÞ�jΨE;Mi ¼ iM=Ω, whereΩ is the volume
of the system. As usual, applying the magnetic field −BzSz
to pick up a particular state, taking the large volume limit
first, and then switching off the field, one finds the
definition of symmetry breaking of Sx [h½Sx;j0yð~x;tÞ�i ¼
im≠0], with m the magnetization density.
This argument can be easily extended to the general case,

as long as the Cartan generators are not spontaneously
broken. As discussed above, only Cartan generators, which
commute with each other by definition, can have nonzero
expectation values. We can thus simultaneously diagonalize
all of them (except for the Abelian-invariant algebra of G
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that never plays the role of an order parameter) and the
Hamiltonian. This argument is an alternative proof of
the nonrenormalization theorem of the expectation value
of the current operator at T ¼ 0, discussed in Sec. IVA. (At
a finite temperature, we no longer use a pure quantum
eigenstate but take an ensemble over all states, and the
expectation value gets a finite-temperature correction.)
However, the simultaneous eigenstate of the Hamiltonian

and Cartan generators can never break those symmetries
generated by the Cartan generators themselves. Therefore,
this argument has to be modied when applied to, for
instance, a magnetic order that completely breaks the
SU(2) symmetry and has a ferromagnetic order hSzi, an
example of which in 1þ 1 dimensions is recently discussed
in Refs. [51,52]. Even for this case, we can still argue that the
ferromagnetic long-range order will not be completely
destroyed by quantum fluctuations. In order to break Sz,
one has to take a superposition of some simultaneous
eigenstates with different eigenvalues of Sz. In this super-
position, we do not have to include those with a positive and
a negative eigenvalues of Sz with the equal amplitude.
Therefore, the expectation value is generically nonzero,
unless dictated by the unbroken time-reversal symmetry etc.
In Ref. [53], it has been proved that continuous

symmetry breaking in 1þ 1 dimensions is possible only
when uniform susceptibilities of broken charges diverge.
Indeed, we can show the divergence of uniform suscep-
tibility whenever type-B NGBs appear. Equation (208) tells
us that the current-current correlation function of charges
associated with type-B NGBs is dominated by

hδj0að~x; tÞδj0bð0Þi ¼ ekð0Þelð0Þfcakfdblhπcð~x; tÞπdð0Þi:
ð220Þ

Therefore, the uniform susceptibility

χab ¼ lim
j~kj→0

½hδj0að~k; iωnÞδj0bð−~k;−iωnÞiωn¼0� ð221Þ

diverges due to poles of Green’s functions corresponding
to type-B NGBs.
In contrast, when type-B NGBs do not exist, all eið0Þ’s

in Eq. (208) vanish and the correlation function is
dominated by

hδj0að~x; tÞδj0bð0Þi ¼ ḡacð0Þḡbdð0Þh _πcð~x; tÞ _πdð0Þi: ð222Þ

Additional time derivatives cancel the divergence, and the
uniform susceptibility converges.
An example of continuous symmetry breaking at 1þ 1

dimensions, which supports both a linear and a quadratic
dispersion, is given by spinor Bose-Einstein condensates
[54–58]. The model is defined by

L ¼ i
2
ðψ† _ψ − c:c:Þ − ∇ψ† ·∇ψ

2m
− g
2
ðψ†ψ − n0Þ2: ð223Þ

Here, ψ ¼ ðψ1;ψ2ÞT is a two-component complex scalar
field and n0 ¼ N=L. (N is the number of bosons, and L is
the system size.) The dimensionless coupling constant is
given by γ ¼ mg=n0.
At the tree level (mean-field approximation), the system

exhibits a long-range order hψi ¼ ð0; vÞT and then the U(2)
symmetry (generated by Sx;y;z and Q) is spontaneously
broken into a U(1) symmetry (generated by Sz þQ). There
are two NGBs, a type-A NGB (sound wave) with a linear
dispersion ωphðkÞ ¼ ðn0=mÞ ffiffiffi

γ
p

k and a type-B NGB (spin
wave) with a quadratic dispersion ωSWðkÞ¼k2=2m as

j~kj → 0. However, the strong fluctuation caused by the
linear dispersion invalidates this simple analysis.
The ground state in this case cannot be an eigenstate of

Sz, because Sz is also broken. Instead, the ground state j0i
can be taken as an eigenstate of Sz þQ. From the tree level
result, it is natural to take the simultaneous eigenstate with
ðSz þQÞj0i ¼ 0. Then, in particular, hSz þQi ¼ 0 and
h½Sx; Sy�i ¼ ihSzi ¼ −ihQi ≠ 0, which imply the sponta-
neous breaking of Sx and Sy.
Surprisingly, there exists an exact solution of this model

based on the Bethe ansatz [55]. The solution exhibits the
ferromagnetic long-range order, showing the spontaneous
breaking of spin rotation. Correspondingly, there is a well-
defined spin-wave excitation with the dispersion ωSWðkÞ ¼
½1 − ð2 ffiffiffi

γ
p

=3πÞ þ � � ��ðk2=2mÞ in the weak-coupling limit
γ ≪ 1 and ωSWðkÞ¼½ð2π2=3γÞþ����ðk2=2mÞ in the strong-
coupling limit γ ≫ 1 [55].
On the other hand, the phase-phase correlation is not

truly long ranged. As a result, the sound wave should be
understood as a Tomonaga-Luttinger liquid rather than as a
type-A NGB [56–58].

VII. TOPOLOGY

In this section, we discuss the geometry behind the type-
B NGBs that do not appear in Lorentz-invariant theories.
There is an underlying geometrical foundation called a
presymplectic structure. Understanding the geometry of
NGBs turns out to be important for classifying a possible
division between type-A and type-B NGBs in the next
section.

A. Presymplectic structure

We have seen that the one-form c ¼ cadπa on the
cotangent space T�ðG=HÞ is, in general, not invariant
under G, while the two-form ω ¼ dc is [see Eq. (40)].
Therefore, we should focus on ω, which is a closed and
G-invariant two-form on G=H. If the antisymmetric
matrix ω ¼ ωabðπÞdπa ∧ dπb has a nonzero determinant
detωabðπÞ ≠ 0, it defines a symplectic structure on G=H.
The combination of a manifold and a nondegenerate closed
two-form ðM;ωÞ is called a symplectic manifold.
In physics terminology, it is nothing but a phase space
of a dynamical system with well-defined canonical

EFFECTIVE LAGRANGIAN FOR NONRELATIVISTIC SYSTEMS PHYS. REV. X 4, 031057 (2014)

031057-21



commutation relations among its coordinates given by
½πa; πb� ¼ iðω−1Þab. It is obvious that it requires G=H to
be even dimensional. If G=H is compact, its second
cohomology H2ðG=HÞ must be nontrivial. Note that many
coset spaces do not satisfy these requirements.
If ω is degenerate, namely, if detωab ¼ 0, it is called a

presymplectic structure, or partially symplectic, because
only a subset of the coordinates πa participates in the matrix
ωab. Recall that a symplectic structure on a manifold is
what defines the canonical commutation relation on a phase
space ½πa; πb� ¼ iðω−1Þab. If it is only partially symplectic,
ω−1 is singular. Then, the coset space G=H is partially a
phase space and partially a coordinate space. Only a subset
of the coordinates participates in the canonical conjugate
pairs, while the remainder does not. The former corre-
sponds to type-B NGBs, while the latter corresponds to
type A.
One crucial theorem from mathematics on the presym-

plectic structure was proven by Chu [59]: “If the second
dimension cohomology group H2ðgÞ of the Lie algebra g
for a connected Lie group G is trivial, then every left-
invariant closed two-form on G induces a symplectic
homogeneous space.” In our case, we have a presymplectic
form on G=H that can be pulled back to G. If G is
semisimple, H2ðgÞ is trivial (see Appendix A). Then, the
theorem states thatG can be projected down to a symplectic
homogeneous space G=U. Namely, there is the structure of
fibration, as shown in Fig. 1. For a nonsemisimple case,
however, there is a possibility of central extension that we
will discuss in Sec. VII C.

B. Compact semisimple case

It is important to ask the following question: What kinds
of coset space support a presymplectic structure? We have a
definite answer to this question when G is compact
semisimple.
As we have seen, cðπÞ ¼ eið0Þωi is completely specified

in terms of constants eið0Þ, where the generator Ti
commutes with the entire H [see Eq. (92)]. Therefore,
we can enlarge H to include all generators that commute
with Ti to define the subgroup U such that U†eið0ÞTiU ¼
eið0ÞTi inG. Mathematically, eið0ÞTi generates an Abelian

group T, which is called a torus. Then, U is called a
centralizer of the torus T in G. The following theorem
proven by Borel [60] is then useful: “Let G be compact
semisimple and U be the centralizer of a torus. Then, G=U
is homogeneous Kählerian and algebraic.” A torus T in
this context means an Abelian subgroup of G. Now, here
is a new theorem of our own that follows from Eq. (94):
The presymplectic structure is determined uniquely
with a Cartan element of the Lie algebra. Namely, once
eið0Þ is specified, we know the symplectic structure.
And, eið0Þ generates a torus. For instance, an SUðNÞ
group is simple and has many possible Abelian subgroups
T ¼ Uð1Þ;Uð1Þ2;…;Uð1ÞN−1. In general, a simple group
admits a torus up to Tmax ¼ Uð1Þr, where r is the rank of its
Lie algebra, called the maximal torus Tmax. An Abelian
subgroup is called a torus because it is a manifold of
coordinates with periodic boundary conditions for each,
just like the surface of a doughnut (a two-torus). A
centralizer U of a torus T is defined by the collection of
elements in G that commute with every element of T, i.e.,
U ¼ fu ∈ Gjutu−1 ¼ t;∀t ∈ Tg. For instance, for

T ¼ feidiagðα1;…;α1
z}|{n1

;α2;…;α2
z}|{n2

;…;αk;…;αk
z}|{nk

Þg;
where

P
k
i¼1 ni ¼ N and

P
k
i¼1 niαi ¼ 0 (traceless),

T¼Uð1Þk−1⊂SUðNÞ, and its centralizer is U ¼ Uð1Þk−1×Q
k
i¼1 SUðniÞ. Borel’s theorem then states that G=U¼

SUðNÞ=½Uð1Þk−1×Q
k
i¼1SUðniÞ� is Kähler. A Kähler mani-

fold always allows for a symplectic structure.
Therefore, this kind of a partially symplectic structure is

possible on the coset space by considering the following

fiber bundle F↪G=H→
π
B, where the base space B ¼ G=U

is symplectic. (Note that we use the boldface π here to
avoid a possible confusion with the NG field π.) The fiber

FIG. 1. Fibration responsible for the presymplectic structure.
U⊆G is the subgroup that commutes with all Cartan generators
Ti with nonvanishing eið0Þ. The base manifold B ¼ G=U is
symplectic, which describes the type-B NGBs, while the fiber
F ¼ U=H describes the type-A NGBs. The symplectic form ω on
B is pulled back to π�ω ¼ dc on G=H.

FIG. 2. Graphical representation of the fibration S1↪S3
π
→ S2,

where the projection π is the Hopf map. On each point
on S2, there is an S1 fiber where the type-A NGB can fluctuate.
The fiber on each point is shown with different colors. The type-B
NGBs fluctuate on S2. On the left, the entire S3 is shown using a
stereographic projection onto R3. S1 fibers are shown as circles,
and the collection of circles form the entire S3. Note that every
circle is intertwined with every other circle.
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is F ¼ U=H. The symplectic structure ω on B is pulled
back by the projection π as π�ω on the entire coset space
G=H. Since the closedness dω ¼ 0 on B implies the
closedness dðπ�ωÞ ¼ 0 on G=H, we can always find a
one-form c such that dc ¼ π�ω locally on G=H. Therefore,
what we see in the Lagrangian at the first order in the time
derivative is this pullback π�ω (further pulled back to
spacetime by π).
The simplest example to see this structure is the S3 ¼

Uð2Þ=Uð1Þ as an S1 fibration over S2, as shown in Fig. 2. In
this example, type-B NGBs live on the base space S2, while
the type-A NGB fluctuates along the S1 fibers.
The projection on a symplectic manifold makes sense

from a physics point of view. In the long-distance limit, the
modes with quadratic dispersion (typically, type B) have
much lower energies than those with linear dispersion
(typically, type A). Therefore, keeping only the type-B
modes, namely, those with canonically conjugate pairs,
would make sense in this limit. It corresponds to the
projection on the symplectic base manifold that describes
type-B NGBs while eliminating the fiber that describes
type-A NGBs.
The symplectic structure on B ¼ G=U is specified by

parameters eið0Þ. Going back to the example of
G=U ¼ SUðNÞ=½Uð1Þk−1 ×Q

k
i¼1 SUðniÞ�, using the exact

sequence of the homotopy groups, it is seen that
π2ðG=UÞ¼π1½Uð1Þk−1�=π1ðGÞ¼Zk−1, while the Hurewicz
theoremsays thatH2ðG=UÞ¼π2ðG=UÞwhen π1ðG=UÞ¼0.
In addition, because G=U is compact without a boundary,
H2

dR ¼ H2ðG=U;RÞ (de Rham theorem). Therefore, there
are k−1generators ofH2

dRðG=UÞ (ω1;ω2;…;ωk−1) that can
be used for the symplectic form ω ¼ P

k−1
i¼1 aiωi on G=U.

These numbers aiði¼ 1;…;k−1Þ specify ω¼ dc, and
hence, c ¼ cadπa in the Lagrangian. The number of ai is
precisely the same number of parameters as eið0Þ for this
coset space.
In general, dimH2

dRðG=UÞ is the same as the number of
U(1) factors in U when G is semisimple [i.e., no U(1)
factors in G]. Pulled back to G=H, the possibilities of
presymplectic structure correspond to the number NC of
Cartan generators in G that commute with H. We will use
this fact extensively when we present the classification of
possible presymplectic structures in the next section.
Note, however, that the linear combination ω ¼P
k−1
i¼1 aiωi may be degenerate for a certain choice of the

parameters ai. For instance, G=H ¼ SUð3Þ=Uð1Þ × Uð1Þ is
Kähler, has H2ðG=HÞ ¼ Z2, and supports a symplectic
structure. There are two linearly independent closed invari-
ant two-forms in Eq. (108): dω3 [Eq. (109)] and dω8

[Eq. (110)]. Note that ω3 and ω8 are not globally defined,
as they transform inhomogeneously under the group trans-
formations [see Eq. (76)]. Therefore, these two two-forms
are closed but not exact, generate H2

dR½SUð3Þ=Uð1Þ×Uð1Þ�,
and are candidates for the symplectic structure. Indeed,
dω3 ¼ dπ1 ∧ dπ2þð1=2Þðdπ4 ∧ dπ5−dπ6 ∧ dπ7ÞþOðπÞ3

and hence is nondegenerate. On the other hand, if we pick
dω8¼ð ffiffiffi

3
p

=2Þðdπ4∧dπ5þdπ6∧dπ7ÞþOðπÞ3, it does not
provide a canonical structure between π1 and π2, and hence,
it is degenerate. There is actually a larger symmetry
that preserves this choice because the torus is U(1)
generated by T8 and its centralizer is U(2). Then, it can
be projected down to SUð3Þ=Uð2Þ ¼ CP2, where the fiber is
Uð2Þ=Uð1Þ×Uð1Þ¼S2. This fibration is an example where
the fiber is not a group [61].

C. Case with central extensions

So far, we have assumed that G is compact semisimple.
If G is not semisimple, especially if it has more than one
U(1) factor, its second cohomology H2ðgÞ is nontrivial and
it allows for a central extension. See Appendix A for more
discussions on the central extension.
In this case,G=H may not necessarily be projected down

to a symplectic manifold. Considering G ¼ Uð1Þ3 and
H ¼ feg, for an example, parametrized by three angles,
T3 ¼ G=H ¼ fφa ∈ ½0; 2πÞja ¼ 1; 2; 3g is a three-torus.
We can introduce a presymplectic structure [59]

ω ¼ dφ1 ∧ ðdφ2 þ rdφ3Þ: ð224Þ
If r is a rational number r ¼ p=q for p and q relatively
prime, the orbit winds around T3 q times and closes on
itself. Then, there is a well-defined projection down to T2.
On the other hand, if r is an irrational number, there is no
well-defined projection because the orbit winds around T3

infinite times without closing on itself.
We suspect that such a pathological case would not arise

in physical systems. Yet, we do not have a concrete proof of
what goes wrong in such a case.

D. Quantization condition

The normalization of the presymplectic structure may be
quantized. All discussions above are, so far, concerned with
the invariance of the action up to a surface term. In classical
physics, the action itself does not have a physical meaning
while its variation leads to the equations of motion. In
quantum physics, however, the action itself goes into the
path integrals as eiS=ℏ, and hence, its value matters. Yet, a
change in the action by integer multiples of 2πℏ does not
change the path integral. Recall that we use the unit ℏ ¼ 1
in this paper, and henceforth, we drop ℏ in expressions.
When ω ¼ dc is closed but not exact, namely, an

element of H2
dRðG=HÞ, its coefficient is quantized.

Considering a time integral to be a periodic loop L1 on
G=H, the loop can be viewed as a boundary of a two-disk.
[Here, we assume π1ðG=HÞ ¼ 0, so that every loop on
G=H is contractible to a point.] However, nontrivial H2

dR
implies nontrivial H2, and hence, there are noncontractible
two-cycles on G=H. Namely, there are nontrivial closed
two-dimensional surfaces C2 in G=H. Then, C2 ¼ Cþ

2 ∪C−
2
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is a union of two surfaces that share the same boundary
L1 ¼ ∂Cþ

2 ¼ −∂C−
2 . The simplest example is C2 ≃ S2,

where L1 is the equator, Cþ
2 the northern hemisphere, and

C−
2 the southern hemisphere. For the action

S ∋
Z

ddx
Z
L1

c ð225Þ

to give a single-valued eiS, its ambiguity

ΔS ¼
Z

ddx
Z
Cþ
2

dc −
Z

ddx
Z
−C−

2

dc ¼
Z

ddx
Z
C2

dc

ð226Þ
must be quantized in units of 2π. This discussion is
the same as the one on Wess-Zumino-Witten terms in
Sec. III E 3.
When the system is finite Ω ¼ R

ddx < ∞, the quanti-
zation condition restricts the normalization of c. In
other words, Ωdc is an element of H2ðG=H;ZÞ rather
than H2

dRðG=HÞ ¼ H2ðG=H;RÞ.
The same consideration applies to central extensions.

When the target space is compact, the (pre)symplectic
form is quantized. For example, for Uð1Þ2 ¼
fðφ1;φ2Þjφi∈½0;2πÞg, Ωdc ¼ kð2πÞ−1dφ1 ∧ dφ2 with
k ∈ Z. On the other hand, when the target space is
noncompact, such as R2 ¼ C in the case of the free
Schrödinger field mentioned in Sec. III E and
Appendix C, the coefficient is not quantized.

VIII. CLASSIFICATION OF POSSIBLE
PRESYMPLECTIC STRUCTURES

As we have seen in Sec. VII, a presymplectic structure on
a coset space G=H is characterized by its fibration on a
symplectic base space B ¼ G=U with the fiber F ¼ U=H,
when G and H are compact semisimple. U ⊂ G is the
subgroup that commutes with generators with nonzero
eið0Þ. Since eið0Þ’s need to be invariant underH [Eq. (92)],
H ⊂ U. The base space describes type-B NGBs while the
fiber describes type-A NGBs. In this section, we show how
such structures can be completely classified.

A. Preliminary discussions

The number of type-A and type-B NGBs is given by the
counting rule in Eqs. (1) and (2). If the rank of ρ explores all
the possible integral values in the range

0 ≤ rankρ ≤ dimG=H; ð227Þ

the number of type-A and type-B NGBs can be any combi-
nations between ðnA;nBÞ¼ðdimG=H;0Þ and ð0;1

2
dimG=HÞ.

Indeed, in the case of Heisenberg magnets G=H ¼
SOð3Þ=SOð2Þ (dimG=H ¼ 2), antiferromagnets and ferro-
magnets, respectively, realize the case rankρ ¼ 0, 1.However,

in this section, we discuss that, in general, allowed values of
rankρ are strongly constrained.
In general, we can always choose the basis of generators

in such a way that only Cartan generators [62] of G that
commute with all generators of H may have a nonzero
expectation value hj0i ð~x; tÞi ≠ 0 [26], as we have discussed
in previous sections. Their expectation values specify eið0Þ,
and the corresponding generators generate the torus T.
Each nonzero expectation value of conserved charge
densities defines a presymplectic structure on G=H by
c ¼ −eið0Þωi [Eq. (94)]; namely, it makes NG fields
associated with broken generators Qa and Qb canonically
conjugate to each other, as discussed in Sec. VII
For a given G and H, let NC be the number of Cartan

generators of g that commute with h. Based on the above
considerations, we know that these generators are the
only ones that are allowed to have nonvanishing eið0Þ.
Therefore, there are NC parameters to specify the possible
presymplectic structure on G=H. This counting takes into
account only the connected component G0 of the identity,
and the discrete subgroup G=G0 might further restrict
allowed presymplectic structures.
Therefore, we first consider the case whenH is generated

by Cartan generators alone, so that all Cartan generators
commute with h to maximize NC.

B. Flag manifolds

To study the case of maximum NC for a given G, let us
consider the flag manifolds G=Uð1Þr, where NC ¼ r ≥ 1 is
the rank of the simple group G. We can systematically
enumerate all possibilities of presymplectic structures for
them. It turns out that this list allows us to also classify
possibilities for other G=H as well. In this sense, the
discussion here is the basis of all other cases. For
concreteness, we first discuss SUðnþ 1Þ=Uð1Þn.
A flag manifold is Kähler, thanks to the Borel theorem

[60], and is hence symplectic. Indeed, for SUðnþ 1Þ=
Uð1Þn, dimG=H ¼ nðnþ 1Þ is always even. Since all
Cartan generators of G remain unbroken, NC ¼ n, and
there are many presymplectic structures that can control the
number of type-A and type-B NGBs. The simplest case of
SUð3Þ=Uð1Þ2 with NC ¼ 2 is shown in Table II.
The two limiting cases can easily be understood.

Any symplectic manifold is endowed with an associated
symplectic two-form, which always realizes the case
rankρ ¼ dimG=H. (Unless discrete, the subgroup puts

TABLE II. Possible number of type-A and type-B NGBs for
SUð3Þ=Uð1Þ × Uð1Þ.
nA nB F ¼ U=H B ¼ G=U

6 0 SUð3Þ=Uð1Þ × Uð1Þ feg
2 2 SUð2Þ=Uð1Þ SUð3Þ=SUð2Þ × Uð1Þ
0 3 feg SUð3Þ=Uð1Þ × Uð1Þ
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out an obstacle.) Thus, we know that ðnA; nBÞ ¼ ð0; nðnþ
1Þ=2Þ is possible. Also, by setting all expectation values of
charge densities to be 0, one can realize the case where
rankρ ¼ 0, and hence, ðnA; nBÞ ¼ ðnðnþ 1Þ; 0Þ.
The question is whether it is possible to realize combi-

nations of ðnA; nBÞ between these two limiting cases.
Although there are NC ¼ n parameters to control, the
number of integers in the range Eq. (227) grows as n2,
so obviously, it is not possible to realize all of these values
for a large n. For example, there is a minimum value of
rankρ (except for 0), which is achieved by the presym-
plectic structure that appeared in the above discussion of
the SUðnþ 1Þ=UðnÞ ¼ CPn model. This presymplectic
structure gives rankρ ¼ n, and 0 < rankρ < n is
prohibited.
The case for simple classical groups is straightforward to

work out. The smallest possible H that makes G=H
symplectic is the flag manifold H ¼ Uð1Þr, where r is
the rank of G. All Cartan generators commute with Uð1Þr,
and hence, NC ¼ r. Therefore, this case allows for the
largest number of possible choices for U.
Because eið0Þ belong to the adjoint representation, the

corresponding generators Ti generate a torus T, and its
centralizer U is generated by all generators of g that leave
eið0Þ invariant. Such symmetry-breaking patterns have
been studied extensively in the literature (see, e.g.,
Ref. [63]).
For SUðnÞ groups, the possible form of eið0ÞTi is

eið0ÞTi ¼ diagðα1;…;α1
z}|{n1

;α2;…;α2
z}|{n2

;…;αk;…;αk
z}|{nk

Þ; ð228Þ

and the corresponding centralizer is

U¼Uð1Þk−1×
Y
k

SUðnkÞ; n¼
X
k

nk;
X
k

nkαk ¼ 0.

ð229Þ

In this expression, SU(1) counts as a trivial group.
For SOðnÞ groups, any element of the adjoint represen-

tation is an antisymmetric matrix that can be skew
diagonalized. Therefore, the possible form of eið0ÞTi is

eið0ÞTi ¼ diagð0;…; 0
z}|{m

; α1;…; α1
z}|{n1

;…; αk;…; αk
z}|{nk

Þ ⊗ iσ2;

ð230Þ

and we find the centralizer

U ¼ SOðmÞ ×
Y
k

UðnkÞ; n ¼ mþ 2
X
k

nk: ð231Þ

Finally, for SpðnÞ groups [we use the notation that the rank
is n for SpðnÞ], every element g ∈ SpðnÞ preserves

J ¼
�

0 −In
In 0

�
; gJgT ¼ J: ð232Þ

Therefore, the adjoint representation is a 2n × 2n matrix of
the form

S ¼
� A B

C −AT

�
; SJ þ JST ¼ 0: ð233Þ

Here, BT ¼ B and CT ¼ C are symmetric matrices. The
Cartan generators are given by the diagonal matrices in A
with B ¼ C ¼ 0 and therefore have the form
S ¼ Adiag ⊗ σ3. In general,

eið0ÞTi ¼ diagð0;…; 0
z}|{m

; α1;…; α1
z}|{n1

;…; αk;…; αk
z}|{nk

Þ ⊗ σ3;

ð234Þ

and we find

U ¼ SpðmÞ ×
Y
k

UðnkÞ; n ¼ mþ
X
k

nk: ð235Þ

The problem is basically listing up a partition of integers.
Once all possibilities U are listed, it is easy to count

nA ¼ dimU=H and nB ¼ dimG=U. We present all pos-
sible cases for rank-five groups in tables: SU(6) (Table III),
SO(10) (Table IV), and SO(11) and Sp(5) (Table V).
Looking at Table IV, one might think that U ¼ SOð6Þ ×

Uð1Þ2 and U ¼ Uð4Þ × Uð1Þ are the same because soð6Þ
and suð4Þ are identical Lie algebras. They are not. The
spectrum of the 14 type-B NGBs on SOð10Þ=½SOð6Þ×
Uð1Þ2�¼SOð10Þ=½SUð4Þ=Z2×Uð1Þ2� consists of 14¼6þ
6þ1þ1 under SO(6), while those on SOð10Þ=½Uð4Þ ×
Uð1Þ� ¼ SOð10Þ=f½SUð4Þ × Uð1Þ�=Z4 × Uð1Þg consist of
14 ¼ 4þ 4þ 6 under SU(4). The same comment applies
to SOð4Þ×Uð1Þ3 vs Uð2Þ2×Uð1Þ as soð4Þ ¼ suð2Þ⊕
suð2Þ. On SOð10Þ=½SOð4Þ × Uð1Þ3�, the type-B spectrum

TABLE III. Possible number of type-A and type-B NGBs for
SUð6Þ=Uð1Þ5.
nA nB U

30 0 feg
20 5 SUð5Þ × Uð1Þ
14 8 SUð4Þ × SUð2Þ × Uð1Þ
12 9 SUð4Þ × Uð1Þ2
12 9 SUð3Þ2 × Uð1Þ
8 11 SUð3Þ × SUð2Þ × Uð1Þ2
6 12 SUð3Þ × Uð1Þ3
6 12 SUð2Þ3 × Uð1Þ2
4 13 SUð2Þ2 × Uð1Þ3
2 14 SUð2Þ × Uð1Þ4
0 15 Uð1Þ5
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is 18¼4×3þ1×6 under SO(4), while for SOð10Þ=
½Uð2Þ2×Uð1Þ�, it is 18 ¼ ð2; 2Þ × 2þ ð2; 1Þ × 2þ ð1; 2Þ ×
2þ ð1; 1Þ × 2 under Uð2Þ × Uð2Þ. Therefore, one has to be
careful about not identifying local isomorphisms among
groups.
On the other hand, in the case of SO(n) with n even, it

can break to U ¼ SOð2Þ ×Q
kUðnkÞ. Turning eið0Þ for the

SO(2) generator would “break” it further to U(1) with no
difference in the group structure or representations of
NGBs. Namely, two cases are continuously connected
without an order parameter that distinguishes them.
Therefore, we can identify SO(2) and U(1) and we have
eliminated duplicates from Table IV.

Note that there is a duality between SpðnÞ and SOð2nþ1Þ
groups in each symmetry-breaking pattern because the
dimensions of the group match: ð1=2Þð2nþ1Þ2n¼nð2nþ
1Þ for SOð2nþ1Þ, and ð1=2Þ2nð2nþ1Þ¼nð2nþ1Þ for
SpðnÞ.
It should be possible to enumerate possibilities for

exceptional groups G2, F4, and E6;7;8 as well, but we do
not attempt it here.

C. General H

For more general G=H, we start with the list of possible
U for G=Uð1Þr and remove those that do not commute with
H. It gives all possible presymplectic structures. The number
of type-B NGBs is given by nB ¼ ð1=2Þ dimG=U, while
nA ¼ dimU=H. Let us discuss a few examples below.
For instance, one can consider SUð6Þ=SUð5Þ, whose

dimension is 35 − 24 ¼ 11. Note that SUð6Þ=SUð5Þ ¼
Uð6Þ=Uð5Þ ¼ S11, which is discussed in Sec. IX C.
Looking at the list in Table III, the only U that commutes
with SUð5Þ is in the top two. Therefore, there are two types
of presymplectic structures possible on SUð6Þ=SUð5Þ. If U
is trivial, all 11 are type-A NGBs. If U ¼ SUð5Þ × Uð1Þ,
B ¼ SUð6Þ=½SUð5Þ × Uð1Þ� ¼ CP5 and there are five
type-B NGBs for ð1=2Þ dimB ¼ 5. There is only one
type-A NGB.
If the same SU(6) is broken by an order parameter in a

rank-three antisymmetric tensor, the unbroken group is
H ¼ SUð3Þ × SUð3Þ. In this case, there is no U that
commutes with H except for the trivial one. Namely, this
coset space allows for no presymplectic structure, and
hence, nA ¼ 19 and nB ¼ 0. However, if one of the SU(3)
is further broken completely by order parameters in
fundamental representations (at least two of them), H ¼
SUð3Þ commutes with the first seven choices of U in
Table III, and there are accordingly seven possibilities
of ðnA; nBÞ.
This way, one can work out all possibilities of ðnA; nBÞ

for a given G and H if compact and simple. Then, we look
at discrete subgroups if G or H has more than one
connected component to further eliminate some possibil-
ities. It is also straightforward to study examples with
additional U(1) factors, paying attention to possible central
extensions.
This way, one can enumerate all possible presymplectic

structures for a givenG=H and write down the most general
effective Lagrangians using the explicit forms we found in
Sec. III.

IX. EXAMPLES

Having developed a complete classification of presym-
plectic structures, we revisit popular examples of coset
spaces in the literature and showwhat effective Lagrangians
are possible for them.

TABLE V. Possible number of type-A and type-B NGBs for
SOð11Þ=Uð1Þ5 and Spð5Þ=Uð1Þ5.
nA nB U ⊂ SOð11Þ U ⊂ Spð5Þ
50 0 feg feg
32 9 SOð9Þ × Uð1Þ Spð4Þ × Uð1Þ
20 15 SOð7Þ × Uð2Þ Spð3Þ × Uð2Þ
20 15 U(5) U(5)
18 16 SOð7Þ × Uð1Þ2 Spð3Þ × Uð1Þ2
14 18 SOð5Þ × Uð3Þ Spð2Þ × Uð3Þ
14 18 SOð3Þ × Uð4Þ Spð1Þ × Uð4Þ
12 19 Uð4Þ × Uð1Þ Uð4Þ × Uð1Þ
10 20 SOð5Þ × Uð2Þ × Uð1Þ Spð2Þ × Uð2Þ × Uð1Þ
8 21 SOð5Þ × Uð1Þ3 Spð2Þ × Uð1Þ3
8 21 SOð3Þ × Uð3Þ × Uð1Þ Spð1Þ × Uð3Þ × Uð1Þ
8 21 Uð3Þ × Uð2Þ Uð3Þ × Uð2Þ
6 22 SOð3Þ × Uð2Þ2 Spð1Þ × Uð2Þ2
6 22 Uð3Þ × Uð1Þ2 Uð3Þ × Uð1Þ2
4 23 SOð3Þ × Uð2Þ × Uð1Þ2 Spð1Þ × Uð2Þ × Uð1Þ2
4 23 Uð2Þ2 × Uð1Þ Uð2Þ2 × Uð1Þ
2 24 SOð3Þ × Uð1Þ4 Spð1Þ × Uð1Þ4
2 24 Uð2Þ × Uð1Þ3 Uð2Þ × Uð1Þ3
0 25 Uð1Þ5 Uð1Þ5

TABLE IV. Possible number of type-A and type-B NGBs for
SOð10Þ=Uð1Þ5.
nA nB U

40 0 feg
24 8 SOð8Þ × Uð1Þ
20 10 U(5)
14 13 SOð6Þ × Uð2Þ
12 14 SOð6Þ × Uð1Þ2
12 14 Uð4Þ × Uð1Þ
10 15 SOð4Þ × Uð3Þ
8 16 Uð3Þ × Uð2Þ
6 17 SOð4Þ × Uð2Þ × Uð1Þ
6 17 Uð3Þ × Uð1Þ2
4 18 SOð4Þ × Uð1Þ3
4 18 Uð2Þ2 × Uð1Þ
2 19 Uð2Þ × Uð1Þ3
0 30 Uð1Þ5
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A. Oðnþ 1Þ=OðnÞ ¼ Sn

For Oðnþ 1Þ=OðnÞ ¼ Sn, SOðnþ 1Þ=SOðnÞ ¼ Sn, and
Oðnþ 1Þ=½OðnÞ × Z2� ¼ RPn, there is no possible pre-
symplectic structure for n ≥ 3. As seen in Tables IV and V,
there is no nontrivial U that commutes with the SOðnÞ
subgroupwithin SOðnþ 1Þ, and hence,NC ¼ 0. Therefore,
we can only have n type-A NGBs. The most general
Lagrangian is hence

Leff ¼
1

2
ḡ0 _ni _ni − 1

2
g0 ~∇ni · ~∇ni ð236Þ

up to the second order in derivatives, where ~n is a normalized
ðnþ 1Þ-component vector.
When n ¼ 2, all of these examples have NC ¼ 1 and the

coset SOð3Þ=SOð2Þ ¼ S2 indeed describes both ferro- and
antiferromagnets. However, for Oð3Þ=Oð2Þ ¼ S2, there is
no presymplectic structure that is consistent with the
discrete subgroup fþ1;−1g, at least when we realize it
as an internal symmetry. To see this point, let us para-
metrize the coset S2 by the spherical coordinate ðθ;ϕÞ. The
candidate of a one-form that is associated with the would-
be symplectic structure is cos θ _ϕ, but it changes sign under
−1: θ → π − θ and ϕ → ϕþ π unless the discrete sym-
metry incorporates with the time reversal t → −t. The coset
Oð3Þ=½Oð2Þ × Z2� ¼ RP2 can be discussed in a similar
fashion, but since RP2 is not even orientable, there is
obviously no symplectic structure that is consistent with the
global topology of G=H.

B. SUðnþ 1Þ=UðnÞ ¼ CPn

The CPn (n ≥ 1) model is a natural generalization of
ferromagnets based on S2¼CP1. For G=H ¼ SUðnþ 1Þ=
UðnÞ ¼ CPn, NC ¼ 1 because there is a unique Cartan
generator diagðn;−1;…;−1Þ that commutes withH¼UðnÞ.
Therefore, there is a unique symplectic structure on G=H
(up to an overall normalization). The effective Lagrangian
can be most conveniently expressed in terms of an n-
component complex field zð~x; tÞ ∈ Cn, and the most
general effective Lagrangian to the quadratic order in
derivatives is given by

Leff ¼ is0
z† _z− _z†z
1þz†z

þGabðḡ0 _̄za _zb−g0 ~∇z̄a · ~∇zbÞ; ð237Þ

where

Gabðz̄; zÞ ¼
δabð1þ z̄zÞ − z̄bza

ð1þ z̄zÞ2 ð238Þ

is the Fubini-Study metric on CPn [37,38]. In 2þ 1
dimensions, we can add a topological term (θ term)
ði=2πÞGabðz̄; zÞϵij∂iz̄a∂jzb. The n ¼ 1 case is identical
to ferromagnets (recall that CP1 ¼ S2). The coefficient of
the first term s0 is the charge density of the ground state

hj0ρ0ðxÞi, where ρ0 is the U(1) part of the unbroken
subgroup H ¼ UðnÞ. This term s0Ω must be quantized
to a half-integer, where Ω is the volume of the system, as
discussed in Sec. VII D. When s0 ≠ 0, the system resem-
bles ferromagnets: The real and imaginary parts of za

become canonically conjugate to each other, and there are n
type-B NGBs. On the other hand, when s0 ¼ 0, the ground
state is antiferromagnetic and there are 2n type-A
NGBs. Other possibilities ðnA;nBÞ¼ð2;n−1Þ;ð4;n−2Þ;…;
ð2n−2;1Þ cannot be realized.

C. Uðnþ 1Þ=UðnÞ ¼ S2nþ1

Uðnþ 1Þ=UðnÞ ¼ S2nþ1 (n ≥ 1) is topologically the
same as SOð2nþ 2Þ=SOð2nþ 1Þ, yet its field theory is
very different because NC ¼ 1 for the generator
diagðn;−1;…;−1Þ. It is closely related to the CPn model

since it admits a fibration S1↪S2nþ1→
π
CPn, where type-B

NGBs live on the base manifold CPn and a type-A NGB is
in the fiber S1. Therefore, there are only two possibilities
ðnA; nBÞ ¼ ð1; nÞ and ð2nþ 1; 0Þ, which is expected from
NC ¼ 1. The case n ¼ 1 of this model describes the physics
of Kaon condensation [13,14]. The generalization to n ≥ 1
is discussed in Ref. [64].
As a concrete example, let us consider a Uðnþ 1Þ-

symmetric Schrödinger field

L ¼ iψ† _ψ − 1

2m
~∇ψ† · ~∇ψ − λ

2
ðψ†ψ − n0Þ2; ð239Þ

where ψðxÞ is a complex (nþ 1)-dimensional column
vector. A similar model was discussed in Refs. [13,14].
At the tree level, it has the vacuum

hψi ¼ ffiffiffiffiffi
n0

p ð1; 0;…; 0ÞT: ð240Þ

In this case, the original Uðnþ 1Þ symmetry is broken to
UðnÞ symmetry. The coset space Uðnþ 1Þ=UðnÞ ¼ S2nþ1

does not admit a symplectic structure.
Therefore, we have to carefully parametrize the coset

space. Since Uðnþ 1Þ=½UðnÞ × Uð1Þ� ≅ CPn, which does
admit a symplectic structure, we view S2nþ1 as a Uð1Þ
bundle on CPn. The symplectic two-form lives on CPn. We
parametrize the field ψðxÞ as

ψ ¼ ffiffiffi
n

p e−iθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z†z

p
�
1

z

�
; ð241Þ

where zðxÞ is an n-dimensional column vector. Substituting
the above parametrization, we find
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Leff ¼ n0

�
_θ þ i

2

z† _z − _z†z
1þ z†z

�
− 1

2λ

�
_θ þ i

2

z† _z − _z†z
1þ z†z

�
2

−
n0
2m

�
~∇θ þ i

2

z† ~∇z − ~∇z†z
1þ z†z

�2

−
n0
2m

� ~∇z† ~∇z
1þ z†z

− ð ~∇z†zÞðz† ~∇zÞ
ð1þ z†zÞ2

�
þ � � � : ð242Þ

The second term arises from integrating out n at the tree

level and looks the same as the terms Oð ~∇2Þ, except for the
overall normalization because of the irreducible nature of θ
and zi under H ¼ UðnÞ.
The terms in the last parentheses above are nothing but

the Fubini-Study metric on CPn, which is Kähler. On the
other hand, the first term defines a one-form

c ¼ i
z†dz − dz†z
1þ z†z

; ð243Þ

while its exterior derivative

dc ¼ i
ð1þ z†zÞdz† ∧ dz − ðdz†zÞ ∧ ðz†dzÞ

ð1þ z†zÞ2 ð244Þ

is the Kähler form onCPn associated with the Fubini-Study
metric. The coordinate θ represents the U(1), which is
orthogonal to the tangent vectors of CPn.
In Sec. X, we derive the effective Lagrangian for n ¼ 1

based purely on the Galilean symmetry and the U(2)
internal symmetry. We should be able to rewrite the
Lagrangian (242) in terms of the Galilean-covariant
derivatives

Dtθ ¼ _θ − ð ~∇θÞ2
2m

; ð245Þ

Dtz ¼ _z − ~∇θ · ~∇z
m

; ~Dz ¼ ~∇z; ð246Þ

neglecting higher-order derivatives. Comparing Eq. (239)
with Eq. (291), we notice that the Lagrangian lacks the term
that contains Dtz†Dtz. In general, if we start from a
particular microscopic model and work only at tree levels,
the effective Lagrangian may not include all possible terms
allowed by symmetries. Missing terms are often generated
by higher corrections [65].

X. GALILEAN INVARIANCE

So far, our discussions have focused on the spontaneous
breaking of internal symmetries. However, in many inter-
esting physical systems, spacetime symmetries are also
spontaneously broken. For the sake of the clarity of our
discussions, we restrict ourselves to translationally and
rotationally invariant systems in this paper. Therefore, we

discuss spontaneously broken Galilean invariance as an
illustrative example in this section. We demonstrate how
spacetime symmetries can be discussed within our effective
Lagrangian formalism and see how they provide additional
constraints on the parameters in the theory. The so-called
inverse Higgs mechanism provides a heuristic method to
show how would-be NGB degrees of freedom can be
consistently removed from the physical spectrum in accor-
dance with observations. This method was discussed
mostly in Lorentz-invariant systems, and our presentation
here shows how it can be successfully extended to Lorentz-
noninvariant systems.
It has recently been argued [66] that some classes of

Galilean-invariant theories can be promoted to be non-
relativistic general-coordinate invariant, by introducing the
spatial metric gijð~x; tÞ and the U(1) gauge field and by
assigning their nontrivial transformation rule. The Galilean
symmetry itself is global in the sense that the velocity
parameter in ~x0 ¼ ~xþ ~vt is a constant, but the nonrelativ-
istic general-coordinate invariance allows a more general
local transformation ~x0ð~x; tÞ with arbitrary time dependence
(but still, t0 ¼ t). Such an extended symmetry strongly
restricts the response of the system to external fields.
Our discussion below should be useful to systematically
produce general-coordinate-invariant combinations.

A. Coset construction with spacetime symmetries

In condensed-matter physics, superfluid helium and
various types of Bose-Einstein condensates often sponta-
neously break the Galilean symmetry as well as the U(1)
phase rotation. In such a situation, one has to make sure that
the effective Lagrangian has the Galilean symmetry.
Here, we discuss how to incorporate spacetime sym-

metries in our effective Lagrangian. Spacetime symmetries
are those which change coordinates xμ ¼ ðt; ~xÞ in addition
to the fields. For example, the transformation rule of the
superfluid phase under the Galilean transformation is

~x0 ¼ ~xþ ~v0t; t0 ¼ t; ð247Þ

θ0ð~x0; t0Þ ¼ θð~x; tÞ −m~v0 · ~x −mv20
2

t; ð248Þ

for a constant vector ~v0 ∈ R3. Since ~x changes, Galilean
symmetry is a spacetime symmetry.
For simplicity, here, we discuss the situation where the

spacetime translation Pμ ¼ ðH;−~PÞ is not broken, and
unbroken generators Qρ are internal symmetries, while
broken generators Qa may contain spacetime symmetries
such as the Galilean boost generator.
Following Ref. [67], we use

Uðx; πðxÞÞ ¼ eix
μPμeiπ

aðxÞQa ð249Þ

to define the Maurer-Cartan form ω:
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ωðx; πðxÞÞ ¼ −iU†dU

¼ eμPμ þ ω⊥ þ ω∥: ð250Þ

Again, ω⊥ ¼ ωaQa is the broken part and ω∥ ¼ ωρQρ is
the unbroken part. eμ ¼ eμνdxν is called a vielbein, and
Gμν ≡ ηρσe

ρ
μeσν gives a spacetime metric that transforms

nicely. Especially, the spacetime-invariant volume form is
given by ddxdt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detGjp
.

The symmetry transformation of x and πðxÞ under the
action of g is defined by [see Eq. (68)]

gUðx; πðxÞÞ ¼ Uðx0; π0ðx0ÞÞhgðx; πðxÞÞ: ð251Þ
Since Pμ is unbroken, one may be confused by the eix

μPμ

factor of U, but, thanks to this factor, we can realize the
spacetime symmetry in this way. Analogously to Eqs. (75)
and (76), we have

eμðx0; π0ðx0ÞÞ ¼ eμðx; πðxÞÞ; ð252Þ

ω⊥ðx0; π0ðx0ÞÞ ¼ hgω⊥ðx; πðxÞÞh†g; ð253Þ

ω∥ðx0; π0ðx0ÞÞ ¼ hgω∥ðx; πðxÞÞh†g − ihgdh
†
g: ð254Þ

Here, we have used the assumption that unbroken gen-
erators are internal.
Let us first discuss the broken part of the Maurer-Cartan

form. We define the spacetime-covariant derivative Dμπ
a

through

eμDμπ
a ¼ ωa: ð255Þ

According to Eq. (253), it indeed transforms covariantly:

ðDμπ
aÞ0Qa ¼ hgðDμπ

aQaÞh†g; ð256Þ

thanks to the covariance of the vielbein eμðx; πðxÞÞ [see
Eq. (252)]. If we had defined the covariant derivative by

dxμ ~Dμπ
a ¼ ωa ð257Þ

instead of Eq. (255), ~Dμπ
a would not transform covariantly,

since dxμ is not covariant; i.e., dx0μ ≠ dxμ.
For the same reason, the unbroken part ∂μπ

aωρ
a does not

transform covariantly. From Eq. (254), we have

ð∂μπ
aωρ

aÞ0Qρ ¼
∂xν
∂x0μ ½hgð∂νπ

aωρ
aQρÞh†g − ihg∂νh

†
g�:
ð258Þ

If the factor ∂xν=∂x0μ were absent, as in the case for internal
symmetries, the unbroken part would transform covariantly
up to the inhomogeneous term −ihg∂νh

†
g, which may be

just a total derivative. In such a case, the unbroken part can
be added to the effective Lagrangian, as discussed in

Sec. III D. However, nontrivial ∂xν=∂x0μ poses an obstacle,
as we shall see shortly.
Covariant derivatives in Eq. (255) are the building

blocks of the effective Lagrangian. The case considered
in Sec. III, where only internal symmetries are broken, can
be understood as the spatial case of eμðx; πðxÞÞ ¼ dxμ. In
the following, we will demonstrate what we have said here
using a concrete example.

B. Example

In this section, we discuss the effective Lagrangian for
the microscopic model

L ¼ i
2
ðψ† _ψ − c:c:Þ − ~∇ψ† · ~∇ψ

2m
− g
2
ðψ†ψ − n0Þ2: ð259Þ

This model can be seen as the nonrelativistic version
of the model for the Kaon condensation discussed in
Refs. [13,14]. Here, ψ ¼ ðψ1;ψ2ÞT is a two-component
complex scalar field. The ground-state expectation value
hψi ¼ ffiffiffiffiffi

n0
p ð0; 1ÞT breaks the U(2) symmetry down to U(1)

symmetry. Broken-symmetry generators are σ1, σ2, and
σ3 − σ0, where σ1;2;3 are Pauli matrices and σ0 is the
identity matrix.
The Lagrangian (259) possesses the Galilean symmetry

~x0 ¼ ~xþ ~v0t; t0 ¼ t; ð260Þ

ψ 0ð~x0; t0Þ ¼ em~v0·~xþð1=2Þmv2
0
tψð~x; tÞ; ð261Þ

in addition to the internal U(2) symmetry. The low-energy
effective Lagrangian must respect it.
Note that our discussion below is solely based on the

internal U(2) symmetry and the Galilean symmetry, so that
it applies to any microscopic Lagrangians as long as they
respect these symmetries and show the same symmetry-
breaking pattern.

1. Without Galilean symmetry

Before going into the detailed discussion on the conse-
quences of Galilean invariance, let us first review what we
developed in Sec. III without paying attention to the
Galilean symmetry for comparison. We parametrize the
coset as

U ¼ eiπ
aTa ¼ ei½π1σ1þπ2σ2þθðσ3−σ0Þ�: ð262Þ

We compute the Maurer-Cartan form

ω≡−iU†dU

≡ ω0ðσ3 þ σ0Þ þ ½ω1σ1 þ ω2σ2 þ ω3ðσ3 − σ0Þ�: ð263Þ

Then, ωi
a’s defined by ω ¼ dπaωi

aTi are building blocks of
the effective Lagrangian, as explained in Sec. III. To the
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quadratic order in derivatives, the most general form of the
effective Lagrangian for this symmetry-breaking pattern is

Leff ¼ −e3ð0Þω̄3 − e0ð0Þω̄0

þ ḡ11ð0Þ
2

ðω̄1ω̄1 þ ω̄2ω̄2Þ− g11ð0Þ
2

ð~ω1 · ~ω1 þ ~ω2 · ~ω2Þ

þ ḡ33ð0Þ
2

ω̄3ω̄3 − g33ð0Þ
2

~ω3 · ~ω3; ð264Þ

where we use the notation introduced in Sec. III D; namely,

ω̄i ¼ ωi
a _π

a and ~ωi ¼ ωi
a
~∇πa. There are six parameters in

this Lagrangian. We will see soon that the Galilean
invariance reduces them to four.
There is a trick to easily compute the Maurer-Cartan

form ω for this example. We decompose U into the product
U ¼ U0U1, where U0 ¼ e−iθσ0 and

U1 ¼ eiπ
aσa ¼ σ0 cos ρþ

i
ρ
πaσa sin ρ ð265Þ

with the constraint π3 ¼ θ. Here, a ¼ 1, 2, 3 and
ρ≡ ffiffiffiffiffiffiffiffiffiffi

πaπa
p

. Using the property of Pauli matrices, the
Maurer-Cartan form for U0 and U1

−iU†
0dU0 ≡ σ0Ω0; ð266Þ

−iU†
1dU1 ≡ σ1Ω1 þ σ2Ω2 þ σ3Ω3 ð267Þ

can easily be evaluated as

Ω0 ¼ −dθ; ð268Þ

Ωa ¼ dπb
��

δab − πaπb

ρ2

�
sin 2ρ
2ρ

þ πaπb

ρ2
− ϵabcπc

�
sin ρ
ρ

�
2
�
: ð269Þ

The full Maurer-Cartan form ω ¼ −iU†
0dU0 − iU†

1dU1

is given by

ω1 ¼ Ω1; ω2 ¼ Ω2; ð270Þ

ω0 ¼ Ω3 þ Ω0

2
; ω3 ¼ Ω3 −Ω0

2
: ð271Þ

2. With Galilean symmetry

To implement the Galilean symmetry, we introduce the
boost operator ~B as well as the spacetime translation
Pμ ¼ ðH;−~PÞ. Their nonzero commutation relations are

½Qa;Qb� ¼ 2iϵabcQc and ½~B;H� ¼ −i~P, and ½Bi; Pj� ¼
−imQδij is centrally extended (see Appendix A). Q1,

Q2, Q3 −Q, and ~B are spontaneously broken. The

unbroken generator QþQ3 is internal, so that the
assumption in the previous section is fulfilled. Therefore,
we use

~U ¼ eix
μPμeiπ

að~x;tÞQa−iθð~x;tÞQ−i~vð~x;tÞ·~B: ð272Þ

Here, we introduce a new vector field ~vð~x; tÞ that does not
describe any physical modes and will be eliminated later in
favor of real NG fields π1, π2, and π3 ≡ θ.
The Maurer-Cartan form ~ω ¼ −i ~U†d ~U is given by

~ω ¼ ~ω0ðQ3 þQÞ þ ½ω1Q1 þ ω2Q2 þ ~ω3ðQ3 −QÞ�
þ eμPμ − ~B · d~v; ð273Þ

where ω0;1;2;3 stands for those defined in Eq. (263):

~ω0 ¼ ω0 þ 1

2

�
mv2

2
dt −m~v · d~x

�
; ð274Þ

~ω3 ¼ ω3 − 1

2

�
mv2

2
dt −m~v · d~x

�
; ð275Þ

and

e0ð~x; tÞ ¼ dt; ~eð~x; tÞ ¼ d~x − ~vð~x; tÞdt: ð276Þ

~e is indeed covariant:

~e0ð~x0; t0Þ ¼ dð~xþ ~v0tÞ − ½~vð~x; tÞ þ ~v0�dt
¼ d~x − ~vð~x; tÞdt ¼ ~eð~x; tÞ: ð277Þ

In this case, detG is trivial and ddxdt, by itself, is an
invariant volume form.
Following the definition in Eq. (255), covariant deriv-

atives are given by

~Dπ1 ¼ ~ω1; ð278Þ

~Dπ2 ¼ ~ω2; ð279Þ

~Dπ3 ¼ ~ω3 þm~v
2

; ð280Þ

Dtπ
1 ¼ ω̄1 þ ~v · ~Dπ1; ð281Þ

Dtπ
2 ¼ ω̄2 þ ~v · ~Dπ2; ð282Þ

Dtπ
3 ¼ ω̄3 −mv2

4
þ ~v · ~Dπ3: ð283Þ

Let us now focus on ~Dπ3. It contains a linear term of ~v
without derivatives. Thus, we can impose a covariant

constraint ~Dπ3 ¼ 0, so called the inverse Higgs constraint
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[67], to eliminate the unphysical field ~v in terms of true
NG fields

~v ¼ − 2~ω3

m
: ð284Þ

This constraint is a heuristic way to get rid of unphysical
fields in the coset construction with spacetime symmetries.
See Refs. [34,68,69] for more details.
After imposing this constraint, covariant derivatives

become

~Dπ1 ¼ ~ω1; ð285Þ

~Dπ2 ¼ ~ω2; ð286Þ

Dtπ
1 ¼ ω̄1 − 2

m
~ω3 · ~Dπ1; ð287Þ

Dtπ
2 ¼ ω̄2 − 2

m
~ω3 · ~Dπ2; ð288Þ

Dtπ
3 ¼ ω̄3 − 1

m
~ω3 · ~ω3: ð289Þ

Combinations in Eqs. (285)–(289) are the Galilean-
covariant building blocks of the effective Lagrangian.
For the usual superfluid, the inverse Higgs constraint is

~Dθ ¼ ~∇θ þm~v ¼ 0 and the combination in Eq. (289)

corresponds to Dtθ ¼ _θ − ð ~∇θÞ2=2m. Quantities in
Eqs. (287) and (288) correspond to the second term in
Eq. (12) of Ref. [70] for supersolids.
According to Eq. (258), ω̄0 ¼ ω0

a _π
a transforms as

ðω̄0Þ0ð~xþ ~v0t; tÞ¼ ω̄0ð~x;tÞþ ~v0 · ~ω0ð~x;tÞþð∇tþ ~v0 · ~∇ÞΛ
ð290Þ

for some Λ. Therefore, the change of ω̄0 is more than a
surface term and it cannot be added to the effective
Lagrangian.
In summary, the most general form of the effective

Lagrangian that respects the Galilean symmetry is

Leff ¼ −e3ð0ÞDtπ
3

þ ḡ11ð0Þ
2

½ðDtπ
1Þ2 þ ðDtπ

2Þ2� þ ḡ33ð0Þ
2

ðDtπ
3Þ2

−
g11ð0Þ
2

ð ~Dπ1 · ~Dπ1 þ ~Dπ2 · ~Dπ2Þ; ð291Þ

which now contains only four parameters. Compared to
Eq. (264), we have two restrictions:

e0ð0Þ ¼ 0; g33ð0Þ ¼ − 2e3ð0Þ
m

ð> 0Þ: ð292Þ

Since e0ð0Þ represents the classical expectation value of
ðQ3 þQÞ=Ω, the spin must be fully polarized and
e3ð0Þ ¼ ðQ3 −QÞ=Ω ¼ −2n < 0, where n is the number
density of the particles. This conclusion is consistent with
the rigorous result in Ref. [54].
Galilean-invariant combinations contain mixed powers

of derivatives, and one can drop higher-order-derivative
terms, as it does not affect the physics to the aimed order of
the derivative expansion.
One may think that introducing the unphysical field

~vð~x; tÞ first and eliminating it by imposing a covariant
condition is just a complicated and useless way of
deriving the effective Lagrangian. However, as we have
demonstrated here, it is actually a convenient way to
systematically generate terms with proper spacetime
symmetries.
Finally, let us discuss the power counting of the

derivative expansion. In this paper, we assign πa ¼ Oð1Þ
so that ∇μπ

a ¼ OðkμÞ and expand the Lagrangian in the
series of derivatives. However, Refs. [66,70] introduced an
alternative way of power counting, which assigns
∇μπ

a ¼ Oð1Þ, provided that the Lagrangian does not
depend on πa without derivatives. In this power-counting
method, the lowest-order term is the sum of all invariant
combinations with one derivative per field. This counting
has an advantage that it can deal with the situation with
large fluctuation πa ¼ Oðk−1Þ from the ground state, but it
works only for Abelian groups G; otherwise, the effective
Lagrangian depends on fields without derivative, as one can
see from the example discussed in this section.

XI. CONCLUSION

In this paper, we derived the explicit form of the most
general nonrelativistic Lagrangian of NGBs in terms of
Maurer-Cartan form, which must be quite useful to system-
atically discuss quantum corrections. By using the free
part of the effective Lagrangian, we proved the counting rule
of NGBs and clarified the dispersion relation of NGBs for a
general setup. We also completely classified possible
numbers of type-A and type-B NGBs for a given choice
of G=H.
To discuss additional constraints on the effective

Lagrangian from spacetime symmetries, we showed explic-
itly the consequence of Galilean invariance. In addition, we
presented an intuitive interpretation of the presymplectic
structure as Berry’s phase of the ground state.
Having derived the most general effective Lagrangian,

we could develop simple scaling arguments and show why
a long-range order is stable in 1þ 1d when only type-B
NGBs are present, while the stability requires 2þ 1d and
above for type-A NGBs. It remains an interesting question
whether there is a general rule of thumb when both types of
NGBs coexist.

EFFECTIVE LAGRANGIAN FOR NONRELATIVISTIC SYSTEMS PHYS. REV. X 4, 031057 (2014)

031057-31



ACKNOWLEDGMENTS

We thank Tomáš Brauner, Sergej Moroz, Tsutomu
Momoi, Akira Furusaki, and Yoshimasa Hidaka for fruitful
discussions and Aron Beekman for informing us of the
confusion on the time-reversal symmetry. We are especially
indebted to Alan Weinstein, who helped us understand the
mathematical foundations. We came up with the interpre-
tation of the linear derivative term as the Berry phase in the
discussion with Huan-Hang Chi. We thank Tomáš Brauner
for letting us know that the b and ~b terms can be cast in
simple forms in Eqs. (60) and (61). H.W. appreciates
financial support from the Honjo International Scholarship
Foundation. The work of H. M. was supported by the U.S.
DOE under Contract No. DE-AC03-76SF00098, by the
NSF under Grants No. PHY-1002399 and No. PHY-
1316783, by the JSPS Grant No. (C) 23540289, and by
WPI, MEXT, Japan.

APPENDIX A: LIE-ALGEBRA COHOMOLOGY

The cohomology of Lie algebra was introduced by
Chevalley and Eilenberg [71] as a way to compute the de
Rham cohomology of compact connected Lie groups using
their Lie algebras. On the other hand, most physics literature
is more familiar with de Rham cohomology. We use
the work by Chevalley and Eilenberg backward to describe
Lie-algebra cohomology using de Rham cohomology.
The existence of a central extension of a Lie algebra g is

determined by its second cohomology H2ðgÞ. The question
relevant to us is whether a central extension

½Ti; Tj� ¼ ifijkTk þ izij; ðA1Þ

where zij is the center (an element that commutes with the
rest of g), is possible for a given Lie algebra. Then, the
question is whether it is consistent with the Jacobi identity

fTi; ½Tj; Tk�g þ fTj; ½Tk; Ti�g þ fTk; ½Ti; Tj�g ¼ 0:

ðA2Þ
A form on a Lie algebra ωk ∈ ΩkðgÞ is a map from ∧k g

to R

ωkðg1;…; gkÞ ∈ R ðA3Þ
antisymmetric among arguments

ωkðg1;…; gi;…; gj;…; gkÞ
¼ −ωkðg1;…; gj;…; gi;…; gkÞ: ðA4Þ

A two-form ω2 is exact if it can be obtained from a one-
form ω2 ¼ dω1:

dω1ðg1; g2Þ ¼ ω1ð½g1; g2�Þ: ðA5Þ
On the other hand, it is closed if

dω2ðg1; g2; g3Þ ¼ ω2ðg1; ½g2; g3�Þ þ ω2ðg1; ½g2; g3�Þ
þ ω2ðg1; ½g2; g3�Þ ¼ 0 ðA6Þ

for any g1;2;3. This condition is called the cocycle condition.
For an exact two-form, it is nothing but the Jacobi identity,
and hence, it is automatically closed.
The possibility of ω2ðg1; g2Þ that cannot be written as the

original commutation relation yet satisfies the Jacobi
identity is the central extension and hence can be described
by the second cohomology H2ðgÞ.
According to the theorem by Chevalley and Eilenberg,

H2ðgÞ ¼ H2
dRðGÞ if G is the compact connected group

generated by g. Since all compact simple Lie groups have
trivial second cohomology, central extensions are not
possible for their Lie algebras. On the other hand, if there
are U(1) factors,

dimH2
dR½Uð1Þn� ¼

nðn − 1Þ
2

; ðA7Þ

generated by dφa ∧ dφb. Therefore, the Lie-algebra coho-
mology H2½uð1Þn� is also nontrivial, and hence, a central
extension is possible.
Note that the Lie algebra knows only about the local

information, and hence, it makes no distinction between
uð1Þ and R. For instance, consider the Galilean group of
rotations Mij, translations Pi, and Galilean boosts Bi:

½Mij; Pk� ¼ iðδikPj − δijPkÞ; ðA8Þ

½Mij; Bk� ¼ iðδikBj − δijBkÞ; ðA9Þ

½Mij;Mkl� ¼ iðδikMjl − δilMjk − δjkMil þ δjlMikÞ; ðA10Þ

½Pi; Bj� ¼ 0: ðA11Þ

~P and ~B form Rd individually, which allows for a central
extension

½Pi; Bj� ¼ iδijM; ðA12Þ

where the eigenvalue of the operator M is the mass of the
particle and a center of the Lie algebra (i.e., commutes with
everything else). The rotational invariance restricts the form
to be proportional to δij. The exception is for the 2þ 1
dimension, where ϵij allows for alternative extensions
½Px; Py� ∝ ϵxy ¼ 1 [72].
Another example of central extension based on R is

the shift symmetry of the Schrödinger field mentioned
in Sec. III E. It has a central extension thanks to
H2ðR2Þ ¼ R ≠ 0.
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APPENDIX B: MATTER FIELDS

In this paper, we establish the effective Lagrangian of
NGBs for systemswithout Lorentz invariance. The effective
Lagrangian can also describe the situation where other low-
energy degrees of freedom (matter fields) couple to NGBs.
In this Appendix, we review how to write down such low-
energy theory for the reader’s convenience. Such matter
fields are important inmany physical systems, e.g., fermions
coupled to a spin system and nucleons coupled to pions.

1. Approach 1: Modding H

As discussed originally in Ref. [5], any representation of
H ψ → ρðhÞψ , where ρðhÞ is a representation matrix, can
be promoted to transform under the full G by

ψ → ψ 0 ¼ ρðhgðπÞÞψ : ðB1Þ
Since hgðπÞ is an element ofH, the above expression is well
defined. To see that it is a consistent transformation law, we
perform two successive transformations

UðπÞ → g2g1UðπÞ ¼ g2Uðπ0Þhg1ðπÞ
¼ Uðπ00Þhg2ðπ0Þhg1ðπÞ; ðB2Þ

while

ψ → ρðhg2ðπ0Þhg1ðπÞÞψ ¼ ρðhg2ðπ0ÞÞρðhg1ðπÞÞψ ; ðB3Þ
given that ρ is a representation of H.
Note that this transformation law is local in the sense that

ρðhgðπð~x; tÞÞÞ is position dependent. As a result, dψ does
not transform in the same way as ψ does:

ðdψÞ0 ¼ d½ρðhgÞψ � ¼ ρðhgÞ½dþ ρðh†gdhgÞ�ψ : ðB4Þ

However, the inhomogeneous part can be exactly compen-
sated by the unbroken component of the Maurer-Cartan
form [see Eq. (78)]

ρðω0
∥Þ ¼ ρðhgω∥h

†
gÞ − iρðhgdh†gÞ: ðB5Þ

Therefore, the combination

Dψ ¼ ½dþ iρðω∥Þ�ψ ðB6Þ

is covariant. [This fact also means that Dnψ (n ≥ 0) is
covariant.] Then, the question is how to write down H-
invariant combinations out of these H-covariant building
blocks. For example, ψ†ψ , iðψ†Dμψ − c:c:Þ, and
Dμψ

†Dνψ are all invariant combinations. Since D contains
ω∥, they describe interactions between NGBs and matter
fields. We can also multiply invariants such as gabð0Þ~ωa ·
~ωb to them. Since all Maurer-Cartan forms come with at
least 1 derivative acting on NG fields, all interactions
become smaller and smaller in the low-energy limit.

What may be surprising is that the matter fields need to
be only in linear representations of H, not G. For instance,
when electrons are coupled to ferromagnets, G ¼ SOð3Þ,
H ¼ SOð2Þ, and the electrons need to transform only
under U(1) representation with a particular charge q,
namely, ρðTzÞ ¼ q and ψ 0 ¼ eiqθψ . Then, the low-energy
effective Lagrangian for the interacting system of electrons
and magnons (the NGB in ferromagnets) is given by
Leff ¼ Lmag þ Lelþint, where

Lmag ¼ −sω̄z − 1

2
g0½ð~ωxÞ2 þ ð~ωyÞ2�; ðB7Þ

Lelþint ¼
i
2
ðψ†Dtψ − c:c:Þ − μψ†ψ − ~Dψ† · ~Dψ

2m
− λ½ð~ωxÞ2 þ ð~ωyÞ2�ψ†ψ ðB8Þ

to the order Oð∇t; ~∇2Þ. Here, Dt ¼ ∇t þ iqω̄z and
~D ¼ ~∇þ iq~ωz, s is the magnetization density, m is the
effective mass, and μ is the chemical potential of electrons.
The interaction Lagrangian (B8) may be derived from a

microscopic model

L ¼ i
2
ðΨ†∇tΨ − c:c:Þ − μΨ†Ψ − ~∇Ψ† · ~∇Ψ

2m

− J~n ·Ψ† ~σ
2
Ψ; ðB9Þ

where Ψð~x; tÞ is a two-component spinor and ~nð~x; tÞ
represents the magnetization of the ferromagnet, including
the fluctuation. At this moment, the interaction term λ~n · ~s
does not contain any derivatives and the weakness of the
interaction at a long distance is less apparent. To get the
effective Lagrangian (B8), we define locally a unitary
transformation Uð~nð~x; tÞÞ [49,73] such that

U†~n · ~σU ¼ σz ðB10Þ

and rewrite Eq. (B9) in terms of ðψ ;ψ 0ÞT ≡UΨ. Then,
λ~n · ~s becomes just a constant λσz=2, giving different
chemical potentials to ψ and ψ 0. The derivative of Ψ
now contains the Maurer-Cartan form

dΨ ¼ Uðdþ iωÞðψ ;ψ 0ÞT: ðB11Þ

Since ψ 0 electrons have a gap J, we can integrate them out,
ending up with Eq. (B8) with q ¼ 1=2 and λ ¼ 1=8m to the
current order of the derivative expansion.

2. Approach 2: Gauging H

The translation law in the previous section is often
awkward to deal with because it is nonlinear. Using the
formalism to gauge the right translation of U by H, we can
identify the above transformation law as the gauge
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transformation with the gauge πρ ¼ 0. Therefore, we
consider U ¼ eiðπaTaþπρTρÞ for the entire G and its global
transformation

UðπÞ → gUðπÞ; ψ → ψ ; ðB12Þ
while the local H transformation is

UðπÞ → UðπÞhðxÞ; ψ → ρðh†ðxÞÞψ : ðB13Þ
Then, we can construct an invariant Lagrangian using ψ
and its covariant derivatives

Dψ ¼ ½d − iρðAÞ�ψ ; ðB14Þ
where A ¼ AρTρ transforms as in Eq. (131).
Equation (B14) is indeed covariant under the right
translation:

ðDψÞ0 ¼ ½d − iρðh†Ahþ ih†dhÞ�ρðh†Þψ
¼ ρðh†Þ½dþ ρðhdh†Þ − iρðAþ iðdhÞh†Þ�ψ
¼ ρðh†Þ½d − iρðAÞ�ψ ¼ ρðh†ÞDψ : ðB15Þ

At the end of the day, we integrate the gauge fields out
and stick to the gauge πρ ¼ 0. Within this gauge, hðxÞ ¼
h†gðπÞ and ρðh†ðxÞÞ ¼ ρðhgðπÞÞ, as desired.

APPENDIX C: TIME-REVERSAL SYMMETRY

In this Appendix, we clarify a confusion on discrete
symmetries in the existing literature [74,75]. Contrary to
the claim made in these references, we argue that type-B
NGBs can appear without breaking any discrete sym-
metries such as the time-reversal symmetry (TRS).
In the case of ferromagnets, the expectation value

h½Sx; Sy�i ¼ ihSzi ≠ 0 ðC1Þ

spontaneously breaks not only the spin-rotational sym-
metry but also TRS, since under the time reversal, the spin

operator ~S flips its sign ~S → −~S. However, in general,

h½Qa;Qb�i ¼ ifabchQci ≠ 0 ðC2Þ
does not necessarily mean that TRS is broken. In order to
respect TRS, all generators that have a nonzero expectation
value hQci have to be even under the time reversal. Then,
Eq. (C2) dictates that either theQa orQb that appears in the
commutator must be even and the other one must be odd,
since TRS is antiunitary and flips the sign of the right-
hand side.
The simplest example is again given by the free-boson

model in Eq. (151). In this model, we identify the free
bosons with the dispersion ω ¼ k2=2m as the type-B NGB
corresponding to the spontaneously broken shift symmetry

ψ → ψ þ c (c ∈ C) [12]. The Noether charge for shifting
the real and imaginary parts of ψ is given by QR¼
i
R
ddxðψ−ψ†Þ and QI¼

R
ddxðψþψ†Þ, respectively.

Because of the commutation relation ½ψð~x; tÞ;ψ†ð~x0; tÞ� ¼
δdð~x − ~x0Þ, QR and QI do not commute and ½QR;QI� ¼
2iΩ. In this case, the field ψ transforms under TRS as
T ψð~x; tÞT −1 ¼ ψð~x;−tÞ, and hence, QR is odd and QI is
even under TRS.
A more nontrivial example is the model discussed in

Sec. X that exhibits the symmetry-breaking pattern
Uð2Þ → Uð1Þ. The field ψ transforms as ψ 0 ¼ eiϵ

iσiψ under
the SU(2) symmetry, and corresponding conserved charges
are given by Qi ¼

R
ddxψ†σiψ.

There are several consistent definitions of the time-
reversal symmetries for this model. If ψ is a scalar, T acts
ψ as

T ψð~x; tÞT −1 ¼ ψð~x;−tÞ: ðC3Þ
In this case, Q1 and Q3 are even and Q2 is odd since σ2 is
imaginary. Thus, h½Q1; Q2�i ¼ 2ihQ3i ≠ 0 does not break

this TRS while a type-B NGB appears in this model. ~Q=2
represents a pseudospin. Another way of defining T
symmetry is

T ψð~x; tÞT −1 ¼ iσ2ψð~x;−tÞ: ðC4Þ

This time, all of the Qi’s are odd under T and ~Q=2
represents the real spin. h½Q1; Q2�i ¼ 2ihQ3i ≠ 0 breaks
this TRS.
Other discrete symmetries, such as the parity P and the

charge conjugation C, if they exist, can be discussed in the
same way.
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