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Interferometric Measurement of the Current-Phase Relationship of a Superfluid Weak Link
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Weak connections between superconductors or superfluids can differ from classical links due to
quantum coherence, which allows flow without resistance. Transport properties through such weak links
can be described with a single function, the current-phase relationship, which serves as the quantum analog
of the current-voltage relationship. Here, we present a technique for inteferometrically measuring the
current-phase relationship of superfluid weak links. We interferometrically measure the phase gradient
around a ring-shaped superfluid Bose-Einstein condensate containing a rotating weak link, allowing us to
identify the current flowing around the ring. While our Bose-Einstein condensate weak link operates in the
hydrodynamic regime, this technique can be extended to all types of weak links (including tunnel
junctions) in any phase-coherent quantum gas. Moreover, it can also measure the current-phase
relationships of excitations. Such measurements may open new avenues of research in quantum transport.
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A variety of quantum phenomena, such as Josephson
effects [1] and quantum interference [2,3], can be observed
by weakly connecting two superconductors or superfluids.
Such a weak connection can be, for example, a narrow
channel or a potential barrier that allows for quantum
tunneling. For any weak link, there is a relationship
between the current and the phase difference between
the two superconductors or superfluids. This current-phase
relationship is essential for understanding quantum trans-
port through the weak link [4]. In superconductors, the
current-phase relationship of weak links is measured
routinely, and such measurements can indicate the presence
of exotic quantum states, such as Majorana fermions [5,6]
or oscillations in the order parameter [7]. In superfluid liquid
helium, this current-phase relationship has been measured,
but only indirectly [8]. In degenerate atomic gases, the
current-phase relationship has not yet been measured
(although many of the effects associated with weak links,
e.g., Josephson effects [9,10], have been observed). Here, we
interferometrically measure the phase around a ring-shaped
superfluid Bose-Einstein condensate (BEC). We use this
technique to determine both the magnitude and the sign of
persistent currents in the ring. In the presence of a rotating
constriction that acts as a weak link, we show how to
measure its current-phase relationship.
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In a superfluid, the velocity v is related to the gradient
of the phase ¢ of the macroscopic wave function by
v = (h/m)V¢, where h is Planck’s constant divided by
2z and m is the mass of an atom. Ignoring the transverse
degrees of freedom, the number current is then [ =
(Ain,p/m)V¢, where np is the equivalent 1D density of
the fluid along the direction of flow. In a weak link, the
superfluid density will vary as a function of position and
velocity [11], resulting in a potentially complicated current-
phase relationship [12]. For example, in an idealized
Josephson junction, which is typically realized with a
tunnel barrier, the phase drop across the weak link y is
related to the current through / = I, siny, where I, is its
critical current. Because the ideal Josephson junction can
be hard to achieve, the current-phase relationships of
experimentally realizable weak links can exhibit higher-
order harmonics or become multivalued [13-15].

In the present case, we generate a constriction that acts as
a weak link in that its critical velocity is much less than that
of the rest of the system [4]. However, our weak link is
large compared to the healing length of the BEC, leading to
a linear current-phase relationship similar to that of a bulk
superfluid. Previous works [9,10,16] used weak links that
operated in the tunneling regime; however, none of these
measured the current-phase relationship.

Weak links have enabled manipulation of ring-shaped
BECs, by both controlling a persistent current [17-21] and
inducing flow between reservoirs [16,22]. Because the
wave function must be single valued, the integral of V¢
around any closed path must be a multiple of 2z. In
particular, for a ring with mean radius R, this leads to the
constraint (m/h) § v(0) Rd6 = 2x¢, where 0 is the azimu-
thal angle and the integer ¢ is a topological invariant known

Published by the American Physical Society


http://dx.doi.org/10.1103/PhysRevX.4.031052
http://dx.doi.org/10.1103/PhysRevX.4.031052
http://dx.doi.org/10.1103/PhysRevX.4.031052
http://dx.doi.org/10.1103/PhysRevX.4.031052
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

ECKEL et al.

PHYS. REV. X 4, 031052 (2014)

as the winding number. Transitions between these quan-
tized states can occur when a weak link stirs the superfluid
at a critical rotation rate [19,21]. In previous experiments
with ring-shaped condensates, the detection method used
could measure only the magnitude of the resulting winding
number 7. Here, we use an interference technique to
measure the phase and therefore the current flow around
a ring-shaped BEC. We demonstrate that when the rotating
weak link is present, there is already a current around the
ring even if £ = 0. This implies that while the winding
number is quantized, neither the average current nor the
total angular momentum of the BEC is quantized.

To measure the phase around the ring, we use two BECs
of 22Na atoms held in an optical dipole trap, as shown in
Fig. 1(a). One is shaped like a disk and serves as a phase
reference. The other is a concentric ring, which can sustain
a persistent current. To detect the phase of the wave
function and thus the current in the condensate, we interfere
the two separate condensates, which can be accomplished
after time-of-flight (TOF) expansion. In fact, such inter-
ference experiments provided the first conclusive proof that
a BEC is a single, phase-coherent object [23]. Later
experiments used similar interference techniques to detect
quantized vortices [24], to investigate the coherence prop-
erties of a superfluid Fermi gas [25], and to study the
physics of both two-dimensional [26] and one-dimensional
Bose gases [27]. A method similar to that presented here
has been independently developed to investigate the super-
current generated by a rapid quench through the BEC
transition [28].

Measuring the interference of our BECs after TOF
expansion yields a measurement of wjyp +whyg +
WRrWp + WrWwr, Where yp, is the wave function of the disk

IS
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FIG. 1. (a) In situ image of the ring and disk BECs with
dimensions shown. (b) Example interferogram after 15 ms TOF
(left) when there is no current in the ring, including traces of the
azimuthal interference fringes to guide the eye (right). (c) Inter-
ferograms for various winding numbers, where the arrow
indicates the direction of flow. (d) Traces of the interference
fringes to guide the eye and count the number of spiral arms. The
extracted winding number is shown below the traces.

and yp is the wave function of the ring. The first term
Pp = wpyp produces no fringes as the disk expands. The
terms that are of most interest here contain the ring and the
disk, Prp = wphwr + Wryp, and they interfere once wp
and yp expand such that they overlap. The last term,
Pr = wxyg, can also produce an interference pattern once
the ring has expanded further, such that its characteristic
width |6(7)| becomes comparable to R. At this point, the
opposite sides of the ring can interfere with each other.

For simplicity, we first consider the interference pattern
when there is no weak link present and both BECs are
at rest before being released from the trap [Fig. 1(b)].
Without flow, the phase is independent of the angle in
both the disk and the ring. The interference term Ppp
results in concentric circles. The radial position of these
azimuthal interference fringes depends on the relative
phases between the two condensates; the radial separation
between fringes corresponds to a phase difference of 2.
The interference term Py = yyRywy produces similar con-
centric circles, but with a contrast that is below our
detection threshold [20,29].

If there is no weak link present but there is a nonzero
winding number in the ring, the resulting interference
patterns are modified. In this case, the phase of the ring
wave function is given by ¢ = £6, assuming the ring is
sufficiently smooth that both n;p and v are independent of
the azimuthal angle 6. Such a phase profile represents a
quantized persistent current: the current takes on discrete
values 71,, where Iy = n;pQyR and Q) = h/mR>. As
shown in Refs. [20,29], the interference Py is modified in
this case: a hole with quantized size appears at long times.
Previous experiments [19,21,30] demonstrated quantized
persistent currents in a ring by releasing the BEC from a
ring-shaped trap (without another BEC present) and
observing the size of the resulting hole. While this method
determines the magnitude of the current, it does not
determine the direction.

In addition to modifying the Py term, a persistent current
also modifies the interference term Pgp, turning the £ = 0
concentric circles into spirals when £ # 0 [Fig. 1(c)]. (The
circular structures observed at the center of the clouds for
large winding numbers are associated with the emergence
of the quantized hole described by Pg.) The combination of
the initial azimuthal velocity of the ring atoms and the
expansion of the clouds creates spirals in the interference
pattern. One can use such spirals to measure the accumu-
lated phase around the ring a by tracking a maximum (or a
minimum) of an interference fringe from 6 = 0 to 6 = 2x.
The net radial fringe displacement divided by the spacing
between fringes yields a/2z. Because a = 2z in the
present case, this procedure is equivalent to counting the
number of spiral arms, which determines the magnitude of
¢, and noting their chirality, which determines its sign.

Adding the weak link modifies the interference pattern
beyond the spirals described above. The weak link, as
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shown in Figs. 2(a) and 2(b), is a density-depleted region in
the ring. Once the cloud is released, atoms from either side of
the density-depleted weak link expand toward each other and
interfere, causing additional interference fringes to appear in
the radial direction, as shown in Fig. 2(d). Just as in the case
where there was no weak link, we can still measure @ by
tracking the azimuthal interference fringes around the ring,
excluding the weak-link region. To measure their radial
displacement after going from € = 0 to 8 = 2z, one must
extrapolate those fringes back through the weak-link region.
Dividing the size of the extrapolated radial displacement of a
single fringe by the spacing between the fringes once again
yields a/2x. Here, a is not necessarily a multiple of 2. This
measurement of a allows us to extract the current-phase
relationship of the weak link, as shown below.

Before discussing the results, we first describe the
experimental techniques. The ring and the disk traps are
formed by the combination of two crossed lasers. A
red-detuned laser shaped like a sheet creates vertical con-
finement, while an intensity-masked blue-detuned laser
separates the ring trap from the disk trap to form the two
BECs. A blue-detuned laser generates the weak link by
creating a Gaussian-shaped repulsive potential of height U

FIG. 2. (a) Schematic of the atoms in the trap with a weak link
applied. The coordinate system used throughout is shown; 8 = 0
corresponds to the X axis. (b) A close-up of the weak-link region.
When the weak link is rotated at 2, atoms flow through the weak
link (solid) and around the ring (dashed) as shown by the stream
lines. Larger velocities along the stream lines correspond to
darker lines. (¢) The resulting density n(6), velocity v(6), and
phase ¢(0) as a function of angle, with the phase drop y across the
weak link shown. (d) Method of extracting the phase from an
interferogram (left). First, we trace the interference fringes around
the ring (center), and then we fit the discontinuity across the
region where the barrier was (right).

and 1/e? full width of ~6 um (for details on the weak link,
see Ref. [22]). This potential depletes the density in a small
portion of the ring, as shown in Fig. 2(a). On average, a total
of ~8 x 10° atoms reside in the traps. The ring BEC has a
mean radius of 22.4(4) ym and annular width (twice the
Thomas-Fermi radius) of ~6 ym (Uncertainties and error
bars in this paper are the uncorrelated combination of 1o
statistical and systematic uncertainties unless stated other-
wise.). It contains &75% of the atoms and has an initial
chemical potential p/h ~ 2z x (3 kHz). The central disk
contains &25% of the atoms and has a Thomas-Fermi radius
of &5 um. While the disk is approximately hard walled, the
ring is closer to harmonic with a measured radial trapping
frequency of ~390 Hz. The distance between the inner
radius of the ring and the disk is ~6.5 uym.

To prepare the system in a well-defined quantized
persistent current state with a chosen #, we stir our weak
link at a corresponding Q. Such stirring lasts for 1 s, during
which the rotation rate of the weak link is constant but the
strength of the weak-link potential ramps on linearly in
300 ms, holds constant for 400 ms, and ramps off in another
300 ms. To measure the resulting Z, we hold the BECs for
an additional 100 ms, then release them, and, lastly, image
the interference pattern after 15 ms TOF expansion. This
procedure produced the data shown in Figs. 1(b) and 1(c).

We extend these results by measuring a in the presence
of a weak link as a function of U, the rotation rate Q, and
the initial winding number #. First, we stir to set the initial
winding number £ = 0 or +1, as described above. To get
the highest fidelity for setting £ [95(2)%], we empirically
find that U ~ 1.2u4, and Q/27 ~ +0.9 HZ or zero, depend-
ing on which winding number state we wish to initialize.
Second, we stir for 1 s at a new Q and U. During the first
300 ms of this second stage of stirring, the weak-link
potential ramps from zero to the chosen U, and afterwards
remains constant. We adjust the starting position such that
the weak link is at & = 0O at the end of this second step. At
this point, the trap and the weak-link potential turn off,
which releases the cloud. After 17 ms TOF (for slightly
better resolution), we again image the cloud.

The above procedures result in a measurement of the
phase accumulated around the ring, a, which is related
to the current around the bulk of the ring through
Ly = nip(m/h)Ve¢ = nip(m/h)(a/2zR). We measure
T, normalized to I = npQyR, as a function of Q for
a variety of different U; Fig. 3 shows four examples. As
shown, there are discrete jumps in Iy, at specific rotation
rates. At these critical rotation rates, the system experiences
a phase slip that changes #. These critical rotation rates are
dependent on U, and can be hysteretic. Figures 3(a)
and 3(b) show such hysteresis. The size of the hysteresis
loop is consistent with previous measurements [21]. In
addition, we measure a nonzero, superfluid Iy, for rotation
rates below the critical rotation rate, where, presumably,
there are no excitations and £ = 0.
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FIG. 3. Plot of the normalized current around the bulk of the
ring, Iy /Iy = a/2x, versus the rotation rate Q of the weak link
for four different weak-link potential strengths U: (a) 0.45u,
(b) 0.6, (¢) 0.7ug, (d) 0.8. The solid lines are the prediction of
our model (see text). The dashed, vertical lines show the predicted
transitions between the different winding number branches. The
thin, gray, diagonal lines represent the case where all the atoms
move around the bulk of the ring with the weak link, i.e.,
Ty = nipRQ.

Iyx can be understood in the following way: As
the weak link rotates around the ring, it must displace
superfluid from in front of its path and superfluid must fill
in behind it. The number of atoms that must flow per unit
time is proportional to the difference in the density in the
weak link and the bulk of the ring. If the flow were only
confined to the weak link and in the direction opposite of
the rotation, as shown by the solid stream lines in Fig. 2(b),
it would violate the condition § v(6) Rd6 = 0. Thus, the
atoms in the bulk of the ring must have some velocity in the
same direction as the rotation (dashed flow lines) in order to
cancel the phase accumulated by the atoms moving through
the weak link, as shown in Fig. 2(c). This is analogous to
fluxoid versus flux quantization in superconductors [31]:
although ¢ must always be quantized, neither the current
Iy nor the total angular momentum is quantized (see
Supplemental Material [32]).

Initially, I,y versus Q is linear, and Fig. 4(a) shows its
measured derivative dly,; /dQ|q_, as a function of U. As
U — 0, no atoms move, and I, = O for all Q. For a given
rotation, increasing U displaces more atoms, resulting in a
larger current around the bulk of the ring. As expected,
dl i/ dQ o continues to increase until U = p, at which
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FIG. 4. (a) Derivative of the initial bulk current dly,/dQ2

versus U, normalized to the expected value in the limit where
U/ug > 1, nipR. The solid line shows the prediction of the local-
density approximation model. (b)—(d) Extracted current-phase
relationships from the data in Fig. 3, for three different weak-link
potential strengths U: (b) 0.45u, (c) 0.6pq, (d) 0.7pq. v is the
phase across the weak link and Iy is the current through it,
normalized to I, = n;pRQy ~ 5 x 10° atoms/s. The solid curves
represent the prediction of our theoretical model. The dashed
lines merely guide the eye by connecting the multiple branches of
the current-phase relationship.

point no atoms can move through the weak link and they all
must move around the ring, i.e., Iy = n;pRQ. This limit
corresponds to solid-body rotation; we show this limit as
thin gray lines in Fig. 3. In a reference frame that rotates
with the weak link, there is no flow in this limit and thus
Iy, = 0, where Iy is the current in the weak link’s frame.
The opposite limit of U — 0 corresponds to Iy, = npRQ
(where we have taken Iyw; > O to represent flow that is
opposite the rotation).

The Iy /1o versus Q curves of Fig. 3 can be predicted
using a model based on the local-density approximation to
the Gross-Pitaevksii equation (see Supplemental Material
[32] and Ref. [12]), but assuming a critical velocity as
measured in Ref. [21]. (A local-density approximation
treatment can be used because the azimuthal length of
the weak link of ~6 um is larger than the healing length
&= +/h?*/2muy ~ 0.3 yum.) All parameters are measured
independently; none are adjustable. The predictions of this
model are shown in Figs. 3 and 4(a) as the solid curves.

The current-phase relationship is best evaluated in the
weak link’s frame, where Iy, = nipRQ — I,,x. The phase
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drop across the weak link y that corresponds to Iy, is given
by y = —2x(Ipui /1) [see Fig. 2(c)]. For a constant Q, the
current-phase relationship determines how much current
flows past the weak link (/y; , measured in the weak link’s
frame) and how much flows past a fixed point in the bulk of
the ring (Iy,,x)- Using these relationships, we extract the
current phase-relationship from the data in Fig. 3, the
results of which are shown in Figs. 4(b)-4(d).

For our BEC system, our model predicts that the
current-phase relationship is roughly linear. Nonlinearities
caused by changes in the superfluid density with y occur
when the velocity through the weak link nears the speed
of sound; however, because our critical velocity is lower
than the speed of sound, these nonlinearities are small.
Thus, our weak link is far from an ideal Josephson junction.
We also note that our simple model cannot predict the
current-phase relationship in the region indicated by the
dotted line in Figs. 4(b)—4(d). (The dotted lines merely
guide the eye between the predicted branches.) In this
branch, we expect dissipation to play a key role in the
dynamics.

Ideally, one would want to apply our method to a
weak link that could be tuned from the hydrodynamic
flow regime observed here to the Josephson or tunneling
regime. For the ideal Josephson junction with a sinusoidal
current-phase relationship, the I, versus € lines in
Fig. 3 would be curved, a signature that has yet to be
observed in degenerate atomic gases. To obtain such a
signature, one would need a potential barrier whose width
is comparable to the healing length of the condensate to
suppress hydrodynamic flow but allow quantum mechani-
cal tunneling.

In conclusion, we demonstrate a technique for measuring
the current-phase relationship of a weak link in a dilute-gas
superfluid BEC. We demonstrate that a rotating weak link
always generates a superfluid current in the bulk of the ring,
even when the rotation rate is less than any critical velocity
in the system. The magnitude of that current is determined
by the current-phase relationship. Our new method allows
for better characterization of weak links and, in the case of a
tunnel junction, should provide the signature of the
existence of idealized Josephson junctions in BEC systems.
In addition, measurement of the current-phase relationship
enables prediction of the hysteretic energy landscape of
our system [21], which, like the energy landscape of a
flux qubit, should be quantized [33]. More broadly, it is
possible that this method can be extended to measure the
current-phase relationships of various excitations, such as
solitonic vortices [34]. Lastly, this powerful tool may prove
important for studying transport in other, exotic forms of
quantum matter, such as unitary Fermi gases [35], Tonks-
Giradeau gases [36,37], and quasi-2D condensates near the
Berezinskii-Kosterlitz-Thouless transition [26].
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