
Geometry of the Cholesteric Phase

Daniel A. Beller,1,* Thomas Machon,2 Simon Čopar,1,3,4 Daniel M. Sussman,1 Gareth P. Alexander,2

Randall D. Kamien,1 and Ricardo A. Mosna1,5
1Department of Physics and Astronomy, University of Pennsylvania, Philadelphia,

Pennsylvania 19104-6396, USA
2Department of Physics and Centre for Complexity Science, University of Warwick,

Coventry CV4 7AL, United Kingdom
3Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

4Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
5Departamento de Matemática Aplicada, Universidade Estadual de Campinas,

13083-859 Campinas, São Paulo, Brazil
(Received 12 June 2014; published 17 September 2014)

We propose a construction of a cholesteric pitch axis for an arbitrary nematic director field as an
eigenvalue problem. Our definition leads to a Frenet-Serret description of an orthonormal triad determined
by this axis, the director, and the mutually perpendicular direction. With this tool, we are able to compare
defect structures in cholesterics, biaxial nematics, and smectics. Though they all have similar ground state
manifolds, the defect structures are different and cannot, in general, be translated from one phase to the other.
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The standard lore in liquid-crystal physics is that the
cholesteric and the smectic phases are essentially the same
beast: The Caille instability in smectics [1] is the same as
the Lubensky instability in cholesterics [2], both of which
are examples of the Peierls instability. Fluctuations around
the ground states of each are dominated by a single
Goldstone mode with an unusual fluctuation spectrum that
distinguishes modes along the layer normal or pitch axis
from modes along other directions. Since these modes are
also the coordinates on the ground state manifold (GSM),
one is tempted to identify defects in smectics with defects
in cholesterics, with the cholesteric pitch axis P analogous
to the smectic layer normal N.
On the other hand, the cholesteric phase is biaxial [3,4]:

Intuitively, a cholesteric phase is defined by a unit director
field n and a derived pitch axisP that describes the direction
along which n twists, whose precise definition we will
discuss below. At each point, a local orthonormal triad is
specified by n and P, both defined up to sign, along with
their cross product n × P≡ n (“not n”). From this point of
view, onemight attempt to identify defects in the cholesteric
phase with defects in the biaxial phase characterized by
the standard homotopy theory of topological defects [5–8],
in particular, via the non-Abelian fundamental group

π1½SOð3Þ=D2d� ¼ f�1;�σx;�σy;�σzg, the unit quatern-
ions. This has been the motivation behind a classification of
cholesteric defects as singularities in two out of three triad
directions, termed the λ�1, τ�1, and χ�1 singularities, in
correspondence with�σx,�σy, and�σz singularities of the
biaxial nematic phase [9]. For example, just as σxσy ¼ σz in
the quaternion group, composing a λwith a τ yields a χ in the
cholesteric. Meanwhile, the cholesteric-smectic analogy
suggests that disclinations in the layer normal N are to be
identified with the λ and τ defects where P is not defined, so
the decomposition of a smectic dislocation into a disclina-
tion pair [10] is also analogized to the decomposition of a
χ into a λ-τ pair.
In order to explore the similarities and differences

between the topology of defects in smectics, cholesterics,
and biaxial nematics, we develop the geometric tools
necessary to map between these three systems. We find
that though there is a natural mapping between the ground
states of these three systems, the descriptions of their defects
are all different. In particular, we demonstrate the failure of
this natural mapping in three example textures: the χ2 to λ2

defect transformation, the oblique helicoidal cholesteric
texture, and the screw dislocation. Our result highlights
the well-known problem with classifying topological
defects in translationally ordered media [5,10,11] and
confronts the usual analogies between our triptych of
phases.
There are crucial differences between the three systems,

illustrated most clearly in the symmetries of their ground
states. A smectic ground state with layer normal ẑ and layer
spacing a is invariant under a translation by a along ẑ; in
other words, a continuum of ground states is available
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under translations modulo a along ẑ. This discrete sym-
metry is associated with the existence of dislocations in the
smectic phase. The smectic ground state also possesses a
continuous symmetry under arbitrary rotations about ẑ. In
contrast, the biaxial nematic ground state with director n
parallel to ẑ possesses a continuous symmetry under
arbitrary translations along ẑ, but a discrete symmetry
under rotations by π about ẑ. The latter discrete symmetry
is related to the biaxial singularities not found in uniaxial
nematics. Along with uniaxial nematics, smectics and
biaxial nematics are invariant under π rotations around x̂
and ŷ.
From the point of view of symmetries, the cholesteric is

intermediate between the smectic and biaxial nematic
phases. A cholesteric ground state with pitch axis ẑ and
helical wave number q0 has a continuous screw symmetry:
rotations by an angle α about ẑ composed with translations
by α=q0 along ẑ. However, a translation by π=q0 along ẑ,
and a rotation by π about ẑ, are each (separately) discrete
symmetry operations of the cholesteric ground state (as are
rotations by π about x̂ or ŷ). In other words, the cholesteric
ground state has the discrete symmetries of both the
smectic and the biaxial nematic ground states, which might
lead us to expect that cholesteric defects will bear some
resemblance to both biaxial nematic defects and smectic
defects. However, broken translational invariance leads to a
breakdown of the homotopy theory of defects [5,10,11],
and so symmetries are not the whole story.
We note also that smectics can have point defects, for

instance, when the layers are concentric spheres around a
single point, whereas biaxial nematics cannot support such
defects as π2½SOð3Þ=D2d� ¼ 0. This makes the interpreta-
tion of the cholesteric even more subtle. From one point of
view, the cholesteric configuration is completely specified
by a director field everywhere in space and is thermody-
namically equivalent to a uniaxial nematic, which has
ground state manifold RP2 and can support point defects.
However, as discussed in Ref. [12], if we include the pitch
axis, then a simple point defect in the director field
necessarily sprouts line defects in the pitch axis. From
this point of view, the connection between the cholesteric
and biaxial nematic may seem promising. However, there is
a weakness in this link as well, which will appear when we
give an explicit definition of P.
To proceed any further, let us now define the unit

cholesteric pitch axis P. With the orthonormal triad of
the biaxial in mind, we require P · n ¼ 0 and define the
direction “not n” as n ¼ n × P; the cholesteric triad is then
fn;P;ng. Intuitively, P is a direction about which n twists,
meaning that the directional derivative ðP · ∇Þn has no
component along P. As n is a unit vector, this directional
derivative is also perpendicular to n, so we can define P by
the equation ðP · ∇Þn ¼ −qn, or the equivalent eigenvalue
problem

PiCij ¼ qPj; ð1Þ

where q is the local eigenvalue and Cij ¼ nkϵljk∂inl is
precisely the same chirality tensor defined in Ref. [13].
Because Cij is not guaranteed to be a symmetric matrix,
there may be no real eigenvalues q nor a complete basis of
eigenvectors P; we will return to this point shortly. Note, in
addition, that TrC ¼ −n ·∇ × n. This approach is similar
to, but sharper than, the definition proposed in Ref. [14]
that only holds for the cholesteric ground-state texture. Our
construction generates a triad defined up to a sign so that
the GSM is SOð3Þ=D2d.
Wherein lies the weak link in the analogy between

biaxial nematics and cholesterics? Note that in the biaxial
nematic, the local triad can undergo a global rotation that
may change the energy but not the topology, in precise
analogy with the two-dimensional uniaxial nematic: Aþ 1
disclination, for example, can be purely bend (azimuthal) or
purely splay (radial). If the bend and splay elastic constants
differ, the energies will differ but the topology will not.
However, this internal rotation is not a symmetry of the
cholesteric since the pitch axis, defined through Cij,
involves spatial derivatives. As a result, rotations of the
triad also require a rotation of the system; i.e., only the
trivial rotation of the whole sample leaves the topology
invariant. Though it is tempting to view the cholesteric’s λ,
τ, and χ defects in analogy with the σx, σy, and σz defects of
the biaxial nematic, the correspondence is not precise:
Homotopies between biaxial nematic triad configurations,
which establish the topological equivalence of two con-
figurations, are not, in general, available to cholesteric
triads, where P is determined by spatial derivatives of n and
cannot rotate freely.
As a result, it is not possible to fully preserve the

algebraic topology of the biaxial triad in the cholesteric. For
example, in the biaxial nematic, σ2i ¼ −1 for all i ¼ x; y; z.
This implies that there is a single homotopy class for
defects with 2π winding, independent of the triad direction
around which the rotation is performed. Thus, a pair of σx
singularities could be brought together and, through a
continuous family of biaxial nematic configurations, could
be transformed into a pair of σz singularities. However, this
equivalence spectacularly fails in the cholesteric. Let us see
what happens when we try to transform a χ2 defect
configuration, with 2π rotation about P,

nχ2 ¼ r̂ sinðq0zÞ þ ϕ̂ cosðq0zÞ ð2Þ

(where we employ cylindrical coordinates) into a λ2 defect
configuration, with 2π rotation about n,

nλ2 ¼ ẑ cosðq0rÞ þ ϕ̂ sinðq0rÞ: ð3Þ

In the nχ2 configuration, P is vertical and n is in a planar
þ1 disclination configuration, rotating between the radial
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and azimuthal geometries as a function of z. The nλ2

configuration is the classic double-twist configuration, with
a radial P. Consider the interpolation

n ¼ nχ2 cosΘðrÞ þ nλ2 sinΘðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ nχ2 · nλ2 sin 2ΘðrÞ

q ; ð4Þ

where ΘðrÞ is a sigmoidal function ranging from 0 to π=2.
To be concrete, we pick

ΘðrÞ ¼ π½ð1 − e−q0rÞ=ð1þ e−q0ðr−r0ÞÞ�=2; ð5Þ

with r0 ¼ 4π=q0. We discover that this transformation from
nχ2 to nλ2 gives rise to a series of λ�1 ring defects, with
alternating winding sign, encircling the central χ2 defect at
radii close to r0 [Fig. 1(a)], an iconic structure considered
long ago [15]. Thus, the straightforward homotopy between
σ2x and σ2z defects in the biaxial nematic does not carry over
to a homotopy between the supposedly analogous λ2 and χ2

defect configurations. Instead, the transformation is medi-
ated by the appearance of another set of defects. Wewill see
below that these λ�1 ring defects are made necessary by the
smectic-like features of the cholesteric phase.
Just as the analogy between cholesteric and biaxial

nematic ground states leads us astray in the study of
defects, the intuitive correspondence between cholesteric

and smectic ground states fails when extended to general
configurations. We can make a straightforward identifica-
tion of the cholesteric pitch axis P with a smectic layer
normal N. With P ¼ ẑ, we could draw a level set wherever
the cholesteric’s director n points in a particular direction,
say, x̂, and identify these level sets with smectic layers.
Indeed, when we view a cholesteric with P in the plane of
the image through crossed polarizers, we see alternating
bright and dark stripes; when the cholesteric has distor-
tions, we may see a distorted pattern of stripes, as in the
famous “fingerprint” patterns. The problem with thinking
of cholesterics as a “layered” phase, however, is that the
pitch axis need not be normal to any set of layers. Nothing
requires the pitch axis to satisfy the Frobenius integrability
condition [16], P · ∇ × P ¼ 0, which is necessary for P to
be normal to a family of surfaces defined by level sets of
some phase field ϕðxÞ.
As an example, consider the recently observed

oblique helicoidal cholesteric phase [17], with director
field n ¼ ½cos β cos kz; cos β sin kz; sin β� for some tilt
angle β. Using our construction, we find that P ¼
½− sin β cos kz;− sin β sin kz; cos β� with eigenvalue q ¼
k cos2 β. Moreover, P · ð∇ × PÞ ¼ −k sin2 β, and so this
conical texture, existing as an excited cholesteric state,
cannot be foliated, so there is no corresponding smectic
structure whose layer normal N agrees with P. There is,
however, a linear combination of P and n whose twist does
vanish everywhere, providing a suitable ∇ϕ direction. We
will return to this example below after discussing the
physical interpretation of ϕ in a cholesteric. Herein lies
the central difficulty in connecting the defect classification
between cholesterics, smectics, and the biaxial nematic. In
order to identify cholesteric χ disclinations with smectic
dislocations, it is necessary to foliate space; this is
impossible with our choice of pitch axis, but our pitch
axis is necessary to establish a triad to connect to the GSM
of the biaxial nematic.
Not all uniaxial nematic configurations can be described

as cholesteric, for instance, the achiral nematic ground
state. The breakdown of the cholesteric description of
nematics is also encoded in the tensor Cij. Because the
tensor is not symmetric, its eigenvalues need not be real;
when they are complex, no pitch axis can be identified in
the director field by our prescription. Note that P is the left
eigenvector of Cij, and we know of no geometric or
physical interpretation of the right eigenvector. In one fell
swoop, we could eliminate all of these problems by
symmetrizing Cij. Unfortunately, this would despoil the
geometric construction of P and, in fact, the ensuing
geometric description of the triad. For this reason, we will
continue to considerC as defined. To study the eigenvalues,
we consider the characteristic polynomial for Cij,

−q3 þ q2TrC − qΓðCÞ þ detC ¼ 0; ð6Þ

(a)

(b) (c)

FIG. 1. The cholesteric interpolation of Eq. (4). (a) A χ2 line
(green) at r ¼ 0 surrounded by λ (blue) and λ−1 (red) rings near
r ¼ r0. The grey scale is a density plot ofR in a portion of the xz
plane; zeros (black) indicate defects in P. Orange rods show P
and its nontrivial winding around the defect rings; purple rods
show n, which is nonsingular. (b) Level sets of the cholesteric ϕ
field, in the small and large r limits. (c) Filling space between the
two boundaries requires dislocations in the layers, realized as �π
disclination pairs. ϕ ∈ Z are in black; half-layers are in gray.

GEOMETRY OF THE CHOLESTERIC PHASE PHYS. REV. X 4, 031050 (2014)

031050-3



where 2ΓðCÞ ¼ ∇ · ½nð∇ · nÞ − ðn ·∇Þn� is the saddle-
splay. Since n is a null right eigenvector of Cij, one
eigenvalue vanishes. Reality of the remaining two eigen-
values requires that R ¼ ðTrCÞ2 − 4ΓðCÞ ≥ 0, where we
dub R the “cholestericity”—when it is positive, we have
two distinct pitch axes [18]; when it is negative, there are
no real values of q and there are no pitch axes; and when
R ¼ 0, we only have one pitch and one or two pitch
directions since, again, we are not guaranteed a full basis
when C ≠ CT . When the saddle-splay vanishes, the two
eigenvalues are −n · ð∇ × nÞ and 0, and so the pitch
axis is the eigenvector corresponding to the only non-
zero eigenvalue. On the other hand, when n is a sur-
face normal, the twist vanishes, and so TrC ¼
−n · ∇ × n ¼ 0. In that case, whenever the surface has
negative Gaussian curvature [19], there are two equal and
opposite eigenvalue “chiralities” q2 ¼ −q1. This is the
origin of the directionally dependent chirality discussed
by Efrati and Irvine [13] in saddle surfaces. A corollary
of this is that surfaces with positive Gaussian curvature
cannot have a real “pitch eigenvalue.” Only at points
where R ¼ 0 can the pitch axis degenerate to the circle
of directions perpendicular to n. Therefore, R vanishes in
a tube around λ�1 and τ�1 defect lines where P is ill-
defined, in the same way that the nematic degree of order
S vanishes around nematic defects where n is ill-defined.
For example, the λ�1 rings that appeared above in the
transition between nχ2 and nλ2 appear where R ¼ 0, as
displayed in Fig. 1(a).
Of the two pitch axes identified by Cij when R > 0,

the physical pitch axis depends on the boundary con-
ditions. We assume that at infinity (or much closer), we
have a standard cholesteric ground state with vanishing
saddle-splay and thus one pitch axis. As long as R > 0,
the eigenvalues are distinct and we can follow the pitch
axis at infinity into the bulk of the sample. Regions
where there is no pitch axis or with degenerate pitch axes
are defects in the cholesteric. Such regions exist:
Consider the achiral texture n ¼ ½cos y; sin y; 0�, invariant
under the mirror y → −y. Though R ¼ 0, C ≠ 0; the
eigenvalue q ¼ 0 is triply degenerate, and there is a (left)
eigenspace spanned by only two directions, x̂ and ẑ. We
do not know the general class of physically possible
configurations with only one pitch axis. We leave this for
future study.
Our construction of the pitch axis, used to describe the

rotation of n, specifies the rotation of the entire cholesteric
triad as we move along P. This will have important
consequences for our study of topological defects. Note
that in addition to the definition ðP ·∇Þn ¼ −qn, we have
P · n ¼ 0 and P2 ¼ 1. Together, these imply that
ðP ·∇ÞP ¼ κn, where κ is a function of location. We
can see that κ is the curvature of the integral curves of P.
Continuing in the manner of the Frenet-Serret apparatus
[19], we have

ðP ·∇Þ
"P
n
n

#
¼

"
0 κ 0

−κ 0 q
0 −q 0

#"P
n
n

#
: ð7Þ

Thus, the torsion of integral curves of P equals the local
cholesteric wave number, provided that κ does not vanish.
This approach leads to an alternate construction of the
“mean torsion” [16,20]: The two nontrivial eigenvalues of
Cij are the possible torsions of the two integral curves with
binormal n, and 1

2
TrC is their average, the mean torsion.

When Cij has two eigenvalues q1 ≠ q2, we denote the two
corresponding eigenvectors Pð1Þ and Pð2Þ, respectively, and
nðiÞ ≡ n × PðiÞ. Because n · PðiÞ ¼ 0, we can express one
eigenbasis in terms of the other, and Pð2Þ ¼ Pð1Þ cos δþ
nð1Þ sin δ, with Pð1Þ · Pð2Þ ¼ cos δ. It follows from Eq. (7)
that ∇ · n ¼ n · ðn ·∇Þn ¼ ðq1 − q2Þ cot δ; when there is
splay, the pitch axes are not orthogonal.
Following streamlines of the pitch axis, we integrate the

local q to determine the total rotation of n about P between
two points. In the ground state, the angle made by the
director at z ¼ z0 with the director at z ¼ 0 is simply qz
when P ¼ ẑ. We could define a phase field ϕðxÞ ¼ qz for
the ground state that measures the total rotation of n about
P from a particular reference height such as z ¼ 0. For a
general, distorted cholesteric, the Frenet-Serret apparatus
enables us to define a phase field ϕðxÞ generally, with the
change in ϕ along integral curves of P recording the
integrated rotation of n about P. Suppose that a particular
pitch axis integral curve P passes through a point x after
traversing arc length s from a reference point where ϕ ¼ 0.
Then, the phase field is ϕðxÞ ¼ R

P qðxÞds and∇ϕ · P ¼ q.
We will show that the general cholesteric configuration

does not admit a smectic phase field whose gradient is
everywhere parallel to P. Before that, however, we start by
noting that the phase field ϕ can be defined locally for all
cholesterics, so a layered structure can be found lurking
inside any cholesteric configuration, even if the level sets
do not correspond to obvious features of a micrograph or
illustration. On a simply connected domain without defects,
this phase field is also globally defined, and the phase field
modulo 2π defines layers of the cholesteric texture.
However, in the presence of line defects, the absolute
phase depends on the homotopy class of the integral curve
from the reference point. Unlike the phase of the density
fluctuations in smectics, the pitch streamlines need not
generate holonomy in multiples of 2π. Thus, even with the
phase field, a cholesteric, in general, cannot be decorated
with continuous layers, though it is possible in the absence
of line defects. In the oblique helicoidal configuration we
considered above, one can find a direction ~P that is both
perpendicular to n and satisfies ~P · ð∇ × ~PÞ ¼ 0, so that
there exists a phase field whose gradient points along ~P.
Writing this direction as ~P ∝ Pþ fn, we are led to a first-
order Ricatti equation for f that can be solved in smooth
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regions of the cholesteric. Though ~P can be foliated, we
know of no general argument that relates ~P to ∇ϕ=j∇ϕj.
Do dislocations in a smectic correspond to χ defects in

cholesterics? Note that the ground states of the cholesteric
and smectic share a discrete symmetry under translations
by π=q along the P direction. This discrete symmetry
makes possible the dislocation defects suffered by smectics.
Thus, we might expect dislocation defects in the level sets
of ϕ in cholesterics, as well. As in smectics, we would
expect such dislocations in ϕ to be realized as disclination
dipoles, with �π winding of ∇ϕ. If the eigenvalue q is not
allowed to vanish except at singular lines, then a nontrivial
winding in ∇ϕ implies a nontrivial winding in P since the
dot product of the two vectors never changes sign.
Therefore, defects in ∇ϕ are also defects in P, either λ
or τ singularities. Prohibiting q from vanishing requires us
to move only through cholesteric textures, analogous to
requiring that a biaxial nematic not be uniaxial [21]
anywhere, the “hard" biaxial phase.
Returning to the interpolated field in Eq. (4), we can

understand the necessity of λ�1 defects in the P field in light
of the constructed ϕ field. At small r, where P ¼ ẑ, the
pitch axis does not twist, and so ϕ ¼ q0z plus an arbitrary
uniform shift; the level sets are planar and horizontal. At
large r, where P ¼ r̂, the pitch axis does not twist either,
and so ϕ ¼ q0r plus an arbitrary uniform shift; the level
sets are cylinders concentric about r ¼ 0. The situation is
illustrated schematically in Fig. 1(b). In the biaxial nematic,
the analogous transformation could be accomplished by a
uniform “escape up” or “escape down” of one of the triad
vectors with decreasing r, and the same rotation of another
triad vector with increasing r. However, for a cholesteric,
such a resolution is incompatible with the existence of a ϕ
field that maintains nonzero layer spacing (except possibly
at line defects). Instead, the layers formed by level sets of ϕ
must suffer dislocations, realized as disclination dipoles,
line defect pairs with �π winding, as illustrated schemati-
cally in Fig. 1(c). Under our assumptions, these defects in
∇ϕ are also defects in P. Since n is nonsingular, the defects
are λ�1 rings. Although the cholesteric configuration might
not geometrically admit a foliation perpendicular to P
everywhere, its topology is nonetheless limited by the
topologies available to a family of layers. This example
illustrates that the algebra of cholesteric defects differs from
that of biaxial nematics.
Is the set of all smectic textures a subset of the set of

cholesteric textures with the added constraint that P ∝ ∇ϕ?
As long as the pitch axis remains straight, one can make
this identification using ϕ, provided that the distortions are
purely z-dependent. Similar identifications are possible for
spherically symmetric (hedgehog) and cylindrically sym-
metric (jelly-roll) configurations. The Volterra construction
is then used to create dislocations in the cholesteric in
analogy with those in a smectic. However, is it possible to
apply the Volterra construction while preserving the

cholesteric structure implied in Eq. (1)? In general, the
answer is no: The topology of a screw defect in a smectic
cannot be constructed in a cholesteric. This implies that the
identification between smectics and cholesterics fails in the
context of topological defects.
To see this, consider the change in angle of the director

field along an infinitesimal shift ϵ along the pitch axis,

Δθ ¼ −ϵn · ðP ·∇Þn ¼ ϵq; ð8Þ

where Δθ and q will, in general, depend upon which
integral curve of P we are considering. We see that
q ¼ dθ=dϵ. In this context, a Lagrangian set of coordinates
is natural—each point in space is labeled by the arclength
along each integral curve, and the integral curve is labeled
by its coordinates at one of the two-dimensional bounda-
ries. However, if the pitch axis is supposed to be
perpendicular to the “smectic layers” defined by the same
value of rotation θ around each integral curve, then P ∝ ∇θ
and we must implicitly switch between Lagrangian coor-
dinates and the Eulerian coordinates in space in order
to form the gradient. Accordingly, P ¼ ∇θ=j∇θj and
q ¼ �j∇θj, depending on the sign of twist, held constant
throughout the sample as before. Consider now a standard
smectic screw dislocation in θ with layer spacing a and
Burgers scalar b, given by level sets of

θðxÞ ¼ 1

a

�
z − btan−1

�
y
x

��
ð9Þ

with unit normal

NðxÞ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

p
�
by
r2

;
−bx
r2

; 1

�
; ð10Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. One can verify that the unit speed

curves RðsÞ ¼ ½A cosðγsÞ;−A sinðγsÞ; Bγs� satisfy P ¼
_R ¼ N½RðsÞ�, where γ¼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2þB2

p
and B ¼ A2=b.

Finally, as r → ∞, the torsion of this curve is q ¼ b=ðb2 þ
A2Þ while j∇θj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ A2

p
=ðAaÞ. We can consider ever-

larger helical paths by letting A grow, and we find that
q → 0 as A → ∞—the integral curves become straight
lines. At the same time, however, j∇θj → 1=a. These two
boundary conditions are incompatible, and it follows that
q ≠ j∇θj, preventing us from decorating the smectic screw
dislocation with a director field. Can we embellish the
integral curves to maintain the torsion? Recall that there is a
family of helices [19] that maintain constant torsion while
their curvature vanishes. However, such a family of con-
centric curves will have single or double twist in the core—
a vector field that cannot be foliated sinceN · ð∇ × NÞ ≠ 0.
To summarize, we have proposed a definition of the pitch

axis in the cholesteric that leads to a rich geometry of an
orthonormal triad consisting of the pitch axis P, the director
field n, and the perpendicular direction n. Our construction
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explicitly demonstrates the differences between the algebra
of the topological defects in smectics, cholesterics, and
biaxial nematics—phases with apparently similar or
identical ground state manifolds. The issue is not the
ground states or even the states with topological defects;
for homotopy theory to apply, it must be possible to
smoothly distort the director complexion between any
two representatives of the same class. Because of the
restrictions on the pitch axis in cholesterics and the layer
normal in smectics, algebraic “equivalence classes” are not
homotopic—the adventure begins.
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