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In topologically ordered quantum states of matter in ð2þ 1ÞD (spacetime dimensions), the braiding
statistics of anyonic quasiparticle excitations is a fundamental characterizing property that is directly
related to global transformations of the ground-state wave functions on a torus (the modular trans-
formations). On the other hand, there are theoretical descriptions of various topologically ordered states in
ð3þ 1ÞD, which exhibit both pointlike and looplike excitations, but systematic understanding of the
fundamental physical distinctions between phases, and how these distinctions are connected to quantum
statistics of excitations, is still lacking. One main result of this work is that the three-dimensional
generalization of modular transformations, when applied to topologically ordered ground states, is directly
related to a certain braiding process of looplike excitations. This specific braiding surprisingly involves
three loops simultaneously, and can distinguish different topologically ordered states. Our second main
result is the identification of the three-loop braiding as a process in which the worldsheets of the three
loops have a nontrivial triple linking number, which is a topological invariant characterizing closed
two-dimensional surfaces in four dimensions. In this work, we consider realizations of topological order in
ð3þ 1ÞD using cohomological gauge theory in which the loops have Abelian statistics and explicitly
demonstrate our results on examples with Z2 × Z2 topological order.
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I. INTRODUCTION

Topologically ordered quantum phases of matter in
ð2þ 1ÞD have been intriguing since their discovery dec-
ades ago (see Ref. [1] and references therein), due to exotic
properties such as fractionalized quasiparticles with any-
onic quantum braiding statistics [2,3]. Early on, it was
realized that in such phases the topological degeneracy of
the ground state on the torus corresponds to the number
of types of particle excitations (superselection sectors) [4].
Furthermore, it was shown that the matrix of Berry’s phases
experienced by the ground states under the modular
transformations of the torus, the S and T transformations
[Fig. 1(a)], are directly related to the quantum statistics
of the quasiparticles [2]. In fact, to date the most funda-
mental conjecture remains that the matrices of S, T contain
complete information about a topological order [2].
Therefore, one can view the modular S, T matrices as
the “nonlocal order parameters” in a topologically ordered
phase [5].
However, in three spatial dimensions, some fundamental

questions are yet completely unresolved: Is there a physical

way to characterize different topological orders in
ð3þ 1ÞD? Can braiding of excitations help us in the
characterization? Clearly the problem is much more com-
plex, since in 3D there are generically both pointlike and
looplike excitations, and their geometric interplay is rich.
If some type of braiding can help us characterize the
topological order in ð3þ 1ÞD, what is the topological
property of that braiding process that is relevant?
Motivated by the fundamental role of modular trans-

formations of the torus in ð2þ 1ÞD systems, our approach
to these questions is based on considering the analogous
transformations on the three-torus (e.g., a cube with

(a)

(b)

FIG. 1. S (left) and T (right) transformations on the (a) two-
torus and (b) three-torus, which are defined by periodic boundary
conditions.
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periodic boundary conditions). The modular transforma-
tions S, T on the torus generate the group SLð2; ZÞ, which
represents the different classes of continuous transforma-
tions on the torus [6]. In ð3þ 1ÞD quantum states, the
analogue is the three-torus, which also has just two asso-
ciated transformations S, T, generators of the SLð3; ZÞ
group [7,8], namely, a 120° rotation through a diagonal
of the periodic cube and a shear, respectively [Fig. 1(b)].
Very recently, it has been conjectured that exactly these
kinds of transformations can be used to characterize topo-
logical order in any dimension [8].
One way to study topologically ordered states is by using

the exactly solvable models of discrete gauge theories
introduced by Dijkgraaf and Witten [9,10]. Although these
theories in ð2þ 1ÞD do not provide an exhaustive classi-
fication of all possible topological orders [11], they describe
a physically interesting set of states. Most importantly for
this work, such cohomological gauge theories with gauge
group G are naturally defined in any spatial dimension,
allowing us to study ð3þ 1ÞD topological orders. They also
host both pointlike and looplike excitations, namely, gauge
charges and flux loops, respectively. For simplicity, we
restrict our study to the case of Abelian groups G, and then
additionally to cases where loops have only Abelian
braiding.
Our approach to the ð3þ 1ÞD problem is based on

generalizing some aspects of the ð2þ 1ÞD case, which we
review here. It is well known that topological operators,
which describe tunneling of quasiparticle across the peri-
odic 2D system, obey a nontrivial algebra. A certain
product of these operators gives the identity operator times
a complex number, which equals an S-matrix element, and
also equals the quasiparticle statistics [3,12]. To generalize
to three dimensions, we need the topological content of this
relation, which is revealed using a picture. Figure 2(c)
depicts the expectation value of the relevant product of
tunneling operators as a time sequence of events where
particle-antiparticle pairs tunnel across the periodic system.
Note that the initial and final state in the picture are the
same. The four worldline segments in this process, belong-
ing to two quasiparticle types, can be connected to reveal
two linked worldlines, Fig. 2(d). The picture shows how
the S-matrix element and the braiding statistics can be seen
in the linking of worldlines. One can detect the linking of
worldlines in a purely algebraic way, without drawing the
two figures, by calculating the linking topological invariant
of the two worldlines. This invariant simply counts the
number of links in the one-dimensional worldlines living in
the three-dimensional spacetime.
There is another way to relate an S-matrix element to a

topological property of the quasiparticle braiding process in
ð2þ 1ÞD, which will be important for our generalization to
ð3þ 1ÞD. Recently, the connection between modular trans-
formations on the ground-state manifold in ð2þ 1ÞD and
the statistics of quasiparticles was further exposed by the

introduction of minimum entropy states (MES), a special
choice of basis in the ground-state manifold [13]. Namely,
an S-matrix element is related to an overlap of two MESs
[13]. This relation is due to the fact that every MES can be
created by the action of a quasiparticle tunneling operator
on the appropriate reference state [13]. A pictorial repre-
sentation again uncovers the topological content in this
understanding: Figure 2(a) depicts the overlap of twoMESs
as a time sequence of applying quasiparticle tunneling
operators. Note that here the initial and final states in the
picture are different reference states, being rotated by 90°.
In this case, we immediately obtain the two worldlines,
since each MES in the overlap contributes one. The picture
reveals that the two worldlines in this process are linked
when the ð2þ 1ÞD spacetime process is embedded in
three-dimensional space as in Fig. 2(b). This approach
again connects the measurement of braiding statistics
(S-matrix element) in ð2þ 1ÞD to the linking of particle
worldlines.
In this paper, we generalize both of the above approaches

to a ð3þ 1ÞD cohomological gauge theory and obtain
some surprising relations between the matrix elements of
the three-torus S, T transformations and the braiding of
excitations. Noticing that the line, which represents a
quasiparticle tunneling operator across a periodic direction
on the two-torus, becomes a membrane, which represents
the tunneling of a flux loop across two periodic directions
in the three-torus, we construct the appropriate membrane

(a) (b)

(c) (d)

FIG. 2. An S-matrix element and braiding in ð2þ 1ÞD.
(a) Matrix element equals an overlap of two MESs, shown as
a time sequence. Any MES is defined by action of particle
tunneling operator along x on the appropriate reference state
defined by x direction. The MES at later time (blue) has been
acted on by Smodular transformation, so the tunneling is along y,
and the final reference state is defined by y direction. (b) Embed-
ding the spacetime process of (a) in three dimensions shows that
the two worldlines are linked. Time grows in the radial direction
as shown, so the spacetime of (a) spans the volume of a toroidal
slab. (c) Alternatively, the matrix element equals a product of
tunneling operators, also presented as a time sequence. Arrows
mark the action of tunneling operator and its inverse. Because of
taking the expectation value of this operator product, the initial
and final state are the same, in contrast to (a). (d) Connecting the
worldlines from (c), one obtains two worldlines that are linked.
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operators as well as the MES on the three-torus. We show
that in ð3þ 1ÞD topological order, the nontrivial matrix
elements of the S, T transformations in the MES basis are
due to a nontrivial algebra of the topological membrane
operators, analogously to the ð2þ 1ÞD case.
Next, we generalize to ð3þ 1ÞD the two ð2þ 1ÞD

approaches described above. Namely, we study the space-
time process representing the nontrivial product of mem-
brane operators, i.e., the loop tunneling operators, as well
as the spacetime process of overlapping two MESs. Both
calculations give the same value, which equals a matrix
element of the three-torus S transformation. This value also
represents a topological quantum phase accrued during
some loop spacetime process, and the main question
becomes, What is the nature of this loop process? In the
analogous situation in ð2þ 1ÞD, we describe that the
particle process is simple braiding, which is characterized
by the linking of worldlines.
Most strikingly, we argue that the obtained S-matrix

elements in ð3þ 1ÞD relate to certain braiding processes
involving three loops simultaneously. This is surprising
since there is a simple, seemingly fundamental, braiding
process of just two loops, where one loop traces out a torus
enclosing the other loop, which is relevant in other physical
contexts [14,15].
To uncover the topological underpinning of the two

studied ð3þ 1ÞD spacetime processes, we consider the
topological invariants of the loop worldsheets in both
of them. Although we cannot draw the pictures of two-
dimensional worldsheets living in the four-dimensional
spacetime, in analogy with Fig. 2, we find through calcu-
lation that the loop worldsheets in both spacetime processes
are described by the exact same nontrivial values of the
triple linking number (TLN) [16]. The triple linking
number is an integer invariant of closed surfaces in four
dimensions, and can be seen as the ð3þ 1ÞD generalization
of the linking number of closed lines in three dimensions,
which is relevant for particles in the ð2þ 1ÞD case.
The TLN is obviously the fundamental, truly three-

dimensional descriptor of the relevant three-loop braiding
process, which is revealed in the context of this paper. To
capture its meaning in a tangible way, in this paper we
also construct a time sequence of a process involving
three loops, shown in Fig. 3, such that the three loop
worldsheets in spacetime exhibit exactly the same values
of TLN as obtained in the two processes above. This
time sequence shows the physical braiding of three flux
loops resulting in a topological quantum phase that
measures the properties of the underlying ð3þ 1ÞD topo-
logical order (at least for cohomological gauge theory), and
equals a matrix element of the three-dimensional Smodular
transformation.
This paper is organized as follows. In Sec. II, we define

the exactly solvable models in ð3þ 1ÞD, which are classi-
fied by cohomology group and can be viewed as an

extension of the Dijkgraaf-Witten theory to ð3þ 1ÞD. In
Sec. III, we put these models on three-torus and find the
ground state manifolds. Particularly, we find a MES basis,
which is useful for interpretation. Further, we construct
membrane operators, defined as operators mapping
between MESs. We work out the modular transformations
on the MES basis in Sec. IV. We find modular trans-
formations to be directly related to braiding statistics of
flux loops and particles.We show this by both geometric and
algebraic methods. In Sec. V, we solve these models for
some illuminating examples.

II. COHOMOLOGICAL GAUGE THEORY
IN ð3þ 1ÞD

In this section, we define the cohomological gauge
theory for a general manifold in ð3þ 1ÞD, based on the
Dijkgraaf-Witten topological invariant. The theory is topo-
logical and defined by a discrete gauge group G. However,
there are distinct topologically ordered states for a fixed
G, and in ð3þ 1ÞD they are classified by the fourth
cohomology group of G with coefficients in Uð1Þ, namely,
H4ðG;Uð1ÞÞ. In Appendix A, we give a brief review of
cohomology concepts relevant for the rest of the paper,
while referring the reader to Refs. [17,18] for more details.
In this paper, we work in ð3þ 1ÞD, and therefore, the

theory is defined using the 4-cocycle (sometimes we call it
simply cocycle) ω, for which the cocycle condition
becomes

FIG. 3. Time sequence for three-flux-loop braiding. This
process has nontrivial triple linking number of three worldsheets.
First, loop G (red) is created and grows, forming the G
worldsheet. Then, loop H (black) emerges, encircling loop G
halfway. Then, loop F (blue) completely encircles loop H. After
this, loop H finishes the route around loop G. Finally, loop G is
annihilated.
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ωðg2;g3;g4;g5Þ ·ωðg1;g2 ·g3;g4;g5Þ ·ωðg1;g2;g3;g4 ·g5Þ
¼ωðg1 ·g2;g3;g4;g5Þ ·ωðg1;g2;g3 ·g4;g5Þ ·ωðg1;g2;g3;g4Þ;

ð1Þ

where ω ∈ H4ðG;Uð1ÞÞ, and gi ∈ G. In this paper, we
use the “canonical” 4-cocycle, meaning that ωðg1; g2;
g3; g4Þ ¼ 1 if any of g1, g2, g3, g4 is equal to 1 (the identity
element of group G).
The gauge theory is now defined by using ω to construct

topological invariants of a 4D manifold. For a given 4D
manifold M without boundary, one can triangulate it using
a finite number of 4-simplices [19,20]. The 4-simplex is a
higher-dimensional analogue of a regular polyhedron and
can be constructed from a tetrahedron by adding a fifth
vertex and moving it into the fourth dimension so that all
the edges from it to the four original vertices are the same
length as the tetrahedron’s edges. The triangulation basi-
cally requires completely filling the manifold M with
4-simplices without overlaps. The vertices of this triangu-
lation are then ordered arbitrarily, and the ordering is
represented by assigning arrows going from the lower to
the higher-ordered vertex on each edge, Fig. 4. Let us
denote a 4-simplex of the triangulation, together with the
ordering of its vertices, by σI, where I ¼ 1; 2;…; S labels
4-simplices and S is the total number of 4-simplices in M.
Next, one defines a coloring φ of all the edges in the
triangulation by assigning a group element to them. Let us
denote the group element assigned to the bond connecting
vertices j and i as gij, following the ordering from j to i:
j → i; we then automatically assign gji ¼ g−1ij . In addition,
the three assigned group elements for any given face
must satisfy the constraint gij · gjk · gki ¼ 1, and i, j, k
are the three vertices of the face. This constraint is the
“zero-flux rule.”
With these definitions, one can assign a Uð1Þ phase to

every 4-simplex by computing ωεðg54; g43; g32; g21Þ, where
ε ¼ sgn½detð ~12; ~23; ~34; ~45Þ� determines the chirality of the
simplex, as shown in Fig. 4 [21]. For a given coloring φ

and simplex σI , we label this Uð1Þ phase as WðσI;φÞεðσIÞ.
Finally, one can compute the product of all W for the
simplices:

Q
S
I¼1WðσI;φÞϵðσIÞ. For a given coloring φ, we

have one such product. The key result [9] is that the
complex number

ZM ¼ 1

jGjV
X
φ∈all
possible
colorings

YS
I¼1

WðσI;φÞϵðσIÞ; ð2Þ

where jGj is the number of elements in groupG and V is the
number of vertices in the triangulation, is a topological
invariant of the manifold M. More precisely, ZM does not
depend on the triangulation and the ordering of vertices
(while different colorings are already summed over), owing
to the cocycle condition in Eq. (1). One can further show
that equivalent cocycles (i.e., cocycles differing by a
coboundary) give the same value of ZM [9].
The topological invariant ZM is exactly the partition

function of the cohomological gauge theory, which is a
topological quantum field theory for discrete gauge group
G in ð3þ 1ÞD. It is the higher-dimensional version of the
Dijkgraaf-Witten theory [9,22], and it depends only on
inequivalent elements in H4ðG;Uð1ÞÞ.

A. Exactly solvable models

We define our exactly solvable models in ð3þ 1ÞD as
Hamiltonian versions of the cohomological gauge theory.
We consider space triangulated using a tetrahedron lattice
with oriented edges (bonds), where these orientations are
compatible with some ordering of lattice sites, and assign
an element gij ∈ G to each oriented edge j → i, according
to the above discussion.
An arbitrary quantum state in the Hilbert space H of

our model is then labeled by jai ¼ jfgijgi. The building
block for the Hamiltonian is the operator B̂s

p labeled by a
group element s ∈ G and a “plaquette” p containing all
3-simplices (tetrahedra) that share the vertex i. The pla-
quette operator acts on group elements on the edges that
share i. To define its action, we introduce an additional
edge rising into the fourth dimension, connecting i to an
auxiliary vertex i0. To edge i → i0, we assign the element
s ∈ G. The group elements are changed as

gij → s · gij;

gki → gki · s−1; ð3Þ

and these new values are represented on auxiliary edges
i0 → j and k → i0. Further, the nonzero matrix elements of
B̂s
p, namely, Bs

p ¼ hfðsÞjB̂s
pjii, are assigned the following

quantum amplitude:

FIG. 4. The 4-cocycle ω assigns a Uð1Þ complex number
ωεðg54; g43; g32; g21Þ to a 4-simplex, where ε is the chirality of the

4-simplex, defined as ε ¼ sgn½detð 12�!; 23
�!

; 34
�!

; 45
�!Þ�. The

dashed lines represent that the vertex 5 has a different coordinate
in the fourth dimension (time) with respect to the other vertices.
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Bs
p ≡

Y6
I¼1

WðσI;φÞεðσIÞ; ð4Þ

where the 4-simplices σI are built by triangulating the 4D
volume formed by the tetrahedra in the plaquette p and the
auxiliary edges.
It is important to note that the zero-flux rule is by

construction satisfied on all faces (triangles) of 4-simplices,
if it is satisfied in the tetrahedra of p, and this must be
imposed for the Bs

p to be well defined. We can then define
the plaquette operators B̂p as having matrix elements

Bp ¼ 1

jGj
X
s∈G

Bs
p: ð5Þ

The B̂p are projectors, which can be easily checked using
the cocycle property to show hfjB̂s

pB̂
s0
p jii ¼ Bs·s0

p , which
then implies hfjB̂pB̂pjii ¼ Bp. Similarly, it can be shown
that the plaquette operators commute, ½Bp; Bp0 � ¼ 0,
∀p, p0.
Let us also introduce the operatorQt, which projects flux

in a triangle t to zero; i.e., it enforces the zero-flux rule.
Then, the Hamiltonian takes the form

H ¼ −X
t

Qt −
X
p

B̂p

Y
t∈p

Qt; ð6Þ

where the label t ∈ p enumerates all the triangles making
up the plaquette p. As mentioned above, the factor

Q
t∈pQt

is actually crucial to ensure that H is well defined. Further,
it is easy to see that the plaquette operator term B̂p

Q
t∈pQt

actually commutes with the projectors Qt0 . Since all the
terms in H commute with each other, the model is exactly
solvable.
Let us briefly mention the connection of the

Hamiltonian formulation to the gauge theory, which is
exhibited in the ground-state manifold. Since all the
terms in H are projectors, the ground-state manifold is
the image of the projector P ¼ Q

pB̂p
Q

t∈pQt. On the
other hand, P is exactly the projector defining the
cohomological gauge theory on the 4D manifold having
two copies of our spatial manifold M as boundaries (see
Ref. [18] for details). The ground-state sector of H, to
which P projects with eigenvalue 1, is also the ground-
state sector of the cohomological gauge theory [9]
defined on M.

B. Geometrical reduction of 4-cocycles

In this section, we present some cohomology equations
for reducing the 4-cocycle to lower-order cocycles, and
explain their geometric meaning. These equations crucially
simplify all following calculations. From now on, we focus
on Abelian groups G for convenience.

First, we consider a triangulated 4D manifold in Fig. 5,
with the shown coloring. (Note that some edges needed for
full 4D triangulation are omitted, but coloring and ordering
are fully defined.) The Uð1Þ phase calculated from all the
4-simplices spanning this 4D volume, with the 4-cocycle ω
given, equals βεsðc; b; aÞ, with

βsðc; b; aÞ ¼
ωðs; c; b; aÞ · ωðc; b; s; aÞ
ωðc; s; b; aÞ · ωðc; b; a; sÞ ; ð7Þ

and ε ¼ sgn½detð~a; ~b; ~c; ~sÞ�. Using the 4-cocycle condition
for ω, it is straightforward to show that βs is a 3-cocycle.
This shows that lifting all vertices of a tetrahedron produces
a quantum phase which is only a 3-cocycle, for any
given ω.
Another quantity that appears naturally from a cubic

geometry is γa;b, whose geometric meaning is shown in
Fig. 6. It is defined from the 3-cocycle βa as

γa;bðc; dÞ ¼
βaðb; c; dÞβaðc; d; bÞ

βaðc; b; dÞ
: ð8Þ

It is straightforward to show that δγa;bðc; d; eÞ ¼ 1; namely,
γa;b is a 2-cocycle (see Appendix A). Further, from Eqs. (7)
and (8), one can show that γa;bðc; dÞ ¼ γ−1b;aðc; dÞ. This
equality follows also from the geometry in Fig. 6.

FIG. 5. Geometric meaning of 3-cocycle βsðc; b; aÞ corre-
sponds to evolution (along fourth dimension) of tetrahedron
[1234] to [10203040].

FIG. 6. Evolution from a triangle to a 4D manifold. Phase
associated with this colored manifold is γεa;bðc; dÞ, where

ε ¼ sgn½detð~d; ~c; ~b; ~aÞ�. This phase can also be written as

γε
0
b;aðc; dÞ, where ε0 ¼ sgn½detð~d; ~c; ~a; ~bÞ� ¼ −ε. So, we conclude
that γa;bðc; dÞ ¼ γ−1b;aðc; dÞ.
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III. GROUND STATE ON THREE-TORUS
AND MEMBRANE OPERATORS

A. Exact models on three-torus

We now put our model, Eq. (6), on the three-torus in
ð3þ 1ÞD. It is important to note that the exactly solvable
model has correlation length zero. Therefore, we can
consider the simplest triangulation of a three-torus shown
in Fig. 7. All eight cube vertices are identical due to
periodic boundary conditions. It is triangulated by six
tetrahedrons. There are three independent edges, which
are assigned group elements a, b, c ∈ G, with G a finite
group. Edges with the same direction share the same group
element value. The corresponding quantum state is labeled
by ja; b; ci. We also require G to be Abelian for simplicity.
Since there is only one vertex, we denote the plaquette

operator B̂p simply as B̂, which equals ð1=jGjÞPs∈G B̂s.
The action of B̂s on state ja; b; ci is

B̂sja; b; ci ¼ γa;sðb; cÞ
γa;sðc; bÞ

ja; b; ci:

¼ γa;bðc; sÞ
γa;bðs; cÞ

ja; b; ci: ð9Þ

We can directly write down the above result due to the
observation that the 4D graph we obtain by acting with B̂s

is, in fact, made out of two copies of Fig. 6 [23]. Note
that the Uð1Þ phase obtained by the action of B̂s is a fully
antisymmetric function of a, b, c, s, as can be seen both
geometrically and algebraically.

B. MES as ground-state basis

First, we briefly review topological order in ð2þ 1ÞD. It
is partially characterized by ground-state degeneracy on the
torus [3]. One can understand this degeneracy by applying
Wilson loop operators of distinct topological excitations
winding around one of the noncontractible loops on the
torus. From this point of view, one can see that the ground-
state degeneracy equals the number of distinct topological
superselection sectors.
Nonchiral topological order is fully determined by

braiding statistics and topological spin of its topological

excitations [4]. Remarkably, one can read the information
about excitations from ground state by using modular
transformations [2,13], namely, by considering the S, T
matrices of the S, T transformation in the ground-state
manifold. The dimension of S, T equals the number of
topological sectors. In a proper ground state basis, we can
obtain the “canonical form” of S, T matrices, for which the
entries of the S matrix are the braiding statistics and the
diagonal elements of T are the topological spins of
quasiparticles. The ground-state basis for canonical S, T
matrices is formed by minimal entropy states [13].
We can extend these concepts to ð3þ 1ÞD. However,

there is a major difference in this case: Topological
excitations can be flux loops in ð3þ 1ÞD. Without loss
of generality, we only consider the MES in the z direction.
Inspired by the case of ð2þ 1ÞD cohomological gauge

theories discussed in Ref. [24], we find the MES in the z
direction as

ja; b; λi ¼ 1ffiffiffiffiffiffiffijGjp X
c∈G

~χa;bλ ðcÞja; b; ci; ð10Þ

where ~χa;bλ is a one-dimensional projective representation.
Here, λ labels different projective representations of the
group G (see Appendix A), and the 2-cocycle γ from
Eq. (8) plays the role of factor system of these projective
representations:

~χa;bλ ðc1Þ~χa;bλ ðc2Þ ¼ γa;bðc1; c2Þ~χa;bλ ðc1c2Þ: ð11Þ

We consider only the case of Abelian (one-dimensional)
projective representations χa;b in this paper. This assumption
implies that the 2-cocycle γa;b is a 2-coboundary.We believe
this is related to the physical assumption of Abelian
statistics of loops. Note that our assumption about γa;b
implies that γa;bðc; sÞ ¼ γa;bðs; cÞ, so that the phase factor
in Eq. (9) is just identity, and states ja; b; ci for any a, b,
c ∈ G are in the ground-state manifold.
First, we verify that this state is indeed in the ground-

state manifold. Acting with projection operator B̂ on the
state, we get

B̂ja; b; λi ¼ 1ffiffiffiffiffiffiffiffiffi
jGj3

p X
c∈G

~χa;bλ ðcÞ
X
s∈G

Bsja; b; ci

¼ 1ffiffiffiffiffiffiffiffiffi
jGj3

p X
c

~χa;bλ ðcÞ · γa;bðc; sÞ
γa;bðs; cÞ

ja; b; ci

¼ 1ffiffiffiffiffiffiffijGjp X
c

~χa;bλ ðcÞja; b; ci

¼ ja; b; λi; ð12Þ

where the second row uses Eq. (9), and in the third row,
we use γa;bðc; sÞ ¼ γa;bðs; cÞ, which follows from the
above-mentioned assumptions.

FIG. 7. The simplest triangulation of three-torus has a single
vertex and three independent edges. Periodic boundary condi-
tions are imposed on the cube.
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Next, we prove that this state is indeed a MES in the z
direction. Let us retriangulate the three-torus, so that it has
two unit cells in the z direction. The ground state defined on
this two unit-cell system can be evolved from that in one
unit cell, as shown in Fig. 8:

ja;b;λi¼ 1ffiffiffiffiffiffiffijGjp X
c∈G

~χa;bλ ðcÞja;b;ci

¼ 1ffiffiffiffiffiffiffijGjp X
c1;c2∈G

~χa;bλ ðc2 ·c1Þγa;bðc2;c1Þja;b;c1;c2i

¼ 1ffiffiffiffiffiffiffijGjp X
c1

~χa;bλ ðc1Þ
X
c2

~χa;bλ ðc2Þja;b;c1;c2i: ð13Þ

As seen from the above, ja; b; λi defined on two unit cells
can be written as a direct product state. So, entanglement
entropy of this state in the z direction is zero, which must be
minimum. We therefore conclude that this state is indeed a
MES in the z direction. Note that the entanglement entropy
for this small system size vanishes due to a cancellation
between the “area law” contribution and the topological
contribution (see Ref. [13] and references therein), which
will not occur for larger system sizes.
Similarly, it is easy to write down the MES in x and y

directions:

jμ; b; ci ¼ 1ffiffiffiffiffiffiffijGjp X
a∈G

~χb;cμ ðaÞja; b; ci; ð14Þ

ja; ν; ci ¼ 1ffiffiffiffiffiffiffijGjp X
b∈G

~χc;aν ðbÞja; b; ci; ð15Þ

whose properties can be derived in the same way as above.

C. Membrane operator

Although we construct the MES in ð3þ 1ÞD, the
physical picture is still unclear. Recall that in ð2þ 1ÞD
all MESs can be obtained from inserting ribbon operators
(Wilson loop operators) into “trivial” MES, which

corresponds to a topological trivial sector. In the following,
we show that membrane operators are the relevant oper-
ators for such a procedure in ð3þ 1ÞD.
Let us start with the MES in the z direction, ja; b; λi.

Characteristically, in discrete gauge theory, we can interpret
a group element as a label of flux loop. Consequently, a
membrane, which is the ð3þ 1ÞD analogue of the Dirac
string, is also labeled by a group element. Further, a group
representation labels a particle [10]. Then ja; b; λi can be
viewed as a state with membrane a in the yz plane and
membrane b in the zx plane, as well as string λ (worldline
of particle) in the z direction. So, it is natural to define a
trivial MES as

je; e; 1i ¼ 1ffiffiffiffiffiffiffijGjp X
c∈G

je; e; ci; ð16Þ

where e ∈ G is the identity element. Here, 1 means the
trivial linear representation.
The central question becomes, What are the operators

that send one MES to another? It is natural to assume that
these operators correspond to membrane insertion in the
yz and zx plane, as well as string insertion in the z direction.
Additionally, we expect that a string in the x (y) direction
can measure a membrane in the yz (xz) plane while a
membrane in the xy plane will measure strings in the z
direction.
Following this intuition, we define membrane insertion

operators in yz, zx, xy planes, respectively, as shown in
Fig. 9:

Fu
b0;c0 ja; b; ci ¼ δbb0δcc0 · γ−1b;cðu; aÞjua; b; ci;

Gv
c0;a0 ja; b; ci ¼ δcc0δaa0 · γ−1c;aðv; bÞja; vb; ci;

Hw
a0;b0 ja; b; ci ¼ δaa0δbb0 · γ−1a;bðw; cÞja; b; wci; ð17Þ

where u, v, w label the spatial planes of the membranes.
Further, we can define

FðzÞ
u;λ ¼

X
b;c∈G

~χu;bλ ðcÞFu
b;c;

GðzÞ
v;λ ¼

X
c;a∈G

~χa;vλ ðcÞGv
c;a; ð18Þ

FIG. 8. Evolution from single vertex to two vertices.

FIG. 9. The action of membrane operators.

GENERALIZED MODULAR TRANSFORMATIONS IN ð3þ 1ÞD … PHYS. REV. X 4, 031048 (2014)

031048-7



where we interpret FðzÞ
u;λ as inserting membrane u (in the yz

plane) and string λ in the z direction, and we interpret GðzÞ
v;λ

as inserting membrane v (in the zx plane) and string λ in
the z direction. To confirm this, we act with these operators
on state je; e; 1i, getting

FðzÞ
u;λje; e; 1i ¼ ju; e; λi;

GðzÞ
v;λje; e; 1i ¼ je; v; λi: ð19Þ

It is not hard to obtain the “fusion rule” of membranes
and strings, namely,

FðzÞ
u1;λ1

FðzÞ
u2;λ2

¼ FðzÞ
u1u2;λ3

;

GðzÞ
v1;λ1

GðzÞ
v2;λ2

¼ GðzÞ
v1v2;λ3

; ð20Þ

and

FðzÞ
u;λ1

GðzÞ
v;λ2

ja; b; λi ¼ jua; vb; λ3i;
GðzÞ

v;λ1
FðzÞ
u;λ2

ja; b; λi ¼ jua; vb; λ3i; ð21Þ

where the representation λ3 is determined as the one in
which every element g ∈ G is represented by the product of
numbers that represent g in the λ1 and λ2 representations
(note that the Abelian representations considered here are
always one dimensional, i.e., just numbers). The fusion
rules follow from the properties of the 2-cocycle γ, namely,
assume ~χa;bμ is a projective representation with factor
system γa;b,

~χa;bμ ðc1Þ · ~χa;bμ ðc2Þ ¼ γa;bðc1; c2Þ · ~χa;bμ ðc1 · c2Þ: ð22Þ

Then, it follows that

~χa;b1μ1 ðcÞ~χa;b2μ2 γa;cðb1; b2Þ ¼ ~χa;b1b2μ3 ðcÞ;
~χa1;bμ1 ðcÞ~χa2;bμ2 γc;bða1; a2Þ ¼ ~χa1a2;bμ3 ðcÞ; ð23Þ

where the representations μ1, μ2, μ3 are related in the same
way as λ1, λ2, λ3 just above.
Similarly to the above derivations, we can define

HðxÞ
w;μ ¼

X
a;b

~χb;wμ ðaÞHw
a;b;

HðyÞ
w;μ ¼

X
a;b

~χw;aν ðbÞHw
a;b; ð24Þ

where HðxÞ (HðyÞ) creates membrane in the xy plane and
string in the xðyÞ direction. Acting with these operators on
MES in the z direction, we get

HðxÞ
w;μja; b; λi ¼ ~χb;wμ ðaÞ

~χa;bλ ðwÞ ja; b; λi;

HðyÞ
w;νja; b; λi ¼ ~χw;aν ðbÞ

~χa;bλ ðwÞ ja; b; λi: ð25Þ

It is then natural to interpret HðxÞ (HðyÞ) as an operator that
measures strings in the z direction and membrane in the
yzðzxÞ plane.
We also write down the remaining two operators that

send MES to MES for later convenience:

FðyÞ
u;ν ¼

X
b;c

~χc;uν ðbÞFu
b;c;

GðxÞ
v;μ ¼

X
c;a

~χv;cμ ðaÞGv
c;a: ð26Þ

IV. TOPOLOGICAL OBSERVABLES AND THEIR
PHYSICAL INTERPRETATION

A. S and T matrices from modular transformations

In this section, we calculate the Berry phase of ground
states obtained during modular transformations. The der-
ivation is largely a higher-dimensional generalization of
the ð2þ 1ÞD case in Ref. [24].
In real space, we can write the modular transformations,

Fig. 1(b), as

S ¼

0
B@

0 0 1

1 0 0

0 1 0

1
CA; T 31 ¼

0
B@

1 0 0

0 1 0

1 0 1

1
CA: ð27Þ

The question is, What is the action of S and T on our exact
models? We follow the strategy of Ref. [24], but generalize
it to ð3þ 1ÞD. We consider a T3 × ½0; 1� manifold (T3 is
three-torus), and put the initial ground state at T3 × 0 and
the final state at T3 × 1. Then, we carefully triangulate the
4D manifold T3 × ½0; 1� and compute the quantum ampli-
tude from the initial to the final state. After lengthy but
straightforward calculations, we find

Sja; b; ci ¼ jb; c; ai;
T31ja; b; ci ¼ β−1b ða; a−1c; aÞja; b; a−1ci: ð28Þ

Now, we act by T31 on MES in the z direction:

T31ja; b; λi ¼ 1ffiffiffiffiffiffiffijGjp X
c

~χa;bλ ðcÞβ−1b ða; a−1; aÞja; b; a−1ci

¼ ~χa;bλ ðaÞja; b; λi: ð29Þ

We can see that ja; b; λi is indeed an eigenstate of the T
matrix.
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We can also get the S-matrix element in the z direction
MES basis:

ha0; b0; λ0jSja; b; λi ¼ 1

jGj
X
c;c0

~χa;bλ ðcÞ
~χa

0;b0
λ0 ðc0Þ ha

0; b0; c0jb; c; ai

¼ 1

jGj
~χa;bλ ðb0Þ
~χa

0;b0
λ0 ðaÞ · δa

0b: ð30Þ

Taking into account our assumption that γa;b is a
2-coboundary, the projective representation ~χ can be
rewritten as ~χabμ ðgÞ ¼ εa;bðgÞ · χμðgÞ, where χμðgÞ is an
ordinary linear representation of G and εa;b is a 1-cocycle
for which γa;b ¼ δεa;b (see Appendix A). Then, we get a
factorized form:

ha0; b0; λ0jSja; b; λi ¼ 1

jGj
χa;bλ ðb0Þ
χa

0;b0
λ0 ðaÞ ·

εa;bðb0Þ
εa0;b0 ðaÞ

· δa0b: ð31Þ

While the physical meaning of this element is not so
clear for the general case, it is instructive to see the simple
case, where a0 ¼ b ¼ e. Then the 1-cocycle part of Eq. (31)
is trivial and only χλðb0Þ=χλ0 ðaÞ is left. We can interpret
this phase as an Aharonov-Bohm phase of particles going
around a flux loop in three dimensions; namely, particle λ
sees flux loop b0 and particle λ0 sees flux loop a. In the
following, we show how the most general form of the
S-matrix element, including the 1-cocycle contribution, can
be interpreted as statistics of flux loops as well as particles.

B. Braiding statistics from S matrix and
triple linking number

In ð2þ 1ÞD spacetime dimensions, the S-matrix ele-
ments can be directly related to quasiparticle braiding by
considering quasiparticle tunneling operators [3,13]. One
may ask if it is possible to capture the S-matrix elements
in ð3þ 1ÞD spacetime dimensions using a loop braiding
process by considering membrane operators. We show that
this is indeed possible.
Let us review the ð2þ 1ÞD case, mentioned in the

Introduction. An S-matrix element can be expressed as
an overlap of two minimum entropy states, where every
MEScan be created by the action of a quasiparticle tunneling
operator on the appropriate reference state [13]. Figure 2(a)
depicts the MES overlap as a time sequence where appli-
cation of a tunneling operator is represented as a spacetime
event of a particle-antiparticle pair tunneling across the
periodic system. We get two worldlines, since both MESs
in the overlap contribute one. The occurrence of braiding
can be revealed by realizing that the two worldlines in this
process are linked when the ð2þ 1ÞD spacetime process is
embedded in three-dimensional space, as in Fig. 2(b).
Therefore, an S-matrix element describes braiding, which
can be seen as linking of worldlines.

We now present an analogous interpretation of an
S-matrix element in ð3þ 1ÞD, using membrane operators
and a process involving a triple linking of worldsheets in
ð3þ 1ÞD. Starting from the S-matrix element in the MES
basis in the z direction, Eq. (30), it is straightforward to
show that

hv;w;μjSju;v;λi¼hμ;v;wju;v;λi

¼ 1

jGj
~χu;vλ ðwÞ
~χv;wμ ðuÞ

¼h1;e;ejðGðxÞ
v;1Þ−1ðHðxÞ

w;μÞ−1FðzÞ
u;λG

ðzÞ
v;1je;e;1i;

ð32Þ

where the last row follows from the definition of membrane
operators. In contrast with the ð2þ 1ÞD case, each MES is
created by the action of two membrane operators on the
reference state je; e; 1i. A membrane operator, such as
Eqs. (18), (24), and (26), can be interpreted as a spacetime
event of tunneling a flux-loop–antiflux-loop pair across a
plane in the periodic system; for example, from Eq. (18),
the FðzÞ

u;λ describes the tunneling of loop in the zy plane.
(A membrane also contains a string in its plane, which
represents particle tunneling.)
The key question now becomes, What is a robust

characterization of the process involving the four mem-
brane operators in Eq. (32)? Inspired by the ð2þ 1ÞD case,
where embedding the process involving one-dimensional
worldlines in three dimensions revealed their linking, we
embed the process involving two-dimensional worldsheets
into four dimensions. We find that three worldsheets have a
nontrivial triple linking number, which is a topological
invariant generalizing the linking number used for world-
lines in ð2þ 1ÞD. The details of embedding the ð3þ 1ÞD
spacetime process into four-dimensional space are in
Appendix B.
Here, we briefly summarize the TLN invariant.
The triple linking number TlkMNP of three oriented two-

dimensional surfaces M, N, P smoothly embedded in four
dimensions was defined in Ref. [16] as an analogue of the
linking number of classical links. In our case, M, N, P are
the three flux-loop worldsheets in ð3þ 1ÞD.
TlkMNP is an integer topological invariant [25]. It can be

nonzero only if the surfaces M, N, P are distinct, and the
Tlk obey the relations

TlkMNP þ TlkNPM þ TlkPMN ¼ 0;

TlkMNP þ TlkPNM ¼ 0; ð33Þ

and are therefore fully determined by two integers [25].
There are different ways to calculate the TLN [25]. We

describe the one that is most convenient for the braiding
problem: One projects the surfacesM, N, P from ð3þ 1ÞD
onto a three-dimensional slice using an arbitrary projection
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direction and looks for triple points, namely, points in the
projected manifold where all three projected surfaces
intersect. For each triple point s, one checks the stacking
order of surfaces along the projection vector and assigns the
top surface to Is, the middle to Js, and the bottom to Ks.
Finally, the sign ϵs is calculated as the handedness of the
three Is, Js, Ks surface normals at the point s; see Fig. 10.
Now, let ðI; J; KÞ be a permutation of the three surfaces
ðM;N; PÞ. Having the above information, TlkIJK equals
the sum of ϵs over the points s for which Is ¼ I, Js ¼ J,
Ks ¼ K. If no triple point contributes to a certain choice
IJK, then TlkIJK ¼ 0, and this has to be consistent with
other values of I0J0K0 according to Eq. (33).
The number of triple points and the stacking order of

surfaces both depend on the chosen projection vector in
ð3þ 1ÞD; however, the resulting TLN is topologically
invariant.
Here, we present the TLN result, leaving the calculation

details to Appendix B.We find that in the embedded process
the worldsheets corresponding to membrane operators

FðzÞ
u;λ, ðHðxÞ

w;μÞ−1, and ðGðxÞ
v;1Þ−1 have triple linking, with

TlkFHG ¼ TlkHFG ¼ 1;

TlkGHF ¼ TlkGFH ¼ −1;
TlkFGH ¼ TlkHGF ¼ 0: ð34Þ

We note that, even for general ð3þ 1ÞD topological
order, beyond cohomological models, the S-matrix ele-
ments are given by MES overlaps, while the direct con-
nection betweenMESoverlap and triple linking of tunneling
operator worldsheets, such as discussed above and demon-
strated using Eq. (32), remains a general property based on
the purely geometrical embedding construction. The only
required ingredient is that the MESs of the topological
order can be expressed using tunneling operators of
looplike excitations, which we expect to be generally true
in ð3þ 1ÞD.

C. Braiding statistics from membrane operator algebra

Returning to the ð2þ 1ÞD case, as briefly reviewed in
the Introduction, there is another way to relate an S-matrix

element to a topological property of the quasiparticle
braiding process. Namely, the quasiparticle tunneling
operators obey a nontrivial algebra, and a certain product
of these operators gives the identity operator times a
complex number, which equals an S-matrix element
[3,12]. Figure 2(c) depicts such a product of tunneling
operators as a time sequence of events where particle-
antiparticle pairs tunnel across the periodic system, in the
same fashion as in Fig. 2(a). The four worldlines in this
process can be connected to reveal two linked worldlines,
Fig. 2(d). Notice that this procedure can be done in the
representation of the system as a parallelepiped with
periodic boundary conditions, without need for embedding
the ð2þ 1ÞD spacetime in a three-dimensional space. One
again confirms that theS-matrix element describes braiding,
which can in turn be seen as linking of worldlines.
Here, we present an analogous interpretation of a

ð3þ 1ÞD S-matrix element. The algebra of membrane
operators follows from their definition:

FðzÞ
u;λH

ðxÞ
w;μja; v; ci ¼ ~χu;vλ ðwcÞ~χv;wμ ðaÞ

γv;wcðu; aÞγa;vðw; cÞ
jua; v; wci;

HðxÞ
w;μF

ðzÞ
u;λja; v; ci ¼

~χu;vλ ðcÞ~χv;wμ ðuaÞ
γv;cðu; aÞγua;vðw; cÞ

jua; v; wci: ð35Þ

Consider the membrane operator product
hG−1F−1H−1FHGi, where the expectation value is
obtained in state ja; e; ci with a, c arbitrary [note that
such a state is in the ground-state manifold, see after

Eq. (11)]. Here, we label F ¼ FðzÞ
u;λ, G ¼ P

c;aG
v
c;a, and

H ¼ HðxÞ
w;μ for simplicity. Using Eq. (35), it is straightfor-

ward to show

hG−1F−1H−1FHGi ¼ ~χu;vλ ðwÞ
~χv;wμ ðuÞ ; ð36Þ

so the quantum amplitude equals the S-matrix element
hv; w; μjSju; v; λi up to factor jGj.
As in the previous subsection, the membrane operators

Eqs. (18), (24), and (26), are interpreted as events of
tunneling a flux-loop–antiflux-loop pair across a plane in

the periodic system; for example, from Eq. (18), the FðzÞ
u;λ

describes the tunneling of loop in the zy plane. The
quantum amplitude in Eq. (36) can then be seen as the
time sequence in Fig. 11.
Analogously to the ð2þ 1ÞD case, where two world-

lines, defined by a particle tunneling operator and its
inverse, were connected into a single worldline, we can
consider that the events defined by F and F−1 form a single
worldsheet, and so on for G and H. Having exactly
three worldsheets, we calculate their TLN. Projecting the
time sequence onto the three-dimensional space slice
at time t ¼ −∞, we find eight triple intersection points
of the projected worldsheets, Fig. 12. For simplicity of

FIG. 10. A positive triple point (left) and a negative triple point
(right), where we denote the orientations of sheets by their
normals.
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presentation, we offset the spatial position of the inserted
operator and its inverse; i.e., themembrane ismoved slightly
between the time of its appearance and disappearance.
We check that this offset does not influence the result.
Notice that the orientation of the membrane operator and
its inverse is opposite; see Appendix B. A straightforward
calculation from each triple point gives a, c, e:
TlkFHG ¼ 1, b: TlkHFG ¼ 1, f: TlkGHF ¼ −1, e, g, h:
TlkGFH ¼ −1, which is exactly the same triple linking
number obtained from the S-matrix calculation.

1. Braiding process of three flux loops

In previous subsections, we have interpreted the mem-
brane operators as representing an instantaneous event of
creating a loop-antiloop pair and expanding the loop across
a plane in the periodic system until the loops annihilate.
However, this kind of worldsheet evolution can be

smoothly deformed to represent a more physically clear
process. We, therefore, make a time sequence of the three-
flux-loop braiding process that gives exactly the same
nontrivial triple linking number as the membrane process,
as shown in Fig. 3. By projecting this braiding time
sequence, we get Fig. 13, in which it is straightforward
to measure the TLN.
Triple point a gives TlkGHF ¼ −1, triple point b gives

TlkGFH ¼ −1, triple point c gives TlkHFG ¼ 1, and triple
point d gives TlkFHG ¼ 1. The obtained values of TlkIJK
for the three-flux-loop braiding exactly match the mem-
brane calculation result.

V. EXAMPLES

Here, we present the example of G ¼ Z2 × Z2 cohomo-
logical gauge theories. Since H4ðG;Uð1ÞÞ ¼ Z2 × Z2,
they can represent different topological orders. This shows
how the loop statistics can distinguish different topological
orders.
It is convenient to label group G elements a as ða1; a2Þ,

where ai ∈ f0; 1g. Group multiplication rule a · b is
defined as ðha1 þ b1i; ha2 þ b2iÞ, where we introduce
notation hxi≡ xmod 2.
Since the cohomology group is H4ðZ2 × Z2; Uð1ÞÞ ≅

Z2 × Z2, it can be parametrized by 4-cocycles

fωijji; j ¼ 0; 1g; ð37Þ

with multiplication rule

FIG. 11. Time sequence for process hG−1F−1H−1FHGi. The
worldsheets in this process share the same topological properties
as the three-flux-loop braiding process in Fig. 3.

FIG. 12. Projection of the membrane process time sequence in
Fig. 11 to three-dimensional space at t ¼ −∞. Lines show the
pairwise intersections of projected worldsheets. Purple lines, F
and G worldsheets; orange lines, F and H; green lines, G and
H. Although there are eight triple points here, the triple linking is
still the same as for the three-flux-loop braiding process, Fig. 13.
The directions t1;2;3 show the time ordering of contributions
to projection from worldsheets G, H, F, and so clarify to which
TlkIJK some triple point contributes [see after Eq. (33)].
For example, at point a, direction of t1, t2, t3 shows that
worldsheet projection at this point comes from G rather than
G−1, H−1 rather than H, F−1 rather than F, respectively.
Therefore, point a contributes to TlkFHG.

FIG. 13. Time sequence in Fig. 3 projected to three-
dimensional space at t ¼ −∞. Triple points are marked a, b,
c, d. Lines show the pairwise intersections of projected world-
sheets. Purple lines, F and G worldsheets; orange lines, F and H;
green lines, G and H. The projected G worldsheet in this figure
takes the form of the sphere; H and F take the form of tori (not
shown). The directions t1;2 show the time ordering of contribu-
tions to projection from worldsheetsG,H, and so clarify to which
TlkIJK some triple point contributes [see after Eq. (33)]. For
example, at point c, t2 shows that projection of H at this point
comes at later times, so after F, while t1 shows thatG comes from
earlier times, so before both F and H, altogether contributing to
TlkHFG. This process has the same triple linking number as the
one in Fig. 12.
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ωijða; b; c; dÞ · ωi0j0 ða; b; c; dÞ ¼ ωhiþi0ihjþj0iða; b; c; dÞ:
ð38Þ

The explicit form of these 4-cocycles is [26]

ω00ða; b; c; dÞ ¼ 1;

ω01ða; b; c; dÞ ¼ exp

�
iπ
2
a1b2ðc2 þ d2 − hc2 þ d2iÞ

�
;

ω10ða; b; c; dÞ ¼ exp

�
iπ
2
a2b1ðc1 þ d1 − hc1 þ d1iÞ

�
;

ω11ða; b; c; dÞ ¼ ω01ða; b; c; dÞ · ω10ða; b; c; dÞ: ð39Þ

It is straightforward to check that these ω indeed satisfy
the 4-cocycle condition.
One can now work out the induced 3-cocycle βa and

2-cocycle γa;b using their definitions in Eqs. (7) and (8).
For the induced 3-cocycle, we get

β00;aðb;c;dÞ¼1;

β01;aðb;c;dÞ¼ exp

�
iπ
2
ða1b2−a2b1Þðc2þd2−hc2þd2iÞ

�
;

β10;aðb;c;dÞ¼ exp

�
iπ
2
ða2b1−a1b2Þðc1þd1−hc1þd1iÞ

�
;

β11;aðb;c;dÞ¼β01;aðb;c;dÞβ10;aðb;c;dÞ: ð40Þ

It follows that the 3-cocycle βa can be expressed as

βaðb; c; dÞ ¼ exp

�
iπ
2
Pa
ijbiðcj þ dj − hcj þ djiÞ

�
; ð41Þ

where Pa
ij is some integer matrix. According to Ref. [27],

then the induced 2-cocycle must be a coboundary
γa;bðc; dÞ ¼ δεa;bðc; dÞ, where

εa;bðcÞ ¼ exp

�
iπ
2
Pa
ijbicj

�
: ð42Þ

Altogether, for inequivalent 4-cocycles, we get the induced
2-cocycle as

ε00a;bðcÞ ¼ 1;

ε01a;bðcÞ ¼ exp

�
iπ
2
ða1b2c2 − a2b1c2Þ

�
;

ε10a;bðcÞ ¼ exp

�
iπ
2
ða2b1c1 − a1b2c1Þ

�
;

ε11a;bðcÞ ¼ ε01a;bðcÞ · ε10a;bðcÞ: ð43Þ

Now, we are ready to calculate statistics of loops and
particles. We focus on

jGj · hw; u; νjSjv; w; μi ¼ ~χv;wμ ðuÞ
~χw;uν ðvÞ

¼ χμðuÞ
χνðvÞ

·
εv;wðuÞ
εw;uðvÞ

: ð44Þ

In the second equality, we defined

~χvwμ ðuÞ ¼ εv;wðuÞ · χμðuÞ;
~χwuν ðvÞ ¼ εw;uðvÞ · χνðvÞ; ð45Þ

where χμðχνÞ is the one-dimensional linear representation
of Z2 × Z2. One can easily check that the above definition
of ~χμ and ~χν is consistent, due to γa;b being a 2-coboundary.
Labeling μ ¼ ðμ1; μ2Þ as a Z2 × Z2 group element,

χμðuÞ ¼ eiπðμ1u1þμ2u2Þ ¼ eiπ~μ·~u: ð46Þ

First, let us consider the case w ¼ ð0; 0Þ. In this case,
only the χλ factors are nontrivial in the second line of
Eq. (44), which is interpreted as a contribution from the
Aharonov-Bohm phase of braiding particles around flux
loops. In this case, the phase factor equals eiπð~μ·~u−~ν·~vÞ, which
is independent of the choice of a cocycle. Namely, statistics
between particles and loops cannot distinguish different
phases.
Then, we turn to the general case. We get an additional

phase factor sl beyond eiπð~μ·~u−~ν·~vÞ, and the sl factor
comes from ε in Eq. (44). In other words, it is present
even when μ ¼ ν ¼ 0, i.e., χ representations are trivial,
so there are no charged particles. Therefore, sl repre-
sents statistics of flux loops. We list sl obtained from
different 4-cocycles as follows:
(1) ω00: sl ¼ 1,
(2) ω01: sl¼eðiπ=2Þ½ðu1v2þu2v1Þw2−2u2v2w1�,
(3) ω10: sl¼eðiπ=2Þ½ðu1v2 þu2v1Þw1−2u1v1w2�,
(4) ω11: sl ¼ eðiπ=2Þ½ðu1v2þu2v1Þðw1þw2Þ−2u1v1w2−2u2v2w1�.
We see that flux-loop braiding can indeed distinguish
different topological orders in ð3þ 1ÞD, recalling here that
the membrane operator expression is identified with a
particular type of three-flux-loop braiding. In particular,
according to Sec. IV, we can identify the flux loops (blue,
red, black) in Fig. 3 with fluxes ðu; v; wÞ here, and there are
no charges present.
Now, we turn to the T -matrix element ~χu;vλ ðuÞ ¼

hu; v; λjT31ju; v; λi. In the same way as above, we get

(1) ω00: ~χ
u;v
λ ðuÞ ¼ eiπ~λ·~u,

(2) ω01: ~χ
u;v
λ ðuÞ ¼ eiπ~λ·~ueðiπ=2Þðu1v2u2−u2v1u2Þ.

(3) ω10: ~χ
u;v
λ ðuÞ ¼ eiπ~λ·~ueðiπ=2Þðu2v1u1−u1v2u1Þ,

(4) ω11: ~χ
u;v
λ ðuÞ ¼ eiπ~λ·~ueðiπ=2Þðu1v2þu2v1Þðu1−u2Þ.

While the eiπ~λ·~u can be interpreted as the Aharonov-Bohm
phase of particles going around the loop, the remaining part
also encodes information about loop statistics. While we do
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not have a proof at this time, we believe that this phase is
related to the ribbon nature of flux loop, or in other words,
to a thickness of the membrane.

VI. DISCUSSION AND CONCLUSIONS

One of our main results is the construction of MES states
on the three-torus for the ð3þ 1ÞD cohomological gauge
theory, which can be trivially generalized to an arbitrary
number of unit cells. The S, T transformation matrices take
a simple form in this basis.
We discuss that the S-matrix elements are directly related

to the braiding of loop excitations. The T -matrix elements,
which are diagonal in the MES basis, correspond to the
generalization of topological spin for loop excitations. Here,
physically the loop excitations are generally expected to be
ribbon excitations with two different loop edges. We expect
that the geometrical interpretation of the T -matrix elements
is related to the braiding involving different loop edges.
Although we use exactly solvable models and ð3þ 1ÞD

topological quantum field theories to compute their S, T
matrices, these ð3þ 1ÞD S, T matrices are, in principle,
measurable quantities in practical model Hamiltonians. In
particular, given a topologically ordered phase in ð3þ 1ÞD,
with its topologically degenerate ground sector on three-
torus T3, one can first find a MES basis, similarly to the
algorithms proposed in ð2þ 1ÞD [13]. For instance, for the
S-matrix element between two MESs jΞii and jΞji: Sij,
one can perform the following thought numerical meas-
urement. Because the topological properties do not depend
on local geometry, we can assume that these ground states
live on a cube with periodic boundary conditions. Then,
one can consider the state rotated by 120° along the (111)
direction of the cube: R120°jΞii. Because R120°jΞii and jΞji
belong to the same topological phase, in the absence of
symmetry, there should exist a Hamiltonian path HðτÞ
(τ ∈ ½0; 1�) such that jΞji (jΞji) are the ground state of
Hð0Þ (Hð1Þ), and the ground-state sectors of HðτÞ are
adiabatically connected. One can then define a projection
operator P̂τ into the ground-state sector of HðτÞ for any
given τ. The many-body quantum amplitude related to the
adiabatic time-evolution process of the S transformation can
be computed as hΞjjP̂N−1=N ·… · P̂2=N · P̂1=NR120°jΞii as
N → ∞. This computation is a realization of the topological
quantum field theory time evolution.
We expect that this quantum amplitude is related to the

S-matrix elements sij at most by an overall ambiguityUð1Þ
phase eiθ, which is due to the nonuniversal local physics
in the time evolution and a phase eiϕi−iϕj , which is due to
the gauge choice of jΞii,jΞji. Even with these ambiguities,
such measurements can still be used to extract useful
information about the S, T matrices, which potentially
could fully determine them.
Recently, there has been a lot of progress in relating

topologically ordered phases to symmetry-protected

topological and symmetry-enriched topological phases,
for example, by partially or completely ungauging the
gauge group G, i.e., by transformations between global
and local symmetries [18,28–35]. We, therefore, expect that
our work will be useful in characterization of symmetry-
protected topological and symmetry-enriched topological
phases too.
Our discussion is limited to the case in which both groupG

and its projective representations are Abelian. These con-
straints are introduced here for simplicity rather than due to
difficulty of principle. In themost general case,we expect ~χ to
be the character of a projective representation, while modular
transformations can easily be generalized, as shown in
Ref. [24] for the ð2þ 1ÞD case. In those cases, three-loop
braiding may give a unitary matrix that corresponds to non-
Abelian statistics of loops. In fact, we expect that the triple
linking is relevant for any ð3þ 1ÞD topological order, beyond
cohomological models. Namely, as long as the MESs in a
ð3þ 1ÞD topologically ordered state can be written using
tunneling operators of looplike excitations, which we believe
should always be the case, our general geometrical approach
based on spacetime embedding shows that MES overlaps,
which appear as S-matrix elements, will involve the triple
linking of worldsheets defined by those tunneling operators.
Finally, we consider a trivial but ubiquitous example of

G ¼ Z2. In this case,H4ðG;Uð1ÞÞ ¼ Z1, so the cocycle can
be set to the identitymap. The braiding phase ~χvwμ ðuÞ=~χwuν ðvÞ
reduces to a linear representation χμðuÞ=χνðvÞ, where group
elementsu, v ¼ 0, 1 andμ, ν ¼ 0, 1 label the representations
of Z2:

χμðuÞ ¼ eiπμu: ð47Þ

The braiding phase therefore equals eiπðμu−νvÞ. There is no
contribution from flux-loop braiding, since the 1-cocycle
factors in Eq. (31) are trivial. In summary, the modular S
transformation for common Z2 gauge theory in ð3þ 1ÞD
tells us that particles see a flux loop as a π flux, and the flux
loops themselves have trivial braiding.
Using the MES basis and Eqs. (29) and (30), we directly

obtain the S and T matrices of ð3þ 1ÞD Z2 theory in their
canonical form:

S ¼ 1=2

0
BBBBBBBBBBBBBB@

1 1 0 0 1 1 0 0

1 1 0 0 −1 −1 0 0

1 −1 0 0 1 −1 0 0

1 −1 0 0 −1 1 0 0

0 0 1 1 0 0 1 1

0 0 1 1 0 0 −1 −1
0 0 1 −1 0 0 1 −1
0 0 1 −1 0 0 −1 1

1
CCCCCCCCCCCCCCA

;

T 31 ¼ Diagð1; 1; 1; 1; 1;−1; 1;−1Þ;
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where the MES basis ja; b; λi, with a, b, λ ∈ f0; 1g, is
here naturally ordered according to binary numbers with
digits abλ. These matrices are consistent with the S and T
matrices derived for the same theory in Ref. [8].
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Note added.—Recently, we noticed a paper that also
considers aspects of flux-loop braiding in ð3þ 1ÞD [36].

APPENDIX A: DEFINITION OF THE
COHOMOLOGY GROUP AND

PROJECTIVE REPRESENTATIONS

We begin with a brief introduction to group cohomology.
In this paper, we do not present the most general definition
of group cohomology.
For a finite group G, and an Abelian group M (M does

not need to be finite or discrete), one can consider an
arbitrary function that maps n elements of G to an element
in M; ω: Gn → M or equivalently ωðg1; g2;…; gnÞ ∈ M,
∀g1; g2;…gn ∈ G. Such a group function is called an
n-cochain. The set of all n-cochains, which is denoted
as CnðG;MÞ, forms an Abelian group in the usual sense:
ðω1 ·ω2Þðg1;g2;…;gnÞ¼ω1ðg1;g2;…;gnÞ ·ω2ðg1;g2;…;gnÞ,
in which the identity n-cochain is a group function whose
value is always the identity in M.
One can define a mapping δ from CnðG;MÞ to

Cnþ1ðG;MÞ: ∀ω ∈ CnðG;MÞ, define δω ∈ Cnþ1ðG;MÞ as

δωðg1;…; gnþ1Þ
¼ωðg2;…; gnþ1Þ ·ωð−1Þnþ1ðg1;…; gnÞ

×
Yn
i¼1

ωð−1Þiðg1;…; gi−1; gi · giþ1; giþ2;…; gnþ1Þ: ðA1Þ

It is easy to show that the mapping δ is nilpotent: δ2ω ¼ 1
[here, 1 denotes the identity ðnþ 2Þ-cochain]. In addition,
for two n-cochains ω1, ω2, obviously, δ satisfies
δðω1 · ω2Þ ¼ ðδω1Þ · ðδω2Þ.
An n-cochain ωðg1;…gnÞ is called an n-cocyle if and

only if it satisfies the condition δω ¼ 1, where 1 is the
identity element in Cnþ1ðG;MÞ. When this condition is
satisfied, we also say that ωðg1;…gnÞ is an n-cocycle of
group G with coefficients in M. The set of all n-cocycles,
denoted by ZnðG;MÞ, forms a subgroup of CnðG;MÞ.
Not all different cocyles are inequivalent. Below, we

define an equivalence relation in ZnðG;MÞ. Because δ is
nilpotent, for any ðn − 1Þ-cochain cðg1;…; gn−1Þ, we
can find the n-cocyle δc. And if an n-cocyle b can be
represented as b ¼ δc, for some c ∈ Cn−1ðG;MÞ, b is called
an n-coboundary. The set of all n-coboundaries, denoted by

BnðG;MÞ, forms a subgroup of ZnðG;MÞ. Two n-cocycles
ω1, ω2 are equivalent (denoted by ω1 ∼ ω2) if and only
if they differ by an n-coboundary, ω1 ¼ ω2 · b, where
b ∈ BnðG;MÞ.
The nth cohomology group of group G, with coeffi-

cients in M, HnðG;MÞ, is formed by the equivalence
classes in ZnðB;MÞ. More precisely, HnðG;MÞ ¼
ZnðG;MÞ=BnðG;MÞ.
In this paper, we make a lot of use of 4-cocycles ω.

We always choose them to be in “canonical” form, which
means that ωðg1; g2; g3; g4Þ ¼ 1 if any of g1, g2, g3, g4 is
equal to 1 (the identity element of group G). For any of the
inequivalent cocycles mentioned above, it is always pos-
sible to choose a gauge such thatω becomes canonical [17].
In usual unitary group representations, each group

element g in G is represented by a unitary matrix DðgÞ,
which satisfies Dðg1Þ ·Dðg2Þ ¼ Dðg1 · g2Þ. The projective
representations of the group G are defined by modifying
this relation by a phase factor ωðg1; g2Þ ∈ Uð1Þ:

Dðg1Þ ·Dðg2Þ ¼ ωðg1; g2ÞDðg1 · g2Þ; ðA2Þ
where ωðg1; g2Þ is a function of g1, g2, called a factor
system [37]. A factor system cannot be arbitrary. In order to
satisfy the associativity condition ½Dðg1Þ·Dðg2Þ�·Dðg3Þ¼
Dðg1Þ·½Dðg2Þ·Dðg3Þ�, the factor system must satisfy the
equation

ωðg1; g2Þ · ωðg1 · g2; g3Þ ¼ ωðg2; g3Þ · ωðg1; g2 · g3Þ: ðA3Þ

This relation is precisely the condition for ω to be a
2-cocycle [the condition is δω ¼ 1 in Eq. (A1) for n ¼ 2].
If ωðg1; g2Þ is a 2-coboundary, it can be written as
ωðg1; g2Þ ¼ cðg1Þ · cðg2Þ=cðg1 · g2Þ for a certain 1-cochain
cðgÞ. If two 2-cocyles, ω1;ω2, differ by a 2-coboundary,

ω1ðg1; g2Þ ¼ ω2ðg1; g2Þ ·
cðg1Þ · cðg2Þ
cðg1 · g2Þ

; ðA4Þ

it is obvious that they correspond to equivalent projective
representations, because one can absorb the 1-cochain into
DðgÞ by redefining ~DðgÞ ¼ cðgÞ ·DðgÞ, after which the
two factor systems become the same (this is actually
the definition of equivalent projective representations).
Therefore, the H2ðG;Uð1ÞÞ also classifies all inequivalent
(factor systems of) projective representations.

APPENDIX B: GEOMETRICAL
INTERPRETATION OF S MATRIX AND TRIPLE

LINKING CALCULATION CONVENTIONS

In this section, we present the details of embedding
the ð3þ 1ÞD spacetime in a four-dimensional Euclidean
space R4, which is applied to the third line of Eq. (32) to
show that in the embedded space worldsheets exhibit triple
linking. The embedding is a generalization of the ð2þ 1ÞD
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case shown in Figs. 2(a) and 2(b). The space manifold is a
three-torus T3, topologically a product of three circles
S1ð1Þ × S1ð2Þ × S1ð3Þ, with 1,2,3 the spatial directions. At a

given moment of time, this space is embedded in R4 to
form the manifold Σ, which is simply the surface of a
three-torus:

X ¼ ½r1 þ ðr2 þ r3 cos γÞ cos β� cos α;
Y ¼ ½r1 þ ðr2 þ r3 cos γÞ cos β� sin α;
Z ¼ ðr2 þ r3 cos γÞ sin β;
W ¼ r3 sin γ; ðB1Þ

where ri is radius for S1ðiÞ, which is constant at fixed time,

and ðX; Y; Z;WÞ are Cartesian coordinates in R4. The α, β,
γ are angles of S1ð1Þ, S

1
ð2Þ, S

1
ð3Þ, respectively, and correspond

to Cartesian spatial coordinates in a cube with periodic
boundary conditions. Without loss of generality, for every
moment in time t, we set r1 > r2 > r3. The embedding of
different time slices is chosen such that the manifold Σ
at later times always contains all Σ from the past. More
precisely, ½Σ × ð−∞; t1Þ� ⊂ ½Σ × ð−∞; t2Þ�, for any t1 < t2.
Finally, the four-dimensional manifold M ¼ Σ × ð−∞;∞Þ
covers the whole R4 space.
As t → −∞, r2, r3 → 0, so the space manifold shrinks

to a circle in the XY plane: X2 þ Y2 ¼ r1½t ¼ −∞�2. As
t → ∞, r1, r2, r3 → ∞, and the space manifold Σ asymp-
totically approaches theW axis, which can be viewed as the
S1ð3Þ circle (γ circle) with r3 ¼ ∞. Using all time ð−∞;∞Þ
with these asymptotic limits in the embedding is useful for
consistently removing ambiguities in the embedding of
events corresponding to membrane operators, as will soon
become clear.
After embedding the spacetime manifold itself, we

proceed to an S-matrix element as a sequence of spacetime
events. For convenience, we repeat Eq. (32) here:

hv;w;μjSju;v;λi¼hμ;v;wju;v;λi
¼h1;e;ejðGðxÞ

v;1Þ−1ðHðxÞ
w;μÞ−1FðzÞ

u;λG
ðzÞ
v;1je;e;1i:

ðB2Þ

It is useful to think about this equation as a two-step process
in time: from t ¼ −∞ to t ¼ 0 and from t ¼ 0 to t ¼ ∞. At
t ¼ 0−, the system is in state ju; v; λi, obtained by insertion
of membranes GðzÞ

v;1 and FðzÞ
u;λ at some time t < 0 into the

trivial MES je; e; 1i. On the other hand, the interval from
t ¼ 0 to t ¼ ∞ can be interpreted as the conjugate of an
appropriate history from t ¼ −∞ to t ¼ 0. This gives us the
bra hμ; v; wj by simply inserting membranes G and H into
the trivial MES at t ¼ ∞. Joining the two histories at t ¼ 0,
the product of bra and ket is obtained. So the quantum

amplitude that equals the S-matrix element is naturally
interpreted as a sequence of spacetime events.
Crucially, the coordinates x, y, z used for the membranes

are in the original three-dimensional space, and we yet have
to consistently identify them with the α, β, γ coordinates
that were defined above in the embedding of space into R4.
It turns out that F creates a sheet covering S1ð1Þ × S1ð2Þ, G
creates the sheet S1ð3Þ × S1ð1Þ, and membrane H covers

S1ð2Þ × S1ð3Þ, as we show below. In other words, if we cut

open the three-torus T3 to a cube, then the x axis
corresponds to γ, the y axis corresponds to β, and the z
axis corresponds to α, remembering that F is membrane in
the yz plane, G is membrane in the zx plane, and H is
membrane in the xy plane.
To see this, we start from the trivial MES ket

je; e; 1i ¼ 1ffiffiffiffiffi
jGj

p P
cje; e; ci, where the three labels inside

the ket correspond to the three directions x, y, z. Consider
the corresponding limit t → −∞, in which the β, γ circles
shrink to points, while the α circle remains at finite radius
r1. Therefore, the product of the group elements along the α
circle remains unconstrained in this limit. On the other
hand, we conclude that the product of the group elements
along the β or γ direction has to be identity e to be
shrinkable to a point. More concretely, consider a con-
sistent triangulation of entire R4, so that the nested Σ
manifolds coming from different times are connected by
the consistent triangulation. Then, the β and γ circles at
times t < 0 are bounding consistently triangulated disks,
and as they shrink, the zero-flux rule through the disks
would force the product of group elements along the circles
to identity e. Altogether, only the α coordinate can be
identified as z, while β, γ correspond to x, y (not necessarily
in that order).
We can perform a similar analysis for bra h1; e; ej and the

corresponding limit t → ∞. The finite loop at t ¼ ∞ is S1ð3Þ,
the γ circle. Then, it is easy to confirm that x corresponds
to γ. So, the remaining axis y corresponds to S1ð2Þ, i.e., to
the β circle.
Finally, we discuss some conventions we have chosen in

the calculations of TLN in Secs. I and IV C. As described
after Eq. (33), the TLN requires the calculation of normal
vectors to worldsheets, which are projected from four to
three dimensions. The overall sign of TlkIJK therefore
depends on a precise definition of orientations of world-
sheets, but these orientations are not inherent in the
membrane operators and we need to choose them consis-
tently. The F membrane operator defines a sheet in the yz
plane, and we assign it the ordered pair ðz; yÞ. After a
projection to three dimensions, the derivatives with respect
to z, y define the sheet tangent vectors ~n1, ~n2, respectively,
and the normal vector to sheet F is chosen as ~n1 × ~n2. For
F−1, the normal is defined with opposite sign. In Sec. IV C,
the total worldsheet composed of F and F−1 therefore has a
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consistent normal vector throughout. In the exact same
fashion, we assign to the G sheet the pair ðx; zÞ, and to H
the ðy; xÞ pair. Finally, we note that the Jacobian of the
transformation in Eq. (B1) has a negative determinant, so
the embedding reverses the handedness of the coordinates
in the three-dimensional projected space. Because of this,
the TLN values calculated from the embedding are addi-
tionally multiplied by −1.
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