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Recently, two interesting candidate quantum phases—the chiral spin-density wave state featuring ano-
malous quantum Hall effect and the dþ id superconductor—were proposed for the Hubbard model on the
honeycomb lattice at1=4 doping.Using a combinationof exact diagonalization, densitymatrix renormalization
group, the variationalMonte Carlo method, and quantum field theories, we study the quantum phase diagrams
of both the Hubbard model and the t-J model on the honeycomb lattice at 1=4 doping. The main advantage of
our approach is the use of symmetry quantum numbers of ground-state wave functions on finite-size systems
(up to 32 sites) to sharply distinguish different quantum phases. Our results show that for 1≲ U=t < 40 in the
Hubbardmodel and for 0.1 < J=t < 0.80ð2Þ in the t-Jmodel, the quantum ground state is either a chiral spin-
density wave state or a spin-charge-Chern liquid, but not a dþ id superconductor. However, in the t-J model,
upon increasing J, the system goes through a first-order phase transition at J=t ¼ 0.80ð2Þ into the dþ id
superconductor. Here, the spin-charge-Chern liquid state is a new type of topologically ordered quantum
phase with Abelian anyons and fractionalized excitations. Experimental signatures of these quantum phases,
such as tunneling conductance, are calculated. These results are discussed in the context of 1=4-doped
graphene systems and other correlated electronic materials on the honeycomb lattice.
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I. INTRODUCTION

The reliable determination of quantum phase diagrams of
correlated electronic systems has been one of the central
issues in quantum condensed matter physics. In the past
decades, different analytic and numeric methods have been
developed to attack this problem, including renormalization
group (RG) methods [1–4], quantum Monte Carlo (MC)
methods (for a review, see Ref. [5]), variationalMonte Carlo
methods [5,6], the density matrix renormalization group
(DMRG) method [7,8], and the recently developed tensor-
network methods [9–14]. Although each method has its
advantages and disadvantages, this growing list of theoreti-
cal techniques has enabled careful investigations and some-
times reliable determinations of quantum phase diagrams of
correlated systems. In particular, in the presence of strong
correlations, a reliable understanding of the quantum phase
diagrams of realistic model Hamiltonians usually strongly
relies on unbiased numerical techniques. For instance, the
DMRGmethod has successfully determined quantum phase
diagrams of various quantum spin systems, and exotic
quantum spin-liquid phases were revealed [15–19].

However, in the presence of doping, due to the larger
dimension of Hilbert space and stronger quantum entan-
glement, a reliable determination of quantum phases
remains challenging. The challenge is partially due to
the fact that competing quantum phases cannot be sharply
distinguished on finite-size systems in an obvious fashion,
while most cutting-edge numerical simulations can only be
performed on finite-size systems.
In this work, we show that a combination of different

quantum many-body techniques allows, to a certain level, a
sharp determination of quantum phases of correlated
electronic systems at some commensurate dopings [20].
Particularly, we demonstrate our approach in the 1=4-doped
correlated systems on the honeycomb lattice. Our approach
is based on our ability to analytically write down symmetric
quantum wave functions of different candidate quantum
phases on finite-size systems, study their characteristic
quantum numbers and other properties, and compare with
results from unbiased numerical simulations such as exact
diagonalization (ED) and DMRG. When different quantum
phases can be analytically shown to have different lattice
quantum numbers, this approach has the power to sharply
distinguish them even on small lattices.
Recently, interesting quantum phases were proposed for

the 1=4-doped Hubbard model on the honeycomb lattice.
Considering the nearest-neighbor (NN) single-band tight-
binding model on the honeycomb lattice, both the 1=4
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electron-doped and hole-doped systems feature a Fermi
surface of hexagonal shape (see Fig. 1), which is unstable
even in the presence of weak interactions. There are two
important features of the hexagonal Fermi surface: The
opposite sides of the Fermi surface are nested by three wave
vectors Q1;2;3, and three van Hove singularities are located
at the midpoints of the Brillouin zone boundary M1;2;3.
Previous studies have revealed two interesting candidate
quantum phases: the chiral spin-density wave (CSDW)
state [21] and the dþ id superconductor (SC) [22,23], both
of which can be understood starting from the two features
of the hexagonal Fermi surface.
It is well known that nested Fermi surfaces can cause

magnetism. Based on Hartree-Fock mean-field calculations
[21] and functional renormalization group calculations
[24,25], it has been shown that the three nested wave
vectors together could give rise to a rather exotic type of
magnetic ordering at intermediate coupling strengths: the
tetrahedral magnetic order that quadruples the unit cell [see
Fig. 2(a)]. Because of the noncoplanar magnetic ordering
pattern, electrons pick up Berry’s phase when hopping
around the lattice, similarly to the effect of a nonuniform
magnetic field. Consequently, the electronic band structure
is found to carry a nonzero Chern number. This magneti-
cally ordered phase, termed the chiral spin-density wave
state, is a topological phase featuring gapless electronic
edge states and anomalous quantum Hall effect σxy ¼
e2=h [21,24].
In addition, analytical renormalization group calcula-

tions, focusing on scattering involving electronic states at
the van Hove singularities, show a dþ id superconductor as
the ground state (GS) of the system, which, in principle,
could be a high-temperature phenomenon [23] [see Fig. 2(b)
for the pairing order parameter in real space]. The same
dþ id SC has also been proposed for the Hubbard model
and the t-J model on the honeycomb lattice over a large
range of doping levels based on renormalization group
studies [22–26], variational Monte Carlo approaches [27],
and tensor-network numerical simulations [28]. The dþ id
SC phase turns out to be a topological superconductor
hosting a spin-quantum-Hall effect [29].

Apart from these two phases, in this work we propose
yet another candidate quantum phase, denoted as spin-
charge-Chern liquid (SCCL), which could also be realized
in correlated electronic systems on the honeycomb lattice at
1=4 doping. As will become completely clear in the
following, we choose the attribute “liquid” due to its
symmetry properties and “charge-Chern” due to the non-
trivial band structure of charged fermions in the appropriate
slave-fermion description. The SCCL can be viewed as the
resulting phase after the long-range magnetic order in the
CSDW phase is quantum melted. In the past, quantum
melting of long-range magnetic order was discussed in the
context of undoped quantum spin systems, and the result-
ing exotic phases, quantum spin liquids, have attracted
considerable interest (see, e.g., Refs. [15,16,30–35]). It is
known that strong quantum fluctuations are necessary to
stabilize such liquid phases. In fact, most candidate
quantum spin-liquid materials are spin-1=2 systems, where
quantum fluctuations are strong. Intuitively, quantum
fluctuations of spin degrees of freedom are likely to be
even stronger in doped spin-1=2 systems, which can
be justified by slave-fermion mean-field arguments
(see Sec. II). This suggests that liquid phases such as
SCCL may have a better chance to be stabilized in doped
correlated electronic systems.
Unlike CSDW, the SCCL phase respects spin rotation

and lattice translation and rotation symmetries, while
breaking the time-reversal symmetry; nevertheless, both
the charge and spin excitations are gapped in the bulk. This
violation of Luttinger’s theorem is due to the fact that
SCCL is a fractionalized phase with topological order. For
example, in the bulk, SCCL features charge-1=2, spin-
neutral anyon excitations with θ ¼ π=4 exchange statistics.
On the boundary, SCCL hosts chiral gapless edge states of
charge-1, spin-neutral fermions. We show that although the
electromagnetic response in the bulk of the SCCL is
described by an anomalous quantum Hall response similar
to the CSDW phase, jx ¼ σxyEy, where σxy ¼ e2=h, the
SCCL and CSDW have very different signatures in
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FIG. 1. (a) Symmetries of the honeycomb lattice. (b) Nested
Fermi surface at 1=4 doping.

(b)

(a)

FIG. 2. (a) The chiral spin-density wave and (b) dþ id pairing
order parameters in real space.
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transport experiments, which can be used to identify them
in candidate materials. One important result of the current
work is that the conductance through a weakly coupled
tunneling junction with a metallic lead (namely,G ≪ e2=h)
in a SCCL phase should vanish as GðTÞ ∝ T4 at low
temperatures, while in the CSDW phase, this should
obey GðTÞ ∝ const.
Experimentally, single-band correlated electronic

models on the honeycomb lattice are relevant for many
materials. For instance, doped graphene may be described
by the Hubbard model in the intermediate correlated regime
U=t ¼ 2–3 [36]. More candidate materials, including
certain transition-metal-oxide heterstructures, will be dis-
cussed later in this paper. Although experimental realiza-
tion of 1=4 doping on these materials has not yet been
reported, with the fast developing material science tech-
niques on thin film synthesis, this doping level may be
achievable within the foreseeable future. This motivates us
to carefully investigate the phase diagrams of the correlated
electronic systems on the honeycomb lattice at 1=4
doping, especially over the intermediate to strong correla-
tion strengths. The previous studies are either based on
mean-field theories [21], which is biased, or renormaliza-
tion group techniques [22–25], which presumably are
under control only for the weak coupling regime.
We study both the 1=4-doped Hubbard model and the t-J

model on the honeycomb lattice:

HH ¼ −tX
hiji;α

ðc†iαcjα þ H:c:Þ þ U
X
i

ni↑ni↓;

HtJ ¼ PG

X
hiji;α

− tðc†iαcjα þ H:c:ÞPG

þ PG

X
hiji

J

�
Si · Sj − 1

4
ni · nj

�
PG: ð1Þ

Here, PG is the usual Gutzwiller projection operator
removing the double occupancies in the t-J model.
Because of the particle-hole symmetry of these nearest-
neighbor (t only) models, our study applies for both the
electron-doped and hole-doped systems.
We analytically construct quantum wave functions and

perform exact diagonalization on the 8-site sample, DMRG
simulations on the 24-site and 32-site samples, and varia-
tional Monte Carlo simulations. These allow us to construct
reliably, at least to a certain extent, the quantum phase
diagrams from intermediate to strong coupling regimes.
Our main results are summarized in Fig. 3. The limitations
of our calculations are twofold. First, we cannot address the
phase diagram reliably for the weak coupling regime in the
Hubbard model, U=t≲ 1, because correlation lengths of
the competing phases can be much larger than the inves-
tigated system sizes. Second, we cannot sharply distinguish
the CSDW phase from the SCCL phase, because they are

distinguished only by long-range physics, which requires
careful finite-size scaling and larger system sizes.
Despite these limitations, we find that CSDW or SCCL

is stablized in the majority of the physically realistic
parameter regime: 1≲ U=t < 40 in the Hubbard model and
0.1 < J=t < 0.80ð2Þ in the t-J model. Between the CSDW
and SCCL phases, the measurements of correlation func-
tions suggest that SCCL is more likely to be realized in the
small U=t and large J=t regimes within these parameter
windows. The dþ id SC phase is found in the t-J model at
0.80ð2Þ < J=t. The sharp distinction between the CSDWor
SCCL phase and the dþ id SC phase becomes possible
because they have different lattice quantum numbers on the
32-site sample.
The remaining parameter regimes are briefly discussed

but are not the focus of the present paper, since it is unclear
whether these regimes are relevant for correlated materials.
For instance, in the t-J model with J=t < 0.1 and in the
Hubbard model with U=t ≳ 50, we find some inconclusive
evidence for a different homogeneous phase. This param-
eter regime is adjacent to the infinite-U Hubbard problem
[37,38] and will be left for future study. In addition, when
J=t≳ 3 in the t-J model, evidence of charge inhomoge-
neity is observed, which is likely due to phase separation
and is consistent with physical intuition.
There is a useful by-product of our investigation. It

was proposed that, on finite-size lattices, the rotational
symmetry eigenvalues in the ground-state manifold of a
topologically ordered phase can be determined by the
modular transformation matrices [39–43]. However, the
SCCL phase here serves as a counterexample of this
claim, because the rotational eigenvalues are system-size
dependent (see Sec. IV).
The paper is organized as follows. In Sec. II, we

analytically construct symmetric quantum wave functions
of the three phases: CSDW, SCCL, and dþ id SC. We

(a)

(b)

FIG. 3. The phase diagrams of the correlated electronic systems
on the honeycomb lattice at 1=4 doping. (a) In the Hubbard
model, the ground state is found to be either in a CSDW phase or
in a SCCL phase over the majority of the parameter range
1≲ U=t < 40. (b) In the t-J model, the CSDW phase or the
SCCL phase is identified in the regime 0.1 < J=t < 0.80ð2Þ,
separated from the dþ id superconductor phase at larger J=t by a
first-order phase transition.
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show that they have characteristic signatures in quantum
numbers on finite-size lattices. In Sec. III, we present the
results from a combination of different numerical simu-
lations, which convincingly justify the phase diagrams in
Fig. 3. Because SCCL is a new topologically ordered
quantum phase, its low-energy effective theory, fundamen-
tal properties, and experimental signatures are studied in
Sec. IV. Finally, we discuss our methodology and results, in
particular in the context of a few candidate materials,
in Sec. V.

II. SYMMETRIC WAVE FUNCTIONS OF
COMPETING QUANTUM PHASES

To identify fingerprints of these candidate quantum
phases in unbiased numerical simulations, we explicitly
write down the symmetric quantum wave functions of the
competing CSDW, SCCL, and dþ id SC phases on finite-
size lattices. Note that there is no sense of spontaneous
symmetry breaking on finite-size lattices, and these quan-
tum wave functions are symmetric (i.e., forming irreducible
representations) of the full symmetry group involving both
the SUð2Þ spin-rotation group and the lattice space group.
This is also why the CSDW and SCCL cannot be sharply
distinguished on finite-size lattices because they share the
same quantum numbers.
We construct the CSDW or SCCL quantum wave

functions using the slave-fermion approach [44–48] and
construct the dþ id SC wave functions by the slave-boson
approach [49,50]. Note that these wave functions are
constructed in the Hilbert space of the t-J model; however,
their quantum numbers on finite-size lattices are unchanged
in the Hubbard model. This is because the small J=t regime
in the t-J model and the large U=t regime of the Hubbard
model are smoothly connected, and if two quantum states
have different quantum numbers on finite-size lattices, they
cannot represent the same quantum phase. In addition,
although these quantum wave functions are not the exact
ground states of simple model Hamiltonians, they have the
same universal properties of the quantum phases that they
belong to, including symmetry quantum numbers.

A. d þ id SC

Here, we briefly describe these symmetric quantum
wave functions. The details can be found in
Appendix B. A dþ id SC can be constructed using the
slave-boson approach [49,50], in which the electrons are
split into fermionic spinons and bosonic holons:

ciα ¼ fiαb
†
i : ð2Þ

This parton construction enlarges the Hilbert space and has
a Uð1Þ gauge redundancy. This gauge redundancy is
broken by boson condensation jhbiij ¼

ffiffiffi
x

p
at zero temper-

ature (x is the doping fraction), which is required to

accommodate the doped charge at the mean-field level.
A dþ id SC can be represented if fiα fermions form a
dþ id SC band structure and the bosons are condensed at
the Γ point. The associated physical wave function is
obtained after projecting out the unphysical states of the t-J
model; i.e., it is a simple Gutzwiller projected dþ id SC
wave function,

jΨdþidðχ;ΔÞi ¼ PGPN jΨMF
dþidðχ;ΔÞi; ð3Þ

where PN is the projector into a fixed fermion number
sector, enforcing that the total number of fermions equals
3=4 of the total number of sites. jΨMF

dþidðχ;ΔÞi is the ground
state of the dþ id SC mean-field Hamiltonian:

HMF
dþidðfÞ ¼

X
hiji

ð−χf†iαfjα þ Δijfiαfjβϵαβ þ H:c:Þ

− μf
X
i

f†iαfiα: ð4Þ

Here, χ is the real hopping, while singlet pairingΔij has the
real space pattern shown in Fig. 2(b). Namely, Δij ¼ Δ,
Δe2πi=3, Δe−2πi=3 depending on the orientations of the
bonds (Δ is chosen to be real). For simplicity, we include
the nearest-neighbor amplitudes only. The μf is tuned to
satisfy hf†iαfiαi ¼ 3=4 at the mean-field level, so it is not a
variational parameter. Note that after the sign of χ is fixed,
only the ratio Δ=χ is a variational parameter of the
constructed wave function jΨdþidðχ;ΔÞi. This single-
parameter variational wave function is used in the varia-
tional Monte Carlo study in Sec. III B, which reproduces
∼97%–99% of the ground-state energy in the dþ id phase
shown in Fig. 3(b).

B. CSDW or SCCL

To construct CSDWor SCCL wave functions, we use the
slave-fermion approach [44–48], in which electrons are
split into bosonic spinons and fermionic spinless holons,

ciα ¼ biαf
†
i ; ð5Þ

which also enlarges the Hilbert space and has a Uð1Þ gauge
redundancy. At the mean-field level, the spin dynamics is
described by a bosonic superconductor, and the charge
dynamics is described by a spinless fermion band structure,

HMF
CSDWor SCCLðbÞ ¼

X
ij

ðBijb
†
iαbjα þ Aijbiαbjβϵαβ þ H:c:Þ

− μb
X
i

b†iαbiα;

HMF
CSDWor SCCLðfÞ ¼

X
ij

ðχijf†i fj þ H:c:Þ − μf
X
i

f†i fi;

ð6Þ
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where Bij and Aij are boson singlet hopping and pairing on
bond ij, and χij is the spinless fermion hopping. Nonzero
Bij and Aij, which are required to describe CSDW or
SCCL, break the Uð1Þ gauge redundancy down to Z2. The
mean-field boson (fermion) wave function jΨMF

b i (jΨMF
f i)

is the ground state of the corresponding Hamiltonian in
Eq. (6), which can be mathematically represented as a
permanent (determinant). The associated physical wave
function jΨCSDWor SCCLi is obtained by gluing two parts
together and going back to the Hilbert space of the
t-J model.
More precisely, note that any physical state in the t-J

model can be expanded in the spin-occupation basis
fjs1; s2; s3;…; sNig, where N is the number of sites and
si ¼ ↑, ↓, 0 depending on whether the site i is spin-up,
spin-down, or empty:

js1; s2;…; sNi≡
Y
sia¼↑

b†ia;↑
Y
sib¼↓

b†ib;↓
Y
sic¼0

f†ic j0i; ð7Þ

where a certain ordering of sites is required in the last
product to take care of the fermion sign. The physical wave
function jΨCSDWor SCCLi is defined as

hs1; s2;…; sN jΨCSDWor SCCLi

¼ h0j
� Y
sia¼↑

b†ia;↑
Y
sib¼↓

b†ib;↓

�†
jΨMF

b i

· h0j
�Y
sic¼0

f†ic

�†
jΨMF

f i; ð8Þ

i.e., jΨCSDWor SCCLi is a product of a permanent (the second
line) and a determinant (the third line).
It turns out that the real space pattern of Aij, Bij, χij, as

shown in Fig. 4, is describing the CSDW or SCCL phases
(see Appendix B). For simplicity, we plot these amplitudes
only on the NN and next-nearest-neighbor (NNN) bonds.
This complicated pattern ensures that the wave function is
symmetric under lattice space group while capturing the
tetrahedral spin correlation.
One can see that the unit cell of the amplitudes doubles

the original unit cell of the honeycomb lattice, which
indicates that the mean-field states jΨMF

b i (jΨMF
f i) break

translational symmetry. However, the physical state
jΨCSDWor SCCLi is fully translationally symmetric, as shown
in Appendix B. Similar states having doubled unit cell of
the mean-field amplitudes are often called π-flux states in
the context of quantum spin liquids.
In addition, this doubling of unit cell is physically

important. This is why the spinless fermion filling
hf†i fii ¼ 1=4, required by the 1=4 doping, actually corre-
sponds to a fully filled lowest f-fermion band, which is
separated from higher bands by an energy gap generated by
the imaginary part of the NNN hopping eiϕf . Similarly

to the Haldane model of spinless fermions [51], which
preserves the original unit cell of the honeycomb lattice, the
lowest energy band of the f fermion here is found to carry
nonzero Chern number C ¼ 1. Because f fermion
describes the charge dynamics, the electromagnetic
response of CSDW or SCCL features an anomalous
quantum Hall response, σxy ¼ e2=h.
Now, we describe the difference between the CSDW

phase and the SCCL phase in the above slave-fermion
formulation. At the mean-field level, μb is chosen so that
hb†iαbiαi ¼ 3=4 to be consistent with the doping level. On a
finite-size lattice, this is always achieved by tuning μb so
that the boson band minima are close enough to, but not
touching, zero. Note that when the bosonic band minima
touch zero, boson condensation occurs and long-range
tetrahedral magnetic order is established (see Appendix B).
This is the CSDW phase in the slave-fermion formulation.
However, because boson condensation never occurs on
finite-size lattice due to the presence of boson pairing, the
difference between the two phases appears only in the
thermodynamic limit (L → ∞). In this limit, if the boson
band minima separate from zero by a finite gap, the
resulting phase is a SCCL; however, if the gap closes,
the resulting phase is a CSDW.
The SCCL phase is thus a fully gapped phase in the bulk,

which will be studied in detail in Sec. IV. Nevertheless, it is
helpful tomention some of its basic properties here. Because

(b)(a)
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FIG. 4. The real space pattern of the slave-fermion amplitudes
describing the CSDWor SCCL phases. The dashed line encircles
the doubled unit cell. (a) The nearest-neighbor (NN) and next-
nearest-neighbor (NNN) boson pairing amplitudes Aij are direc-
tional (labeled by arrows) since Aij ¼ −Aji. Aij on the NN
(NNN) bonds have the same magnitude, respectively. Their
different phases are represented by different colors. Black, 1;
violet, eiπ=2; green, ei5π=6; orange, eiπ=6; red, eiπ=3; blue, ei2π=3.
(b) The NN (NNN) boson/fermion hopping amplitudes Bij=χij
also have uniform magnitudes, respectively. When they are
complex, the amplitudes are directional Bij ¼ B�

ji, χij ¼ χ�ji
(labeled by arrows). The phases are illustrated by colors. Black,
�1; blue, eiϕ; red,−eiϕ. Here, the real number ϕ ¼ ϕb for bosons
and ϕ ¼ ϕf for fermions. ϕb and ϕf can be viewed as two
variational parameters. The above pattern is for one of the two
degenerate ground states while the other one is its time-reversal
image, which can be obtained by sending these amplitudes to
their complex conjugates: Aij=Bij=χij → A�

ij=B
�
ij=χ

�
ij. Sites num-

bered 1 to 8 label the quadrupled unit cell used in Appendix C.
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the bosons do not condense, there is a remaining Z2 gauge
dynamicswhich dictates the existence of a topological order.
However, the topological order in SCCL is fundamentally
different from a usualZ2 topological order such as the one in
Kitaev’s toric code [52]. In a usual Z2 topological order,
there are three types of nontrivial quasiparticles: bosonic
Z2-gauge charge e, bosonic vison (π-gauge flux)m, and the
fermionic bound state em. But in SCCL, the three nontrivial
quasiparticles are spin-1=2 and charge-neutral bosonic Z2-
gauge charge bα (which can be identified with the spinons),
spin-neutral and charge-1=2 vison v with statistical angle
θ ¼ �π=4, and their bound states spin-1=2–charge-1=2
anyon bαvwith statistical angle�5π=4. Here, the two signs
of the statistical angles correspond to the two degenerate
ground states, which are time-reversal images of each other.
The charge-1=2 vison v is simply due to the fact that fermion
f fills a Chern band. Thus, the vison, a π-gauge flux, will be
bound with 1=2 charge.
The charge-1, spin-neutral fermionic holon f differs

from a spinon only by an electron. Therefore, mathemati-
cally it is not a new type of quasiparticle. However, there
are gapless chiral edge states formed by f on the boundary,
which is clear at the mean-field level. This means that,
although the spin gap is opened everywhere in the SCCL
phase, the charge gap is closed on the boundary. Because of
the spin gap, single electron tunneling into the edge states is
forbidden at low energy. However, singlet pairs of electrons
can still tunnel into the edge, which is the origin of the T4

power-law tunneling conductance at low energy.
Finally, the slave-fermion formulation of long-range

magnetic order allows us to argue that the spin-liquid
phases, such as SCCL, may be easier to be stablized in the
doped systems compared with the undoped spin-1=2
systems. In the past, a great number of spin-1=2 models
were investigated in a search for quantum spin liquids.
Only a few of these models can host spin-liquid phases
[53–56]. In the slave-fermion formulation (which in
the undoped case is the same as the Schwinger-boson
formulation), this can be understood as follows.
For a given value of mean-field parameters, Aij=Bij,

hb†iαbiαi increases as μb increases and the boson quasipar-
ticle gap decreases. In most cases, boson condensation is
required to accommodate the boson density hb†iαbiαi ¼ 1 in
the undoped systems. For example, in theQ1 ¼ Q2 state on
the kagome lattice, only for a rather small parameter
window of Aij=Bij, a spin-liquid state is stabilized
[44,57]. Interestingly, this small window appears to be
energetically favored in a variational Monte Carlo study of
the J1-J2 Heisenberg model [56], which could explain the
quantum spin-liquid phase discovered in DMRG simula-
tion [15]. However, in the doped case, hb†iαbiαi ¼ 1 − x,
where x is the doping level, suggesting a larger parameter
range in which the liquid phase is stabilized. This is also
consistent with physical intuition. In the slave-fermion
mean-field description, in terms of spin dynamics, doping

only means replacing S ¼ 1=2 by S ¼ 1=2ð1 − xÞ.
Therefore, doping effectively reduces the spin and
increases the effects of quantum fluctuations.

C. Quantum numbers

After the symmetric wave functions are constructed on
finite-size lattices, their symmetry quantum numbers can be
analytically computed. In Table I, we summarize the
quantum numbers of the three competing phases on
symmetric samples (see Appendix C for details). All wave
functions are SUð2Þ spin singlets. We find that on
2N × 2N × 2 lattices [58], the ground-state wave functions
of all the three competing phases always form twofold
irreducible representations (irreps) of symmetry group.
In particular, the two degenerate states in the angular

momentum basis (rotational symmetry eigenbasis) exactly
form time-reversal images of each other. This is a rather
special case of time-reversal symmetry-breaking phenom-
ena. Although all three competing phases break time-
reversal symmetry in the thermodynamic limit, without
the analysis of lattice symmetries, naively one may expect
that the time reversal–related twofold ground-state sector is
nondegenerate on finite-size lattices due to tunneling. Here,
the quantum tunneling between the two ground states is
forbidden by the lattice rotational symmetry.
One may wonder that in the thermodynamic limit, apart

from twofold degeneracy induced by time-reversal sym-
metry breaking, there should also be a topological order–
induced degeneracy in the SCCL phase. In fact, we show in
Sec. IVA that there will be fourfold degeneracy induced by
topological order and in total we have eightfold degeneracy.
The ground states of SCCL shown in Table I correspond to
a particular one of the four topologically degenerate
sectors. The center-of-mass momentum of the other three
sectors is at the three M1;2;3 points. We believe that on the
2N × 2N × 2 finite lattices the energies of these three
sectors are higher than the one shown in Table I, because
only in the sector with the center-of-mass momentum at Γ
the minima of spin-1=2 boson dispersion coincide with
available momenta in the Brillouin zone; the other three
sectors are obtained by insertion of π fluxes, which moves

TABLE I. Twofold symmetry irreps of the many-body ground-
state wave functions on 4N × 4N × 2 lattices in the 60°-rotation
eigenbasis. (See Fig. 1 for definitions of the symmetry operations.)

Symmetry CSDW or SCCL dþ id SC

Lattice momentum Γ Γ
60° rotation C6

� e−πi=3 0

0 eπi=3

� � e2πi=3 0

0 e−2πi=3
�

Mirror σ �
0 1

1 0

� �
0 1

1 0

�
Time reversal �

0 1

1 0

� �
0 1

1 0

�
Inversion (C3

6) −1 1
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the momenta away from the position of boson minima and
should lead to higher energy (see Appendix B).
From Table I one learns that the 32-site sample is the

smallest system allowing a sharp distinction [59] between
the CSDW or SCCL phase and the dþ id SC phase.
However, it is likely that exact diagonalization on the 32-
site sample is beyond the currently available computing
power. This motivated us to perform the 32-site DMRG
calculations in Sec. III C.

III. NUMERICAL SIMULATIONS

Numerical calculations are performed on three samples
shown in Fig. 5, each defined with periodic boundary
conditions. In all numerics, t ¼ 1 is fixed while J or U are
varied.

A. Exact diagonalization on the 8-site sample

We first describe the results for the t-J model on the
8-site sample (Fig. 5) with six fermions.
Figure 6 shows the ground-state energy throughout the

physically interesting parameter regime 0.1 ≤ J=t ≤ 2 [60].
We find it is twofold degenerate and a spin singlet S ¼ 0.
Evaluating directly the matrix elements hψ ijOsymjψ ji of
symmetry operators in the GS doublet i, j ∈ f1; 2g, we find
that the translation, rotation, inversion, mirror, and time-
inversion properties of the GS doublet match the ones
shown in Table II to all available digits. The inset of Fig. 6

shows a more detailed scan revealing a level crossing to a
singly degenerate GS below J=t ¼ 0.089ð1Þ, which forms a
trivial irrep of the symmetry group, but the relevance and
nature of this very low J state will be studied in future work.
Turning to the Hubbard model, the GS energy on this

sample is shown in Fig. 7, in comparison to results for
the 32-site sample obtained using the DMRG method.
Using ED, we find a doubly degenerate ground state in the
regime 0 < U=t < 61.31, matching the irrep shown in
Table II. It is well known that the small-J regime in the
t-J model and the large-U regime in the Hubbard model are
related by perturbative analysis. Indeed, we find that at
U=t > 61.31ð1Þ, the ground state forms a one-dimensional
trivial irrep of the symmetry group, which is consistent
with the related level crossing in the t-J model at
J=t ¼ 0.089ð1Þ.
Finally, we use ED on this small sample as a benchmark

for DMRG calculations, which perfectly matched the ED
energies.

B. Variational Monte Carlo calculations of the d þ id
superconductor phase in the t-J model

The Hilbert space on which jΨdþidðχ;ΔÞi [Eq. (3)] is
defined is too large for direct computation. Therefore, we
use the variational Monte Carlo (VMC) technique, within
which the expectation values of observables in this state are
calculated using [6,61]

hϕjÔjϕi ¼
X
R

jhRjϕij2P
R0 jhR0jϕij2

hRjÔjϕi
hRjϕi ; ð9Þ

where jϕi is the considered many-body state, while jRi are
states in the appropriate Hilbert space that are probabilisti-
cally sampled using the first fraction in Eq. (9) as the
distribution in a Metropolis algorithm. Concretely, the
states jRi in the t-J model Hilbert space are given by
the spin-occupation basis,
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1

FIG. 6. Energy per site of t-J model on 8-site sample obtained
by exact diagonalization. Bottom inset: Crossover between two
different ground states occurs at J=t ¼ 0.089ð1Þ. Numbers show
the state degeneracy. Top inset: Lowest states with spin zero at
fixed J=t ¼ 0.7.

TABLE II. Twofold symmetry irreps of the many-body ground-
state wave functions on ð4N þ 2Þ × ð4N þ 2Þ × 2 lattices as well
as on the 24-site sample in Fig. 5(b), in the 60°-rotation eigenbasis.
(See Fig. 1 for definitions of the symmetry operations.)

Symmetry CSDW or SCCL or dþ id SC

Lattice momentum Γ
60° rotation C6

� e2πi=3 0

0 e−2πi=3
�

Mirror σ �
0 1

1 0

�
Time reversal �

0 1

1 0

�
Inversion (C3

6) 1

(b)(a)

FIG. 5. Three samples marked by dashed lines are used in
numerical calculations: (a) 8-site and 32-site samples; (b) 24-site
sample. Periodic boundary conditions are applied for each
of them.
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jRðs1; s2;…; sNÞitJ ≡
YNF

si¼α

c†iαj0i; ð10Þ

where N is the number of sites, si ¼ ↑, ↓, 0 depending on
whether the site i is spin-up, spin-down, or empty, ciα
annihilates electron of spin α ¼ ↑, ↓ at site i, and j0i is the
vacuum. There are exactly NF nonempty sites, enforcing
the fixed fermion number, and, obviously, there is no
double occupancy. We choose to order the c†iα operators
according to site label i, thereby fixing the fermion signs in
the jRðs1; s2;…; sNÞitJ basis. Similarly, in the Hubbard
model we have si ¼ ↑↓, ↑, ↓, 0, and

jRðs1; s2;…; sNÞiHubbard ≡
Y
sj¼↑↓

c†j↑c
†
j↓

Y
si¼α

c†iαj0i; ð11Þ

where again there are in total exactly NF operators c†iα, and
in the obtained jRðs1; s2;…; sNÞiHubbard we order them

according to site label i, keeping the c†i↑ before the c†i↓ for
each doubly occupied site i.
We focus on the total Sz equal to zero sector (in both

models), by additionally choosing an equal number of
spin-up and spin-down electrons. Note that the DMRG
calculation conserves this spin quantumnumber of a state, so
we can work in an Sz sector. As discussed in detail in the
following, we also measure quantities after projecting the
wave function to a certain symmetry sector using a projector
P, and note here that both the action of the operator Ô andP
are dealt with by acting directly on the hRj in Eq. (9).
The optimal value of the single variational parameter, the

pairing Δ=χ ∈ R, which minimizes the variational energy,
is shown in Fig. 8. For smaller J=t, the pairing is too small
and harder to determine precisely.
As we discuss further below (Fig. 10), the energy of the

wave function with optimal pairing is compared to the
DMRG ground state on 24-site and 32-site samples,
showing that the dþ id variational state captures between
97% and 99% of DMRG GS energy throughout the
dþ id phase.
The main signature of the dþ id phase is the complex

phase of pairing; see Fig. 2(b). We therefore calculate the
pair-pair correlation function:

hB̂†
ijB̂kli; with B̂ij ≡ ci↑cj↓ − ci↓cj↑ ð12Þ

the singlet pairing. The pattern from Fig. 2(b) should be
revealed in the long-range physics, so the most interest lies
in pairs of nearest-neighbor bonds ij and kl, which are as
far from each other as possible. Table III reveals that
the pattern indeed occurs and becomes weaker with
decreasing J=t.
The spin-spin correlation function is very short ranged as

expected, so we do not present it in detail [62].

2 4 6 8 10 12 14 16

1.1

1.0

0.9

0.8

0.7

U/t

E
N

FIG. 7. Ground-state energy per site of the Hubbard model. Red
line, 32-site sample, obtained by DMRG. Blue line, 8-site
sample, obtained by ED. For 8-site sample, ED shows a twofold
degenerate ground state.

TABLE III. Pair-pair correlation function in t-J model on 24-site sample, comparing DMRG ground state projected into the
expð−i2π=3Þ eigenspace ofC6 rotation (top values) to VMC result on dþ id variational wave function (bottom values) in each row. Last
two rows are DMRG only. The correlation function Δbb0 ¼ hB̂†

ijB̂kli is considered for nearest-neighbor bond b ¼ ij (labeled 0 in the
figure) and nearest-neighbor bond b0 ¼ kl being one of b0 ¼ 1, 2, 3. To reduce statistical error, the presented value for any of these bond
pairs bb0 is obtained by averaging over all bond pairs related by translation symmetry.

J=t argðΔ01Þ=2π argðΔ02Þ=2π argðΔ03Þ=2π jΔ01j jΔ02j=jΔ01j jΔ03j=jΔ01j

0 1

2

3

2.0
−0.0025ð9Þ 0.327(1) −0.324ð1Þ 0.00447(2) 1.04(1) 1.05(1)
−0.022ð5Þ 0.313(6) −0.311ð7Þ 0.00073(2) 0.92(7) 0.88(7)

1.5
0.001(1) 0.322(2) −0.324ð2Þ 0.00329(2) 0.97(2) 0.97(2)
0.000(7) 0.311(7) −0.310ð7Þ 0.00062(2) 0.96(7) 0.97(7)

1.0
0.001(2) 0.296(2) −0.304ð2Þ 0.00212(2) 0.97(2) 0.94(2)
0.000(7) 0.305(8) −0.306ð8Þ 0.00050(2) 1.00(9) 0.98(9)

0.78
−0.001ð2Þ 0.289(2) −0.283ð2Þ 0.00163(2) 0.93(3) 0.94(3)
0.003(7) 0.304(9) −0.296ð8Þ 0.00048(2) 1.0(1) 1.0(1)

0.5
−0.005ð3Þ 0.245(3) −0.235ð4Þ 0.00116(2) 0.91(3) 0.78(3)
0.02(2) 0.28(1) −0.28ð1Þ 0.00020(2) 1.5(3) 1.5(3)

0.2 −0.008ð4Þ 0.119(6) −0.127ð6Þ 0.00084(2) 0.75(5) 0.76(5)
0.1 −0.011ð4Þ 0.065(5) −0.067ð5Þ 0.00081(2) 0.89(5) 0.84(5)
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C. DMRG simulations on the 32-site sample

We use DMRG to obtain the GS of the periodic 32-site
sample (Fig. 5). Our calculation is based on the open-
source DMRG software package ITensor [8,63], where
the periodic two-dimensional shape of our samples is
implemented simply by introducing long-range hopping
(of same size t) in the native DMRG one-dimensional
representation of the system. The limit on dimension of
matrix product state (MPS) matrices was between 10.000
and 11.000. We find truncation errors around ð2–7Þ × 10−4,
depending on model and parameter regimes. Although such
error values seem too large in view of general DMRG
performance, in this work we find it appropriate to apply a
different physical criterion for convergence, namely, that
the expectation values of symmetry transformations allow a
clear assignment of quantum numbers to the ground state;
additionally, when appropriate, in measurements we project
the GS to a sector having some quantum numbers fixed, to
effectively get closer to the true GS. This approach is
described in detail below. Appendix F presents further
details on our DMRG setup and convergence.
Focusing first on the t-J model, we find a very precise

quantization of the inversion operator expectation value in
the GS, as shown in Table IV. For this sample, there is a
sharp transition at J=t ¼ 0.80ð2Þ, at which the low-J

ground states (blue phase in Fig. 3), having inversion
−1, switch to high-J ground states (red in Fig. 3), which are
in the þ1 representation of inversion. Because of the
change of symmetry quantum numbers, we expect this
to be a first-order phase transition in the thermodynamic
limit. Given that GS is in a representation having inversion
þ1ð−1Þ, and since there is no reason for additional
degeneracy except due to time reversal, the 60-deg rotation
operator (C6, with C3

6 ¼ inversion) should be represented
by one of the numbers f1; expði2π=3Þ; expð−i2π=3Þg
½f−1; expðiπ=3Þ; expð−iπ=3Þg�.
A crucial subtlety here is that the DMRG calculation

automatically provides a real-valued wave function for our
real Hamiltonians. This DMRG wave function is denoted
as jψi in the following discussion. If jψi gives the
converged true ground state, it must be an equal super-
position of two conjugate partners in a two-dimensional
irrep when C6 is represented by a complex number. Simple
calculation shows that generally the C6 expectation value
for a converged real ground state wave function must be
one of f−1;−1=2; 1=2; 1g, corresponding to the four
possible irreps of the symmetry group, respectively: the
C6-odd one-dimensional irrep, the two-dimensional irrep as
shown in Table II, the two-dimensional irrep as the CSDW
or SCCL shown in Table I, and the trivial one-dimensional
irrep. Note that the DMRG we apply here can be viewed as
a variational wave function technique in real space, in
which lattice symmetry is not implemented at all.
Therefore, we use the C6 expectation value as a physical

criterion for successful convergence of the DMRG wave
function. Namely, if hΨjC6jΨi, with jΨi defined shortly, is
found to be one of the four values f−1;−1=2; 1=2; 1g, the
DMRG has successfully converged. On the 24-site sample
(see Sec. III D), we find that using jΨi ¼ jψi the C6

expectation value is well converged in the parameter
regimes of interest. However, on the 32-site sample, in
order to improve convergence, we project jψi to the sector
with center-of-mass momentum equal to Γ; namely, we use
jΨi ¼ PΓjψi as the wave function in the MC measurement
of the C6 expectation value, Eq. (9), where PΓ is the
projection operator into the Γ sector. (We also check that

TABLE IV. Expectation value of inversion operator in DMRG ground state. Top: t-J model on the 32-site sample; middle: t-J model
on the 24-site sample; bottom: Hubbard model on 32-site sample.

J=t 0.1 0.2 0.25 0.5 0.78 0.82 1.0 1.5 2.0

hInvi −1.0000ð3Þ −1.0000ð6Þ −1.0000ð4Þ −1.0000ð5Þ −0.9998ð5Þ 1.0000(6) 0.9999(4) 1.0000(4) 0.9998(6)

J=t 0.1 0.2 0.5 0.78 1.0 1.5 2.0

hInvi 0.9996(3) 0.9986(6) 0.999(5) 0.9995(3) 0.9978(7) 0.9990(4) 0.9996(3)

U=t 1.0 2.0 3.0 4.0 6.0 8.0 16.0 40.0

hInvi −0.997ð2Þ −0.9994ð6Þ −0.994ð4Þ −0.9999ð7Þ −1.0000ð3Þ −1.0000ð4Þ −1.0000ð2Þ −0.9996ð5Þ

0.5 1.0 1.5 2.0
0.05

0.10

0.15

0.20

0.25

0.30

J/t

FIG. 8. The optimal value of pairing amplitude Δ, which is the
only variational parameter in the projected dþ id wave function,
for 24-site (blue circles) and 32-site (red squares) samples.
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jψi has a big portion in the Γ sector for all parameter values,
so that this projection is not creating unphysical artifacts.)
Figure 9(a) demonstrates the result that in the low-J

regime (0.1 < J=t < 0.8), the rotation expectation value is
indeed consistent with 1=2 on the 32-site sample. Therefore
the GS irrep in this regime is the same as the CSDW/SCCL
phase as shown in Table I. However, for the lowest values,
0 < J=t < 0.1, the hC6i does not converge to either of
f−1;−1=2; 1=2; 1g, and this also happens for the 24-site
sample for 0 < J=t < 0.07; on the other hand, the 8-site
exact diagonalization shows a singlet ground state for
0 < J=t < 0.089ð1Þ. All this evidence suggests the exist-
ence of a different quantum phase in this lowest J regime.
Given that such lowest J regime is not the most interesting
for correlated materials, we leave it for future work, and
focus exclusively on values J=t > 0.1.
In the high-J regime (J=t > 0.8) unfortunately the hC6i

is close to zero and far from any of the f−1;−1=2; 1=2; 1g,
which indicates that the 32-site DMRG GS for J=t > 0.8
has not converged well enough; it cannot give reliable
information about correlations. Nevertheless the inversion
quantum number for J=t > 0.8 is found to be accurately
þ1, consistent with the dþ id SC and sharply distin-
guished from the 0.1 < J=t < 0.8 value −1 (see Table IV).
In the following discussion and in the next Section, the
J=t > 0.8 phase is actually confirmed to be the dþ id SC
using complementary variational Monte Carlo results as
well as DMRG on the smaller 24-sample which has no such
issues with convergence.
Energetics of the DMRG GS of t-J model are shown in

Fig. 10. The energy of the single-parameter variational
wavefunction discussed in Section II A is quantitatively
compared to the DMRG energy, showing that the dþ id
candidate wavefunction captures more than 97–99% of
DMRG GS energy throughout the high-J phase. In addi-
tion, the energy of the dþ id variational state deviates
significantly in the low-J phase.
To further identify the nature of the DMRG GS, we

consider spin-spin and pair-pair correlation functions. The

expectation values are obtained using the Monte Carlo
technique, Eqs. (9)–(11), using between 300 and 1000 MC
measurements with 40 MC steps between each measure-
ment and with a 500 MC step thermalization. Further, the
measurements are averaged across 64 independent MC
runs, and the measurement errors in this paper represent the
error of the mean. To correctly calculate observables, we
need to choose a particular rotation sector from the jΨi,
since the DMRG mixes rotation sectors by selecting a real
wave function as discussed above. According to Table I,
this projection to a rotation eigenstate means breaking the
time-reversal symmetry, which should naturally happen in
the thermodynamic limit. For all measurements on this 32-
site sample, in the phase with inversion −1, we choose the
expð−iπ=3Þ sector of C6. [Note that, for the þ1 inversion
phase (J=t > 0.8) in the t-J model, the hC6i is not
converged, so we do not use it.] More precisely, the
correlation functions we study next are obtained as
hψ jPΓPC6ÔPΓPC6jψi in Eq. (9), with PC6 projecting into
the desired rotation eigenspace.
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FIG. 9. Expectation value of 60-deg rotation operator (C6) in DMRG ground state: (a) t-J model on 32-site sample (triangles) with
projection of wave function to center-of-mass momentum Γ, and on 24-site sample (disks) without projection. (b) Hubbard model on the
32-site sample, with (black triangles) and without (smaller gray triangles) projection to Γ momentum.
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FIG. 10. The lowest ground-state energy of projected dþ id
variational wave function, obtained by VMC calculations, is
shown as a fraction of the DMRG ground-state energy on the
same sample. Blue line is for the 24-site sample, red line is for 32-
site sample. Inset: DMRG energy per site of 24-site (blue line)
and 32-site (red line) samples.
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We calculate the spin-spin correlation function by setting
the observable Ô ¼ SzðiÞSzðjÞwith some sites i, j. Although
the short-range physics dictates that nearest-neighbor i, j
correlations grow with J=t (this is indeed observed), we are
interested in long-range physics and therefore choose the
farthest pair i, j, Fig. 12(a), finding that this correlation grows
with going deeper into the low-J phase.
Figure 11 demonstrates the spin-spin correlation pattern

for i, j bonds of all lengths, revealing a pattern consistent
with tetrahedral spin correlations [Fig. 2(a)] in the low-J
phase. The overlap of spin vectors in the tetrahedron
predicts a ratio of −1=3 in the correlation when the spins
at sites i, j are parallel compared to when they are not. Our
measurement of this ratio for the farthest possible site pairs
i, j is consistent with the prediction, Fig. 13(a).
We also calculate the spin chirality ~Si · ð~Sj × ~SkÞ for the

smallest triangle in the honeycomb lattice; see Fig. 14.
The magnitude of chirality of around 0.01 is consistent with
the magnitude of the nearest-neighbor spin-spin correlation
of ∼0.05 [64].
In the low-J phase, where spin indicates the CSDW or

SCCL state, the pair-pair correlation function is extremely
short ranged and beyond nearest bond pairs hard to

distinguish from zero within our numerical precision
(see Appendix F).
We now turn to the Hubbard model on the 32-site

sample, having ground-state energy presented in Fig. 7.
Table IV demonstrates our result that for a very wide range
of parameters 1 < U=t < 40 the expectation value of the
inversion operator is very accurately quantized to −1.
Figure 9(b) shows that for all U=t≳ 6, we find a satisfying
agreement of 60-deg rotation expectation value hC6i with
þ1=2. The same figure shows the influence of projection to
Γ momentum, i.e., using jΨi ¼ PΓjψi, which significantly
improves this agreement. It is not surprising that conver-
gence worsens for low U=t, due to the existence of many
low-energy states, but we believe it is limited by our
maximal available m. For instance, at U=t ¼ 4, the C6

expectation with projection to Γmomentum improves from
0.10(2) at m ¼ 8.000 to 0.16(2) at m ¼ 10.500 (see
Appendix F). In fact, using degenerate perturbation theory
on the 32-site sample around free electron state t ¼ 1, U ¼
0 (Appendix G), we find the same quantum numbers as for
the CSDW or SCCL state. We therefore expect that the
CSDW or SCCL ground-state quantum number persists
through the whole range 0 < U=t < 40 on this sample.

(a) (d)(c)(b)J/t=0.5, max=0.052 J/t=0.2, max=0.050 J/t=2.0, max=0.066U/t=8.0, max=0.048

FIG. 11. Spin-spin correlation function hSzðiÞSzðjÞi measurement. Blue is positive, red negative, and disk radius is proportional to
amplitude. Site i is fixed at green circle, while every bond i, j is averaged over translations and rotations to increase the number of
sampled observable values in MC runs and thereby reduce statistical error. “max” labels absolute amplitude of largest shown disk. The
measurement on 32-site sample uses the DMRG ground state projected into sector with center-of-mass momentum Γ and C6 rotation
eigenvalue expð−iπ=3Þ: (a) t-J model, J=t ¼ 0.5, (b) Hubbard model, U=t ¼ 8. The spin-spin correlation is longer ranged and
consistent with tetrahedral pattern throughout CSDWor SCCL phase. On 24-site sample, the t-J model DMRG ground state is projected
into sector with C6 eigenvalue expð−i2π=3Þ. (c) Same correlation behavior is found deep in small-J regime of 24-site sample, while
(d) spin pattern is lost in large-J regime, even as short-range correlations grow.
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FIG. 12. Value of spin-spin correlation function hSzðiÞSzðjÞi for farthest pair of sites i, j (see insets), with DMRG ground state projected
into sector having center-of-mass momentum Γ, and C6 eigenvalue expð−iπ=3Þ on 32-site sample: (a) t-J model, (b) Hubbard model.
(c) On 24-site sample, the t-J model DMRGground state is projected to expð−i2π=3Þ eigenvalue sector ofC6: the spin correlation vanishes
with crossover to (dþ id)-like regime. Averaging over translationally and rotationally related pairs is included in all measurements to
reduce the statistical error. The correlation consistently grows throughout CSDW or SCCL phase with larger U (smaller J).
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The spin-spin correlation function [again, for this sample
we take PΓPC6jψi in the expð−iπ=3Þ sector of C6]
throughout the entire well-converged and physically inter-
esting regime U=t≳ 4 is qualitatively the same as in the
CSDWor SCCL phase of the t-J model, Fig. 11(a) (see also
Appendix F). Quantitatively, Figs. 12(c) and 12(b) show
how the long-range tetrahedral spin pattern describes this
phase very well, and strengthens with growing U=t. This is
consistent with the mapping between low-J and large-U
models, confirming the CSDWor SCCL nature of the phase
in both models.

D. DMRG simulations on the 24-site sample

The fully symmetric 24-site sample, Fig. 5(b), is large
enough to provide some longer-range physics information,
but small enough to allow excellent DMRG convergence
and precise measurements (see general discussion of our
DMRG convergence criteria in the previous section). It may

even be suitable for exact diagonalization numerical sim-
ulations using currently available computing power. We
therefore investigate the quantum numbers of the three
competing states, CSDW, SCCL, and dþ id superconduc-
tor, on this sample, and find that, unfortunately, all of these
phases share the same quantum numbers as in Table II.
Therefore, a smooth crossover takes place in the t-J model.
To support the claim that the high-J phase observed on the
32-site sample is the dþ id SC, in this section we consider
the t-J model on the 24-site sample and show that it clearly
exhibits a change in its correlation properties from the
characteristic CSDWor SCCL to the dþ id SC behavior as
J=t is increased within the 0.1 < J=t < 2 parameter region.
(We do not discuss the Hubbard model on this sample.)
Table IV shows the very precise quantization of inversion

to þ1 in the DMRG GS in the entire region 0.1 < J=t < 2
(as explained in the previous section, we do not further
discuss the 0 < J=t < 0.1). The GS is almost entirely in the
Γ momentum sector, so we use jΨi ¼ jψi and find that
hC6i is very close to −1=2 [Fig. 9(a)] in the entire
considered parameter region. This corresponds to quantum
numbers in Table II. The energetics in Fig. 10 shows 99%
agreement with the variational dþ id wave function at
larger J=t, which significantly worsens as we go to lower
J=t, indicating the crossover to the CSDW or SCCL state.
Because of smaller sample size and the fact that Γ-

momentum projection is unnecessary, we could use 10.000
MC measurements in correlation functions, significantly
reducing the statistical error. The correlation measure-
ments are all done in the expð−i2π=3Þ rotation sector,
corresponding to the þ1 value of inversion.
Figures 11(c) and 11(d) contrast the spin-spin correlation

at J=t ¼ 0.2 and 2, respectively. The former is clearly
consistent with tetrahedral spin correlations. On the other
hand, the J=t ¼ 2 case exemplifies a completely different,
and much shorter ranged, spin-correlation pattern.
Figure 12(c) quantifies the weakening of the tetrahedral
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FIG. 13. Nature of spin-spin correlation pattern hSzðiÞSzðjÞi in the CSDWor SCCL phase, with DMRG ground state of 32-site sample
projected into sector having center-of-mass momentum Γ, and C6 eigenvalue expð−iπ=3Þ: (a) t-J model, (b) Hubbard model. Three
values of correlation with sites chosen as i ¼ 0, j ¼ 3, 5, 13 (see inset) are averaged, and that average is divided by correlation between
i ¼ 0, j ¼ 4. Tetrahedral pattern predicts this ratio to be −1=3 (blue line). Correlation for each site pair i, j is averaged over all
translationally related pairs to reduce statistical error.
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FIG. 14. Spin chirality of a characteristic triangle (inset) in 32-
site sample, from t-J model DMRG ground state projected into
sector having center-of-mass momentum Γ, and C6 eigenvalue
expð−iπ=3Þ. The chirality is averaged over all translations and
rotations of the triangle to reduce statistical error.
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pattern, which rapidly drops to zero with J=t growing
towards 1, indicating the existence of the crossover.
Complementary information is found in the pair-pair

correlation function [see Eq. (12)], presented in Table III.
At the largest value, J=t ¼ 2, the correlation pattern
matches the ideal pattern of Fig. 2(b) with percent pre-
cision. By the time we reach the lowest value J=t ¼ 0.1, the
overall correlation amplitude drops fivefold, the different
pairs’ correlation varies in amplitude significantly, and their
relative phase of 2π=3 drops to 0.07 × 2π. The table shows
that these results match the evolution of pair-pair correla-
tion in the variational dþ idwave function, up to an overall
amplitude difference in the correlation function. Altogether,
the existence of crossover between CSDW or SCCL and
dþ id SC in the t-J model on this sample is clearly
confirmed.

IV. SPIN-CHARGE-CHERN LIQUID

A. Low-energy effective theory: Parton construction
and the K-matrix formulation

In two spatial dimensions, a description of Abelian
topological order can be given by Abelian Uð1ÞN Chern-
Simons theory [65–67]. The low-energy effective
Lagrangian relevant for us has the following generic form:

LCS ¼
εμνλ
4π

XN
I;J¼1

aIμKI;J∂νaJλ ; ð13Þ

where μ, ν, λ ¼ 0, 1, 2 in 2þ 1D and summation over
repeated indices is implied.K is a symmetric N × N matrix
with integer entries. A quasiparticle in this theory is
described by an N component integer vector l, whose
components determine the N Uð1Þ gauge charges of the
excitation. The particle couples to internal gauge field aμ as−aIμlIjμ. Here, jμ is the 3-current for a single quasiparticle.
The quasiparticle statistics can be easily readout by

integrating out aIμ. The self(-exchange) statistics of a
quasiparticle l is given by its statistics angle,

θl ¼ πltK−1l; ð14Þ

while the mutual (braiding) statistics of a quasiparticle l and
l0 is characterized by

θl;l0 ¼ 2πltK−1l0: ð15Þ

Quasiparicles generally have anyonic statistics and are
thus nonlocal. However, there is a special type of quasi-
particle ~l ¼ Kl, where l ∈ ZN . ~l is a mutual boson to all
other quasiparticles, so it can be viewed as a local
excitation, in the topologically trivial sector. Examples
include electron excitations of fractional quantum Hall
systems and spin-1 magnons in Z2 spin liquids. Two
quasiparticles whose difference is in the trivial topological

sector should be considered as being in the same topo-
logical sector. Further, the ground state degeneracy (GSD)
on a torus is [68,69]

GSD ¼ jdetKj; ð16Þ

which is equal to the number of topological sectors
(quasiparticle types).
In the following, we construct the effective field theory

for the SCCL state. In the slave-fermion approach [Eq. (5)],
the electron is separated into a bosonic spinon and a
fermionic holon. The fermionic holons fill a C ¼ 1
Chern band, which can be described by a Chern-Simons
term

Lf ¼ εμνλ
4π

afμ∂νa
f
λ ; ð17Þ

where a 2π flux (vortex) of gauge field afμ is a holon
particle. On the other hand, a pair of bosonic spinons can be
described as a 2π flux of an internal gauge field apμ . (In the
liquid phase, there is a superfluid of spinon pairs, not of
spinons.) Finally, the holon and spinon are glued together
to form the electron by a Uð1Þ gauge field acμ. This Uð1Þ
gauge field acts as a constraint in the Lagrangian

Lc ¼
εμνλ
2π

acμ∂νð−afλ þ 2apλ Þ; ð18Þ

where the factor 2 accounts for a pair of spinons having
twice the internal gauge charge of a single spinon. Now, we
define aIμ ¼ ðafμ; apμ ; acμÞ, leading to

Leff ¼ Lf þ Lc ¼
εμνλ
4π

X3
I;J¼1

aIμK0I;J∂νaJλ ; ð19Þ

and we find

K0 ¼

0
B@

1 0 −1
0 0 2

−1 2 0

1
CA;

K−1
0 ¼

0
B@

1 1=2 0

1=2 1=4 1=2

0 1=2 0

1
CA: ð20Þ

We get GSD ¼ 4 from this K-matrix description. Now, we
identify the four different quasiparticle types. Inspecting
K−1

0 and values of statistics angles, Eqs. (14) and (15), we
identify the electron e ¼ ð1; 0; 1Þ, vison v ¼ ð0; 1; 0Þ,
spinon b ¼ ð0; 0; 1Þ, and the bound state of spinon and
vison bv ¼ ð0; 1; 1Þ. Notice that the holon f ¼ ð1; 0; 0Þ
and spinon b differ by an electron, so they belong to the
same topological sector.
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SCCL, however, is not fully described by its topolo-
gical properties. Symmetry interplays with topological
order, leading to symmetry fractionalization (see, e.g.,
Refs. [49,70–73]). Within the K-matrix formulation, it is
possible to assign quantum numbers of on-site symmetries,
e.g., charge and spin, to quasiparticles [74].
Namely, we define the charge vector tc ¼ ð1; 0; 0Þ and

Sz vector tSz ¼ ð1=2;−1; 0Þ, so that aIμ couples to external
test gauge fields as

Lext ¼
εμνλ
2π

tc;IAc
μ∂μaIλ þ

εμνλ
2π

tSz;IA
Sz
μ ∂μaIλ; ð21Þ

where Ac
μ is the gauge field that couples to electric charge,

while ASz
μ couples to Sz. Quasiparticle l carries electric

charge ttcK−1
0 l and carries Sz ¼ ttSzK

−1
0 l. We now identify

spinons b↑=↓ as ð0; 0;�1Þ, while holon f remains just
(1,0,0). It is straightforward to see that the holon indeed
carries electric charge 1 and Sz ¼ 0, while b↑ (b↓) carries
no charge and Sz ¼ 1

2
ð− 1

2
Þ. Electron e↑ð↓Þ is simply the

bound state of f and b↑ð↓Þ, and it is in the topologically
trivial sector. The vison, expressed by ð0;�1; 0Þ, carries
charge � 1

2
, and since it has statistical angle π=4, the vison

can be viewed as “half holon.” The bound state of spinon
and vison carries both charge � 1

2
and spin � 1

2
, with

statistical angle 5π
4
.

There exists another state, described by K̄0 ≡−K0,
which is related to the above state by time reversal. In
this state, vison excitation has statistical angle − π

4
while the

bound state of spinon and vison has statistical angle − 5π
4
.

B. Modular transformations and
rotation quantum numbers

S and Tmatrices obtained from modular transformations
of ground states on torus are believed to encode quasipar-
ticle braiding and exchange statistics [68]. Additionally, as
pointed out by Refs. [39,42], it seems that if a system has
C6 rotation symmetry, the ground-state quantum numbers
of C6 equal the eigenvalues of ST.
The relation between modular S, T matrices and the

rotational symmetry of a topologically ordered phase may
be understood as follows. First, note that S, T matrices are,
in principle, measurable quantities in practical model
Hamiltonians. In particular, given a topologically ordered
phase in 2þ 1D, with its topologically degenerate ground
sector on torus T2, one can find a minimally entangled state
(MES) basis [39]. For instance, for the S-matrix element
between two MES jΞii and jΞji: Sij, one can perform the
following thought numerical measurement. Because the
topological properties do not depend on local geometry, we
can assume that these ground states live on a square with
periodic boundary conditions. Then, one can consider the
state rotated by 90° around the square center: R90°jΞii.
Because R90°jΞii and jΞji belong to the same topological
phase, in the absence of symmetry, there should exist a

Hamiltonian pathHðτÞ (τ ∈ ½0; 1�), such that jΞji [jΞji] are
the ground state of Hð0Þ [Hð1Þ], and the ground state
sectors of HðτÞ are adiabatically connected. One can then
define a projection operator P̂τ into the ground-state sector
of HðτÞ for any given τ.
The many-body quantum amplitude related to the

adiabatic time-evolution process of the S transformation
can be computed as sij ≡ hΞjjP̂ðN−1Þ=N × � � � × P̂2=N ×
P̂1=NR90°jΞii as N → ∞. This computation is a realization
of the topological quantum field theory time evolution. In
particular, if the system has a 90° rotational symmetry, the
Hamiltonian path HðτÞ can be conveniently chosen to be a
constant: HðτÞ ¼ Hð0Þ. In this case, sij can be simply
computed as the R90° transformation matrix in the MES
basis: sij ≡ hΞjjR90°jΞii.
We expect that this quantum amplitude sij is related to

the S-matrix elements Sij at most by an overall ambiguity
Uð1Þ phase eiθ, which is due to the nonuniversal local
physics in the time evolution, and a phase eiϕi−iϕj , which is
due to the gauge choice of jΞii,jΞji. Even with these
ambiguities, based on the above argument, it is clear that in
a 90° rotational symmetric system, the R90° eigenvalues in
the topologically degenerate ground-state sector can be
determined by the eigenvalues of the S matrix, up to an
overall Uð1Þ phase factor. Similar consideration for a 60°
rotational symmetric system leads to the conclusion that the
C6 eigenvalues in the topologically degenerate ground-
state sector can be determined by the eigenvalues of
the matrix product ST, up to an overall Uð1Þ phase factor.
In addition, it has been proposed that this Uð1Þ phase
factor is simply unity [39], which is consistent with
numerical simulations on several model Hamiltonians
[17,41,43].
However, we find in the SCCL phase on the honeycomb

lattice that the C6 eigenvalues in the ground-state sector and
the eigenvalues of ST differ by an overallUð1Þ phase factor
that is system-size dependent. In particular, one can obtain
S and T matrices from our K matrix. According to
Ref. [42], using Eq. (20) and choosing four quasiparticle
vectors as (0,0,0),(0,0,1),(0,1,0),(0,1,1), one obtains

S ¼ ξ

2

0
BBB@

1 1 −1 −1
1 1 1 1

1 −1 i −i
1 −1 −i i

1
CCCA;

T ¼ η

0
BBB@

1 0 0 0

0 1 0 0

0 0 −e−iπ=4 0

0 0 0 e−iπ=4

1
CCCA; ð22Þ

where ξ,η are Uð1Þ phase factors. Although in Ref. [42]
these phase factors are fully determined using modular
transformations on fractional quantum Hall liquid analytic
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wave functions on torus, their values are not important for
the following discussion.
The eigenvalues of ST are found to be

ξηð1;−1; eiπ=3; e−iπ=3Þ. On the other hand, the analytical
construction of SCCL projective wave functions allows us
to compute the symmetry properties in the ground-state
sector (see Appendix C), and we find that the C6 quantum
numbers of topological ground states differ for 4N × 4N ×
2 and ð4N þ 2Þ × ð4N þ 2Þ × 2 lattice sizes by an overall
Uð1Þ phase; see Fig. 15. On 4N × 4N × 2 systems, the C6

eigenvalues are found to be eiπ=3ð1;−1; eiπ=3; e−iπ=3Þ,
while on ð4N þ 2Þ × ð4N þ 2Þ × 2 systems, these are
ei2π=3ð1;−1; eiπ=3; e−iπ=3Þ. In contrast to previous under-
standing, our example of SCCL explicitly shows that C6

quantum numbers and eigenvalues of ST are related by a
lattice size–dependent phase factor.

C. Gapless edge states and experimental signatures

First, we derive the edge theory of SCCL using the
effective field theory from Sec. IV B. We consider two
cases of symmetry on the edge: (1) charge conservation and
spin rotations around Sz [group Uð1Þc ×Uð1Þz]; and to
capture more of the spin-rotation symmetry (2) charge
conservation, Sz rotations, and π rotation around a
perpendicular axis. The second case is detailed in
Appendix D, but in both cases, we find a gapless chiral
holon edge mode, which differs from the gapless chiral
electron mode of the CSDW state. We therefore propose
several experimental signatures for distinguishing CSDW
and SCCL states in Secs. IVC2 and IVC3.
The effective action describing edge excitations of

Abelian Chern-Simons theory can be derived from gauge
invariance of Lagrangian Eq. (13) expanded by higher-
order (Maxwell) terms on a manifold with boundary [75].
The edge physics is captured by N chiral boson fields
fϕI ≃ ϕI þ 2πj1 ≤ I ≤ Ng:

S0edge ¼
1

4π

Z
dtdx

X
I;J

ðKI;J∂tϕI∂xϕJ − VI;J∂xϕI∂xϕJÞ:

ð23Þ

Here, VI;J is a positive-definite constant matrix, which
depends on system details. The number of right movers nþ
and left movers n− is given by the signature of K. The
commutation relations between these chiral boson fields
are fixed by the first term and describe the following
Kac-Moody algebra [75]:

½∂xϕIðxÞ; ∂yϕJðyÞ� ¼ 2πiK−1
I;J∂xδðx − yÞ: ð24Þ

There is a one-to-one correspondence between quasi-
particles in the bulk and chiral boson fields living on the
edge. The operator Vl ¼ expðiPIlIϕIÞ creates quasiparti-
cle l on the edge. Generic action for scattering takes the
form of Higgs terms:

S1edge ¼
X
l̄

Cl̄

Z
dtdx cos

�X
I

l̄IϕI þ αI

�
; ð25Þ

where l̄ are local bosonic excitations, which can be
expressed as Kl for some integer vector l. However, in
the presence of symmetry, chiral boson fields may trans-
form nontrivially under symmetry operations, and some
Higgs terms may be forbidden in the symmetry-preserving
edge [76].

1. Edge modes with Uð1Þc × Uð1Þz symmetry

We now turn to edge theory for SCCL. As the set of
independent local excitations l̄, we choose the columns of
K0. The first column of the K0 matrix is an electron,
carrying charge 1 and spin 1=2, while the second column is
a boson pair with spin 1. They both transform nontrivivally
under Sz rotations. The third column is a bound state of two
vison and a charge-1 holon, which is a trivial boson
carrying a trivial quantum number of Sz and charge.
Thus, the only Higgs term allowed by this symmetric
boundary is

LHiggs ¼ C cosðϕ1 − 2ϕ2Þ: ð26Þ

This term gaps out two counterpropagating edge modes and
leaves the gapless chiral boson mode ϕ1 on the edge. Thus,
the edge theory of SCCL can be modeled as 1D chiral
fermion liquid of spinless holons.
Even with added π rotation around an axis perpendicular

to Sz, as shown in Appendix D, ϕ1 remains the only gapless
edge mode. We therefore found that the edge with charge
conservation and any of above spin-rotation symmetries
has a chiral fermion liquid of spinless holons. The CSDW
edge, on the other hand, has a chiral fermion liquid of

FIG. 15. Symmetry quantum numbers for C6 rotation, calcu-
lated analytically (Appendix C) for the fourfold topologically
degenerate ground-state sector of the SCCL phase on different
lattice sizes. C6 eigenvalues are plotted on the unit circle in
complex plane. The sets of eigenvalues differ by overall phase
between different system sizes (N is integer and X × Y labels
number of unit cells along a1, a2), although all systems are
topologically a torus.

CHIRAL SPIN DENSITY WAVE, SPIN-CHARGE-CHERN … PHYS. REV. X 4, 031040 (2014)

031040-15



electrons. We therefore next propose tunneling experiments
to distinguish these two phases.

2. Point junction

In this part, we discuss the experimental signature of
transport through a weak tunnel junction connecting a
metallic or singlet SC lead to CSDW or SCCL (Fig. 16).
Our results of tunneling conductance are listed in a table in
Fig. 16. Below, we find the same exponents for the voltage
dependence of the conductance.
These scaling forms, and therefore the experimental

signatures, should hold in the regime of weak tunneling,
G ≪ e2=h. More formally, the weak-tunneling condition
corresponds to the assumption T, V ≪ TK , where TK is a
characteristic energy scale of the junction depending on
details of the point contact.
The total Hamiltonian can be modeled as a sum of three

pieces:

Htot ¼ H0 þHlead þHtunn; ð27Þ

where H0 is the Hamiltonian for CSDW or SCCL, Hlead is
the Hamiltonian for the SC or metal lead, and Htunn
describes tunneling through the point contact. For the most
general case, we can write

Htunn ¼ t½O†
0Olead þ H:c:�; ð28Þ

where O0 is the electron or singlet pair annihilation
operator on the CSDW or SCCL side, while Olead is the
corresponding operator in the lead.
Before calculating tunneling conductance, it is instructive

to consider a simple renormalization group transformation,
which tells us how the tunneling amplitude t varies with the
energy (or temperature) scale [77]. Assume O0 ∼ τ−δ0 and
Olead ∼ τ−δlead , where τ is imaginary time. Consider a RG
step that integrates out Matsubara frequencies between Λ=b
and Λ, where Λ is a high frequency cutoff. Then the RG
equation for t is given to leading order by

∂t
∂l ¼ ð1 − δÞt; ð29Þ

where δ ¼ δ0 þ δlead. At nonzero temperature, the RG flows
are cut off by T (T ≫ V), leading to teff ∼ tTδ−1. One
expects tunneling conductance to vary as t2eff , which gives
the result

GðTÞ ∼ t2T2δ−2: ð30Þ

We now present the case of metal/SCCL junction in
detail, referring the reader to Appendix E for the other cases
listed in the table in Fig. 16. (Note that the scaling for a
CSDW/SC junction follows directly from Ref. [78].)
Because of the spin gap on the boundary of SCCL,
single-electron tunneling will be exponentially suppressed
at low temperatures. So, the leading contribution is from
singlet pair tunneling, and in Eq. (28), we have

O0 ≡ f†ðx ¼ ξÞf†ðx ¼ 0Þ; ð31Þ

Olead ≡ ψM;↑ðx ¼ 0ÞψM;↓ðx ¼ 0Þ; ð32Þ

where the product of holon operators f† in O0 represents
annihilation of a local singlet pair of electrons on the SCCL
edge due to the presence of bosonic spinon pairing [see
Eqs. (5) and (6)], while the coherence length ξ appears due
to the Pauli principle. So, δlead ¼ 2δFL ¼ 1, where we use
that the scaling dimension δFL ¼ 1=2 for a Fermi liquid
system in any dimension [1]. The operator fðx ¼ ξÞfðx ¼
0Þ has the same scaling dimension as the operator
fðx ¼ 0Þ∂xfðx ¼ 0Þ, giving δ0 ¼ 1þ 2δFL ¼ 2, where
the holon operator on the edge scales with δFL since it
forms a chiral fermion liquid analogous to the one on the
edge of integer quantum Hall systems [79]. This leads to
the announced GðTÞ ∼ T4 for this junction.
One generally expects that the voltage-dependent con-

ductance GðVÞ scales in the same way as GðTÞ. We
checked that this is true using a perturbative calculation
(i.e., the Fermi golden rule) of the nonlinear current-voltage
(I-V) characteristic in the regime T ≪ V. The calculation
details for all junctions are presented in Appendix E.

3. Line junction

Amore common setup in experiments is the line junction
[80], which can be viewed as a large number of weakly
coupled point junctions, as sketched in Fig. 17. Here, and
throughout our discussion on the line junction, weakly
coupled means

T; V ≪ Tð1Þ
K ;…; TðNÞ

K ; ð33Þ

whereN is the total number of point junctions, while TðnÞ
K is

the characteristic energy scale determined by details of the
nth junction [80]. Physically, this weak-coupling condition

FIG. 16. Top: Point contact measurement with weak tunneling
(G ≪ e2=h) into edge states can distinguish between the CSDW
and SCCL phase. Bottom: Temperature dependence of tunneling
conductance through point junction between metal or SC lead
and CSDW or SCCL, exhibiting different values of power-law
exponent α.
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in the line junction means that the regime of weak
tunneling, G ≪ e2=h, is available, at least for low enough
voltage (see further below). The special case of CSDW/
metallic lead junction is left for the end of this subsection,
since it is much simpler to analyze and does not require
such assumptions.
The number α ≠ 0, which appears below. is simply the

value of the exponent in Fig. 16 for the considered
combination of quantum state and lead. The special case
of CSDW/metallic lead junction has exponent α ¼ 0, and is
discussed at the end.
First, let us consider the T ≪ V regime. We find that for

small voltages the scaling of conductance can distinguish
the CSDW and SCCL in the same way as the table
in Fig. 16.
The expression for current-voltage characteristic we

obtain (see Appendix E) is

I=V ¼ e2

h

�
1 − TK

ðαVα þ Tα
KÞ1=α

�
; T ≪ V; ð34Þ

where the voltage difference V ≡ VR − V0 (Fig. 17), α ≠ 0
is the exponent in the point junction scaling G ∼ Vα (table
in Fig. 16), and the effective TK is the single parameter
describing the line junction and incorporating all of the TðnÞ

K
as well as their fluctuations:

T−α
K ≡XN

n¼1

ðTðnÞ
K Þ−α: ð35Þ

(Note that the definition of TK also depends on the scaling
exponent α.)
The above α ≠ 0 conductance result holds for all values

of V, TK at T ≪ V, as long as the assumptions used to
derive the expression hold, namely, each individual point
contact is weakly coupled. This just means V ≪ TðnÞ

K for all
n. However, the effective TK can be much smaller than all

TðnÞ
K in a long line junction (large N). Therefore, let us

examine the tunneling conductance G in two regimes: T ≪
V ≪ TK and T, TK ≪ V.
For the first regime, we get

GðVÞ ≈ e2

h
Vα

Tα
K
; T ≪ V ≪ TK; ð36Þ

manifesting the same scaling form as that in the point
contact junction. (Note that still α ≠ 0.)
On the other hand, in the regime T, TK ≪ V, we get

GðVÞ ≈ e2

h
; T; TK ≪ V: ð37Þ

The derivation for the V ≪ T regime is similar, and we
reach the same final conclusions as for the previous case.
The current-voltage characteristic in this regime is

I=V ¼ e2

h
½1 − e−Tα=ðT 0

KÞα �; V ≪ T; ð38Þ

see Appendix E. In this regime, a characteristic energy
scale T 0

K , analogous but different from TK , describes a
point junction having α ≠ 0. For a given combination of
quantum phase and lead forming the junction, we expect
the ratio T 0

K=TK to be a universal number of order 1. With
this in mind, we again consider two regimes: V ≪ T ≪ T 0

K
and V, T 0

K ≪ T.
We get

GðTÞ ≈ e2

h
Tα

T 0α
K
; V ≪ T ≪ T 0

K; ð39Þ

while in the other regime,

GðTÞ ≈ e2

h
; V; T 0

K ≪ T; ð40Þ

recalling that α ≠ 0 is the same exponent found for the
point junction, Fig. 16. Details are in Appendix E.
Concerning the CSDW/metallic lead junction, which has

scaling exponent α ¼ 0 in the point junction, a simple
calculation reveals that the line junction conductance is
constant, G ¼ ðe2=hÞc, with 0 < c ≤ 1 a nonuniversal
constant describing the line junction (see Appendix E). c ¼
1 corresponds to the regime in which the chiral electron
edge modes are equilibrated with the lead.
We conclude that the line junction tunneling

conductance GðVÞ½GðTÞ� can distinguish between
CSDW and SCCL in the regime where G ≪ e2=h and
T ≪ VðV ≪ TÞ, which corresponds to weakly coupled line
junctions. In this case, the edge modes are not thermally
equilibrated with the lead. For example, in this regime, the
zero bias tunneling conductance for the CSDW/metallic
lead line junction is temperature independent, while for the

FIG. 17. Line junction modeled as the large-N limit of array of
point contacts. In weak tunneling regime having T ≪ V or
V ≪ T, with T temperature and V voltage, the conductance
can distinguish between the CSDW and SCCL phases.
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SCCL/metallic lead line junction it is expected to scale as
T4. On the other hand, although G ¼ e2=h is one exper-
imental signature of the quantum anomalous Hall effect
in the CSDW phase, we find that even in the SCCL
phase the universal value G ¼ e2=h can be realized, e.g., in
the regime of Eqs. (37) and (40), where it represents the
thermal equilibration of chiral holon edge modes with the
lead. Therefore, the G ¼ e2=h is not a unique property of
the CSDW phase.

V. DISCUSSION AND CONCLUSIONS

This paper studies the phase diagrams of correlated
electronic models on the honeycomb lattice at 1=4 doping,
using a combination of analytical construction of quantum
wave functions and various numerical simulations.
Interestingly, all phases appearing in our main results,
the phase diagrams in Fig. 3, are interaction-driven topo-
logical phases. In particular, we find that either the CSDW
state or the SCCL phase occupies the majority of the
realistic parameter regimes for correlated materials. In the
present study, due to the limitation of sample sizes, we
cannot sharply distinguish these two phases in the phase
diagrams. Distinguishing them in numerical simulations
requires careful finite-size scaling, which we leave as a
subject of future investigation. However, we study the sharp
signatures of CSDW and SCCL phases in transport experi-
ments, which can be used to identify and distinguish these
phases in candidate materials.
The method applied here, namely, using lattice quantum

numbers to sharply distinguish competing quantum phases,
is not limited to the models studied in this paper. In
particular, in time-reversal symmetry-breaking phases,
the ground states often form nontrivial multidimensional
irreps of the lattice symmetry groups. When this happens,
the analytical understanding of the nontrivial irreps can be
used to identify or distinguish candidate quantum phases in
numerical simulations.
From a general point of view, what are the possible

candidate phases in correlated electronic systems at generic
fillings? First, charge inhomogeneity is always a possibil-
ity. For instance, stripelike charge modulations have been
observed in numerical simulations of the t-J model on the
square lattice [81]. Assuming charge being homogeneous,
incommensurately filled systems and commensurately
filled systems are quite different at the conceptual level.
Generally speaking, in order to accommodate an incom-
mensurate filling, the system either could develop super-
conductivity or the doped charges could form a Fermi
surface [82]. In any case, the system is expected to be a
charge conductor in the bulk. However, at commensurate
fillings, the system has a third option: The charges could
condense into many-body states without causing a charge
inhomogeneity or superconductivity, and a bulk energy gap
of charge excitations can be generated. We term this third
scenario the charge-insulator scenario.

In conventional quantum phases in which Luttinger’s
theorem [83] is valid, the charge-insulator scenario must be
accompanied with translational symmetry breaking such as
long-range magnetic ordering. The CSDW phase belongs
to this situation. However, in exotic quantum phases in
which fractionalization occurs, translational symmetry does
not need to be broken. For instance, the SCCL phase is a
translationally invariant charge insulator. Other examples
include the recently studied fractional Chern insulators
[84–91], which are symmetric many-body states that exist
in models with commensurately filled nearly flat bands in
the presence of strong interactions.
One goal of this paper is to investigate the competition

between the superconductivity and the charge-insulator
phases in commensurately doped correlated systems.
Exactly at the 1=4 doping, we find that the charge-insulator
phase (CSDW or SCCL) occupies the majority of the
realistic regimes of the models that we investigate.
Meanwhile, although the dþ id superconductor phase is
found only at J=t > 0.8 in the t-J model, as a variational
state, it captures > 90% of the ground-state energy even in
the regime 0.1 < J=t < 0.8 (see Fig. 10). Therefore, the
dþ id state serves as a nearby competing phase.
As doping deviates away from 1=4 slightly, the extra

electric charges need to be absorbed by excitations in a
charge insulator. In the SCCL phase, these charge excita-
tions form a finite density of anyons, v, bαv or fermionic
chargeon-f, while in the CSDW phase, these excitations
would be a finite density of electronic quasiparticles.
However, the dþ id superconductor state, as a charge
superfluid, can absorb extra electric charges without caus-
ing excitations. In the regimes in which a CSDW or SCCL
phase is realized at 1=4 doping, we expect that the ground
state is likely to be the dþ id state as the doping is tuned
away from 1=4 by a finite amount.
One may wonder that due to the Mermin-Wagner

theorem, the long-range magnetic order cannot be observed
at finite temperatures in the CSDW phase. In addition, our
discussion of the low-temperature tunneling conductance in
the CSDW phase does not consider this thermal fluctuation
effect. However, in an ideal SUð2Þ symmetric system, the
correlation length of the magnetic order diverges exponen-
tially at low temperatures. Thus, even a tiny spin-orbit
coupling strength would pin the magnetic order at low
temperatures in realistic materials, which justifies our
treatment.
Recently, there has been a lot of interest in the

understanding of the interplays between global symmetry
and topological order, which have been named “sym-
metry enriched” phenomena (see, e.g., Refs. [49,70–
73,92–95]). In the present study, the SCCL phase serves
as a new example of a symmetry-enriched topological
phase that could be realized in materials. In the SCCL
phase, the symmetry-enriched phenomena include the
charge-1=2 spin-neutral anyons with statistical angle
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π=4 and the gapless chargeon chiral edge states. And the
latter one has a direct experimental signature as G ∼ T4

in tunneling conductance experiments.
Our results are relevant for many correlated materials

on the honeycomb lattice. Doped graphene, in which the
long-range Coulomb interaction is screened, is an inter-
mediately correlated material that may be modeled by the
Hubbard model on a honeycomb lattice with U=t ¼ 2–3
[36]. InCu2=3V1=3O3 is a strongly correlated spin-1=2
antiferromagnet on the honeycomb lattice [96]. However,
doping these systems up to 1=4 remains experimentally
challenging but may be achievable in the foreseeable
future due to the progress of experimental techniques on
thin films [97,98]. In addition, recently a new route for
realization of honeycomb lattice thin films was pro-
posed, based on growth of (111) bilayers of perovskites
[99–101]. For instance, after trigonal lattice distortion is
included, a1g-active compounds may be realizations of
single-band correlated systems on the honeycomb lattice
[102]. In addition, cold-atom optical lattices can be used
to realize the Hubbard model on the honeycomb lattice
[103,104].
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APPENDIX A: SYMMETRY GROUP OF THE
HONEYCOMB LATTICE MODEL

The symmetry group (SG) of our honeycomb lattice
model is generated by the following symmetry operations
(shown in Fig. 1): (1) translations T1;2 by Bravais lattice
vectors ~a1;2, (2) the π=3 rotation C6 around the ẑ axis
through the honeycomb plaquette center, (3) mirror
reflection with respect to the x̂-ẑ plane combined with
the time-reversal operation, labeled as σ̄. Note that σ̄ is an
antiunitary symmetry since it includes time-reversal
operation. It acts on the Hamiltonian through a combi-
nation of a unitary symmetry operation and complex
conjugation C.
We label a lattice site by coordinates ðx; y; sÞ, where

~r ¼ x~a1 þ y~a2 þ ~rs is its position vector. ~a1 ¼ að ffiffiffi
3

p
; 0Þ

and ~a2 ¼ að ffiffiffi
3

p
; 3Þ=2 are two Bravais lattice vectors,

s ¼ u, v is the sublattice index, and in our coordi-
nate system, ~ru ¼ −að ffiffiffi

3
p

; 1Þ=2 and ~rv ¼ að− ffiffiffi
3

p
; 1Þ=2.

Under symmetry operations, the ðx; y; sÞ coordinates
transform as

T1∶ ðx; y; sÞ → ðxþ 1; y; sÞ;
T2∶ ðx; y; sÞ → ðx; yþ 1; sÞ;
σ̄∶ ðx; y; uÞ → ðxþ y;−y; vÞ;
∶ ðx; y; vÞ → ðxþ y;−y; uÞ;

C6∶ ðx; y; uÞ → ð1 − y; xþ y − 1; vÞ;
∶ ðx; y; vÞ → ð−y; xþ y; uÞ: ðA1Þ

The multiplication rules of the above SG are completely
determined by the following algebraic relations:

T−1
1 T2T1T−1

2 ¼ e;

T−1
2 C6T1C−1

6 ¼ e;

T−1
1 C6T1T−1

2 C−1
6 ¼ e;

T−1
1 σ̄T1σ̄

−1 ¼ e;

T−1
2 σ̄T1T−1

2 σ̄−1 ¼ e;

σ̄C6σ̄C6 ¼ e;

C6
6 ¼ σ̄2 ¼ e; ðA2Þ

where e represents the identity element of the SG.

APPENDIX B: PARTON CONSTRUCTION OF
SYMMETRIC QUANTUM WAVE FUNCTIONS

In this section, we use the slave-fermion method to
construct the projective wave function of CSDWor SCCL,
and a slave-boson method to describe a dþ id SC.

1. CSDW or SCCL states

In this section, we consider all mean-fieldAnsätze allowed
by the projective symmetry group construction and pick out
one that correctly describes the CSDW or SCCL states.

a. Projective symmetry group analysis

The projective symmetry group (PSG) [44,49,50] clas-
sifies different mean-field Ansätze, and we will briefly
review it and apply it here. Although projective wave
functions are invariant under the symmetry group action
(listed in Appendix A), the mean-field wave function before
projection can still explicitly break symmetry. In fact, due to
theUð1Þ gauge field that glues spinon and holon together, a
mean-field wave function only needs to be invariant under a
combined symmetry and gauge transformation. Also, there
is a many-to-one correspondence between mean-field states
and physical electron states: Any two parton mean-field
states related to each other by a Uð1Þ gauge transformation
eiϕðrÞ correspond to the same electron state.
More precisely, we associate a Uð1Þ gauge group

element eiϕXðjÞ, dependent on site j, with each element
X of the lattice symmetry group, and the mean-field Ansatz
is invariant under the PSG operation:
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bjα → eiϕXðjÞbXðjÞα; fj → eiϕXðjÞfXðjÞ: ðB1Þ

Therefore, the mean-field Ansatz satisfies

AXðiÞXðjÞ ¼ eiðϕXðiÞþϕXðjÞÞAij;

BXðiÞXðjÞ ¼ e−iðϕXðiÞ−ϕXðjÞÞBij;

χXðiÞXðjÞ ¼ e−iðϕXðiÞ−ϕXðjÞÞχij: ðB2Þ

The low-energy gauge fluctuations of a mean-field Ansatz
are controlled by the invariant gauge group (IGG) [49]:

Aij ¼ eiðϕeðiÞþϕeðjÞÞAij;

Bij ¼ e−iðϕeðiÞ−ϕeðjÞÞBij;

χij ¼ e−iðϕeðiÞ−ϕeðjÞÞχij: ðB3Þ
For reasons discussed in Sec. II, IGG is Z2 in our case
(ϕe ¼ 0, π mod 2π). The algebraic relations (A2) put
constraints on the gauge transformation ϕXðx; y; sÞ.
Following a procedure similar to the one in Ref. [57],
we find the solution

ϕT1ðx; y; sÞ ¼ 0; ðB4Þ

ϕT2ðx; y; sÞ ¼ p1πx; ðB5Þ

ϕC6
ðx; y; sÞ ¼ 1

6
ðp1 þ p6Þπ þ p1π

�
xðx − 1Þ

2
þ xy

�
;

ðB6Þ

ϕσ̄ðx; y; uÞ ¼ p1π

�
xþ yþ yðy − 1Þ

2

�
; ðB7Þ

ϕσ̄ðx; y; vÞ ¼ p1π

�
xþ yþ yðy − 1Þ

2

�
þ p7π; ðB8Þ

where p1, p7 ¼ 0, 1, and p6 ¼ 0; 1;…; 5. In total, there are
24 solutions for PSG, with IGG ¼ Z2 in the honeycomb
lattice for the symmetry group defined in Appendix A.

b. Wave function for CSDW or SCCL

There are further constraints on a mean-field Ansatz of
the CSDW or SCCL. First, we want quarter-doped holons
to fill a Chern band, which will lead to the anomalous
quantum Hall response. This requires at least doubling of
the unit cell. So we only consider the π-flux states having

p1 ¼ 1. In this case, we double the unit cell in the x
direction. When two Ansätze are a time-reversal pair, we
need to consider only one of them.
It turns out that p1 ¼ 1, p6 ¼ 0, p7 ¼ 0 gives the mean-

field Ansatz for CSDW or SCCL. We first construct the
mean-field Hamiltonian with NN and NNN hopping or
pairing. This particular PSG solution partially fixes the
phases of mean-field parameters. The pattern is shown in
Fig. 4. After solving Bogoliubov equations for bosons
(spinons), we find that the boson band minima lie at
�ðπ=2; πÞ of the reduced Brillouin zone.
Now, we are able to construct the wave function from the

mean-field Hamiltonian. Let us consider the most general
form of the Hamiltonian in momentum space. The spinon
Hamiltonian has the BCS form

HMF
b ¼

X
k

β†kDðkÞβk þ const; ðB9Þ

DðkÞ ¼
�
BðkÞ − μ AðkÞ
A†ðkÞ Btð−kÞ − μ

�
; ðB10Þ

where βk ¼ ðb1k↑;…; bnk↑; b
†
1−k↓;…; b†n−k↓Þt is Nambu

spinor in momentum space, and n is the number of
sublattices. AðkÞ and BðkÞ are n × n matrices, the
Fourier transforms of pairing and hopping, respectively.
We can use MðkÞ ∈ SUðn; nÞ for diagonalizing DðkÞ to

get the spectrum of spinons. Expressing

MðkÞ ¼
�
uðkÞ wðkÞ
vðkÞ xðkÞ

�
; ðB11Þ

it is not hard to derive the BCS-type wave function for
bosonic spinons as

jΨMF
b i ¼

Y
k

exp½ϕijðkÞb†ik↑b†j−k↓�j0i; ðB12Þ

where ϕðkÞ ¼ ½u†ðkÞ�−1v†ðkÞ ¼ wðkÞ½xðkÞ�−1.
For the CSDW or SCCL Ansatz in Fig. 4, there are four

sites in one unit cell, so n ¼ 4 in this case. The boson
condensation occurs (i.e., long-range magnetic order is
established) when the boson band minima at �ðπ=2; πÞ
touch zero. When this happens, the zero-energy modes
satisfying D½�ðπ=2; πÞ�Ψ½�ðπ=2; πÞ� ¼ 0 determine the
magnetic ordering pattern. They are found to be (in one
of the two degenerate ground states)

Ψ½ðπ=2; πÞ� ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ ffiffiffi

3
pp �

−eiπ=4; eiπ=4; i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3

pq
; i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3

pq
;
−1þ i

2
ð1þ

ffiffiffi
3

p
Þ;−1þ i

2
ð1þ

ffiffiffi
3

p
Þ;−1; 1

�
;

Ψ½ð−π=2; πÞ� ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − ffiffiffi

3
pp �

eiπ=4; eiπ=4; i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ffiffiffi

3
pq

;−i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − ffiffiffi

3
pq

;
−1 − i

2
ð−1þ ffiffiffi

3
p

Þ;−1þ i
2

ð−1þ ffiffiffi
3

p
Þ; 1; 1

�
: ðB13Þ

SHENGHAN JIANG, ANDREJ MESAROS, AND YING RAN PHYS. REV. X 4, 031040 (2014)

031040-20



The general boson condensate takes the form hβðπ=2;πÞi ¼
c1Ψ½ðπ=2; πÞ� and hβ−ðπ=2;πÞi ¼ c2Ψ½ðπ=2; πÞ�, where c1, c2
are two complex numbers. Here, among the four real
parameters in c1, c2, one of them, jc1j2 þ jc2j2, controls
the magnitude of the magnetic order parameter. A different
choice of the other three real parameters can be shown to
generate a global SUð2Þ spin rotation in the spin space. The
real spacemagnetic order pattern is nothing but the tetradedral
patternwith the chirality shown inFig. 2. Theother degenerate
state can be obtained by time-reversal transformation.
Now, we look at the fermionic holon part. The

Hamiltonian of holons is the free-fermion hopping
model,

HMF
f ¼

X
k

ψ†ðkÞhðkÞψðkÞ; ðB14Þ

where ψðkÞ ¼ ðf1k;…; fnkÞt, and n is the band index.
Using WðkÞ ∈ SUðnÞ to diagonalize hðkÞ, we get

jΨMF
f i ¼

Y
i;k

d†ikj0i; ðB15Þ

where dik ¼ WijðkÞ†fjk. Fermions fill bands from the
lowest to the ith band, depending on doping. In the case
of CSDWor SCCL phases, the doped holon fills the lowest
band. On the mean-field level, it is straightforward to show
that the holon real hoppings on the nearest-neighbor and
second neighbor give a band structure with Dirac points
located at �ðπ=2; πÞ in the lowest two bands. The imagi-
nary hoppings (see Fig. 4) on the second neighbor open
energy gaps at the two Dirac points, and the resulting
lowest band carries Chern number one. The wave function
of CSDWor SCCL is obtained from projection to physical
Hilbert space, as shown in Eq. (8).
Finally, there is an important subtlety in the PSG

construction related to finite samples. Although we
explicitly construct a mean-field Ansatz that is invariant
under a combination of symmetry and local gauge trans-
formations, it is possible that we cannot achieve this
consistently on some finite lattice samples with periodic
boundary conditions, i.e., having no open boundary. In the
CSDW or SCCL case, only the 4N × 4N lattice sample
supports the PSG pattern. However, when π flux is
included in both directions, the resulting Ansatz is sym-
metric (up to a gauge transformation) in ð4N þ 2Þ ×
ð4N þ 2Þ lattice samples. Wave functions obtained by
π-flux insertion are related to topologically degenerate
ground states in thermodynamic limit. We discuss this
further in Appendix C.

2. d þ id SC state

Construction of the dþ id SC state is much simpler. The
mean-field Ansatz is given in Sec. II. Consider the bosonic
holon part first. For the uniform hopping model, bosons

will condense at the Γ point, and only contribute a constant
number after projection. For the fermionic spinon part, the
mean-field wave function is of BCS type:

jΨMF
dþid;fi ¼ jk ¼ 0i ⊗

Y
k≠0

exp½ϕdþid;abðkÞf†ak↑f†b−k↓�j0i:

ðB16Þ

Here, ϕdþidðkÞ ¼ −½u†ðkÞ�−1v†ðkÞ, where uðkÞ and vðkÞ
are 2 × 2matrices and ðuðkÞ

vðkÞ Þ are eigenvectors correspond-
ing to positive eigenvalues of HMF

dþid;fðkÞ in Eq. (4). Note

that, due to vanishing of pairing at the Γ point, jk ¼ 0i ¼
c†k¼0;↑c

†
k¼0;↓j0ik¼0 is not a BCS-type wave function, and

only contributes a constant number (similarly to the
bosonic part), so we can omit it in the following analysis.

APPENDIX C: UNDERSTANDING
QUANTUM NUMBERS

In this section, we use projective wave functions to
analytically understand quantum numbers of CSDW or
SCCL and dþ id SC on different lattice samples. The
results are not limited to projective wave functions but hold
throughout the quantum phase.

1. CSDW or SCCL state

We consider four wave functions formed from the
considered Ansatz by flux insertion, as they represent
the topologically degenerate ground-state manifold (the
flux is inserted through the handles of the torus formed by
the periodic system). To understand quantum numbers for
various lattice sizes, it is convenient to use momentum
space. The mean-field Ansatz of CSDW or SCCL already
has a doubled unit cell in the x direction, and to make the
Brillouin zone more symmetric, we double the unit cell
(UC) in the other direction, too. This enlarged unit cell
contains eight sites, and in this entire section, we call it the
“quadrupled UC” to avoid any confusion [see Fig. 4(b)].
Thus, the Brillouin zone becomes a hexagon, and it is
simpler to consider C6 rotation in momentum space.
It turns out that all further calculations are greatly

simplified if we immediately insert a π flux through
both directions of every quadrupled UC in the CSDW or
SCCL Ansatz. Then, we consider two types of samples
analogous to Fig. 5(a): The 4N × 4N × 2 ¼ 2N × 2N × 8,
to which the 32-site sample belongs, and the ð4N þ 2Þ×
ð4N þ 2Þ × 2 ¼ ð2N þ 1Þ × ð2N þ 1Þ × 8, to which the
8-site sample belongs. (Note that the latter family experi-
ences the above π-flux insertion as an insertion through the
entire system, and the Ansatz is changed to a topologically
degenerate one; for the former family, the flux insertion is a
simple redefinition of gauge.) All PSG transformations can
be performed consistently on all above samples in this
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redefined Ansatz. We label the state described by the
redefined Ansatz as [0,0]. The other three topologically
degenerate states are obtained by adding π flux through the
entire system in different directions, and the states are
labeled as [0, π], [π, 0], and [π, π]. In the following, we
analyze the quantum numbers of these four states.

a. [0,0] state

Because the quadrupled unit cell is doubled compared to
the unit cell of the mean-field Ansatz, we get double
degeneracy for every band. The boson band minimum is
moved to the Γ point due to the insertion of π flux through
every quadrupled unit cell. The special property of this [0,0]
state is that the mean-field Ansatz is indeed invariant up to a
gauge transformation defined by PSG on all 2N × 2N × 2
lattice sizes. Further, gauge transformation GU associated
with symmetry operation U turns out to be independent of
the unit cell, but only depends on the sublattice index. For the
other three states, we find that it is impossible to write a
consistent mean-field Ansatz invariant under all PSG oper-
ations (especially the C6 rotation). In other words, the other
three states break (rotation) symmetry explicitly.
In momentum space, PSG transformation is defined as

bkα → GU · SUðkÞ · bU∘kα; α ¼ ↑;↓;

fk → GU · SUðkÞ · fU∘k; ðC1Þ

where bkα ¼ ðb1kα;…; bnkαÞt, fk ¼ ðf1k;…; fnkÞt, while
n ¼ 8 is the number of bands (sublattices).U∘k is symmetry
transformation for k points while SUðkÞ is an n × n unitary
matrix that represents the action of symmetry on the
sublattice. GU is the associated gauge transformation, with
ðGUÞij ¼ δij exp½iϕUðiÞ�. Note that, in general, the gauge
transformation of fermions has more freedom, and we can
choose a different GU than for bosons. Here, for simplicity,
we assume fermions have the same PSG as bosons. The
mean-field Hamiltonian is invariant under PSG.
First, we analyze the contribution to quantum numbers

from the fermionic (holon) part. For symmetry U and
associated gauge transformation GU, the invariance of the
holon Hamiltonian can be expressed as

HfðkÞ ¼ GUSUðkÞHfðU∘kÞS†UðkÞG†
U: ðC2Þ

Setting αðkÞ as an eigenvector of HfðkÞ with eigenvalue λ,
we can define αðU∘kÞ≡ S†UðkÞG†

UαðkÞ. It is easy to see
that αðU∘kÞ is indeed an eigenvector of HfðU∘kÞ with
eigenvalue λ. In this way, we can generate

αðUi∘kÞ ¼ S†UðUi−1∘kÞG†
UαðUi−1∘kÞ;

i ¼ 1;…; mU − 1; ðC3Þ

where we assume UmU∘k ¼ k, and mU can vary for
different k. Note that

αðkÞ ¼ αðUmU∘kÞ
≠ S†UðUmU−1∘kÞG†

UαðUmU−1∘kÞ: ðC4Þ

However, since there is a twofold degeneracy, it is always
possible to choose an appropriate αðkÞ such that

αðkÞ ¼ eiθαðkÞS†UðUmU−1∘kÞG†
UαðUmU−1∘kÞ: ðC5Þ

Now, we apply symmetry on this set of states αðUi−1∘kÞ,
i ¼ 0;…; mU − 1. By definition,

U½αðUi∘kÞ� ¼ SUðUi∘kÞαðUiþ1∘kÞ: ðC6Þ

Using the definition of αðUi∘kÞ, it is straightforward to
derive

U½αðUi∘kÞ�¼
	
G†

UαðUi∘kÞ i¼0;…;mU−2

eiθαðkÞG†
UαðUi∘kÞ i¼mU−1.

ðC7Þ

Therefore, under symmetry operation, this set of eigen-
states will pick up a θαðkÞ phase plus a gauge trans-
formation. It is clear that θαðkÞ is directly related to a
Berry phase of symmetry operation, which is independent
of our choice of basis. [To be more precise, this phase is
invariant under the Uð1Þ phase choice of αðUi∘kÞ]. From
the above transformation law, it is not hard to get the
contribution to quantum numbers from holons. Examples
will be presented below.
We now perform a similar analysis on the bosonic

(spinon) part. For a BCS-type Hamiltonian, the invariance
of the Hamiltonian under PSG transformation can be
expressed as

HbðkÞ ¼
�
GUSUðkÞ 0

0 G�
US

�
Uð−kÞ

�

HbðU∘kÞ
�
S†UðkÞG†

U 0

0 StUð−kÞGt
U

�
: ðC8Þ

Assuming HbðkÞβðkÞ ¼ λβðkÞ, and using a similar method
to the above, we can generate βðU∘kÞ;…; βðUmU−1∘kÞ as
eigenvectors of HbðU∘kÞ;…; HbðUmU−1∘kÞ with eigen-
value λ. By appropriately choosing these vectors, it is
possible to make

U½βðUi∘kÞ� ¼ exp½iθβðUi∘kÞ�
�
G†

U 0

0 Gt
U

�
βðUi∘kÞ: ðC9Þ

In the following, we show that the additional Uð1Þ phase
exp½iθβðUi∘kÞ� is unimportant for the BCS-type wave func-
tion. We need to focus on only GU in the BCS-type wave
function.
Applying symmetryU onMðkÞ defined in Eq. (B11), we

get
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U½MðkÞ�¼
�
G†

U 0

0 Gt
U

��
uðkÞ wðkÞ
vðkÞ xðkÞ

��Θ1ðkÞ 0

0 Θ2ðkÞ

�
;

ðC10Þ

where Θ1ðkÞ and Θ2ðkÞ are n × n diagonal matrices, and
their elements are additional Uð1Þ phases for the different
eigenvectors discussed above. Particularly,

U½wðkÞ� ¼ G†
UwðkÞΘ2ðkÞ; U½xðkÞ� ¼ Gt

UxðkÞΘ2ðkÞ:
ðC11Þ

According to Eq. (B12), the Cooper pair creation operator
is ϕijðkÞb†ik↑b†j−k↓, where ϕðkÞ ¼ wðkÞ½xðkÞ�−1. So, under
symmetry transformation,

ϕijðkÞb†ik↑b†j−k↓ → ½G†
UϕG

�
U�ijðkÞb†ik↑b†j−k↓; ðC12Þ

only picking up a gauge transformation defined by PSG.
We can view this as b†ikα → GUðiÞ�b†ikα under symmetry
transformation U, where GUðiÞ is the ith diagonal element
of GU. Since a BCS-type wave function is formed by
condensation of Cooper pairs, when acted on by symmetry,
the only contribution comes from gauge transformation
GU. It is worth mentioning that this result also applies to a
fermionic singlet superconductor, which appears in the case
of fermionic spinon in dþ id SC.
In the following, we apply the above results to the

symmetry group defined in Appendix A. First, let us
consider the quantum number of T1. Written in momentum
space, its gauge transformation can be expressed as a
diagonal matrix

GT1
¼ diag½−1; 1;−1; 1; 1;−1; 1;−1�; ðC13Þ

depending only on the sublattice index, while

ST1
ðkÞ ¼

�
0 I4×4

eik1I4×4 0

�
: ðC14Þ

Assuming αðkÞ is an eigenstate of HfðkÞ, then

T1½αðkÞ� ¼ ST1
ðkÞαðkÞ

¼ eiθαðkÞG†
T1
αðkÞ ðC15Þ

[after choosing a convenient αðkÞ]. It is easy to show
that θαð−kÞ ¼ −θαðkÞ. Thus, the phase apart from G†

T1
will

always cancel. The holon wave function will transform as

T1jψfi ¼
Y
i;k

f†jðT†
1ðkÞWðkÞÞjij0i

¼
Y
i;k

f†jðG†
T1
WðkÞÞjij0i; ðC16Þ

where i ¼ 1, 2 for the case of one-quarter doping. We can
view this as f†j → G�

T1
ðjÞf†j .

Now, we turn to the spinon wave function. According to
the previous analysis, spinon b†ikα picks up phase G�

T1
ðiÞ

under T1. For the total projective wave function, we have a
constraint on Hilbert space: There is only one spinon or
holon per site. Because of this constraint, the total phase
obtained from T1 is simply the product of G�

T1
ðiÞ for

all lattice sites. So the T1 quantum number of CSDW or
SCCL is 1.
For translation T2, we do a similar procedure as for T1,

and find that the quantum number of T2 also equals 1. So,
we can conclude that the center of mass of the [0,0] state is
at the Γ point for 2N × 2N × 2 lattice size, i.e., for both
sample families introduced in this section.
We now turn to C6 symmetry. It is straightforward to get

the sublattice transformation matrix:

SC6
ðkÞ ¼

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 e−ik2
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 e−ik1 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 eið−k1þk2Þ 0 0 0

1
CCCCCCCCCCCCCA
:

ðC17Þ

For fermionic holon, the gauge transformation can be
chosen as

Gf;C6
¼ diag½1; 1; 1;−1; 1;−1; 1; 1�; ðC18Þ

while for the bosonic spinon,

Gb;C6
¼ βGf;C6

; ðC19Þ

where β ¼ π=6. Note that although Gb;C6
is also a con-

sistent gauge transformation for a fermion, we chooseGf;C6

different from Gb;C6
for simplicity.

We have three classes of k points in the Brillouin zone
according to their transformation rule under C6: (1) Γ point,
which transforms back to itself under C6, so mC6

¼ 1,
(2) three M points, which transform back to themselves
under C3

6 (inversion), so mC6
¼ 3, and (3) other k points,

which are invariant only under C6
6, so mC6

¼ 6. Using the
method developed above, we calculate the additional Uð1Þ
phase under C6 for the first and second holon band (in the
quarter doped case, holons always fill these two bands).
The result is listed below:
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eiθ1 eiθ2

Γ point −i ei5π=6

M points i −i
Others −1 −1

We checked this numerically for various mean-field
parameter values.
It is easy to see that only the Γ point contributes

additional phase, which equals eiπ=3. Under C6 symmetry,
the holon wave function transforms as

C6jψfi ¼
Y
i;k

f†jðC†
6ðkÞWðkÞÞjij0i

¼ eiπ=3
Y
i;k

f†jðG†
f;C6

WðkÞÞjij0i: ðC20Þ

For the spinon part, the transformation law is

C6jψbi ¼
Y
k

exp½ðG†
b;C6

ϕðkÞG�
b;C6

Þijb†ik↑b†j−k↓�j0i

¼
Y
k

exp½β2ðG†
f;C6

ϕðkÞG�
f;C6

Þijb†ik↑b†j−k↓�j0i:

ðC21Þ

We can view this as if every spinon picks up factor
β ¼ eiπ=6 (plus fermion gauge transformation) under C6.
It is straightforward to calculate that for 4N × 4N × 2
lattice size, the C6 quantum number equals eiπ=3, while
for ð4N þ 2Þ × ð4N þ 2Þ × 2 lattice size, the C6 quantum
number is e−2iπ=3. For the state related by time reversal,
quantum numbers are obtained by conjugation.

b. Other three states

Using the method developed above, we calculate trans-
lation quantum numbers of the three other states. It turns
out that the centers of mass of these three states are threeM
points [(0, π), (π, 0) and (π, π)]. While calculation details
are not presented in this paper, there is a simple physics
picture. Consider adding π flux in the x direction to the
[0,0] state, and then translating in the same direction. This
corresponds to every fermion hopping one lattice spacing in
the x direction, and they will see this additional π flux.
Thus, compared to the original state, the translation
quantum number in the x direction is multiplied by −1,
so the center of mass will change from the Γ point to theM
point ½π; 0�.
For rotation, we note that C6 is not a symmetry for these

three states. But the three states are symmetric under
inversion symmetry C3

6. Applying the above method, we
find that these three states have the opposite inversion
quantum number to [0,0] state, which is consistent with our
field theory analysis in Sec. IV B.

2. d þ id SC state

Understanding the quantum numbers of dþ id SC is
much simpler. Firstly, holons always condense at the Γ
point, and contribute an overall constant, and thus can be
neglected. Secondly, two spinons that occupy the Γ point
will also have no contribution, as discussed in Appendix B.
For other spinons, which have a BCS-type wave function,
the analysis of quantum numbers is similar to the bosonic
spinon part above: Under lattice symmetry, only gauge
transformations contribute to quantum numbers.
For translation T1 and T2, associated gauge transforma-

tions GT1
and GT2

are trivial. So, the center of mass is Γ for
any lattice size.
Under C6 rotation, the mean-field wave function changes

as

C6jψfi ¼
Y
k≠0

exp½e−i2π=3ϕdþid;ijðkÞf†ik↑f†j−k↓�j0i: ðC22Þ

We can view this as though every fermion picked up e−iπ=3
after C6 (except for fermions at the Γ point). Therefore, the
C6 quantum number for the 2N × 2N × 2 lattice size is�
3

4
× 2N × 2N × 2− 2

�
×

�
−π

3

�
¼ 2π

3
mod 2π; ðC23Þ

independent of lattice size.
Next, consider the inversion C3

6 quantum number. For
dþ id SC, it is always 1. For CSDW or SCCL, on the
4N × 4N × 2 lattice size, the inversion quantum number
equals −1, while on ð4N þ 2Þ × ð4N þ 2Þ × 2, the inver-
sion quantum number is 1. This provides a sharp signature
to distinguish the CSDWor SCCL state and the dþ id SC
in finite samples.

APPENDIX D: EDGE THEORY OF SCCL WITH
ADDED π-SPIN ROTATION ABOUT

PERPENDICULAR AXIS

To consider spin-rotation symmetry in x and y directions,
one must enlarge the K matrix by adding degrees of

freedom that are in a topologically trivial phase
�
0 1

1 0

�
.

Then, we get

K0 ¼

0
B@

1 0 −1
0 0 2

−1 2 0

1
CA ⊕

�
0 1

1 0

�

¼

0
BBBBBB@

1 0 −1 0 0

0 0 2 0 0

−1 2 0 0 0

0 0 0 0 1

0 0 0 1 0

1
CCCCCCA
: ðD1Þ
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Performing a transformation on K0 gives us

K ¼ XtK0X ¼

0
BBBBBB@

1 0 0 1 0

0 0 0 −1 1

0 0 0 1 1

1 −1 1 0 0

0 1 1 0 0

1
CCCCCCA
; ðD2Þ

where we use

X ¼

0
BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 0 −1 0

0 1 1 0 0

0 0 0 1 1

1
CCCCCCA
: ðD3Þ

Any such transformation by a matrix X in GLð5;ZÞ, the
group of unimodular N × N matrices, can be seen as a
relabeling of topological degrees of freedom since
l → l0 ¼ Xtl, and the physics remains unchanged.
However, the particular choice of X, inspired by
Ref. [74], allows an easier identification of physical
properties. The charge vector tc ¼ ð1; 0; 0; 0; 0Þ and Sz
vector tSz ¼ ð1=2;−1; 0; 0; 0Þ are direct extensions of the
original ones. We identify holon f as (1,0,0,0,0), spinon b↑
as (0,0,0,1,0), and spinon b↓ as (0,0,0,0,1). Electron e↑ð↓Þ is
simply the bound state of f and b↑ð↓Þ, and it is in the
topologically trivial sector. Vison can be viewed as “half
holon,” and is expressed as (0,1,0,0,0) with charge 1=2 and
(0,0,1,0,0) with charge −ð1=2Þ. It is easy to check that
the statistical angles and quantum numbers of these
quasiparticles are correct.
The general consideration of symmetry in this K-matrix

formulation was considered in Ref. [74]. Under symmetry
g ∈ Gs, the chiral boson field ϕI will transform as

ϕI →
X
J

Wg
I;JϕJ þ δϕg

I ;

K ¼ ðWgÞtKWg; Wg ∈ GLðN;ZÞ: ðD4Þ

Notice that the above symmetry transformations
fWg; δϕgjg ∈ Gsg must be compatible with the group
structure of symmetry group Gs. More precisely, the local

bosonic degree of freedom fM̂I ≡ eilI
P

J
KI;JϕJg must

form a linear representation of symmetry group Gs while
nonlocal quasiparticles can transform projectively.
It is not yet known how to incorporate the full SUð2Þ

spin-rotation symmetry in the K-matrix formulation.
However, we can choose a subgroup of SUð2Þ, which is
generated by g1, the π rotation around the Sx direction, and
rotations around the Sz direction, Uθ, θ ∈ ½0; 4πÞ. They
satisfy the following algebra:

g41 ¼ e;

Uθ1Uθ2 ¼ Uθ1þθ2 mod 4π;

Uθg1 ¼ g1U−θ: ðD5Þ

In fact, we can view this group as a projective representa-
tion of a SOð2Þz⋊Z2 subgroup of SOð3Þ.
Following Ref. [74], we find a consistent solution for

fWg; δϕgjg ∈ Gsg that describes SCCL; namely,

Wg1 ¼

0
BBBBBB@

1 0 0 0 0

1 −1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

1
CCCCCCA
;

δ~ϕg1 ¼

0
BBBBBB@

0

0

0

π=2

π=2

1
CCCCCCA
;

WUθ ¼ 15×5;

δ~ϕUθ ¼ ð0; 0; 0; θ=2;−θ=2Þt: ðD6Þ

Explicitly, the quasiparticles transform as

~ϕ ¼

0
BBBBBB@

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

1
CCCCCCA
→
g1

0
BBBBBB@

ϕ1

ϕ1 − ϕ2

ϕ3

ϕ5 þ π=2

ϕ4 þ π=2

1
CCCCCCA
;

~ϕ ¼

0
BBBBBB@

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

1
CCCCCCA
→
Uθ

0
BBBBBB@

ϕ1

ϕ2

ϕ3

ϕ4 þ θ=2

ϕ5 − θ=2

1
CCCCCCA
: ðD7Þ

Notice that ϕ2 and ϕ1 − ϕ2 differ by only a trivial boson, so
they are actually the same quasiparticle with the same
quantum numbers. Further, each spinon (ϕ4;5) acquires −1
Berry phase after 2π spin rotation, while holon ϕ1 and
vison ϕ2;3 transform trivially, as expected.
There are several Higgs terms allowed on a symmetric

boundary by this transformation law. However, one should
consider the largest subset such that all terms can condense
simultaneously, meaning that the arguments of these terms
commute. Furthermore, the condensed fields must not
break the symmetry. Thus, we arrive at the following
Higgs terms:
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LHiggs ¼ C1 cosðϕ1 þ 2ϕ3Þ þ C2 cosðϕ1 − 2ϕ2Þ: ðD8Þ

We define θ1 ¼ ϕ1 þ 2ϕ3, θ2 ¼ ϕ1 − 2ϕ2, and their con-
jugate variables are φ1 ¼ ϕ4 þ ϕ5, φ2 ¼ ϕ4 − ϕ5. It is easy
to show that fθ1;φ1g, fθ2;φ2g form two decoupled
Luttinger liquids, so they can be gapped by the Higgs
term LHiggs ¼ C1 cos θ1 þ C2 cos θ2. The only remaining
gapless degree of freedom is ϕ1. So the edge of SCCL is
chiral fermion liquid of holons.

APPENDIX E: TUNNELING CONDUCTANCE
CALCULATION FOR DIFFERENT JUNCTIONS

1. Point junctions

For completeness, we repeat the metal lead/SCCL case
from the main text here.

a. Metal and CSDW

The tunneling Hamiltonian is

Htunn ¼ ½tψ†
CSDWðx ¼ 0ÞψMðx ¼ 0Þ þ H:c:�: ðE1Þ

For Fermi liquid systems, the scaling dimension δFL ¼ 1=2
in any dimension [1]. So, δ ¼ 2δFL ¼ 1. Using Eq. (30), we
get that GðTÞ is constant in this case.

b. Metal and SCCL

Because of the spin gap on the boundary of SCCL, a
single electron will decay exponentially when tunneling to
the edge of SCCL. So, the major contribution is from
singlet pair tunneling.

Htunn¼½tf†ðx¼ξÞf†ðx¼0ÞψM;↑ðx¼0ÞψM;↓ðx¼0ÞþH:c:�;
ðE2Þ

where coherence length ξ appears due to the Pauli principle.
So, δM ¼ 2δFL ¼ 1, where we use δFL ¼ 1=2. The operator
fðx ¼ ξÞfðx ¼ 0Þ has the same scaling dimension as
operator fðx ¼ 0Þ∂xfðx ¼ 0Þ, giving δ0 ¼ 1þ 2δFL ¼ 2.
We get GðTÞ ∼ T4.

c. SC and CSDW

The tunneling Hamiltonian is

Htunn ¼ ½tψ†
CSDWðx ¼ ξÞψ†

CSDWðx ¼ 0Þĉðx ¼ 0Þ þ H:c:�;
ðE3Þ

where the Cooper pair operator ĉ is a complex number
inside the SC. Therefore, δ ¼ 2 in this case, and we
get GðTÞ ∼ T2.

d. SC and SCCL

Since singlet Cooper pairs are not influenced by spin
gap, the result should be the same as for SC and CSDW,
namely, GðTÞ ∼ T2.
We next present the perturbative Fermi golden rule

calculations for various point junctions.
The tunneling current is

IðVÞ ¼ 2πt2
Z

V

0

ρ0ðVÞρM=SCðVÞdV; ðE4Þ

where

ρ0ðVÞ ¼
X
N

j0hNjO†
0ðx ¼ 0Þj~0i0j2δðE0

N − V − E0
~0
Þ

∼
Z

∞

−∞
eiVt

0 hO0ðx ¼ 0; t0ÞO†
0ðx ¼ 0; 0Þidt0; ðE5Þ

while

ρM=SCðVÞ ¼
X
N

∣M=SChNjOM=SCðx¼ 0Þj~0iM=SCj2

× δðEM=SC
N þV −EM=SC

~0
Þ

∼
Z

∞

−∞
eiVt

0 hO†
M=SCðx¼ 0; t0ÞOM=SCðx¼ 0;0Þidt0:

ðE6Þ
Here, O0 ðOM=SCÞ is the electron or electron pair annihi-
lation operator of CSDW or SCCL (M=SC). The scaling
dimension of IðVÞ is encoded in the long-time correlator of
O0 and OM=SC.
For tunneling junction between metal and CSDW,

O0 ¼ ψCSDW and OM=SC is ψM. Then,

hψCSDWðx; tÞψ†
CSDWðx; 0Þi ∼ t−1;

hψ†
Mðx; tÞψMðx; 0Þi ∼ t−1: ðE7Þ

So, ρ0ðVÞ and ρMðVÞ are constant numbers. We get
IðVÞ ∼ R

V
0 ρ0ðVÞρMðVÞdV ∼ V, and tunneling conduct-

ance GðVÞ ¼ dI=dV is constant.
For tunneling junction between metal and SCCL, only

singlet pairs can tunnel. The above formulas give
ρ0ðVÞ ∼ V3, while ρMðVÞ ∼ V. So, I ∼

R
V
0 V3dV ∼ V5,

and conductance GðVÞ ∼ V4.
For the SC lead, the main contribution is from tunneling

of singlet Cooper pairs. Therefore, GðVÞ scales in the same
way for CSDW and SCCL, and we get GðVÞ ∼ V2.
Comparing with the above results, the perturbative calcu-
lation is indeed consistent with simple RG analysis.

2. Line junction

Voltage on the metal or SC side is a constant number,
labeled by VR (Fig. 17). Electron scattered from lead will
lose its phase and always stay at the same voltage. On the
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CSDW or SCCL side, voltage is maintained between
scattering events and is accumulated, as shown in Fig. 17.
We first completely derive the case of junctions for which

the point contact scaling exponent α ≠ 0, and we deal with
the α ¼ 0 case (CSDW or metallic lead) at the end.
The voltage at the nth point junction is labeled by Vn,

while the tunneling current is In. Because of anomalous
quantum Hall response of the electron or holon, we get

Vn − Vn−1 ¼
In

e2=h
: ðE8Þ

According to the result for a point contact having α ≠ 0, in
the regime T ≪ V,

In ¼
e2

h
ðVR − Vn−1Þαþ1

ðTðnÞ
K Þα

; ðE9Þ

where α is the scaling exponent for tunneling conductance
obtained in the point junction case. Equation (E9) can also
be viewed as the definition of TðnÞ

K . We define xn ¼ VR −
Vn to get

ðxn−1 − xnÞ
e2

h
¼ e2

h
xαþ1
n−1

ðTðnÞ
K Þα

; ðE10Þ

which we can transform into a differential equation:

− dx
dn

¼ xαþ1

ðTðnÞ
K Þα

: ðE11Þ

Integrating the above equation from the initial x0 to the final
xN yields

−
Z

xN

x0

dx
xαþ1

¼
XN
n¼1

1

ðTðnÞ
K Þα

¼ 1

Tα
K
; ðE12Þ

in which we define the effective TK from the individual
TðnÞ
K . It is much smaller than TðnÞ

K for large N (given
the positive values of α). Here, TK becomes the only
important parameter that incorporates TðnÞ

K as well as their
fluctuations.
After integration, one obtains

xN ¼ VTK

ðαxα0 þ Tα
KÞ1=α

; ðE13Þ

where we define V ≡ x0 ¼ VR − V0. The total current
flowing from metal or SC to CSDW or SCCL is obtained
from the voltage difference VN − V0, and is given by

I ¼ e2

h
ðVN − V0Þ ¼

e2

h
ðV − xNÞ; ðE14Þ

so the tunneling conductance is

GðVÞ ¼ e2

h

�
1 − TK

ðαVα þ Tα
KÞ1=α

�
: ðE15Þ

The result expressed holds for all values of V, TK at T → 0,
as long as the assumptions used to derive the expression
hold, namely, each individual point contact junction is

weakly coupled, V ≪ TðnÞ
K for all n. Note that the effective

TK for a long line junction (large N) can be very small

compared to all TðnÞ
K .

Now, let us consider the small voltage regime, namely, V
much smaller than temperature T. However, we still require
the weak coupling condition for single point junctions,

namely, T ≪ T 0ðnÞ
K . Notice that, in general, T 0ðnÞ

K ≠ TðnÞ
K , but

we expect they have similar magnitudes. In this case,
according to the point junction result,

In ¼
e2

h
Tα

ðT 0ðnÞ
K Þα

ðVR − Vn−1Þ: ðE16Þ

Following similar steps as above, we get

− dx
dn

¼ Tα

ðT 0ðnÞ
K Þα

x: ðE17Þ

By solving this equation, it is straightforward to get the
tunneling conductance as a function of T:

GðTÞ ¼ e2

h
½1 − e−Tα=ðT 0

KÞα �; ðE18Þ

where we define

1

ðT 0
KÞα

≡XN
n¼1

1

ðT 0ðnÞ
K Þα

: ðE19Þ

Finally, we consider the CSDW/metallic lead line
junction, i.e., the case of α ¼ 0. The derivation procedure
is the same as for the above case, and starts from the point
junction result:

In ¼
8<
:

e2
h

1

cðnÞK

ðVR − Vn−1Þ if T ≪ V

e2
h

1

c0ðnÞK

ðVR − Vn−1Þ if V ≪ T;
ðE20Þ

with cðnÞK , c0ðnÞK dimensionless constants characterizing the

nth point junction. In fact, cðnÞK , c0ðnÞK are defined by these
equations, and the expressions are valid in the weak-

coupling regime of the point junction, i.e., 1 ≪ cðnÞK ,

c0ðnÞK , which physically corresponds to low enough temper-
atures and voltages. Using Eqs. (E8) and (E20), and the
same procedure as above, we get
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I=V ¼
(

e2
h ½1 − expð−1=cKÞ� if T ≪ V
e2
h ½1 − expð−1=c0KÞ� if V ≪ T;

where we define

1

cK
≡XN

n¼1

1

cðnÞK

;
1

c0K
≡XN

n¼1

1

c0ðnÞK

: ðE21Þ

APPENDIX F: DMRG DATA AND
CONVERGENCE

Here, we discuss the precise DMRG setup, convergence
to true ground state with limiting MPS matrix size, and also
present some measurements for parameter values not
shown explicitly in the main text.
To represent the two-dimensional periodic samples in the

DMRG in a way that eases convergence, we label the sites
1;…; N, such that the longest necessary hopping range is
minimized. For the present samples, which have aspect ratio
of 1, it is sufficient to sequentially order site labels 1;…; N
from, say, left to rightwithin each row and then fromone row
to the next. With larger two-dimensional samples in lattices
with higher coordination, it is advantageous to avoid label-
ing rows sequentially, but instead, starting from one row,
sequence the one below it, then the one above it, and so on in
an alternating fashion. Using the free fermion and the
Hubbard-U-only models, we can confirm the correct rep-
resentation of the samples in DMRG. We have checked for
some parameter values that the labeling that minimizes the
longest range hopping indeed allows faster sweeps and
better convergence in the same amount of time.
The convergence of DMRG energy is, however, limited

in practice by the maximal size of MPS matrices m, which
does not exceed 11.000 in our calculations. In Fig. 18, we
present a typical convergence of DMRG energy as a
function of 1=m, with a linear fit extrapolation towards
infinite m. This is not the common way of considering
DMRG convergence, but it is informative given our m
value limitations.

As discussed in Sec. III C, in this paper we quantify the
DMRG convergence to the true ground state by using the
expectation value of C6 symmetry operation (60° rotation),
which should be one of f−1; 1=2g (f1;−1=2g) when the
inversion is −1 (þ1). (The inversion is always numerically
very precisely quantized.) As shown in Fig. 9, the C6

measurement on the 32-site sample indicates the conver-
gence failure in the J=t > 0.8 phase; in the Hubbard model,
the convergence progressively worsens with lowering U=t
below the value 5. It is not surprising that convergence
worsens for low U=t, but we believe it is mainly due to our
m limitation. For instance, at U=t ¼ 4, the C6 expectation
with projection to Γ momentum improves from 0.10(2) at
m ¼ 8.000 to 0.16(2) at m ¼ 10.500.
Next, we present additional details about correlation

functions on the 32-site sample.
In Fig. 19, we show the spin-spin correlation function in

the CSDWor SCCL phase for several values of parameters,
as addition to Fig. 11. The values are chosen to demonstrate
how the longer-range spin correlations match the tetrahe-
dral pattern even better as U=t grows and as J=t decreases.
On the other hand, the magnitude of short-range spin
correlations grows with both U=t and J=t as expected.
Here, we emphasize again that we use the total Sz equal to
zero sector in both models throughout this paper. The
DMRG calculation conserves this quantum spin number of
a state, as well as the total number of fermions.
In Sec. III C we claim that the pair-pair correlation

function on a 32-site sample in the CSDW or SCCL phase
is very short ranged. Here, we provide a numerical example
to compare to 24-site sample results in Table III. On the 32-
site sample, we consider the J=t ¼ 0.78 DMRG GS
projected to expð−iπ=3Þ eigenspace of C6, and pairs of
nearest-neighbor bonds separated exactly as in the figure of
Table III. Every correlation value is obtained using 64 MC
runs of 10.000 measurements, and averaged over trans-
lations of the bond pair to additionally reduce statistical
error. (The usual 500 measurements give a statistical error
that overwhelms the value of correlations.) Out of the three
bond pairs, the maximal correlation magnitude is 0.00059
(2), to be compared with 0.00163(2) and 0.00447(2), the
values for J=t ¼ 0.78 and J=t ¼ 2.0, respectively, for
the 24-site sample from Table III. The complex phases
of the three bond-pair correlations in the dþ id state are 0,
1=3, −1=3 in units of 2π, but in the considered 32-site
measurement, we find 0.5(1), 0.40(5), −0.45ð4Þ.
Finally, we explain in Sec. III C that on the 32-site

sample the DMRG GS did not converge well in the large-J
phase J=t > 0.8, so the correlation measurements are not
trustworthy, but we note for completeness that in that
regime, the obtained DMRG GS with projection to Γ
center-of-mass momentum and either expð−iπ=3Þ or
expð−i2π=3Þ eigenvalue of C6 completely loses resem-
blance to a tetrahedral spin pattern without developing a
dþ id pair-pair correlation pattern.
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FIG. 18. DMRG energy of Hubbard model with U=t ¼ 6 on
32-site sample, as function of limiting MPS matrix size m.
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APPENDIX G: EXACT PERTURBATIVE
RESULTS IN THE HUBBARD MODEL ON

THE 32-SITE SAMPLE

First, we set t ¼ 1 and tune U ¼ 0. There are 16
momentum points in the Brillouin zone. Sorted by the
distance to the Γ point, we have one Γ point, six points
related to ðπ=2; 0Þ by C6 rotations, six points related to
ðπ=2; πÞ by C6 rotations (these are the midpoints between
adjacent M points), and three M points. Each momentum
point has two energy levels (the valence and conduction
band) with each level having twofold spin degeneracy. At
3=4 filling, the 24 electrons should fully fill the conduction
band at the Γ point and the six points related to ðπ=2; 0Þ by
C6 rotations. The remaining 10 electrons will partially fill
the conduction band at the six midpoints between the M
points and the three M points. Note that, due to the
hexagonal shape of the Fermi surface, these nine momen-
tum points have the same energy.
We consider the Sz ¼ 0 sector only. This means that one

fills five spin-up (spin-down) electrons in the nine states,
which gives a total of ð9

5
Þ2 ¼ 15876 degenerate many-body

states withE0 ¼ −42.8328. We also focus only on the sector
with center-of-massmomentumbeingΓ. This further reduces
the number of degenerate ground states down to 1002.
Next, we turn on a small U and perform the standard

degenerate perturbation calculation by diagonalizing the
1002 × 1002 matrix of the U term. To the first order in U,
we find that the ground state becomes twofold degenerate,
with energy given by E ¼ E0 þ 4.11095U. This twofold
ground state forms the same irrep of the symmetry group as
theCSDWorSCCLphase on this 32-site sample (seeTable I).
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