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Weyl semimetals are three-dimensional crystalline systems where pairs of bands touch at points in
momentum space, termed Weyl nodes, that are characterized by a definite topological charge: the chirality.
Consequently, they exhibit the Adler-Bell-Jackiw anomaly, which in this condensed-matter realization
implies that the application of parallel electric (E) and magnetic (B) fields pumps electrons between nodes of
opposite chirality at a rate proportional to E - B. We argue that this pumping is measurable via nonlocal
transport experiments, in the limit of weak internode scattering. Specifically, we show that as a consequence
of the anomaly, applying a local magnetic field parallel to an injected current induces a valley imbalance that
diffuses over long distances. A probe magnetic field can then convert this imbalance into a measurable
voltage drop far from source and drain. Such nonlocal transport vanishes when the injected current and
magnetic field are orthogonal and therefore serves as a test of the chiral anomaly. We further demonstrate
that a similar effect should also characterize Dirac semimetals—recently reported to have been observed in
experiments—where the coexistence of a pair of Weyl nodes at a single point in the Brillouin zone is
protected by a crystal symmetry. Since the nodes are analogous to valley degrees of freedom in
semiconductors, the existence of the anomaly suggests that valley currents in three-dimensional topological
semimetals can be controlled using electric fields, which has potential practical “valleytronic” applications.
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I. INTRODUCTION

Weyl semimetals (WSMs) are three-dimensional analogs
of graphene that have received much attention following a
recent proposal that they may occur in a class of iridate
materials [1]. They host electronic excitations that disperse
linearly from degeneracy points at which two energy bands
meet. Near these points, the electronic states are described by
the Weyl equation, familiar from particle physics [1-4], and
possess a definite chirality. While the robustness of such
twofold band touchings—which require the breaking of
either time-reversal or inversion symmetry—has long been
known [2,3], the topological aspects of WSMs were only
appreciated more recently [1,4-6]. A Weyl node is a
topological object: Depending on its chirality, it acts as a
source or sink of Chern flux in the Brillouin zone. Since the
total Chern flux through the Brillouin zone must vanish,
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Weyl nodes necessarily occur in pairs of opposite chirality.
This topological property of the nodes protects a single Weyl
node against opening a gap: In order to remove a Weyl band
touching, a perturbation must necessarily couple the nodes,
and thus WSMs should be robust against smooth disorder
that only weakly mixes nodes separated in momentum space.

Closely related to the WSM is the Dirac semimetal (DSM)
[7-9], where a pair of Weyl nodes of opposite chirality
coexists at a point in the three-dimensional Brillouin zone—
and therefore four bands touch, rather than two. Although,
naively, it appears that this situation would be unstable
against a variety of gap-opening scenarios, in certain cases,
the resulting gapped phases always break a crystalline point-
group symmetry. Therefore, as long as such symmetries are
preserved, the Dirac point [ 10] remains stable. A convenient
picture of the simplest DSM is two copies of a WSM, with
each copy labeled by a different crystalline point-group
“isospin” index. (To avoid confusion, we refer to the valley
degree of freedom common to both cases as “pseudospin.”)
DSMs are thus crystalline symmetry-protected topological
semimetals, and from the preceding discussion, it should be
evident that stable three-dimensional Dirac points appear in
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pairs that lie on axes of high crystal symmetry. Recent
photoemission [11-14] and magnetotransport [15] measure-
ments appear to support the theoretical prediction [8,9] that
the three-dimensional materials Na;Bi and Cd;As, host
DSM phases.

Such robust topological phases are typically character-
ized by the presence of protected surface states or by
unusual electromagnetic (EM) responses. WSMs are no
exception: For instance, in Ref. [1], it was demonstrated
that they possess protected chiral Fermi-arc surface states.
Similar features are also expected for DSMs, as long as the
protecting crystal symmetry remains unbroken; the result-
ing surface states, of course, now carry additional isospin
labels.

The unconventional bulk EM response of a single three-
dimensional Weyl node is known as the Adler-Bell-Jackiw
anomaly [5,16,17]: Simultaneous application of parallel
electric and magnetic fields (applying E - B) leads to
production or depletion of charge, depending on the
chirality. Such a response is clearly incompatible with
charge conservation. The appearance of a Weyl node of
opposite chirality resolves this apparent contradiction,
since the charge produced (depleted) at one node is
accounted for by that depleted (produced) at the other,
and it is clear that the total charge is conserved. However,
treating the node index (hereafter, “valley,” in accord with
the usual semiconductor terminology) as another quantum
number, it is equally clear that the valley charge is not
conserved in the presence of E - B: This is the chiral
anomaly of the WSM. For the DSM, as we have mentioned,
in addition to the valley pseudospin index that labels the
point in the Brillouin zones where the bands touch, there
is an additional twofold isospin index that labels the
crystalline point-group representation. The discussion of
the anomaly goes through more or less unchanged for each
of these isospin species.

How can we observe this effect in experiments?

Any proposal to detect the anomaly should be capable of
distinguishing anomaly-related physics from conventional
metallic behavior and should ideally vanish in the absence
of the anomaly—i.e., either when E - B =0 or in the
absence of Weyl nodes; furthermore, it should be applicable
to topological semimetals realized in several different
systems—in other words, we seek a response characteristic
of the phase rather than of any specific realization.

Here, we show that the slow relaxation of valley charge
(characterized by an internode scattering time z,, which is
typically long, as it involves large quasimomentum transfer
in the Weyl case or scattering between different point-group
representations in the Dirac case) results in a signature of
the charge pumping in nonlocal resistance measurements
(Fig. 1). While, in general, sensitive to various experimen-
tal parameters, in the “quantum” limit, when the valley
imbalance generated is limited only by relaxation at the
contacts, we find that applying a voltage Vgp at x =0
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FIG. 1. Nonlocal transport experiment. A source-drain current
Isp is injected into a Weyl semimetal slab of thickness d via
tunneling contacts of thickness L,. In the presence of a local
generation magnetic field B, a valley imbalance Ay is created via
the chiral anomaly and diffuses a distance L > d away. If a
detection field B, is applied, the valley imbalance can be
converted into a potential difference Vy;, between top and bottom
contacts of size L.

yields a nonlocal voltage at x that is determined only by
intervalley relaxation in the bulk,

Ve (x)| = Vspe ™%, (1)

where £, = /D, is the valley-relaxation length and D is the
charge-diffusion coefficient. In contrast, conventional Ohmic
voltages decay on the scale of the sample thickness. In addition,
the dependence of nonlocal response on field orientation
(described in detail below) further reflects its origins in the
anomaly. In particular, Vi, =0 when an E - B term is
absent. Thus, in the idealized limit £, — oo, this nonlocal
response gives an unambiguous signature of the anomaly.

The proposed experiment is easily sketched; for the
moment, let us focus on the Weyl case. First, a charge current
is driven across the sample in aregion where a local magnetic
field B, is applied. Because of the chiral anomaly, in the
steady state, a valley imbalance—in the ideal case, propor-
tional to B ,—is generated in the region where charge current
flows. As long as the internode scattering is weak, the valley
imbalance is long lived and can diffuse far away (i.e., a
distance of order #,)) from the region where it is generated. In
the absence of a magnetic field, the valley imbalance does not
couple to an electric field and is thus challenging to detect.
However, such a coupling does arise when alocal “detection”
magnetic field B, is applied—once again, a consequence of
the chiral anomaly. In this case, the valley imbalance
manifests itself by building up an electrical voltage across
the sample. When B, is oriented perpendicular to the source-
drain current, or B, perpendicularto the directionin which the
voltage drop is measured, V. vanishes, reflecting the fact
that the anomaly is sensitive to the angle between E and B.
While this nonlocal effect bears some resemblance to the so-
called “Zeeman-driven spin Hall effect” and associated
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transportphenomenain graphene [ 18-21] and other spin Hall
materials, the dependence on the orientation of the magnetic
field is unique and is a signature of the chiral anomaly.

Before proceeding, we briefly review other recent pro-
posals to study the anomaly in WSMs (We note that similar
anomalies have been previously explored in experiments on
vortices in superfluid 3He [22].) One observation [5] is that
there is an additional, anomaly-induced current along the
magnetic field direction; the resulting anisotropy in the
magnetoconductance has been suggested [23,24] as a
signature of the anomaly. However, one might expect such
anisotropy simply on symmetry grounds [25] in a conven-
tional metal, since the magnetic field provides a preferred
direction. Additionally, the anomaly results in a negative
classical magnetoresistance that can be quite large [24];
however, this remains a quantitative rather than a qualitative
signature and may be overwhelmed by other contributions,
making it challenging to detect. Another proposal [26] is to
realize a WSM by magnetically doping a topological
insulator; the symmetry-breaking ferromagnetic order can
then be used as a probe of the underlying topological
semimetal. For instance, as a consequence of the anomaly,
vortex lines in the ferromagnet carry one-dimensional chiral
modes, and the ferromagnetic Goldstone modes couple to
charge plasmons. While striking, such features are not easy
to probe and are specific to the example studied rather than
serving as a general signature of a WSM. In Ref. [27], an
anomalous Hall-effect signature was discussed, related to the
Weyl anomaly [6]; however, this is absent for certain high-
symmetry crystals and needs additional information on the
momentum-space location of nodes to be turned into a sharp
signature. Thus, existing approaches to study the topological
response of WSMs stand in marked contrast to the simple
transport experiment proposed here, which applies generally
to all realizations of WSMs and furthermore satisfies the
criteria outlined earlier: Namely, it involves a signal that is
absent for conventional (semi)metals and can be ascribed to
the presence of an E - B term by examining its dependence
on the orientation of the magnetic field. Furthermore, as we
demonstrate, modulo some reasonable caveats about disor-
der, our results also apply to DSMs. We note that, in contrast
to other transport-related predictions, our proposal involves a
physical mechanism—the diffusion of valley imbalance—
that is distinct from the transport of electric charge and is
crucial to the nonlocality of the response. As a consequence
of the nonlocality, we may attribute our signal to a specific
magnetoresistance mechanism (namely, the anomaly) cir-
cumventing the challenges usually involved in interpreting
magnetotransport measurements. The experiment proposed
here thus serves as an “order parameter” for topological
semimetals of both the Dirac and Weyl varieties and is the
only sharp signature proposed to date that is agnostic to the
specific details of the experimental realization.

In the remainder, we first outline a simple description of
transport in a WSM and proceed to discuss the chiral charge

pumping within this formalism. Having formulated a limit
where the solution is especially transparent, we demon-
strate the existence of a nonlocal response and examine its
behavior in various cases before turning to a simple model
of impurity scattering that permits us to provide parametric
estimates of various length scales; we also demonstrate that
our results remain applicable to the case of a disordered
DSM. We conclude with a discussion of our results and
possible extensions.

II. MODEL AND TRANSPORT THEORY
FOR WEYL SEMIMETALS

A. Transport equations

We begin by sketching the derivation of the transport
equations relevant to the problem in the WSM case. The
simplest models of WSMs have two nodes separated in
momentum space, and henceforth, we specialize our
discussion to this situation. (The extension of our results
to the case with several such pairs of nodes is straightfor-
ward; we will say more about the DSM, where there are
additional subtleties owing to the coincidence of two Weyl
nodes at a single Dirac point, below.) Electrons emanating
from the two valleys [denoted by “right” (R) and “left” (L)
and referred to as pseudospin] are characterized by local
electrochemical potentials in each valley

pge =+ e,

defined as the sum of the electric potential ¢» and the valley
chemical potential u®-. We assume that each valley has the
same finite doping level, so that the density of states v3p is
finite and equal in both valleys. As a result, charge transport
within a valley is characterized (at B = 0) by a finite Drude
conductivity o related to the diffusion coefficient D via the
Einstein relation ¢ = e?Dusp,. All the chemical potentials
are measured with respect to thermal equilibrium, so that
the expressions below do not include any equilibrium
“magnetization” currents [28].

In a magnetic field B = Bn, the currents in each valley
can be expressed purely in terms of the potentials by
solving for the Landau levels (LLs) of the Weyl nodes.
Recall that a single node [29] gives rise to an infinite set of
LLs that disperse quadratically in the field direction
EXt(k -0) = hopsgn(n)y/2|nleB/hc + (k -0)%,  with
n==1,4£2,..., as well as a single (n =0) LL with
Eff(k -fi) = +hvgk -f that disperses linearly along
the field, with a chirality set by that of the node
(Fig. 2). Each energy level is degenerate, with Ng/A =
1/27¢% states per unit area, where £z = (fic/eB)'/? is the
magnetic length corresponding to the magnetic field B. As
a consequence of the chiral n = 0 LL, electrons at a Weyl
node carry a current along the field even for a spatially
uniform chemical potential; the total anomaly-related
current is obtained by summing over all the occupied
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FIG. 2. Landau levels at Weyl nodes. Filled (empty) circles
denote occupied (empty) LLs. Each node has nonchiral LLs that
disperse parabolically in the field direction (here, Z) as well as a
single chiral LL that disperses according to the node chirality (red
and blue circles and lines). A chemical potential imbalance
between the nodes leads to a net current flowing along the field,
even for spatially uniform p.

modes in this LL. In addition, in each valley, there is also
the conventional transport contribution due to gradients of
the electrochemical potential. In our semiclassical limit, we
assume this contribution deviates only weakly from its
zero-field value and is therefore well described in terms of
the Drude conductivity ¢. These two contributions combine
to give the total transport current density [30]

O RL e’B

RL __ _ R,L 2
¢ HEC F i 2)

J’—_

These equations should be complemented by the con-
tinuity equations. In the presence of the chiral anomaly, we
have [31]

3
. e
Vot 0ptt =+ s E - B, G)

where the E-B = —B - V¢ term [5,16,17] is due to the
anomaly and captures the valley charge pumping.
Using Eq. (2) and modeling intervalley relaxation
via a characteristic scattering rate by impurities 1/7,,

9,pRL = £(1/27,)(pR — pt), the steady-state continuity
equations in the two valleys reduce to

)
2z, (ﬂgc _/‘I%C)? (4)

c .
— Ve £ Vpge = F

where # = (1/2xn¢%)(e?/h). Note that the continuity equa-
tions depend only on the electrochemical potential, unlike
the currents.

Equations (2) and (4) supplemented by appropriate
boundary conditions determine the charge and valley
currents in the system. From this point on, we specialize
to the setup illustrated in Fig. 1 and choose coordinates in
which the z direction is perpendicular to the film.

B. Boundary conditions

We now establish the current boundary conditions in the
presence of leads and magnetic field. We assume that
the boundaries do not induce intervalley scattering [32].
Theboundary conditions become especially transparent when
treating the interfaces in the Landauer formalism (see Fig. 3)
and with the assumption of no intervalley scattering in the
leads. Let us assume that there are N,, nonchiral channels in a
region of area A [33], each with transmission coefficient 7 ;.
Within the Landauer picture, these channels carry a current
that depends on the contact conductance per unit area g =
(e2/h)(1/A) ¥ T, and the electrochemical potential
between the contact and the WSM surface. In contrast, the
chiral channels in each node carry a current that depends only
on the electrochemical potential on one side of the interface—
i.e., either that of the contact or of the WSM, depending on the
direction. With these considerations, and introducing source
and drain chemical potentials yg p, we find that the boundary
conditions for the top surface are

72(d) = 2 () — 5] + L (@),

. g b
J%(d) = v [/hézc(d) — Hs] —Eﬂs, (5)
while on the bottom surface, we have
. g p
J5(0) = . lup — uge(0)] + JHD

740) = Lup — k0] -0 (6)

FIG. 3. Landauer description of contact boundary conditions.
Each node has N,, > 1 nonchiral normal transport channels in an
area A (black arrows), with transmission coefficient 7';. Since we
assume that there is no intervalley scattering at the interfaces, we
can simply count the number of channels and obtain a normal
conductance per unit area g = (e2/h)(1/A) 2N T, for these
channels. Here, 7; is the transmission coefficient of channel i,
assumed much smaller than unity for much of the paper
(tunneling contacts). In addition, in each node, there are also
N chiral channels propagating in opposite directions in the two
nodes (red and blue arrows), where Ny = A/ 2:1/% is the number
of flux quanta threading the contact area. Applying the Landauer
formalism, assuming reflectionless contacts, and assigning
appropriate chemical potentials to the different channels, we
obtain boundary conditions (5) and (6) for the current density.
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In the above equations, it is understood that f =
sgn(B.)(e?/2xl%h); we recognize this as the conductance
per unit area of the chiral modes, which have 7 = 1. We will
assume thatin both generation and detection regions, B lies in
the yz plane, inclined atan angle @ from Z. In this case, we have
p « cos(@) = B - z/ B.Below, we will focus on the case when
the field is along 7, i.e., = 0.

C. Relaxation in leads

We digress briefly to discuss a subtlety that emerges
when placing leads on a WSM. We wish to induce and
detect disequilibrium between valley populations.
However, a normal-metal lead attached to a WSM has,
in effect, a vanishingly small relaxation length for the valley
degree of freedom; ideal contacts to such leads therefore
suppress valley imbalance [34]. Therefore, for a given
conductivity of the WSM film, tunneling contacts to
metallic leads [35] generally sustain a larger valley imbal-
ance. For simplicity, we work in the thin-film limit
g < o/d, where d is the thickness of the film. This
condition implies that voltages are built up only across
the surfaces, while inside the film, fast diffusion makes the
electrochemical potentials uniform across the film thick-
ness. However, it should be kept in mind that this
assumption is not necessary for nonlocal transport to arise;
we will discuss the case of transparent contacts below.

III. NONLOCAL RESPONSE

We will work in the thin-film limit, where the various
chemical and electrochemical potentials are assumed uni-
form across the film thickness. In this situation, averaging
the continuity equations over the film thickness and using
the boundary conditions (5) and (6), we find

o _29FB( W  HsTH
Vikge = (u%%;— =)

od 2

1 p
V3 Supc = —5Supc + — (us — up). (7)

Cr ad
where Vi =097 +0;. We have defined the average
electrochemical potential pi. = (1/2d) [¢ dz(uf- + ukc)
and the difference between valley electrochemical poten-
tials Supc = (1/d) ¢ dz(uB. — uke) and finally intro-
duced the effective valley-imbalance-relaxation length

1 2g9+p

As discussed above, the leads induce additional intervalley
relaxation, at a rate I'ieaqs = (29 + ) /v3pe’d.

Equations (7) allow us to analyze the valley transport in a
thin WSM film in the presence of external leads. The
generation region is taken to consist of two massive source
and drain leads of width L, > . In this limit, they act as

a valley battery, inducing in the source-drain region a valley
imbalance

2
_ﬂgfeff,g

OMEC (0) = od

(us — pp)- )
Here, the subscript g labels parameters pertaining to the
generation region and the corresponding local magnetic
field B,. Note that even though there is a negligible
electrochemical potential drop across the film when
g < o/d, a valley imbalance is nevertheless generated
by the preferential population of chiral modes at sample
boundaries. This is essentially equivalent to the effect of the
E - B term, with Vugc playing the role of the electric field.
The imbalance generated in the source-drain region
diffuses over the sample, but due to intervalley scattering,
the imbalance decays away from the generation region with
a characteristic length Z, = \/Dz,. This follows from the
fact that in the region between the “battery” and “detector”
leads, there are no contacts, and also, we have B = 0, under
which conditions we assume that the surfaces do not induce
intervalley scattering. Then, the propagation length of the
valley imbalance is maximal and limited only by the weak
intervalley impurity scattering . = ¢, and so

Sptec(x) = 5MEC(O)67(|XW’)- (10)

To detect this imbalance far away from the generation
region, one can place voltage probes in a region where a
local detector magnetic field B, with the corresponding 3,
is applied. The chiral anomaly will then transform valley
imbalance into charge current in the vertical direction. In
order to compensate this current, a measurable voltage drop
is developed between the top and bottom detecting leads.
We assume that the detector is a noninvasive probe; that is,
it does not alter the value of the valley imbalance it
measures. This imposes a restriction on the length of the
detecting leads, which will be formulated below.

Demanding that the total current through the top
and bottom contacts of the detector vanishes and using
[Egs. (5) and (6)] yields for the measured chemical
potential difference between them,

Pa

He — Hp 2gd+ﬂd5ﬂEc(X)- (11)
Using Egs. (9) and (10), we can relate the measured
“nonlocal” voltage drop Vy. = (4, —pp)/e to the
source-drain voltage Vsp = (ug — up)/e. It is convenient
to introduce a dimensionless coefficient ayy that character-
izes the strength of nonlocal response as a ratio of these
voltages:

1% O
an (¥) = wL (%) _ Ba  Pyery e—(xl/¢s) (12)

Voo 294+Py od
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This equation takes an even more transparent form if we
assume that in the generation region, relaxation due to
intervalley scattering can be completely neglected and
occurs solely at the leads. In this case, we can neglect
the first term in the lhs of Eq. (8) for £ 4, which yields

ﬁd ﬂg

_ ~(l/2.) 13
e .
29d+ﬁd2.gg +ﬂg ( )

an(x) =

This equation is the central result of the paper and gives the
general dependence of the nonlocal transport on contacts,
fields, and intervalley relaxation in the limit when the latter
is weak. Note that this condition is not unreasonable: A
WSM and its attendant topological features are stable only
for weak intervalley scattering, corresponding to large .
Furthermore, it is in this limit—specifically, for £, > d—
that the nonlocal response dominates standard Ohmic
voltages between the film surfaces. It is instructive to
analyze Eq. (13) in two limits. (i) In the limit of weak
generation and detection magnetic field f, < g, and
B4 < g4, the nonlocal response

~—Pa Bo ey 14
a()w =y loLe (14)
is proportional to the magnetic fields B, and B, and changes
sign if the direction of one of these fields is reversed. In this
limit, the nonlocal voltage is inversely proportional to the
conductance of the contacts g, and g,. Therefore, the
nonlocal voltage is larger for tunneling contacts, as long
as they continue to have a higher conductance than the
chiral channels. (ii) In the opposite limit, when g, < f;
and g, < f,, it takes a remarkably simple form
any (x) & —e~(K/%:) | equivalent to that quoted in Eq. (1),
and depends neither on the properties of the contacts nor on
the magnitude of the generating and detecting magnetic
fields (although, of course, a directional dependence
remains). This is the quantum limit, when the generation
of valley imbalance is limited by the relaxation at the
contact itself. Note that f = (15/¢)*e?/2mA%h, where A
is the Fermi wave vector in the node and e?/h12 & Gigeq 1S
the maximal (Sharvin) contact conductance per unit area. In
order that the semiclassical limit holds, we wish to have
many filled LLs below the Fermi surface, which assumes
that Ap/¢p is small, requiring f < giqea- However, since
tunneling contacts have g < gjqeal, this requirement is not
too restrictive, and we expect that the quantum limit can
indeed be reached in experiments.

Finally, werevisitour assumption that the detector does not
alter the value of the valley imbalance it measures; this
constrains detector size, as follows. The detectoris essentially
a shunt connecting two valleys, allowing valley current to
“leak” at a rate I',qs. The detector is noninvasive if this
leakage current is much smaller than the total valley current
flowing under the detector j, ~ Déu/¢,. Comparing the

latter to leakage current jj., ~ I'jeags L 401, We obtain that the
detector size L, < (6/D)/(2g,+ Ba) % (d*/¢,). This
condition is quite weak, since d < L; < ¢, can be satisfied
for large enough o/d(2g, + f4), which is well within the
tunneling contact or thin-film limit discussed here.

A. Extension to Dirac semimetals

The situation in the case of a Dirac semimetal is slightly
more involved; this is because at each Dirac point, there is a
pair of Weyl nodes of opposite chirality distinguished by
the point-group index or isospin. Thus, for each isospin,
one obtains a scenario similar to that described above, with
valley imbalance having an opposite sign for the two
isospin species. In order for this simple picture to hold,
we must make two crucial approximations. The first is to
ignore higher-order terms in the dispersion, which lead to
mixing of chiralities; the second is that we assume that the
isospin-relaxation time 7z; due to impurity scattering is
much larger than the valley-relaxation time, in order that we
may treat isospin as a “good” quantum number over the
length and time scales relevant to our experiment. We will
discuss both these approximations in the next section. Note
also that the relevant time scale for valley relaxation is the
shorter of 7, and 7; since strong scattering between isospin
species will relax the valley imbalance. This follows
because in any situation, where, at a given valley, the
population of one isospin species increases due to the
anomaly, the population of the other isospin decreases, as
the anomalous contribution has the opposite sign for the
two. With this caveat, the rest of the argument goes through
identically, and one obtains a similar nonlocal transport
signature as Egs. (1) and (12)—(14) with £, replaced by
min(y/Dz,,+/Dz;). In the next section, we will discuss
estimates for the relevant time scales using a simple
disorder model.

IV. RELAXATION PROCESSES IN DISORDERED
DIRAC OR WEYL SEMIMETALS

A. Charge and valley relaxation in WSM

In this section, we use a perturbative treatment of
disorder to estimate the characteristic rate of two scattering
processes relevant to a WSM (see Fig. 4): (i) quasiparticle
scattering at a single Weyl node, which relaxes charge
imbalance at arate 7. ! and (ii) intervalley (i.e., pseudospin-
flip) scattering, which relaxes valley imbalance at a rate
r;]. (We will discuss extensions to the Dirac case, where
there is an additional issue of isospin relaxation, below.)

In order that we can distinguish the nonlocal and Ohmic
responses, we require that d < /Dz,. Furthermore, to
define a local diffusive charge conductivity ¢ while treating
the valley imbalance as a slowly relaxing quantity, we need
7, < 7,. When both these criteria are satisfied, the nonlocal
response can be clearly distinguished and is then a measure
of the anomaly in the WSM. In the DSM, we additionally
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FIG. 4. Charge, valley, and isospin relaxation and mixing in
topological semimetals. We depict the different relaxation proc-
esses in disordered topological semimetals. Charge is relaxed by
processes that scatter within a single Weyl node (z7!); valley
pseudospin (indicated by node position +K) is relaxed by
processes involving large momentum transfer, which for screened
impurities leads to strong suppression relative to charge relax-
ation 7, ~ 77! (kp/2K)*; and in the Dirac case, the point-group
isospin (1nd1cated by 1 and |) is relaxed by scattering between
the two Weyl nodes at a single Dirac point, which are shown
separately for clarity but are, in fact, degenerate. Finally,
curvature terms in the Dirac case mix electronlike (holelike)
isospin-1 states with holelike (electronlike) isospin-|, states with
a strength of approximately fk%. Note that, in fact, the isospin
relaxation occurs by a combination of this mixing and charge
relaxation at a single node, yielding 7! ~ 7.1 (k% /er)?.

require that all length scales are small compared to /Dz;,
so that our assumption of treating the two isospin species as
independent is reasonable over scales at which we measure
unambiguously nonlocal effects.

We consider scattering from impurities randomly dis-
tributed with average density 7y, each of which we shall
assume is modeled by a smooth central potential v(r). We
will assume that (in the absence of external fields) each
node is doped so that the chemical potential is away from
the nodal point; we therefore take the (equilibrium) Fermi
level in each node to be ¢ = Aivpkyr. We shall assume
furthermore that the Fourier transform of the impurity
potential takes the form

Vo

Yo . 15
q* + k% (15)

v(q) =

where ko, = 27/ is the characteristic screening wave
vector. We will take the two nodes to be separated by a
wave vector K. Since the screening is due to the density of
electrons at a single node (characterized by kp), it is
reasonable to assume that kg ~ ky << |K|.

These minimal assumptions are sufficient to estimate the
rate of relaxation of charge and valley charge and therefore
are the only ones necessary for the WSM. Again, the DSM
case has additional subtleties, as we elucidate below.

Using Fermi’s golden rule and averaging over disorder,
we may estimate the relaxation time for quasiparticles on
the Fermi surface as

0w/
e =t [ k- kRO, 10
h 4z

where v(ep) = €%/(hvg)? is the density of states at the
Fermi level in each node and the integral is over all possible
angular coordinates of the final state on the Fermi sphere.
Using the form of the impurity potential described above
and the fact that kp ~ k. to approximate the angular
integration, we find

1 V(eF)nimp 2
S ———|v(0)]°. 17
ot S ) (17)

In contrast, the charge relaxation involves a large momentum
transfer as it mixes the two valleys. Parametrizing the initial
and final momenta as k; = K+k and k; = —-K + K/,
we have

(€ )nim dl}l " %
T %/EMZKJrkF(k—k’)]z. (18)

Since we have kr < |K|, it is reasonable to approximate
this via

ot R A o) (19)
nh

Therefore, we see that the ratio of the charge-and valley-
relaxation times is given by

Tl ORI CORC

where we use |K| ~ 1/a > kg, with a the lattice spacing.
Thus, as long as the doping of a node, parametrized by kg, is
small compared to the nodal separation—which is the
criterion that the nodes are clearly resolved—then the charge
relaxation occurs on a parametrically shorter time scale than
the intervalley scattering. Note that we have been a little
cavalier in computing the relaxation rate rather than the
transport lifetime (which differs by angular factors in the
integration over final momenta), butin the limits of interest to
us, this distinction is negligible.

B. Isospin mixing and relaxation in the DSM

We now discuss the extension of our model of disorder to
the DSM, where in addition to the charge- and valley-
relaxation rates above, a crucial new quantity must be
determined: the rate of isospin relaxation at a single Dirac
point, due to mixing between the two Weyl nodes.
Such mixing occurs both due to weak chirality-mixing
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perturbations as well as impurity scattering; we denote the
relaxation rate due to the latter by 7; ! (see Fig. 4). We must
also make some further assumptions about the disorder. In
order that our model serves as a reasonable one for
estimating the isospin relaxation in the DSM, we require
that the characteristic length scale of the potential v(r)
(parametrized, for instance, by the impurity-screening
length) is large compared to that of the crystalline unit
cell, so that the precise position of the impurity within the
unit cell is unimportant [36]. We defer a detailed treatment
of disorder in the DSM to future work [37] and, for now,
simply sketch the argument for why the rate for isospin-
changing scattering processes is small. To do so, we must
delve into a few more details of the DSM than we have
thus far.

The simplest model [8,9] of DSMs, which applies to
both the cases of experimental interest, is to consider S- and
P-band electrons with strong spin-orbit coupling. After
incorporating the crystal field splittings allowed by the
given point-group symmetry, one obtains a minimal four-
band k - p Hamiltonian describing the [S; 5, £(1/2)) and
|P3/2,£(3/2)) bands; the four remaining bands mix and
gap away from the Fermi level. Here, we have chosen the
axis of quantization of angular momentum to coincide with
that of a crystalline point-group rotation. These bands
interchange their valence or conduction character as one
moves along the I'Q line in momentum space. Here, we
denote by Q the point on the zone boundary through which
the rotation axis passes; in the standard Brillouin-zone
labeling convention, Q = A for Na3Bi, which has a
hexagonal space group P6s3/mmc, and Q =Z for
Cd;As,, which has a tetragonal space group P4,/nmc.
(In both cases, we label the axis of symmetry k..) Owing to
the point-group symmetry along the I'Q line, the resulting
band crossing is stable. As we move away from the I'Q
line, the [S; ;. (1/2)) and |P5/,,(3/2)) split linearly, as do
the [, /,, —(1/2)) and |P3,, —(3/2)), but matrix elements
between these pairs are quadratic in the momentum
measured from the node. A simple Kk - p matrix describing
a single Dirac point that incorporates these symmetries is
therefore [38]

Upkz Upk+ O ﬂk%
. vpk_  —vrpk k2 0
Ax)=| " e p . (21
0 ﬂk+ Upkz —Upk,
ﬂki 0 —vpky  —vpk,

where we have defined k. = k, & ik,, assumed an iso-
tropic dispersion with 2 = 1, and exparided about the nodal
point, assumed to be (0, 0, K). As we see, in the absence of
the quadratic curvature terms (i.e., when f = 0), the Dirac
point can be decomposed into two independent Weyl nodes
of opposite chirality [39]. In the absence of this term,
rotationally invariant impurities cannot scatter between the

nodes. Thus, any mixing between the two isospins depends
on f. Transforming to the eigenbasis of the =0
Hamiltonian, we find

vk 00 K2

N 0 —upk fIE 0

U F (k)T = o P . (22)
0 Rk 0
pE 0 0 —upk

We see from Eq. (22) that the only mixing is between
electronlike (holelike) states of isospin-up and holelike
(electronlike) states of isospin-down. Taking e > 0 using
first-order perturbation theory in f, we find that the
curvature-corrected eigenstates at the Fermi level mix
the chiralities

k . .
k,+ 1.~k +.1)+ fTFsmz«%eMklk, =)

k .
ot el ) + D st e ik, — 1), (23)
Uf

where we label the two chiralities with 1 and |, the
electron-hole nature is indicated by the =+ label, and we
assume that |k| = kz. In order that we may treat the
electronic levels from the two Weyl nodes at a single
Dirac point as approximate chirality eigenstates, we must
demand that fkr/2vr < 1. We note that a useful proxy for
this assumption is that it breaks down at doping levels
where the energy bands show significant deviation from
linear behavior.

We now turn to an estimate of the relaxation time
due to impurity scattering. With the assumption of s-wave
impurities made above, it is straightforward to estimate the
scattering rate due to impurities; we find, after a few
elementary manipulations and upon disorder averaging,
that it is given by

_ @B L L2
T, = h . U(k}:k k]:'k)|

X |L’<kFR7 =+, leFl;/’+7‘L>c|2' (24)

—1 I/(eF)nimp / dl;/

Owing to the highly anisotropic nature of the matrix
element, performing the angular integration in Eq. (24)
is fairly complicated in the general case. However, for our
purposes, it suffices to estimate an upper bound on 7;!. To
that end, we observe that any angular dependence of the
integrand can be ignored (as these only correct the
numerical prefactors) and that from Eq. (23), the matrix
element in Eq. (24) is proportional to fkp/vg. Thus, we
find that a rough estimate of the impurity-induced isospin-
relaxation rate is
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LGS (ﬁkF)z — ! <ﬁk">2 (25)

! nh 21)[: 21)]:

It may be instructive to readers to note that this isospin-
relaxation process bears a mathematical resemblance to the
Elliot-Yafet mechanism of spin relaxation in weakly spin-
orbit-coupled semiconductors. We see that once again, the
criterion for this rate to be small is to require that the
curvature correction to the dispersion is negligible at
the relevant Fermi energy.

V. MATERIAL CANDIDATES

A. Weyl semimetals

To date, incontrovertible evidence that any material is in
the WSM phase is lacking, although the experimental
situation of transport measurements in the pyrochlore
iridates [40] is encouraging, particularly in Eu,Ir,O; under
pressure [41]. In addition, other materials have been
suggested as WSM candidates [42-46], and theoretical
proposals to engineer Weyl nodes in topological-insulator
or normal-insulator heterostructures [47-49] have
appeared. In the absence of an explicit realization, estimat-
ing actual values of experimental parameters is challenging.
While we will provide more estimates with more exper-
imental input in the more immediately compelling case of
the DSM below, for now, we make some very general
estimates that should be broadly applicable to a variety of
WSM candidates.

To that end, we note that the doping level x in a WSM
can be estimated by counting the fraction of the Brillouin-
zone (BZ) volume occupied by the Fermi sphere:

4zl
¥ = ﬂ ~ k_F ’ (26)
(2Kp)* \Kp/)

where K, is the momentum scale of the BZ and we have
assumed that there are only two nodes. If we assume that
K ~ K,/2, we find using Egs. (20) and (26) that

T kF 4 4
S~ (=)~ 27
o~ k)~ @

Assuming a doping level of 1%, we find z,, ~ 500z,.. Taking
a conservative estimate for the mean-free path 7 =
vp7. ~ 10 nm, we find that the valley-relaxation length
Z, is of the order of a few microns. We therefore see that it
is not too unreasonable to expect that high-mobility
samples—where the mean-free path can exceed our quite
conservative estimate—may well exhibit significant,
anomaly-induced nonlocal resistance over scales where it
is possible to distinguish this nonlocal signature from
Ohmic conductivity.

B. Dirac semimetals

In contrast to the Weyl case where there is, as yet, a
convincing experimental realization, there are two promising
materials that appear to exhibit Dirac semimetallic behavior
in three dimensions. Following predictions from density-
functional-theory calculations, photoemission and magneto-
transport studies of the three-dimensional materials Na;Bi
and Cd;As, strongly suggest the presence of bulk Dirac
points in these materials.

Of these, the crystal structure of Na;Bi is significantly
simpler and has the added benefit of preserving inversion
symmetry. In contrast, Cd;As, has an 80-site unit cell in its
inversion-breaking low-energy crystal structure, complicat-
ing our assumption that we can ignore the exact position of
the impurity within the unit cell and invalidating the neglect
of inversion-symmetry-breaking terms that can mix chir-
alities at O (k) rather than O(k?). A more careful treatment
of disorder than that given in the preceding section is
therefore necessary. In light of these issues, we will focus
on providing estimates for various relaxation scales in the
case of Na;zBi.

From the photoemission data [11,14] on Na3Bi, we
estimate that the Fermi energy (measured relative to the
node) is around ez < 0.02 eV. Note that e can be adjusted
over a range of about 0.1 eV by doping with potassium
[11]. We approximate the Fermi velocity by vy ~ 1 eV-A
and ignore the anisotropy in the node dispersion to obtain a
characteristic Fermi wave vector k ~ 0.02 A. Using these
values in conjunction with the measured momentum-space
separation of the nodes [14] 2K ~ 0.2 A and Eq. (20), we
find

T kF 4
_c ~ | — ~ 1074‘ 28
7, <2K ) (28)

Thus, even the conservative estimate of the electronic
mean-free path such as that used above for the WSM
yields a valley-relaxation length ¢, of 100 um. It seems
reasonable to expect that various approximations (such as
the neglect of anisotropy in the Fermi velocity) will only
affect this estimate weakly and that £, of the order of tens
of microns should be quite feasible, as in the WSM
example above.

The curvature term is somewhat trickier to estimate. If
we assume that the curvature emerges due to an underlying
parabolic dispersion € ~ k% /2m* to make a rough guess for
B~ 1/2m* ~ (m/m*) x 3.8 eV-A%, we can estimate

ﬂkF m

UF

Since we anticipate m* 2 m, we see that the curvature
correction is relatively small; if we set m = m* and simply
use Eq. (26) to estimate the isospin-relaxation time, then we
find
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7, ~ 10z, (30)

which, using our estimate for the mean-free path, yields a
relaxation length of around 10 ym. As in the Weyl case, it is
reasonable to expect that the anomaly-induced nonlocality can
be clearly distinguished from Ohmic effects in samples of
reasonably high mobility.

VI. DISCUSSION

We have suggested a route to studying the chiral
anomaly in three-dimensional topological semimetals by
using it to produce and detect valley imbalance and using
the slow relaxation of the latter to produce nonlocal voltage
drops, which can be distinguished from more conventional
Ohmic effects. Additionally, the nonlocal response is
strongly dependent on the direction of applied magnetic
fields, providing a means to verify its origin in the chiral
anomaly. We have tried to provide the simplest description
of the nonlocal response: We have assumed that the
contacts dominate the relaxation at the leads and thus
the process of imbalance generation and detection, and that
intervalley scattering only limits the diffusion of valley
imbalance away from the contacts. Furthermore, we took
the contacts to be nonideal, since metallic contacts severely
constrain the generation of valley imbalance in the simple
geometry proposed here. In spite of these restrictions, we
find a nonlocal response that depends predominantly on
parameters that can be tuned independently of the material,
and no fundamental limit on the nonlocal response is
apparent.

To emphasize that the use of tunneling contacts, while
important in our geometry, is not fundamental to the
nonlocal transport, we note that an alternative approach
would be to utilize the so-called “H geometry” (Fig. 5),
frequently employed in spintronics. Here, two massive
parts of the sample (generator G and detector D) are
connected by a narrow bridge of length L <« ,. Both
massive parts are subject to local magnetic fields B, and B.
In addition, current is driven through region G, which leads
to the generation of valley imbalance. Thus, this region acts
as a “valley battery.” The valley imbalance diffuses over the
bridge to region D, where once again, the chiral anomaly
gives rise to a measurable voltage drop, similar to the one
studied above. The H geometry may offer some practical
advantages for producing and measuring valley currents in
WSMs. In particular, this geometry increases the effective
value of d in the generation region, in turn increasing the
source-drain-diffusion time, and thereby reducing I'|..4s,
and allows the generation of a sizable valley imbalance,
limited only by intervalley impurity scattering, even with
good metallic contacts.

We also constructed a simple model of scattering from
screened impurities, within which we were able to provide
estimates for the relevant relaxation scales applicable to
the experimentally relevant case of the DSM material

By

FIG. 5. H geometry. An alternative setup in which the
generation and detection regions are massive, so that valley
relaxation at the leads is diminished, making metallic contacts
feasible.

Na;Bi. The scales obtained are within current experimental
capabilities and suggest that nonlocal magnetotransport
measurements on high-mobility samples of this material
may be key to unraveling its topological nature.

In closing, we observe that since the chiral anomaly is
the distinctive topological EM response of a topological
semimetal, the fact that its effects have such a dramatic
manifestation in relatively simple transport measurements
suggests that they may be useful in the search for both Weyl
and Dirac materials in three dimensions. Similar nonlocal
probes may be relevant to other cases in which topological
features exist even in systems that lack a bulk gap.
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