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The dimensionality of a system can fundamentally impact the behavior of interacting quantum particles.
Classic examples range from the fractional quantum Hall effect to high-temperature superconductivity. As
a general rule, one expects confinement to favor the binding of particles. However, attractively interacting
bosons apparently defy this expectation: While three identical bosons in three dimensions can support an
infinite tower of Efimov trimers, only two universal trimers exist in the two-dimensional case. Here, we
reveal how these two limits are connected by investigating the problem of three identical bosons confined
by a harmonic potential along one direction. We show that the confinement breaks the discrete Efimov
scaling symmetry and successively destroys the weakest bound trimers. However, the deepest bound
trimers persist even under strong confinement. In particular, the ground-state Efimov trimer hybridizes with
the two-dimensional trimers, yielding a superposition of trimer configurations that effectively involves
tunneling through a short-range repulsive barrier. Our results suggest a way to use strong confinement to
engineer more stable Efimov-like trimers, which have so far proved elusive.
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I. INTRODUCTION

The quantum mechanical three-body problem displays
surprisingly rich and complex behavior despite its ap-
parent simplicity. A fundamental example is the Efimov
effect [1], which has intrigued physicists for decades owing
to its peculiar and universal scaling properties. Its simplest
incarnation only requires three bosons with resonant short-
range interactions, and it can thus occur in a wide variety of
systems ranging from nucleon systems [2] and ultracold
atomic gases [3] to quantum magnets [4]. In particular, the
cold-atom system finally provided the first experimental
evidence for Efimov physics in 2006 [5], thus stimulating
even greater interest in the subject.
A hallmark of the Efimov effect is a spectrum of three-

body bound states (trimers) that exhibits a discrete scaling
symmetry: For the simple case of three-dimensional (3D)
identical bosons, the energy E of one trimer can be mapped
onto another via the transformations E → λ−2n0 E and
a → λn0a, where a is the two-body scattering length, λ0
is a known factor, and n is any integer [6]. In particular, at
the unitarity point 1=a ¼ 0, the scattering length drops out
of the problem, and there exists an infinite number of

weakly bound s-wave trimer states [1], with the deepest
bound trimer set by the short-distance physics [6]. Such
self-similar behavior is reminiscent of more complex
systems in nature, such as coastlines, snowflakes, and
ferns [7], rather than of a typical few-body system—for
instance, the two-body problem only exhibits a continuous
scaling symmetry, where the low-energy properties simply
scale with a. It is then natural to ask how these Efimov
trimers evolve once the bosons are subject to confinement
and the motion is constrained.
Cold-atom experiments already require the presence of a

weak trapping potential, but the remarkable tunability of
the atomic system means that more extreme versions of
confinement can now be realized, where one can create 2D
Bose gases with markedly different many-body properties
[8–10]. It is already known that the system dimensionality
radically changes the few-boson problem: In 2D, the
Efimov effect is absent [11], and only two s-wave trimers
are predicted to exist, with universal energies −16.5jEbj
and −1.27jEbj [12], where Eb is the two-body (dimer)
binding energy. Here, we show how this 2D limit evolves
into Efimovian behavior as we relax the confinement.
We consider the simplest scenario of three identical bosons
of mass m subjected to a tight harmonic confinement in
the z direction, VðzÞ ¼ ð1=2Þmω2

zz2, with confinement
frequency ωz. While the weakest bound Efimov trimers
are successively destroyed with increasing confinement,
crucially we find that the deepest states persist even for
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strong confinement. In particular, the ground-state trimer
is actually stabilized beyond its original regime of ex-
istence in 3D (Fig. 1). Moreover, in contrast to the dimer
case, we obtain avoided crossings in the trimer spectrum.
By evaluating the three-body hyperspherical potentials, we
show that the avoided crossings correspond to trimer states
that are superpositions of both short-range 3D-like and
long-range 2D-like trimer configurations separated by a
repulsive barrier. Such hybrid trimers could potentially be
used to manufacture more stable Efimov-like trimers, thus
paving the way for the exploration of many-body states of
trimers.

II. THE QUASI-2D THREE-BOSON PROBLEM

The strong harmonic confinement described above is
readily achieved in the cold-atom system via the applica-
tion of an optical lattice or anisotropic trap [8–10]. Indeed,
2D-3D crossovers have already been investigated in this
manner in Fermi gases [13,14]. For temperatures T ≪ ωz
(we set ℏ ¼ kB ¼ 1), noninteracting bosons will occupy
the lowest harmonic oscillator level and will thus be

kinematically 2D. However, in the presence of boson-
boson interactions, the particles may virtually explore all
excited states of the harmonic potential; thus, we refer to
the confined system as quasi-two-dimensional (q2D). An
advantage of the harmonic potential is that one can
decouple the center-of-mass motion from the relative
motion of the particles, so in the following, we ignore
the center-of-mass contribution.
The effect of q2D confinement is twofold: It introduces

an extra length scale, lz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=mωz

p
, and it raises the

threshold of the three-atom continuum from 0 to ωz.
Assuming that lz and the scattering length a greatly exceed
the van der Waals range of the interaction, the two-body
problem is then completely parametrized by the dimension-
less quantity lz=a, and there is always a dimer bound state,
in contrast to the 3D case. For weak attraction lz=a ≪ −1,
we recover the 2D limit with dimer binding energy
Eb ¼ −ðB=mπl2zÞe

ffiffiffiffi
2π

p
lz=a, where B ≈ 0.905 [15], while

for strong attraction lz=a ≫ 1 (or weak confinement),
this evolves into the 3D binding energy, −1=ma2 (see
Appendix A). The latter corresponds to the regime where
the dimer is much smaller than the confinement length lz
and is therefore barely perturbed by the confinement.
The three-body problem, however, requires the addi-

tional length scale 1=κ�, which is set by the short-distance
physics and fixes the 3D trimer energies in the resonant
limit: EðnÞ

T ≈ −λ−2n0 κ2�=m, with n a positive integer and λ0 ≃
22.7 [1]. A more natural quantity to consider in the cold-
atom context is the scattering length a− < 0 at which the
deepest Efimov trimer crosses the three-atom continuum:
This crossing leads to an enhanced three-body loss rate
in the Bose gas, which is the main observable in experi-
ment [5,16–18]. Moreover, there is a remarkable universal
relationship between a− and the van der Waals range
[19–21]. Thus, we characterize the three-body problem
using the interaction parameter ja−j=a and the confinement
parameter Cz ≡ ja−j=lz. Together, these determine how 2D
or 3D a trimer is, as encoded in the aspect ratio displayed
in Fig. 1. In particular, we see that when ja−j=a < −1
(i.e., when there are no Efimov states in 3D), the two
deepest trimers still persist under confinement and become
substantially flattened within the x-y plane. Note that we
only consider confinements Cz ≤ 1, since Cz ≫ 1will make
our results nonuniversal and sensitive to the details of the
short-range interactions.
To determine the trimer wave functions and energies, we

use the Skorniakov–Ter-Martirosian (STM) equation, first
introduced in the context of neutron-deuteron scattering
[22]. This takes advantage of the short-range nature of the
two-body interaction to describe the three-body problem in
terms of the relative motion of an atom and a pair. This
equation has previously been extended to a q2D geometry
for two species of fermions [23,24]. In the case of three
identical bosons, the STM equation for the q2D atom-pair
vertex χ becomes

FIG. 1. Shape of the trimers under confinement: The aspect
ratio 2hZ2i=hρ2i for the two deepest trimers is shown as a
function of the interaction for two different confinement strengths
Cz. Here, ρ is the separation of an atom and a pair in the x-y plane,
and Z is the separation in the confined direction (see the main
text). The deepest trimer (solid lines) only exists in 3D for
ja−j=a ≥ −1, as depicted by the shaded region. Here, the aspect
ratio is close to 1, indicating that the trimer wave function
resembles the 3D Efimov state. Outside the trimer’s regime of
existence in 3D, the aspect ratio quickly decreases, indicating that
the trimer spreads out in the 2D plane. The change in aspect ratio
as a crosses a− is more gradual for the stronger confinement
because of a stronger coupling between trimers of a 2D and 3D
character. The deepest trimer eventually approaches the 2D
asymptotic limit (dotted lines; see Appendix D). A similar picture
emerges for the first excited trimer (dashed lines), but the aspect
ratio here is much smaller than 1 even away from the 2D limit.
The shape of the deepest trimer is illustrated in the insets, which
show surface density plots of the squared wave function (see the
main text) evaluated at the points marked by filled circles.
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T −1ðk1; E3 − ϵk1
−N1ωzÞχN1

k1

¼ 2
X

k2;N2;n23;n31

fn23fn31hN1n23jN2n31ie−ðk21þk2
2
Þ=Λ2

χN2

k2

E3 − ϵk1
− ϵk2

− ϵk1þk2
− ðN1 þ n23Þωz

:

ð1Þ

Here, the T matrix T describes the repeated interaction of
two atoms, E3 is the energy measured from the three-atom
continuum threshold, and ϵk ¼ k2=2m. ki is the relative
momentum of atom i with the pair ðj; kÞ, and we consider
cyclic permutations of ði; j; kÞ ¼ ð1; 2; 3Þ. Defining the
relative motion in the z direction of two atoms, zij ¼
zi − zj, and of an atom and a pair, zi;jk ¼ ðzj þ zkÞ=2 − zi,
the corresponding harmonic oscillator quantum numbers
are nij and Ni. Then, hN1n23jN2n31i is the atom-pair
Clebsch-Gordan coefficient, with the selection rule
N1 þ n23 ¼ N2 þ n31, and fnij is the relative harmonic
oscillator wave function at zij ¼ 0. We include the short-
distance physics by considering a two-body separable
potential of the form e−ðk2þk02Þ=Λ2

, where Λ is an ultraviolet
cutoff that fixes a− (see Appendix B). Our results are
independent of the specific choice of cutoff as long as the
relevant length scales, jaj and lz, greatly exceed the short-
distance length scale 1=Λ. This is the case for all results
presented in this article.
The q2D three-boson problem presents a considerable

challenge, owing to the range of energy scales involved in
the evolution towards Efimovian behavior. Since the 3D
spectrum possesses a discrete energy scaling of 22.72 ≈
515, in practice, we require at least 5153 Clebsch-Gordan
coefficients after imposing the selection rule. However, the
determination of these coefficients is greatly simplified

once one realizes that they can be related to Wigner’s d
matrix [25] as follows:

hN1n23jN2n31i ¼ d
ðN1þn23

2
Þ

N2−n31
2

;
N1−n23

2

ð2π=3Þ: ð2Þ

To see this, first note that hN1n23jN2n31i is also the matrix
element for the eigenstates of two isotropic 2D harmonic
oscillators, related by a rotation in the plane by π=3. Then,
using Schwinger’s mapping [26], one defines angular

momentum operators Ĵ ¼ 1
2
ð b̂†1 b̂†2 Þσ̂

�
b̂ 1

b̂2

�
, with σ̂

the usual Pauli spin matrices and b̂1, b̂2 harmonic oscillator
operators. The eigenstates Θ of angular momentum are
jΘðj; mÞi ¼ jN1n23i, where j ¼ ðN1 þ n23Þ=2 and m ¼
ðN1 − n23Þ=2 are the usual quantum numbers related to
operators Ĵ2 and Ĵz, respectively. In this basis, the rotation
corresponds exactly to the application of e−ið2π=3ÞĴy , and
thus we obtain Eq. (2).

III. TRIMER SPECTRA

The trimer energies E3 are found as nontrivial solutions
of Eq. (1), and the complete spectra are displayed in Figs. 2
and 3. We see immediately that the extra length scale lz
removes the weakest bound Efimov states, similarly to the
effect of a finite scattering length in 3D. In particular, lz may
be interpreted as a large distance cutoff, since Efimov
trimers much larger than this will be strongly perturbed by
the confinement. Consequently, a discrete scaling symmetry
only exists for scattering lengths in the range ja−j ≪
jaj ≪ lz. Thus, for the moderate to strong confinements

FIG. 2. Spectrum of trimers for two different confinement strengths. The q2D trimers are shown as solid lines, with energies E3 þ ωz
that take into account the raised three-atom continuum under confinement. For comparison, we also include the two deepest trimers in
3D (dashed lines). The shading illustrates the atom-dimer and three-atom continua, where the q2D continuum (contained within the 3D
continuum) is shown with a darker shading. For a strong confinement with Cz ¼ 1 (right panel), only two q2D trimers exist. For a weaker
confinement with Cz ¼ 0.4 (left panel), a third weakly bound trimer appears that is indistinguishable from the atom-dimer threshold on
this scale; here, we show its region of existence as a thick, red line on top of the threshold (see Fig. 3 for a clearer rendering). In order to
aid the visibility over the large energy range here, we rescaled the axes by means of the function FjðxÞ ¼ sgnðxÞ ln½1þ 5jxjj�= ln 6, with
j ¼ 1 for the x axis and j ¼ 1=2 for the y axis. For the 3D spectrum, ωz is not defined, and we display ma2−C−2z E3 as a function
of ja−j=a.
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considered here, where lz ∼ ja−j, the symmetry is clearly
broken.
Figure 2 shows a comparison between our q2D spectra

and the universal 3D results. For increasing ja−j=a, we see
that the ground-state trimer eventually resembles the 3D
result even when subjected to a strong confinement, Cz ¼ 1,
which is consistent with the approximately spherical shape
of the trimer in Fig. 1. This is reasonable since the
properties of the deepest trimer in 3D are set by short-
distance physics: Universal theory predicts the size to be of
order ja−j for negative scattering lengths ja−j=a > −1 [6],
and thus the deepest trimer will only be weakly perturbed
by the confinement when Cz ≲ 1. Another key feature of
the q2D spectrum is the raised threshold for free-atom
motion compared with the 3D case. As expected, the
trimers are significantly affected by the confinement when
their energies are well above the 3D threshold. However,
note that the binding energy of the ground-state trimer can
still be a substantial fraction of ωz when ja−j=a ∼ −1, and
thus the trimer should be resistant to thermal dissociation
when T ≪ ωz.
Remarkably, the raised q2D continuum threshold also

stabilizes the two deepest trimers for weak interactions, as
clearly seen in Fig. 3. This results from the fact that the
trimers in 2D and 3D have the same s-wave symmetry, and
thus Efimov trimers can smoothly evolve into long-range
2D-like trimers, without any level crossings. In the regime
ja−j=a < −1, i.e., where no trimers exist in 3D, we observe
how a continuous scaling symmetry is recovered and the
trimer energies approach the universal 2D results. For
sufficiently weak confinement, we even obtain avoided
crossings, as clearly observed in Fig. 3 when Cz ¼ 0.4:
Here, a third trimer appears for a scattering length close
to a−, a remnant of the crossing of the deepest trimer
with the continuum in 3D. This suggests that we can have a
superposition of 2D and 3D-like trimers; this is made

possible by the presence of a repulsive barrier (see Fig. 4),
as we discuss below. The third trimer state is very weakly
bound for Cz ¼ 0.4 and is expelled into the continuum as
the strength of the confinement is increased. Once Cz ≳ 0.6,
the third trimer disappears along with any pronounced
avoided crossings.

IV. THREE-BODY POTENTIALS AND
TRIMER WAVE FUNCTIONS

Considerable insight into the q2D spectra can be gained
from the adiabatic hyperspherical approach. This has
been developed for both 3D [6,27] and 2D [28], and in
Appendix C, we describe how this framework can be
suitably adapted to the intermediate q2D system. The
hyperspherical approach allows us to determine an effective
three-body potential VðRÞ, where the hyperradius R2 ¼
r21 þ r22 þ r23 is defined in terms of the atom positions ri
at a vanishing center-of-mass coordinate. The potential
appears in an effective hyperradial Schrödinger equation
½−ð1=2mÞ∂2=∂R2þVðRÞ�f0ðRÞ¼ðE3þωzÞf0ðRÞ, where
we ignore all but the lowest scattering channel, an approxi-
mation valid in the 3D regime R < lz, both when R ≪ jaj
and R ≫ jaj. For all other R, this should at least provide a
qualitative description—in particular, we recover 2D
behavior when R ≫ lz. Note that VðRÞ depends only on
lz=a and makes no reference to the three-body parameter.
Therefore, one needs to supplement this with a short-
distance boundary condition on the wave function, which is
equivalent to fixing Λ or ja−j.
We show in Fig. 4 our calculated q2D hyperspherical

potentials for ja−j=a < 0. At short distances, VðRÞmatches
the 3D potential, which is attractive and goes as 1=R2 for
R ≪ jaj. On the other hand, when R → ∞, the effects of
confinement become apparent and VðRÞ → ωz − jEbj,
corresponding to the free motion of an atom and a dimer

FIG. 3. Ratio between q2D trimer and dimer energies. The trimer energies (solid lines) are displayed as a function of interaction for
two different confinements: Cz ¼ 0.4 (left panel) and Cz ¼ 1 (right panel). In the limit ja−j=a≲ −1, the trimer energies converge to the
universal 2D results −16.5jEbj and −1.27jEbj [12] (dashed lines). For moderate confinement (left panel), we see evidence of an avoided
crossing resulting from the coupling between three “bare” states: the two 2D trimers, and a third trimer that emerges from the continuum
at a≃ a− (vertical dotted line).
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within the plane. When lz=a≲ −2.5, the potential also
features a barrier at intermediate radii R ≈ jaj, with height
approximately equal to 0.15=ma2. Approaching the limit
lz=a ≪ −1, we see that VðRÞ at R ≫ lz resembles the 2D
hyperspherical potential [28], which features a centrifugal
repulsion and a long-range attractive tail with respect to the
continuum. This attraction gives rise to the two trimer states
that exist for arbitrarily weak interactions, unlike the
Efimov trimers in 3D. Note that this differs from the
three-body problem under isotropic harmonic confinement
[29–32], where we expect VðRÞ ∼ R2 for large R.
The presence of a repulsive barrier in the hyperspherical

potential means that trimer resonances at short distances
can exist. This same feature is responsible for the loss
resonances in 3D when a ∼ a−. For moderate q2D con-
finement (e.g., Cz ¼ 0.4 as shown in Fig. 4), it gives
rise to a superposition of short-range 3D-like and
long-range 2D-like trimer configurations. This is best
illustrated by considering the wave function ψðρ; ZÞ≡
R3=2

P
k;Ne

ik·ρϕNðZÞχNk , describing the relative motion of
an atom with a pair. Here, ρ is the atom-pair separation in
the plane, Z is the separation in the transverse direction, and
ϕNðZÞ is the harmonic oscillator wave function of a particle
of mass 2m=3, the reduced mass of the atom-pair system.
Note, in particular, that the probability distribution

jψðρ; ZÞj2 reduces to jf0ðRÞj2 in the 3D limit (up to
normalization factors), where R2 ¼ ð2=3Þðρ2 þ Z2Þ.
Figure 4 clearly illustrates that the wave function of the

deepest trimer exhibits both 2D and 3D-like components
once a approaches a− and a trimer resonance in the 3D
potential appears. This hybridization of trimer configura-
tions is, in turn, connected with the avoided crossings
observed in Fig. 3. With an increasing interaction, the
deepest trimer evolves into an Efimov-like trimer that
resides at short distances R < jaj. This evolution from
2D to 3D behavior is mirrored by the aspect ratio
2hZ2i=hρ2i (see Appendix D) in Fig. 1. In general, we
expect to encounter a 2D-3D trimer hybridisation every
time a 3D trimer resonance appears behind the potential
barrier. Thus, if we were to relax the confinement until
Cz < 1=22.7, the scenario depicted in Fig. 4 would
similarly occur for the second deepest trimer.

V. CONSEQUENCES FOR BOSE GAS
EXPERIMENTS IN CONFINED GEOMETRIES

We now discuss the ramifications of our results for
current cold-atom experiments. For definiteness, we con-
sider 133Cs, the first atomic species in which Efimov
physics was observed [5]. In this case, a− ≃ −957a0

FIG. 4. Three-body potentials and corresponding wave functions of the deepest trimer. The upper panels show the q2D adiabatic
hyperspherical potential VðRÞ for three different interactions ja−j=a, assuming Cz ¼ 0.4. For reference, we also show the 3D potential.
Note that the potentials match in the region R < lz. The shaded area corresponds to the regime of short-distance physics where R is less
than the van der Waals range which is of the order of 1=Λ. The resulting energies of the ground-state trimer are shown as dashed
horizontal lines. In the lower panels, the in-plane q2D probability densities jψðρ; Z ¼ 0Þj2 are compared with the probability densities
expected in purely 2D and 3D. This illustrates three qualitatively different interaction regimes: (left) for weak interactions, the trimer
resides in the long-range attractive tail of the potential and matches the 2D result; (center) for intermediate interactions, a ∼ a−, the
trimer configuration is a superposition of trimers of 2D and 3D character. Here, as there is no Efimov trimer at this scattering length in
3D, the 3D probability density is instead evaluated at ja−j=a slightly larger than −1. Right: For stronger interactions ja−j=a > −1, the
trimer wave function resides mainly in the regime R < jaj and closely resembles the 3D wave function.
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[19], where a0 is the Bohr radius, so that Cz ¼ 1 corre-
sponds to a confinement frequency of ωz ≃ 2π × 30 kHz.
While frequencies close to 100 kHz have been used
for sideband cooling of 133Cs [33,34], such strong confine-
ment is far from common in experiments investigating
low-dimensional physics. Indeed, scale invariance and
universality in the repulsive 2D Bose gas were investigated
using a confinement ωz ≃ 2π × 1.9 kHz, corresponding to
Cz ≃ 0.25 [10]. Thus, we expect that in realistic q2D
experiments, the energy of the deepest trimer will typically
resemble the universal 3D case.
On the other hand, the raised three-atom continuum

under confinement will strongly impact the 3D Efimov loss
features in the three-atom scattering. In particular, there can
no longer be any trimer loss resonances once ωz exceeds
the height of the repulsive barrier in the hyperspherical
potential—we estimate this to occur when lz=a≃−2.5.
Thus, we expect the loss peak of the deepest trimer to
disappear for confinements Cz ¼ ja−j=lz ≳ 0.4. Likewise,
universality dictates that the peak associated with the next
Efimov state disappears when Cz ≳ 0.4=22.7. For the case
of 133Cs, this latter value corresponds to a confinement of
ωz ≃ 2π × 9 Hz, indicating that a very weak trapping
potential is needed in order to observe the second
Efimov peak. Note, further, that these arguments translate
in a generic manner to all geometries; one simply needs to
compare the height of the repulsive barrier at the 3D
Efimov loss resonance to the increase in the three-atom
continuum. Consequently, our findings have implications
for any experiment seeking to detect shallow trimers in a
trap and hence the quest to observe true Efimov scaling in
an ultracold atomic gas.
To experimentally probe our q2D spectra in Figs. 2 and 3,

one could associate trimers using a radio-frequency pulse.
In 3D, this has successfully been achieved by driving
transitions in the internal states of the atoms [35] or by
modulating the magnetic field [36]. However, in contrast
to 3D, the resulting trimers in the strongly confinedgeometry
may be relatively long lived: Hybrid trimers in the regime
a ∼ a− only have a small weight in the short-distance region
(see Fig. 4), resulting in a reducedoverlapwith deeply bound
(nonuniversal) states. Accordingly, collisional relaxation
into deeper states (the main loss mechanism in 3D) will
be suppressed.

VI. CONCLUSIONS AND OUTLOOK

A priori, there is no reason to believe that the physical
picture presented here should apply uniquely to three
identical bosons in a q2D geometry. For instance, we
expect a trimer spectrum similar to those of Figs. 2 and 3 to
occur in a q1D geometry—theoretically, this may be
studied by including all confinement levels instead of
simply projecting onto the lowest level as in Ref. [37].
Likewise, while two tetramers have been predicted [38] and
observed [39] to accompany each Efimov trimer in 3D,

exactly two universal tetramers are predicted to exist in 2D
[40]. Consequently, we expect a spectrum that displays
avoided crossings between tetramers of 2D and 3D char-
acter, while the two deepest tetramers are stabilized by the
application of a strong confinement. An important impli-
cation of our work is thus that, under realistic experimental
conditions, three-and four-body correlations in the q1D and
q2D Bose gas may be strongly affected by Efimov physics,
i.e., markedly different from predictions of universal 1D
and 2D theory.
Finally, our work suggests that strong q2D confinement

could be used to engineer more stable, Efimov-like, hybrid
trimers owing to the presence of a repulsive barrier and the
associated small weight of the trimer wave function at small
distances. In particular, our results are also applicable to
three distinguishable fermions with approximately equal
interspecies interactions, as can be the case with 6Li atoms
[35]. This may allow for the formation of a many-body state
of long-lived trimers, an important goal which has so far
remained elusive in the context of ultracold experiments.
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APPENDIX A: HAMILTONIAN AND
TWO-BODY PROBLEM

The Hamiltonian in the absence of confinement is
chosen to be

H ¼
X
k

ϵkâ
†
kâk þ g

2

X
k1;k2;k3

ξðk12Þξðk34Þâ†k1
â†k2

âk3
âk4

;

where âk (â†k) is the annihilation (creation) operator of
atoms with momentum k, kij ≡ ðki − kjÞ=2 is the relative
momentum, and k4 ¼ k1 þ k2 − k3. ξðkÞ is a function
describing the cutoff of the interaction at large momenta,
and we take this to be ξðkÞ ¼ e−k2=Λ2

.
The two-body T matrix appearing in the STM equa-

tion describes scattering of two atoms with total planar
momentum k and energy E measured from the two-atom
continuum. It takes the form

T ðk; EÞ ¼ 2
ffiffiffiffiffiffi
2π

p

m

�
lz
a
− F

�−Eþ k2=4m
ωz

��−1
:

Here, the interaction is renormalized by the use of the 3D
scattering length a. For a Gaussian cutoff, we obtain
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F ðxÞ ¼
Z

∞

0

du
1 − e−xuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ð1þλÞ2−ð1−λÞ2e−2u�=ð2uþ4λÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πðuþ 2λÞ3
p ;

with λ≡ ðlzΛÞ−2. Our expression for F reduces to that of
Ref. [41] in the limit λ → 0. The dimer binding energy
Eb measured from the continuum is defined through
lz=a ¼ F ð−Eb=ωzÞ.
In our model, the wave functions of the relative motion

evaluated at the origin are

fnr ¼ ð−1Þnr=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnr − 1Þ!!

nr!!

s
1ffiffiffiffiffiffiffiffiffiffiffi
1þ λ

p
�
1 − λ

1þ λ

�
nr=2

;

if nr is even, and 0 otherwise [we absorbed the prefactor
ðmωz=2πÞ1=4 into the definition of T ].

APPENDIX B: THREE-BODY PROBLEM

In Eq. (1), we employ the simplification ξðk1 þ k2=2Þ×
ξðk2 þ k1=2Þ → ξðk1Þξðk2Þ in the 2D plane. This allows
us to project the equation analytically onto the s wave,
χN1

k1
≡ R ðdϕ=2πÞχN1

k1
, where ϕ is the angle of k1 with some

axis. Once Λ has been used to fix the three-body parameter,
the physics at energy scales much smaller than Λ2=m
becomes insensitive to this change. Using the 3D STM
equation with our two-body interaction, for the deepest
Efimov trimer, we find the energy −0.05Λ2=m at the
Feshbach resonance and a− ¼ −9.39=Λ. Since the trimer
energies considered in the q2D geometry are always
smaller than those in the 3D geometry (see Fig. 2), the
assumption that we consider energies much smaller than
Λ2=m is well justified.

APPENDIX C: HYPERSPHERICAL
APPROACH IN Q2D

Beginning with the Jacobi coordinates rij ¼ ri − rj and
rk;ij ¼ ðri þ rjÞ=2 − rk, and assuming that r1 þ r2þ
r3 ¼ 0, the hyperradius corresponds to R2 ¼ ð1=2Þr2ijþ
ð2=3Þr2k;ij, while the transformation rij ¼

ffiffiffi
2

p
R sin αk,

rk;ij ¼ R
ffiffiffiffiffiffiffiffiffiffiffið3=2Þp

cos αk defines the hyperangle αk.
Following Ref. [6], we use the hyperspherical expansion
of the wave function: ΨðR;ΩÞ ¼ 1=ðR5=2 sinð2αkÞÞ×P∞

n¼0 fnðRÞΦnðR;ΩÞ. Here, the angular quantity Ω ¼
ðαk; θij; θk;ijÞ, where the projections r̂ij · ẑ ¼ cos θij,
r̂k;ij · ẑ ¼ cos θk;ij, and we assume that Ψ is approximately
independent of the azimuthal angles. We now further
expand the angular function ΦnðR;ΩÞ ¼

P
mηnmðR; αkÞ×

hmðR;ΩÞ, with m ¼ ðm1; m2Þ a set of non-negative inte-
gers. Writing hm ¼ τm1

ðR sin αk; θijÞ × τm2
ðR cos αk; θk;ijÞ,

the function τðX; θÞ obeys the equation

�
− l2z
X2

1

sin θ
∂
∂θ

�
sin θ

∂
∂θ

�
þ X2

l2z
cos2θ

�
τ ¼ 2μτ;

where μ is an eigenvalue that is independent of θ, and X ¼
R cos αk or X ¼ R sin αk, depending on whether we con-
sider θk;ij or θij. In the limit X ≪ lz, τ yields the Legendre
polynomials expected in the 3D case, while in the opposite
limit X ≫ lz, τ evolves into the harmonic oscillator wave
functions of the q2D confinement. Finally, we use μ to
solve the equation for η00 and obtain the lowest hyper-
spherical potential VðRÞ in the usual way within the
adiabatic hyperspherical approximation [6].

APPENDIX D: ASPECT RATIO OF TRIMERS

The wave function can, in general, be decomposed into
its Fadeev components Ψðr1; r2; r3Þ ¼ ψ ð1Þðr23; r1;23Þ þ
ψ ð2Þðr13; r2;31Þ þ ψ ð3Þðr12; r3;12Þ. Here, ψ ð1Þðr23; r1;23Þ is

the real space form of the function ψ ð1Þ
k23;k1;n23;N1

∝
fn23χ

N1

k1
=ðE3 − k223=m − 3k21=4m − ðn23 þ N1ÞωzÞ. We

then calculate the aspect ratio of the relative atom-pair
coordinate, assuming that cross terms may be neglected:

2hz21;23i
hρ21;23i

¼ 2
R
d2ρ23d2ρ1;23dz23dz1;23z21;23jψ ð1Þðr23; r1;23Þj2R
d2ρ12d2ρ1;23dz23dz1;23ρ21;23jψ ð1Þðr23; r1;23Þj2

:

When ja−j=a ≪ −1, the aspect ratio approaches the 2D
limit where hz21;23i ¼ 3l2z=4 and hρ21;23i ¼ 0.037=ðmjEbjÞ.
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