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By considering the low-frequency vibrational modes of amorphous solids, Manning and Liu [Phys. Rev.
Lett. 107, 108302 (2011)] showed that a population of “soft spots” can be identified that are intimately
related to plasticity at zero temperature under quasistatic shear. In this work, we track individual soft spots
with time in a two-dimensional sheared thermal Lennard Jones glass at temperatures ranging from deep in
the glassy regime to above the glass transition temperature. We show that the lifetimes of individual soft
spots are correlated with the time scale for structural relaxation. We additionally calculate the number of
rearrangements required to destroy soft spots and show that most soft spots can survive many
rearrangements. Finally, we show that soft spots are robust predictors of rearrangements at temperatures
well into the supercooled regime. Altogether, these results pave the way for mesoscopic theories of
plasticity of amorphous solids based on dynamical behavior of individual soft spots.
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I. INTRODUCTION

Solids flow under shear via localized rearrangements. In
crystals, it is known that this flow is achieved via the
propagation of topological defects [1]. In disordered sys-
tems, flow is also achieved via rearrangements that occur at
localized regions, but it has proven difficult to locate the
regions in advance of the rearrangements. One way of
identifying them is via their ability to scatter sound waves.
Regions that are particularly effective in scattering sound
appear as regions of high polarization in low-frequency
quasilocalized vibrational modes. The high-polarization
regions have been shown to be vulnerable to rearrangement
under applied stress or temperature [2–9]. Manning and Liu
[6] therefore used low-frequency quasilocalized modes to
construct a population of localized regions, or “soft spots,”
which they showed were highly correlated with rearrange-
ments induced by quasistatic shear at zero temperature.
One promising theoretical approach to plasticity in glasses

has been to construct amesoscopic phenomenological theory

based on a population of localized structural flow defects, or
regions of enhanced fluidity, that are prone to rearrangement.
This is the approach adopted by shear transformation zone
theory [10,11] and by mesoscopic kinetic elastoplasticity
models [12,13]. Soft spots are obvious candidates for the
flow defects that lie at the heart of these models. In order for
soft spots to serve as a useful basis for amesoscopic theory of
plastic flow, however, two minimal conditions must be met.
First, rearrangements must preferentially occur at soft

spots, not only at zero temperature under quasistatic shear,
but also at temperatures extending at least to the glass
transition temperature, and finite shear rates. Here, we
show that soft spots do indeed correlate with rearrange-
ments, over a range of shear rates, at temperatures ranging
from well below the glass transition, where rearrangements
are driven primarily by shear strain, to above the dynamical
glass transition, where shear plays a smaller role relative to
temperature.
Second, soft spots must survive long enough for their

dynamics to capture the slow relaxation time of a sheared
glassy system. In this paper, we track individual soft spots
with time. We show that the average lifetime of soft spots
correlates with the relaxation time of a driven glass.
Surprisingly, most soft spots can withstand many rear-
rangements before being destroyed. This longevity leads to
a distribution of soft-spot lifetimes that follows a power law
up to the structural relaxation time.
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Together, these two main conclusions provide strong
support for a mesoscopic approach to plasticity in glasses
that is based on dynamics of the soft-spot population.
In Sec. II, we describe how we study soft spots and their

correlation with rearrangements in sheared thermal glasses.
Section III shows that soft spots obtained from inherent
structures correlate well with rearrangements that follow in
a short interval of time later. The degree of correlation
decreases with temperature, but soft spots remain a valid
description of plastic activity in amorphous solids at
temperatures ranging from those deep in the glassy phase
up through the glass transition. Section IV describes how
the soft-spot population decorrelates with time on a time
scale comparable to the relaxation time, obtained from the
decay of the intermediate scattering function. In Sec. V, we
turn to the dynamics of individual soft spots and show that
the decorrelation of the soft-spot population can be under-
stood in terms of the single soft-spot dynamics. These
results demonstrate the deep and robust connection
between soft spots and plasticity in amorphous matter.

II. METHODS

To study the effects of temperature and strain rate on the
validity of the soft-spot picture, we consider a 10,000-
particle, two-dimensional, 65:35 binary Lennard-Jones
mixture. We use a model with the parameters σAA ¼ 1.0,
σAB ¼ 0.88, σBB ¼ 0.8, ϵAA ¼ 1.0, ϵAB ¼ 1.5, and
ϵBB ¼ 0.5. The Lennard-Jones potential is cut off at
2.5σAA and smoothed so that both first and second
derivatives go continuously to zero at the cutoff. The
natural units for the simulation are σAA for distances,
ϵAA for energies, and τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2AA=ϵAA

p
for times. We

perform molecular dynamics simulations of this system
using LAMMPS with a time step of 5 × 10−3τ at density
ρ ¼ 1.2. A Nosé-Hoover thermostat with a time constant of
1τ is used to keep the system at a fixed temperature. We
consider temperatures T ¼ 0.1, 0.2, 0.3, and 0.4 as well as
strain rates _γ ¼ 10−5, 10−4, and 10−3. In all cases, data
were collected after allowing the system to reach a steady
state by shearing up to 20% strain. This system has been
characterized and shown to be a good glass former by
Brüning et al. [14]. Notably, it was shown [15] that the
glass transition temperature for this model is TG ¼ 0.33.
Therefore, at the highest temperature, we are studying a
system well into the supercooled regime.
To construct the soft spots, we begin with a harmonic

description of the inherent structure of the glass and follow
the procedure of Manning and Liu [6]. Therefore, every 2τ
we quench the system to its inherent configuration using a
combination of the conjugate gradient and FIRE algorithms
[17]. We then compute the 500 lowest frequency modes by
diagonalizing the dynamical matrix using ARPACK [18].
The boson peak for this system occurs, on average,
at 270 modes; therefore, this set of modes captures the

low-frequency harmonic behavior of the system. From this
collection, we select the Nm most localized modes ranked
by their participation ratios [19]. From these Nm modes, we
further select the Np particles with the largest polarization
vectors. The parameters Nm and Np are not free but, rather,
are chosen to maximize the correlation of the soft-spot
population with rearrangements. The details of the selec-
tion will be discussed below. Finally, we remove clusters of
fewer than four particles since at least four particles are
required for a T1 rearrangement. An example of the soft-
spot population is shown in Fig. 1. We emphasize that, as
found by Manning and Liu [6], the qualitative results
presented in this paper are remarkably insensitive to the
details of the protocol used to select the modes, the choices
of Nm and Np, as well as the choice to remove small
clusters. Changes of this sort affect the magnitude of the
correlations that we present but will not affect the existence,
duration, or even functional forms of these correlations.
Given a set of particles comprising our soft-spot pop-

ulation, we can then construct an N-dimensional projection
operator SðtÞ so that SiðtÞ ¼ 1 if particle i is in a soft
spot and SiðtÞ ¼ 0 otherwise. Additionally, we define the
overall fraction of space covered by a soft spot to be
ρSS ¼ hSiðtÞi, where the average is taken over particles and
times. We measure the plastic rearrangements of the system
using the quantity D2

min as introduced by Falk and Langer
[10]. D2

min is defined to be the amount of locally nonaffine

FIG. 1. An example configuration of the system at T ¼ 0.1 and
_γ ¼ 10−4. Particles are colored according to their D2

min value (see
text). Particles outlined in black are members of the soft spots for
this configuration. The soft spots have been generated using
Nm ¼ 430 and Np ¼ 20. Inset: A single soft spot coinciding with
a rearrangement.
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displacement that particles undergo in a time interval Δt.
A value of D2

min can be associated with each particle,

Diðt;ΔtÞ ¼
X
j

½rjðtþΔtÞ− riðtþΔtÞ−ΛiðrjðtÞ− riðtÞÞ�2;
ð1Þ

where the sum is taken over particles in a local neighbor-
hood to particle i and Λi is the affine transformation that
minimizes Di. In our study, we use neighborhoods of
2.5σAA to be the same size as the Lennard-Jones cutoff.
Additionally, we use Δt ¼ 2τ to be the same as the scale on
which we generate soft-spot configurations. Our analysis
has been repeated for various values of Δt and has proven
to be insensitive to its value, as long as it is on the same
order as the duration of a plastic event. Figure 1 shows—in
addition to the soft-spot population—a map of the local
D2

min amplitudes. Darker regions indicating higher values of
D2

min tend to lie on top of soft spots, showing that indeed
rearrangements occur preferentially at soft spots. A video
showing the sheared system as well as the evolution of the
soft spot population and the D2

min field can be found in the
Supplemental Material [20].

III. EQUAL-TIME CORRELATIONS

In order to quantify the degree of correlation between
soft spots and plasticity, we consider the probability,
PðD2

minÞ, that a particle with a given D2
min value in the

interval ½t; tþ Δt� resides in a soft spot constructed from
the inherent structure at a time t. Thus, we study the
correlations of soft spots at time t with rearrangements
characterized during a short time interval Δt following t.
This may be expressed as

PðD2
minÞ ¼

hδðDiðtÞ −D2
minÞSiðtÞi

hδðDiðtÞ −D2
minÞi

: ð2Þ

If the soft-spot map is uncorrelated with the D2
min map, then

this quantity simply reduces to the soft-spot density ρSS,
independent ofD2

min. This equal-time probability is shown in
Fig. 2 for four temperatures and three strain rates. In all
cases, we see that PðD2

minÞ rises to a plateau value as D2
min

increases. Therefore, it is clear that particles with higherD2
min

are more likely to reside in soft spots. Conversely, particles
with very small values of D2

min appear to be anticorrelated
with soft spots since PðD2

minÞ is smaller than ρSS.
The plateau value of PðD2

minÞ, P�ðT; _γÞ, decreases with
increasing temperature and strain rate. Thus, the descriptive
power of the soft-spot picture is reduced by increasing
temperature or strain rate, as expected. In order to compare
results for different temperatures, we divide D2

min by T,
since the D2

min of particles not undergoing rearrangements
is due to thermal fluctuations, in which caseD2

min∼hv2i∼T
by the equipartition theorem. The probability appears to

reach its plateau value forD2
min ≳ 15T independent of strain

rate. We therefore define the plateau probability P�ðT; _γÞ to
be a good measure of the equal-time correlation between
the D2

min map and the soft-spot map at a given temperature
and strain rate.
We now discuss the choice of Nm and Np. Following

Manning and Liu [6], we selectNm andNp to maximize the
correlation between the soft spots and theD2

min map. To this
end, we consider the difference, ΔP� ¼ P�ðT; _γÞ − ρSS, as
a function of Nm and Np. Recall that ρSS represents the
value of P�ðT; _γÞ if the soft-spot map is uncorrelated with
the D2

min map. Thus, adding particles to the soft-spot map
that are correlated with theD2

min map will increase P�ðT; _γÞ
more than ρSS; conversely, adding particles to the soft-spot
map that are anticorrelated with the D2

min map will increase
P�ðT; _γÞ less than ρSS. Therefore, a maximum in ΔP�ðT; _γÞ
at some N⋆

m and N⋆
p represents the selection of parameters

that yields the maximal correlation. As shown in Fig. 3, we
find a broad plateau as a function of Nm and Np with a
maximum at N⋆

m ¼ 430 and N⋆
p ¼ 20. We do not see a

strong dependence of ΔP� on either temperature or strain
rate, so we use these values at all temperatures and strain
rates studied.
Having identified a population of soft spots, we now

discuss the degree to which soft spots correlate with
plastic activity over the temperatures and strain rates
studied. To understand this correlation, we consider the
ratio P�ðT; _γÞ=ρSS. This ratio measures how much more
likely rearrangements are to occur on soft spots than on a
randomly distributed set of particles at the same density.
Since there are always more soft spots than rearranging
particles, we have the bounds 0 ≤ P�ðT; _γÞ=ρSS ≤ 1=ρSS.

FIG. 2. The probability of a particle residing in a soft spot as a
function of its D2

min value. Panel (a) shows a comparison of the
temperatures studied from T ¼ 0.1 (in blue) to T ¼ 0.4 (in red) at
a strain rate of _γ ¼ 10−4, and panel (b) shows a comparison of
strain rates studied from _γ ¼ 10−5 (in dark blue) to _γ ¼ 10−3 (in
green) at a temperature of T ¼ 0.1. In all cases, we see that the
probability increases with D2

min until some threshold D2
th ≃ 15T

(vertical dashed line) at which point the probability reaches some
plateau value P�. The soft-spot density ρSS is marked by a
horizontal dashed line.
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The upper bound occurs if every rearranging particle
resides on a soft spot. If the soft-spot map and the D2

min
map were uncorrelated, we would expect P�ðT; _γÞ=ρSS¼ 1.
We plot this ratio in Fig. 4 as one of the central results of
this paper. We see the highest correlation at the lowest

temperature and rate, where plastic events are more than 3
times as likely to occur at soft spots than if the soft spots
were randomly distributed. As temperature and strain rate
are increased, these correlations decrease slightly. Even at
the highest temperature and strain rate, well above the glass
transition temperature for the system, we continue to see
that rearrangements are twice as likely to occur at soft spots
than they would be if the rearrangements were randomly
distributed in the system. We conclude that soft spots are
robust in describing plastic activity in glassy materials
under shear, not only at low temperatures but also well into
the supercooled regime.

IV. TIME-DEPENDENT CORRELATIONS

We now characterize the time dependence of various
correlations. We will show that two soft-spot maps, con-
structed a time δt apart, remain correlated up to the longest
time scale for relaxation in the system. We will further
demonstrate that the decorrelation of these two soft-spot
configurations is approximately logarithmic in time.
Finally, we observe that this behavior is mirrored in the
autocorrelation function of theD2

min field with itself, as well
as in the cross-correlation function between the D2

min field
and the soft-spot map. We conclude that soft spots represent
long-lived structural features of glassy systems that are
intimately related to flow and failure of these materials.
The relaxation time τα is a measure of the amount of time

needed for every particle in the system to experience a
rearrangement. A common method for defining τα is via the
decay of the self part of the intermediate scattering
function, Fsðq; δtÞ ¼ hexp½iq · ðriðtþ δtÞ − riðtÞÞ�i. The
relaxation time can be effectively defined to be the time
at which Fsðqmax; δtÞ ∼ e−1, where qmax ≃ 2π=σAAŷ is the
wave vector at the first maximum of the static structure
factor. Here, we take qmax orthogonal to the axis of the
imposed shear to avoid artifacts from the affine component
of displacement.
A plot of the self-intermediate scattering function for a

range of temperatures at a strain rate of _γ ¼ 10−4 can be
seen in Fig. 5(a), and for a range of strain rates at
temperatures of 0.1 and 0.4, the plots can be seen in
Fig. 5(b) and 5(c), respectively. We see that Fsðqmax; δtÞ
exhibits an initial drop at a time scale shorter than our time
resolution of 2τ, followed by a slow decay up until τ�, at
which point it decreases quickly, dropping to zero at
approximately τα. The initial drop appears to bring the
correlation function to a value that depends on temperature
but not strain rate. From Fig. 5(a), we see that at
_γ¼ 10−4 and the temperatures shown, τ� ≈ 50τ. At T ¼ 0.1
[Fig. 5(b)], we notice that the self-intermediate scattering
function collapses with δt=τ → _γδt, which indicates that
τα ∼ _γ for the strain rates considered. At this low temper-
ature, thermal fluctuations play a negligible role and
rearrangements are largely driven by strain. By contrast,
at T ¼ 0.4, the highest temperature studied, we notice that

FIG. 3. The difference in probability, ΔP� ¼ P�ðT; _γÞ − ρSS, as
a function of Nm and Np for a temperature of T ¼ 0.1 and strain
rate _γ ¼ 10−4. We see a broad plateau over which ΔP� is largely
independent of Nm and Np with a weak maximum occurring at
N⋆

m ¼ 430 and N⋆
p ¼ 20 (marked by a star.) The behavior of ΔP�

is largely independent of temperature and strain rate.

FIG. 4. The plateau probability P� for a particle with high D2
min

to reside in a soft spot, normalized by the soft-spot density, PSS.
This represents how much more likely rearrangements are to be
found at soft spots than if the soft-spot map were completely
uncorrelated with rearrangements. A value of 1 (dashed line)
represents the uncorrelated value. The ratio is 0 when the soft-
spot map is anticorrelated and so describes no plastic activity. The
value of 5.2 represents the maximum possible value of P�, 1=ρSS,
which occurs if all of the plastic activity resides in soft spots. Data
are shown for strain rates _γ ¼ 10−5 (in dark blue) to _γ ¼ 10−3
(in green).
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FIG. 5. Correlation functions of the D2
min field and the soft-spot population. On the left are comparisons of the temperatures

considered from T ¼ 0.1 (in blue) to T ¼ 0.4 (in red) at a strain rate of _γ ¼ 10−4. In the middle column are comparisons of the
strain rates considered from _γ ¼ 10−5 (in dark blue) to _γ ¼ 10−3 (in green) scaled by the strain rate, t=τ → _γt at a temperature
T ¼ 0.1. On the right are comparisons of the strain rates considered from _γ ¼ 10−5 (in brown) to _γ ¼ 10−3 (in yellow) scaled by
the strain rate, t=τ → _γt at a temperature T ¼ 0.4. Figures (a)–(c) show the self-intermediate scattering function Fðqmax; tÞ
evaluated at q ¼ 2π=σAAŷ. Figures (d)–(f) show the autocorrelation function for D2

min. Figures (g)–(i) show the autocorrelation
function for the soft-spot population. In (g), at each temperature, comparisons are made with the cumulative probability density
function for individual soft-spot lifetimes, introduced in Sec. V, overlaid in dashed lines. In (h), a single comparison is made to
PðτL ≥ δtÞ, shown using a dashed black line, for lifetimes aggregated from lifetimes collected at all three different strain rates. In
(i), predictions from the cumulative probability density function for individual soft-spot lifetimes are shown for the two faster
strain rates overlaid in a dashed line. Figures (j)–(l) show the cross correlation between D2

min and the soft-spot population. The
plots in both the middle and left columns feature two vertical dashed lines to serve as guides to the eye. The earlier line occurs at
a time τ� when the self-intermediate scattering function first drops below the plateau. The later line occurs at the relaxation time τα
defined so that Fðqmax; ταÞ ∼ e−1.
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Fsðqmax; δtÞ [Fig. 5(c)] does not collapse with strain γ ¼ t_γ,
and we conclude that we are probing a crossover where
relaxation is driven both by temperature and strain.
We now introduce several time-dependent correlation

functions for rearrangements and soft spots. As is custom-
ary, we define the correlation function for two fields, XiðtÞ
and YiðtÞ, by

CXYðδtÞ ¼ h ~Xiðtþ δtÞ ~YiðtÞi: ð3Þ

Here, ~XiðtÞ and ~YiðtÞ are fields constructed from XiðtÞ and
YiðtÞ normalized to have zero mean and unit variance. The
autocorrelation function CSSðδtÞ, for example, corresponds
to the autocorrelation of the soft-spot map (where Si ¼ 0 if
particle i is not in a soft spot and Si ¼ 1 otherwise) at
two times separated by δt. Similarly, CDDðδtÞ corresponds
to the autocorrelation of D2

min. CSSðδtÞ, CDDðδtÞ, and
the cross-correlation function CSDðδtÞ are shown in
Figs. 5(d)–5(l). Examining the figures, we notice first
and foremost that all of the correlation functions decay
to zero with Fsðqmax; δtÞ. We therefore conclude that the
D2

min and soft-spot fields remain correlated up to the longest
time scale for relaxation in the system, τα, at all temper-
atures and strain rates considered. We note that the CSD
function has a modest equal-time correlation CSDð0Þ ∼
0.14 due to the fact that there are far more soft spots than
rearranging particles. This is a problem that we circum-
vented in the preceding section by using the quantity P� to
quantify equal-time correlations.
Examining Fig. 5 further, we notice that the correlation

functions are all qualitatively similar. In each case, the
functions experience an initial drop at a time scale shorter
than our time resolution of 2τ, followed by a slow decay up
until τ�, at which point they decrease quickly, dropping to
zero at approximately τα. At T ¼ 0.1, the correlation
functions appear to collapse as δt → _γδt, which reinforces
our conclusion that at low temperatures the system is in a
regime where the dynamics is dominated by external shear
rather than thermal effects. The exception to this collapse is
in the short-time behavior of the D2

min autocorrelation
function. The short-time behavior ofD2

min does not collapse
because D2

min itself is a two-time quantity involving the
displacements of particles in a time interval of 2τ, so that
correlations on this time scale depend on time and not
strain. The overall behavior at high temperatures, T ¼ 0.4,
is quite different from that at T ¼ 0.1 in that none of the
correlation functions collapse with t_γ, supporting our
interpretation that there is a strong thermal contribution
to relaxation at this temperature.
We conclude that two soft-spot maps, constructed a time

δt apart, remain correlated until almost every particle in the
system has experienced a rearrangement. This remarkable
stability of the soft-spot configuration appears to be
robust to increasing temperatures and strain rates even as
the origin of relaxation becomes increasingly thermal.

Furthermore, the extremely slow decorrelation is mirrored
in the dynamics of the system, suggesting that plastic
activity in glassy systems is intimately tied to structural soft
spots. Finally, note that the correlation functions are
qualitatively similar, not only to one another but also to
the self-intermediate scattering function itself. Therefore,
an improved understanding of the decorrelation of the soft-
spot configuration might shed more light on structural
relaxations in glassy systems.

V. SINGLE-SOFT-SPOT DYNAMICS

We now decompose the behavior of the soft-spot field as
a whole in terms of the dynamics of individual soft spots. In
particular, we will show that the form of the soft-spot
autocorrelation function seen in Figs. 5(g)–5(i) can be
explained by understanding the lifetime of individual soft
spots in the configuration. To do this, we will first construct
upper bounds on single-soft-spot lifetimes. We will then
introduce distributions of single-soft-spot lifetimes over a
range of temperatures and strain rates. Finally, we will
argue that the CSSðδtÞ function arises naturally from the
distribution of these lifetimes. We will conclude by con-
sidering the number of rearrangements necessary to destroy
an individual soft spot. By introducing a simple model with
no correlations, we show that the distribution of single-soft-
spot lifetimes can be estimated directly from this latter
quantity.
We construct an upper bound on single-soft-spot life-

times by considering the autocorrelation function of indi-
vidual soft spots. To do this, we first consider the fields
SαðtÞ, for an individual soft spot labeled α, defined so that
Sα;iðtÞ ¼ 1 if particle i is in soft spot α and Sα;iðtÞ ¼ 0
otherwise. To determine how a soft spot α constructed at a
time t evolves at a time tþ δt, we define an autocorrelation
function,

CSαSαðδtÞ ¼ max
β

h ~Sβ;iðtþ δtÞ ~Sα;iðtÞi: ð4Þ

Equation (4) associates a soft spot at time t with the “best”
soft spot at a time tþ δt. We then average CSαSαðδtÞ over a
moving window of width Δt ¼ 16τ to remove some of the
fluctuations. The lifetime of a soft spot, denoted τL, is then
defined as the first time at which the averaged autocorre-
lation function dips below its asymptotic, uncorrelated,
value,

ε ¼ lim
δt→∞

hCSαSαðδtÞiS ≈ 0.2; ð5Þ

where h·iS denotes an average over soft spots. We have
found the results to be qualitatively insensitive to the choice
of either Δt or ϵ. Note that since we have used the
maximum function in Eq. (4), τL represents an upper
bound on the actual soft-spot lifetime.
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We plot the distribution of soft-spot lifetimes, PðτLÞ, in
Fig. 6(a) at different temperatures and in Figs. 6(b)–6(c) at
different strain rates at T ¼ 0.1 and T ¼ 0.4, respectively.
In each case, we see that lifetimes appear to be power-law
distributed up to time scales commensurate with the
relaxation time of the system; at longer time scales, the
distribution of lifetimes decays exponentially. Referring to
Fig. 6(a), we see that the crossover from power law to
exponential in the lifetime distribution shifts to shorter
times as a function of increasing temperature, as expected
for the relaxation time. This shift is reflected in the shift of
the decay of the CSSðδtÞ function. Considering Fig. 6(b),
we see that the distribution PðτLÞ appears to collapse under
the mapping τL → τL _γ and PðτLÞ → PðτLÞ=_γ, which is
again seen in the collapse of the time-dependent correlation
functions. Referring to Fig. 5(b), we also see that at the
lowest strain rate of _γ ¼ 10−5, our simulation time scale is
significantly less than τα. This is reflected in the distribu-
tion of single-soft-spot lifetimes in Fig. 6(b), where we see
no crossover of the lifetime distribution. In Fig. 6(c),

we see that at the highest temperature of T ¼ 0.4, the
distribution PðτLÞ does not collapse with τL → τL _γ and
PðτLÞ → PðτLÞ=_γ, which reflects the lack of collapse of the
time-dependent correlation functions arising from the fact
that we are not in a strain-dominated regime.
We now argue that the soft-spot autocorrelation function

follows from the soft-spot lifetime distribution introduced
above. To do this, we assume that when a soft spot is
destroyed, it is replaced at random somewhere in the
system. It follows that the CSSðδtÞ function measures the
fraction of soft spots that have not yet decayed after a time
δt. If we additionally assume that soft spots are destroyed at
a rate that is independent of their size, then this implies that

CSSðδtÞ ∼ PðτL ≥ δtÞ ¼ 1 −
Z

δt

0

PðτLÞdτL: ð6Þ

We test this relationship by comparing the measuredCSSðδtÞ
function (drawn using solid lines) with PðτL ≥ δtÞ (drawn
using dashed lines) in Figs. 5(h)–5(i) for different

FIG. 6. (a)–(c) Probability distributions for single-soft-spot lifetimes at different temperatures and strain rates, respectively. In (a),
temperatures of T ¼ 0.1 (blue) to T ¼ 0.4 (red) are shown at a strain rate of _γ ¼ 10−4. Overlaid in dashed lines are the predictions of the
discrete model. In (b), we show lifetime distributions at strain rates of _γ ¼ 10−5 (dark blue) to _γ ¼ 10−3 (green) at a temperature of
T ¼ 0.1. Again, predictions from the discrete model are shown in dashed lines for strain rates of _γ ¼ 10−4 and _γ ¼ 10−3. In (c), we show
lifetime distributions at strain rates of _γ ¼ 10−5 (brown) to _γ ¼ 10−3 (yellow) at a temperature of T ¼ 0.4. Predictions from the discrete
model are overlaid in dashed lines. Figures (e)–(f) show the probability distributions for the number of rearrangements needed to destroy
a single soft spot using the same color scheme as in (a)–(c). In all cases, we see that the number of rearrangements appears to be power-
law distributed with an exponential tail. For each distribution, the mean number of rearrangements needed to destroy a soft spot is
overlaid in a dashed line.
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temperatures and strain rates. A different constant of pro-
portionality is used to scale each set of data. In Fig. 5(h),
motivated by the collapse of PðτLÞ in Fig. 6(b), a single
cumulative distributionof soft-spot lifetimeswas constructed
by aggregating soft-spot lifetimes from all three strain rates.
The agreement between CSSðδtÞ and PðτL ≥ δtÞ is

excellent. In each case, PðτL ≥ δtÞ decays slightly more
slowly than the CSSðδtÞ function. This slower decay is
consistent with the fact that τL represents an upper bound
on the actual lifetime of soft spots in the configuration.
Overall, this agreement has several interesting implications
for the soft-spot picture. First, the behavior of the entire
soft-spot field can be accurately reduced to the dynamics of
individual soft spots. This is the second key result of the
paper. Furthermore, the validity of the relationship,
CSSðδtÞ ∼ PðτL ≥ δtÞ, means that correlations between
successive rearrangements are relatively unimportant
for the overall decorrelation of the soft-spot field. In
addition, the degree of agreement suggests that our
assumption that the lifetime of individual soft spots is
independent of soft-spot size is reasonably accurate. Were
either of these two assumptions strongly violated, the soft-
spot autocorrelation function would not be so simply
related to the cumulative distribution of soft-spot lifetimes.
To gain more insight into the dynamics of individual soft

spots, we now consider the number of rearrangements that
must occur near a soft spot to destroy it. To this end, we
calculate an upper bound on the number of rearrangements
that overlap with a soft spot using the CSαSαðδtÞ function
defined in Eq. (4). In particular, recall thatwe associate a soft
spot α, constructed at a time t, with a soft spot β at a time
tþ δt that maximizes the function h ~Sα;iðtÞ ~Sβ;iðtþ δtÞi.
Thus, we say that a soft spot α has experienced a rearrange-
ment at a time tþ δt if at least one particle in the associated
soft spot β hasD2

min ≳ 15T. Here, the threshold inD2
min was

chosen from the onset of the plateau in Fig. 2. By summing
the total number of rearrangements associated with a soft
spot before it is destroyed, we arrive at an upper bound for
the number of rearrangements, NR, to destroy a soft spot.
A plot of the distribution of the number of rearrange-

ments needed to eliminate a soft spot, PðNRÞ, can be seen
in Fig. 6(d) for varying temperatures and in Figs. 6(e)–6(f)
for varying strain rates at T ¼ 0.1 and T ¼ 0.4, respec-
tively. The most striking feature of PðNRÞ is that soft spots
appear to be able to survive many rearrangements before
being destroyed. This seems to suggest that the slow
decorrelation of the soft spot field as a whole might be
related to this high resilience of soft spots to structural
rearrangements. Furthermore, in all cases—as with the
distribution of soft-spot lifetimes—we see distributions that
feature broad power laws with exponential tails. In
Fig. 6(d), we see that the crossover shifts to smaller NR
as temperature increases. This leads to the appealing
hypothesis that the decrease in relaxation time is related
to the fact that rearrangements at higher temperatures are

more effective at destroying soft spots than are rearrange-
ments at lower temperatures. We additionally find that soft
spots can survive, on average, from 4.5 rearrangements at
the highest temperature to 13 rearrangements at the lowest
temperature.
In Figs. 6(e) and 6(f), we see that the crossover of NR

likewise shifts between strain rates of _γ ¼ 10−3 and
_γ ¼ 10−4; however, this trend does not continue to the
lowest strain rate. To understand this trend, we note that
disordered solids typically exhibit a quasistatic regime at
low strain rates in which stress and other quantities are
relatively independent of strain rate. It is therefore not
surprising that PðNRÞ is independent of strain rate at
sufficiently low _γ. Similarly, the average number of
rearrangements per 2τ shifts from 22 at _γ ¼ 10−3 to 7.2
and 4.6 at _γ ¼ 10−4 and _γ ¼ 10−5, respectively, at T ¼ 0.1.
At this temperature, the average number of rearrangements
that a soft spot can survive increases from 3 at the highest
strain rate to 17 at the lowest.
To understand the role of PðNRÞ in determining soft-spot

lifetimes, we introduce a simple model. Consider a system
of NS “soft spots” that each require ri rearrangements to be
destroyed. The ri are to be drawn randomly from the
measured distribution of NR at some temperature and strain
rate. The model proceeds in discrete steps. At each step,
the system experiences a rearrangement that is randomly
distributed across the NS soft spots. If—at a given step—a
soft spot has experienced ri rearrangements, it is destroyed
and replaced by a new soft spot, with ri drawn at random
from the distribution of NR. We solve this model analyti-
cally in the Appendix and show that it relates the distri-
bution of soft-spot lifetimes to the distribution of NR in the
absence of any spatial correlations. In order to convert the
time scale in the model to the time scale in our simulations,
we measure the average number of rearrangements, R, that
occur in every interval of 2τ as a function of temperature
and strain rate. Thus, a single step in the model is rescaled
to a time of 2τ=R in our simulations.
The distribution of τL predicted from this model is

shown in a dashed overlay in Figs. 6(a) and 6(b). In all
cases, we see fairly good agreement between the measured
lifetime distributions and the distribution extracted from the
model; in particular, we see that the model correctly
predicts the initial power-law behavior, the location of
the crossover, and the exponential tail of the distribution. In
Fig. 6(a), we see that the model correctly predicts the shift
in the crossover as a function of temperature. In Fig. 6(b),
we show the model predictions only for the two faster strain
rates, as the distribution of NR is incomplete for the slowest
strain rate. In both cases, we see that the analytic lifetime
distributions approximately collapse, as expected. The
success of this model suggests that the number of rear-
rangements needed to destroy a soft spot is the single most
important parameter in reconstructing soft-spot lifetimes
and hence the entire soft-spot autocorrelation function.
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It follows that the soft-spot lifetimes, and in turn the
behavior of the soft-spot field as a whole, can be derived
from the distribution of the number of rearrangements
necessary to destroy a soft spot. This suggests that the shift
in the relaxation time of the system as a function of
temperature is related to the shift in the crossover in the
distribution of NR. Thus, at higher temperatures, it appears
that rearrangements that destroy soft spots become more
common. Furthermore, it is apparent that spatial correla-
tions between rearrangements, soft spots, and soft-spot
sizes appear to be unimportant in predicting the dynamics
of the soft-spot field as a whole.

VI. DISCUSSION

We have shown that soft spots correlate with rearrange-
ments in sheared glasses over a range of temperatures and
strain rates. By exploring temperatures ranging from those
deep in the glassy state to those well within the supercooled
liquid regime, we have shown that these correlations are
robust; even at the highest temperature considered, we find
that rearrangements are about twice as likely to occur at soft
spots than they would be if the soft spots were uncorrelated
with rearrangements. Moreover, since soft spots continue to
describe plasticity in the supercooled liquid regime, our
results suggest that soft spots correlate with dynamical
heterogeneities in sheared supercooled liquids. It is impor-
tant to note that while we have probed systems whose
relaxation has a significant thermal contribution, in all
cases we have studied systems under shear. It is important
to consider thermal relaxation of an unsheared system as
well. In particular, it would be very interesting to study the
correlation between soft spots and the enduring displace-
ments that have been observed in the supercooled and
glassy regimes [21] and to see if configurations created
using the s ensemble have a lower density of soft spots [22].
The decorrelation of the soft-spot field has been shown

to be extremely slow, featuring correlations lasting as long
as the longest time scale for structural relaxation in the
system. This slow decay in the correlation function is
mirrored in the decorrelation of plastic activity in the
system. The strong correlation of soft spots with plasticity
in glasses, along with the exceptionally long lifetimes of
these correlations, implies that soft spots are deeply
ingrained, long-lived structural properties of glassy materi-
als that are in many ways analogous to topological defects
in crystalline solids. Finally, we have demonstrated that the
behavior of the soft-spot field as a whole can be success-
fully understood in terms of a population of individual soft
spots. In particular, we obtained the surprising result that
the soft-spot field—and hence plasticity in glassy systems
—decorrelates so slowly because many rearrangements are
generally required to destroy a single soft spot.
This result leads us to speculate that soft spots are robust

features within a metabasin [23–25]. Earlier, we showed
that the distribution of soft-spot lifetimes features a

power-law tail, and we argued that this feature implies
that a single rearrangement does not suffice to destroy a
single soft spot. Since soft spots are constructed from
quasilocalized low-frequency vibrational modes, which
have low-energy barriers to rearrangement [19], this
suggests that most adjacent minima might feature not
only similar soft spots but also similar low barriers to
rearrangement. These minima might correspond to inherent
structures within the same metabasin.
If the above characterization of intrametabasin rearrange-

ments is correct, transitions between the largest metabasins
would be marked by the most significant changes to the
soft-spot field of the inherent structure. This picture would
suggest that transitions between the largest metabasins
correspond to the annihilation and creation of soft spots.
This would imply a relation between the distribution of
soft-spot lifetimes and the distribution of intermetabasin
barrier heights in the potential energy landscape. Testing
these speculations would be an interesting avenue for
further work.
The correlation between the low-frequency vibrational

modes used to construct soft spots and the correspondingly
low-energy barriers to rearrangements along those modes
[19] may also explain why not all rearrangements occur at
soft spots. In particular, this correlation suggests that
rearrangements at soft spots surmount energy barriers that
are preferentially lower than the barriers to rearrangements
that occur elsewhere. One would therefore expect rear-
rangements at soft spots to be favored by an amount related
to the Boltzmann weight of the energy difference between
the corresponding energy barriers. This may explain why
not all rearrangements occur at soft spots and why the
probability that a rearrangement occurs at a soft spot
decreases with increasing temperature.
The success of soft spots in describing rearrangements in

sheared systems at nonzero temperatures provides strong
support for the hypothesis that soft spots are flow defects in
amorphous materials, analogous to topological defects such
as dislocations in crystals. They appear to have some
(though not necessarily all) of the properties that have
been assumed for shear transformation zones [10,11] or
regions of fluidity [12,13]. In particular, they are localized,
they control rearrangements, and their dynamics are corre-
lated with the relaxation time of the system. Now that we
can track individual soft spots as a function of time, it is
important to explore their migration statistics and creation
and annihilation rates to put such phenomenological
theories on a more solid microscopic footing.
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APPENDIX

We present an analytic solution to the mean field model
outlined in Sec. V. We consider a set of NS soft spots, each
described by a number, ri, of rearrangements that a soft
spot i may sustain before it is destroyed. The ri are
independently and identically distributed according to
some distribution R with probability density function
PRðriÞ. The model proceeds in discrete steps, and at each
step, a soft spot is randomly selected to experience a
rearrangement. Once a soft spot has experienced ri rear-
rangements, then it is destroyed and replaced with a new
soft spot with ri drawn again at random. As each soft spot is
identical, we discard the index i and consider, without a
loss of generality, soft spot 0.
We calculate the probability density function for the

distribution of soft-spot lifetimes, PTðτÞ. Consider a soft
spot in this model that requires r rearrangements to be
destroyed. If this soft spot is to have a lifetime τ, then after τ
steps, the soft spot must have experienced exactly r
rearrangements. At least one of these rearrangements must
occur on step τ, but there are no constraints on how the rest
of the rearrangements are to be distributed among the
remaining τ − 1 steps. Therefore, the total number of ways
that the r rearrangements might be distributed among the τ
steps is ðτ−1r−1Þ, where ðabÞ are the binomial coefficients. Since
the probability of a soft spot rearranging is 1=NS, it follows
that the probability of a soft spot having a lifetime τ, given
that it requires r rearrangements to be destroyed, is

PTðτjrÞ ¼
�
τ − 1

r − 1

��
1 − 1

NS

�
τ−r� 1

NS

�
r
: ðA1Þ

From standard arguments of conditional probability, it
therefore follows that

PTðτÞ ¼
X∞
r¼1

�
τ − 1

r − 1

��
1 − 1

NS

�
τ−r� 1

NS

�
r
PRðrÞ: ðA2Þ

Therefore, in the absence of correlations, we are able to
relate a distribution of the number of rearrangements
required to destroy a soft spot with a distribution of
soft-spot lifetimes.
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