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We report on the phase behavior of a model system of colloidal rodlike particles, namely, the filamentous
fd viruses, in the dense liquid crystalline states. After determining the phase boundaries as a function of the
added salt, we propose a renormalization of the phase diagram accounting for the screened electrostatic
repulsions between the particles through an effective hard-rod diameter. Including explicitly counterion
condensation, we show that our heuristic model captures the main feature of the nematic-to-smectic phase
transition of long hard rods, i.e., its universal packing fraction. The importance of rod flexibility on the
relative stability of the different concentrated mesophases is also demonstrated, evidencing, in particular,
the existence of a smectic-B phase in between the smectic-A and the columnar phases.
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I. INTRODUCTION

Suspensions of colloidal particles self-organize sponta-
neously into different states, displaying phase transitions
that can be driven by entropy alone. Such mesoscopic
particles usually exhibit phase behavior very similar to
atoms or molecules and, therefore, are often considered as
paradigms in condensed matter physics [1–3]. The features
of model system of colloids stem from both the simplicity
of their interaction, which is mainly steric, and from their
ability to be observed at the single-particle level by optical
microscopy [4,5]. In this respect, colloidal particles with
nonspherical shapes (such as rodlike and disklike particles)
have attracted considerable attention because of their out-
standing faculty to form liquid crystals [6–11]. The nematic
state exhibits long-ranged orientational order, while the
smectic and columnar phases additionally possess posi-
tional order in one and two dimensions, respectively [12].
In this study, we explore the phase behavior in the smectic
and columnar phases of highly monodisperse charged rods,
the semiflexible filamentous bacteriophages, fd [5]. We
determine the experimental phase diagram in the regime of
high virus concentrations as a function of the added salt
ionic strength Is, and we propose a renormalization of the
phase diagram accounting for the rod electrostatic repul-
sion, where counterions stemming from the viral particles
have to be taken into account via a virus effective charge.
Our results are compared with theoretical predictions and
computer simulations, showing that rodlike viruses behave
nearly as hard rods, even in the highly ordered dense states.

Such a description of the electrostatic interactions between
viral rods could be particulary relevant for the recently
reported virus-based colloidal membranes [13–15], which
are polymorphic unilamellar self-assemblies reminiscent
of the bulk smectic organization. In the present work, we
evidence two smectic phases, a smectic-A phase and a
newly reported smectic-B phase, and we also investigate
the effect of rod flexibility on the mesophase stability
thanks to a stiffer viral mutant. Furthermore, we show that
the location of the smectic-to-columnar (Sm-Col) transition
is independent of the bending flexibility, in contrast with
the nematic-to-smectic (N-Sm) transition that is strongly
affected by the rod rigidity.

II. THEORETICAL CONSIDERATIONS

Rodlike particles are usually modeled as hard impen-
etrable cylinders of contour length L, diameter D, and
volume v0 ¼ πLD2=4. Driven by a gain in excluded
volume, i.e., by a gain of entropy, they self-organize into
different mesophases by increasing rod density. The first
theory of ordered assemblies of rods with purely hard-core
repulsive interactions was proposed by Onsager to describe
the isotropic liquid-to-nematic (I-N) transition [16]. It
represents a paradigm of a very general class of phase
transitions that are entropy driven [17]. For such systems,
the steric repulsion between pairs of particles evaluated
by the second virial coefficient B2 is directly related to
the excluded volume hVexcli [12,16], where the brackets
account for the average over the particle’s orientational
distribution. For two cylinders, the general expression of
their excluded volume is given by

Vexcl ¼ 2L2Dj sin γj þ 2πD2L; ð1Þ
where γ is the angle between their two long axes. For a
uniform fluid ofN particles in a volume V at temperature T,
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the particle-particle interaction is expressed through the
excess contribution to the Helmoltz free energy and is given
at the second virial level by [18]

Fex=NkBT ≃ ρB2 ¼
1

2

hVexcli
v0

ϕ; ð2Þ

where the volume fraction ϕ is related to the rod number
density ρ ¼ N=V via ϕ ¼ ρv0. In the long-rod limit
(L ≫ D), the excluded volume scales as Vexcl ∝ L2D near
the I-N transition, which yields Fex ∝ L

Dϕ. The phase
diagram is therefore expected to depend only on the
parameter L

Dϕ, as rigorously predicted by Onsager for
the I-N transition [16]:

ϕI−N ≃ 4
D
L
: ð3Þ

In the case of parallel hard rods, and neglecting the rod-
end effect, the excluded volume reduces to V∥

excl∝LD2∝v0
according to Eq. (1). F∥

ex therefore becomes independent of
the geometrical properties of the particles and is only a
function of the rod-packing fraction ϕ. In this long-rod
limit and with the approximation of perfectly aligned
particles, the N-Sm transition volume fraction is then
expected to be universal, i.e., occurring at a fixed volume
fraction, ϕ∥ ¼ cst, no matter what the particle size is
[19–21]. For the N-Sm transition, the low-density approxi-
mation becomes poor, and higher-order virial coefficients
have to be added a priori to the free energy. This is usually
done following the Parsons-Lee scheme, which is a two-
body resummation extending the semiempirical Carnahan-
Starling approximation for hard spheres [22,23]. The
second virial coefficient B2 is then weighted by a density
prefactor that only depends on the volume fraction ϕ: Such
rescaling of the free energy quantitatively improves the
predictions but does not qualitatively affect the result
shown above, i.e., the universal packing fraction of the
N-Sm transition for slender rods. In the literature, the
reduced density ϕ�

N−Sm ¼ ϕN−Sm=ϕcp, where ϕcp ¼ π=2
ffiffiffi
3

p
is the close-packed volume fraction of parallel cylinders,
is found within a range of values between 0.36 and 0.47
by means of various approximate theories, including
parallel or freely rotating rods, as well as simulations
[19–21,24–29].

III. EXPERIMENTS

Our experimental system of rods is the filamentous fd
virus, which has been widely used as a colloidal model
system in soft condensed matter [5,30–32]. The bacterio-
phage fd, which is an almost-1-micron-length (L ¼
0.88 μm) semiflexible charged rodlike particle with a
diameter of D ¼ 7 nm and a persistence length of P ¼
2.8 μm, has a molecular weight ofMw ¼ 1.64 × 107 g=mol

and is formed by single-stranded DNA around which
about 2700 coat proteins are helicoidally wrapped
[33,34]. fdY21M is a viral mutant that differs from wild-
type fd only by a single-point mutation of the 21st amino
acid of each major coat protein, changing from tyrosine in
fd to methionine in fdY21M [35]. This results in a stiffer
phage, with a persistence length of P ¼ 9.9 μm [34], a
contour length of L ¼ 0.92 μm [36], and a similar charge
density [37]. The virus concentration Cvirus was measured
using spectrophotometry with absorption coefficients of
3.84 and 3.63 cm2=mg at 269 nm for fd and fdY21M,
respectively [34], and it is related to the volume fraction ϕ
by ϕ ¼ ρv0 ¼ CvirusNA=Mw × πLD2=4, where NA is
Avogadro’s number. The fd charge density is 3.4 e/protein
at pH 8.1 [38], giving a number of negative charges per
virus of Zvirus ¼ 9180 [39]. The ionic strength Is and the
pH associated with the added salt are monitored thanks to a
TRIS-HCl-NaCl buffer against which dilute virus suspen-
sions were extensively dialyzed. It is worth mentioning that
the CO2 that dissolves from the air in the buffer cannot be
neglected, and it significantly increases the ionic strength,
of about 0.9 mM for an analytical concentration of the
TRIS buffer of 10 mM at pH 8.1 [40]. After dialysis, the
virus suspensions were ultracentrifuged at about 200000 g
for 3 hours. The viruses were resuspended in the same
buffer, and different dilutions were placed in glass capillary
tubes of diameter 1.5 mm. The smectic phase was mainly
identified by its optical iridescence stemming from the
diffraction by visible light of the around-1-micron-thick
smectic layers [36]. The chiral nematic phase was deter-
mined by its typical fingerprint texture observed by a
polarizing microcopy [37], and the signature of the
columnar mesophase was provided by the hexagonal
positional order probed by small-angle x-ray scattering
(SAXS) [31]. SAXS experiments were performed with a
NanoStar-Bruker AXS setup, working at a wavelength of
1.54 Å (Cu Kα emission) and with a sample-to-detector
distance of 1.06 m. The instrumental resolution is given by
the full width at half maximum (FWHM) of the direct beam
and is about 0.05 nm−1. For the study at Is ¼ 20 mM, fd
and fdY21M suspensions were prepared in flat capillaries in
order to perform both smectic-layer-spacing measurements
by differential-interference contrast microscopy and SAXS
investigations on the same samples.

IV. RESULTS AND DISCUSSIONS

Figure 1 depicts the phase diagram of fd viruses in the
dense regime where the boundaries between the chiral
nematic, the smectic, and the columnar mesophases are
indicated [41]. As expected, the location of the phase
transitions occurs at higher virus concentrations, Cvirus,
when increasing the ionic strength because of the screening
of the electrostatic repulsions [42].
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A. Ion condensation and virus effective charge

The extent of the electric double layer surrounding each
charged particle is characterized by using the Debye
screening length κ−1 [43]:

κ−1 ¼ ð8πlbNAIÞ−1=2; ð4Þ

where lb is the Bjerrum length (of about 0.71 nm in water
at room temperature), NA is Avogadro’s number, and I is
the ionic strength, defined by

I ¼ 1

2

X
i

niZ2
i : ð5Þ

In Eq. (5), the sum is taken over all types ofmobile (or free)
microions of molar concentration ni ¼ ρi=NA and of
charge number Zi, i.e., added salt ions and counterions
compensating the virus surface charge [43–46]. In con-
centrated samples, the contribution of counterions origi-
nating from the charged colloids cannot be neglected, and
this leads to an effective (or renormalized) charge of the
viruses, which is also called charge condensation [47]. In
its simplest form, condensation theory ignores the details of
the ion distribution near the polyelectrolyte and assumes
that a fraction of the rod charge will be neutralized because
of the nonspecific binding with counterions. Let us call Q
the fraction of free counterions. In units of molarity, the
ionic strength I can then be expressed for monovalent
microions (1∶1 salt) by

I ≡ Itot ¼ Ic þ Is ¼
1

2
Qnc þ ns; ð6Þ

with nc ¼ Cvirus × Zvirus=Mw and ns the molar concentra-
tion of added salt. In the limit of infinite dilution and for a

charged rod with vanishingly small radius (κ0R ≪ 1, with
κ0 the Debye screening length associated with the added
salt Is), the uncondensed counterion fraction is given by
Q0 ¼ 1

λbarelb
¼ 0.14 according to the Manning criterion

[48], where λbare ¼ Zvirus=L is the linear charge density
of fd virus. Such an approximation is valid neither for
concentrated colloidal suspensions nor in the range of ionic
strength studied here (Is ¼ 6 to 110 mM) for which the
cylinder radius is comparable to the width of the diffuse ion
atmosphere surrounding the particle, i.e., κ0R ∼ 1. More
generally, addressing the question of the effective charge of
dense assemblies of highly charged rods remains tricky,
and it depends a priori on the rod diameter, the rod volume
fraction, and the amount of added salt. In this context,
Manning has recently developed an analytical approach
for different geometries of particles, where the fraction of
condensed ions results from the balance between enthalpic
electrostatic binding and their dissociation entropy [49]. In
the specific case of charged cylinders in the presence of
added salt such as κ0R ∼ 1, Manning derived the following
expression for the effective line charge density, λeff :

λefflb ¼ − ln

�
κ0
λbare

�
κ0R

K1ðκ0RÞ
K0ðκ0RÞ

; ð7Þ

where K0ðxÞ and K1ðxÞ are modified Bessel functions of
the second kind. The fraction of free ions can thus be
written as

Q ¼ λeff
λbare

; ð8Þ

with 0 ≤ Q ≤ 1 and is plotted in Fig. 2. It confirms the
major role of counterions in the electrostatic properties and
shows that ion condensation diminishes with increasing
salt, ultimately being completely unbound at sufficiently
high salt. The main restriction of the Manning model
applies to colloids in the infinite dilution limit. In order to

FIG. 1. Experimental phase diagram of the dense liquid-
crystalline states of fd virus suspensions. The reduced rod
packing fraction ϕ� is plotted as a function of the added salt
Is. The dashed lines are a guide for the eye to indicate the N-Sm
and Sm-Col phase transitions, where the smectic range (open
white symbols) includes both the smectic-A and the smectic-B
mesophases (see text).

FIG. 2. Fraction of free ionsQ as a function of the added salt Is
obtained from calculations of Manning [49] (black line) and
Trizac et al. [53] (open and full squares).
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account for the finite particle volume fraction, a mean field
Poisson-Bolztmann theory within a cell model [50] has to
be used. This approach replaces the many-body problem
of charged colloidal suspensions by a simpler one-particle
system and has been shown to successfully describe the
electrostatic interactions with monovalent ions. In this
framework, analytical expressions have been derived for
charge renormalization of macroions by Trizac et al.
[51–53]. Their approximation becomes exact in the colloi-
dal limit κ0R ≫ 1, but it has been shown to be a good
estimate down to κ0R≳ 1, corresponding to the specific
case studied here. For the sake of clarity, the equations for
determining the virus effective charge are not explicitly
written here, but the details can be found in Ref. [53]. The
result of the computation is shown in Fig. 2 for both volume
fractions corresponding to the N-Sm and Sm-Col phase
transitions. Compared with the Manning model, a very
similar dependence of the fraction of free ions is found,
where all the counterions are dissociated from the rod
surface above a given amount of added salt. Despite their
slight quantitative difference, the very good consistency
between the two main available analytical models found
in the literature makes us confident about capturing
the underlying counterion contribution in the fd virus
suspensions.

B. Effective diameter and renormalized phase diagram

In order to effectively account for the electrostatic
repulsion in our statistical model, which only contains
the excluded-volume interaction [Eq. (2)], the bare
diameter D has to be rescaled by a thicker effective
hard-rod diameter Deff. Many attempts were made for
rodlike particles [11,30,42,44,45,54], mainly focusing on
the isotropic liquid phase for which an effective diameter
can be strictly defined at the level of the second virial
approximation according to Stroobants et al. [55,56]. This
approach allows for a semiquantitative agreement with
charged filamentous viruses at the I-N transition [57,58],
but it fails to account for the N-Sm transition because such
an expression of Deff is intrinsically ill defined for parallel
rods [29,56]. Therefore, and because a rigorous theory
including an electrostatic interaction at a fundamental level
is still missing for charged rods organized in highly ordered
states, we have chosen a heuristic approach in the spirit of
Onsager, who mentioned in his seminal paper that [16]
“[…] the effective range of the electrostatic repulsion will
be a modest multiple of the screening distance κ−1,” which
means, for Deff,

Deff ¼ Dþ ακ−1; ð9Þ

with α a free parameter and κ−1 the Debye screening length
associated with the total ionic strength Itot [Eq. (6)]. The
effective diameter, and consequently the effective volume
fraction, is then a function of the added salt Is and the virus

concentration Cvirus, both known experimentally, as well as
a function of the fraction of free ionsQ determined through
a charge-condensation model, and of the free parameter α.
Since fd viruses exhibit both a high aspect ratio (L=D ≫ 1)
and a near-parallel configuration close to the N-Sm
transition, as shown by an orientational order parameter
S ∼ 1 [59], the nematic-to-smectic transition volume frac-
tion is expected to be universal [20], i.e., ϕ�

eff ¼ cst. By
fitting, accordingly, the effective volume fraction as a
function of the added salt Is using α as the only fit
parameter, we obtain the renormalization of the N-Sm
for both models of charge condensation (Manning [49] and
Trizac et al. [53]): ϕ�

N−Sm ¼ 0.46 and 0.43, respectively, as
shown in Fig. 3. Both values, which are close to each other,
are found within the experimental error bars, and they are,
in general, in good agreement with the different theoretical
predictions [19,20,24–27,29], as well as the most recent
Monte Carlo simulations on long rigid rods, giving
ϕ�
N−Sm ∈ ½0.46; 0.47� [28]. When virus flexibility is con-

sidered, it is expected that the N-Sm transition shifts to
higher rod densities when compared to perfect rigid hard
rods [28,36]. Such an effect is indeed observed for the
stiffer fdY21M mutant (P=L ∼ 10) for which the effective
volume fraction ϕ�

N−Sm decreases by about 9%, when
determined with the same set (Q, α) of parameters as
those used for the wild-type semiflexible virus. More
details on the effect of rod stiffness can be found in
Sec. IV C.
In Fig. 4, we plot the effective diameter Deff obtained

for the renormalized phase diagram (Fig. 3) at the N-Sm
transition. By applying the same procedure including
charge condensation and keeping unchanged the parameter
α, the effective diameter at the I-N transition is found to be
in good agreement with the one obtained by Onsager theory

FIG. 3. Renormalized phase boundaries of N-Sm (full red
symbols) and Sm-Col (open blue symbols) transitions for fd
virus suspensions. The reduced effective volume fraction ϕ�

eff is
obtained with the effective rod diameter Deffðα; QÞ ¼ Dþ ακ−1
[Eq. (9)], where the variable fraction Q of uncondensed virus
counterions is given by the models of Manning [49] (triangles)
and Trizac et al. [53] (squares), as shown in Fig. 2.
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for semiflexible rods [57,60], validating the approach
developed here. When our effective diameter is compared
to the inter-rod d distance obtained by SAXS measure-
ments via d ¼ 2ffiffi

3
p 2π

q100
[31], it results in Deff < d for all

transitions, and whatever the added salt Is—so a fortiori
whatever the ionic strength I—, meaning that there is no
overlap of the electric double layer between rods. This
observation supports the hard-rod behavior of fd viruses in
the dense regime. Contrary to previous claims [5,30,42], we
show that the rod charge can be quantitatively taken into
account via an effective diameter Deff, demonstrating, in
particular, the importance of charge condensation (which is
sometimes neglected because of its complexity and usually
ignored for dilute suspensions, but which must be taken
into account in concentrated regime) to properly account
for the screened electrostatic interactions.
Even if there has not been a full theoretical demonstra-

tion to date, we tried to apply the same approach of
renormalization to the Sm-Col transition. In this case
and contrary to both the N-Sm and the I-N transitions,
this procedure works poorly, as shown in Fig. 3.
Experimentally, it becomes more and more difficult to
get homogeneous samples as the ionic strength and the rod
concentration increase, generating data dispersion. Beyond
our heuristic approach, some effects such as dispersion
forces have been neglected and could possibly play a role as
the rod density increases. Van der Waals interactions are
mainly independent of ionic strength and usually exhibit
the largest attraction for parallel-rod configurations [56],
therefore favoring the smectic phase stability [61]. The
short range (0–10 nm) of this attraction may have some

influence, especially on the Sm-Col transition, considering
the short surface-to-surface distance between viruses at the
highest ionic strength (Fig. 4). Some effective attraction
due to many-body effects could also be invoked [62],
decreasing the location of the phase transitions as well.
Nevertheless, these effects remain limited and can be seen
as a perturbation of the prevailing hard-rod behavior of fd
suspensions.

C. Influence of rod flexibility

As already mentioned above, rod stiffness represents a
major parameter in the relative stability of the smectic
phase with respect to the nematic and the columnar phases
[63,64]. If the smectic phase is easily characterized
experimentally by its optical iridescence stemming from
its layered organization [Figs. 5(a) and 5(b)], the nature of
the order within the layers has to be probed by SAXS.
Figure 5(c) shows the scattered intensity corresponding to
liquidlike order (dotted black line) featuring a SmA phase
[41], and to hexagonal positional order (red line) by slightly
increasing the rod packing. Combined with the layer
ordering along the rods, this defines a SmB phase found
for both the semiflexible fd and the stiff fdY21M viruses,
schematically represented in Fig. 5(d) [11,12]. In the SmB
phase, the positional correlation length ζ⊥ normal to the
rod-long axes is long ranged, being only limited by the
instrumental resolution [Fig. 6(b)]. It distinguishes SmB
from the hexatic columnar mesophase of filamentous
viruses, which exhibits, furthermore, liquidlike order along
the column axes [31]. The hexatic feature of the columnar
mesophase is provided by the short-range hexagonal
translational order, which is broken by the presence of
dislocations. Such intrinsic defects stem from the

FIG. 4. Effective hard-rod diameter Deff [Eq. (9)] used for the
renormalization of the phase diagram (Fig. 3) with the fraction of
free ions Q calculated according to the models of Manning [49]
(triangles) and Trizac et al. [53] (squares). Deff at the N-Sm
transition (red symbols) is shown to always be smaller than the
corresponding inter-rod distance d obtained by SAXS (black
dots). Deff at the I-N transition (open symbols) obtained by the
two charge condensation models described above and from
Onsager theory for semiflexible rods [57,60].

FIG. 5. (a) Iridescence of macroscopic smectic sample illumi-
nated by a white light source. (b) Optical texture of the smectic
phase observed by differential interference contrast microscopy
evidencing the layer spacing λ. The red rods schematically
represent the fd viruses within the layers, and the associated
positional correlation length ζ⊥ normal to their long axis.
(c) Scattered intensity obtained by SAXS probing the transla-
tional order within the smectic layers showing the evolution from
liquidlike (dotted black line) to hexagonal positional (solid red
line) order by slightly increasing the rod concentration. This
corresponds to the SmA and SmB phases, respectively, as
schematically represented in (d).
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geometrical frustration between the hexagonal ordering and
the helical twist between chiral viral particles [31].
The smectic-B phase also differs from a crystalline phase

(Cr) for which crossed Bragg reflections are expected,
indicating a strong coupling between the positional order
within and between the layers. Moreover, it should be
stressed that a crystalline phase has been observed beyond
the columnar state after a slow drying of virus suspensions
[31], then defining the following phase sequence by
increasing virus concentration:

I − N� − SmA − SmB − Col − Cr.

The occurrence of a columnar mesophase in between
the smectic-B and the crystalline phases may be explained
both by rod flexibility [27] acting as rod polydispersity and
by a generic charge-induced stabilization of the columnar
state, as explicitly demonstrated in different theoretical
works [29,44,45].

More quantitatively, the layer spacing λ has been
measured in the whole smectic range [Fig. 6(a)] and
correlated with SAXS data to determine the nature of
the smectic order (SmA or SmB). Because of the confine-
ment within the layers induced by the high-rod density, the
viruses are stretched and exhibit an effective end-to-end
length distance very similar to their respective contour
lengths L [65]. Therefore, the layer spacing λ normalized
by the respective virus contour length L is remarkably
rescaled into a master curve for both filamentous particles
of different stiffness P [inset of Fig. 6(a)]. Moreover, λ=L
decreases by increasing rod concentration and reaches the
value of λ=L≃ 1 at the Sm-Col phase transition, which is
shown to occur at the same concentration no matter what
the rod flexibility is (Fig. 6). This is in contrast to the N-Sm
transition for which the entropic penalty associated with the
rod rigidity favors the smectic organization at lower rod
densities [20,27,36,64], leading to a broader smectic range
for stiffer viruses (Fig. 6). Nevertheless, the fraction of
SmA phase is similar for both viral strains, and it represents
around 1=4 of the whole smectic range. It is worth
mentioning that the dynamical studies previously reported
on the smectic state [36,41,66] were all performed in the
SmA phase.

V. CONCLUSIONS

In conclusion, our study shows that the electrostatic
interaction of highly concentrated charged rods can be
accounted for with the simple concept of an effective hard-
core diameter Deff. This heuristic model confirms that the
N-Sm transition location is universal in the long-rod limit
and that it is only slightly sensitive to the softness of the
interparticle potential. Though there is already extensive
evidence from theory and computer simulations that phase
transitions can be driven by entropy rather than enthalpy,
our results are the first experimental demonstration that
packing effects are dominant even for the increasingly
complex ordered phases, which are the smectic phases.
Furthermore, by varying rod stiffness thanks to viral
mutants, we provide a reliable quantitative sketch of the
competitive stability of the nematic, smectic-A, newly
evidenced smectic-B, and columnar mesophases, which
should stimulate further theoretical investigations and
computer simulations where both rod flexibility and
electrostatic interactions are included.

ACKNOWLEDGMENTS

This research is supported by CNRS. We thank Carlos
Drummond and Seth Fraden for stimulating discussion.

[1] A. Einstein, On the Movement of Small Particles Suspended
in Stationary Liquids Required by the Molecular Kinetic
Theory of Heat, Ann. Phys. (Berlin) 322, 549 (1905).

FIG. 6. (a) Smectic-layer spacing λ obtained by fast Fourier
transform of the optical microscopy images [Fig. 5(b)]. Inset:
Smectic-layer spacing normalized by the respective viral contour
length L. (b) Positional correlation length ζ⊥ ¼ 2=FWHM
within the smectic layer measured by SAXS on the (100) Bragg
reflections [Fig. 5(c)] in the same samples as in (a). Black and red
symbols refer to semiflexible fd and stiff fdY21M viral rods,
respectively. The dashed lines indicate the smectic range for fd
(gray) and fdY21M (red) suspensions (Is ¼ 20 mM).

ERIC GRELET PHYS. REV. X 4, 021053 (2014)

021053-6

http://dx.doi.org/10.1002/andp.19053220806


[2] P. N. Pusey and W. van Megen, Phase Behaviour of
Concentrated Suspensions of Nearly Hard Colloidal
Spheres, Nature (London) 320, 340 (1986).

[3] V. J. Anderson and H. N.W. Lekkerkerker, Insights into
Phase Transition Kinetics from Colloid Science, Nature
(London) 416, 811 (2002).

[4] A. Yethiraj and A. van Blaaderen, A Colloidal Model System
with an Interaction Tunable from Hard Sphere to Soft and
Dipolar, Nature (London) 421, 513 (2003).

[5] Z. Dogic and S. Fraden, in Soft Matter, edited by G.
Gompper and M. Schick (Wiley-VCH, Weinheim, 2006),
Vol. 2, pp. 1–86.

[6] F. C. Bawden, N. W. Pirie, J. D. Bernal, and I. Fankuchen,
Liquid Crystalline Substances from Virus-Infected Plants,
Nature (London) 138, 1051 (1936).

[7] H. Maeda and Y. Maeda, Liquid Crystal Formation in
Suspensions of Hard Rodlike Colloidal Particles: Direct
Observation of Particle Arrangement and Self-Ordering
Behavior, Phys. Rev. Lett. 90, 018303 (2003).

[8] P. Davidson and J. C. P. Gabriel, Mineral Liquid Crystals,
Curr. Opin. Colloid Interface Sci. 9, 377 (2005).

[9] G. J. Vroege, D. M. E. Thies-Weesie, A. V. Petukhov, B. J.
Lemaire, and P. Davidson, Smectic Liquid-Crystalline
Order in Suspensions of Highly Polydisperse Goethite
Nanorods, Adv. Mater. 18, 2565 (2006).

[10] D. Kleshchanok, P. Holmqvist, J.-M. Meijer, and H. N.W.
Lekkerkerker, Lyotropic Smectic B Phase Formed in
Suspensions of Charged Colloidal Platelets, J. Am. Chem.
Soc. 134, 5985 (2012).

[11] A. Kuijk, D. V. Byelov, A. V. Petukhov, A. van Blaaderen,
and A. Imhof, Phase Behavior of Colloidal Silica Rods,
Faraday Discuss. 159, 181 (2012).

[12] M. Kleman and O. D. Lavrentovich, Soft Matter Physics, An
Introduction (Springer, New York, 2003).

[13] E. Barry and Z. Dogic, Entropy Driven Self-Assembly of
Nonamphiphilic Colloidal Membranes, Proc. Natl. Acad.
Sci. U.S.A. 107, 10348 (2010).

[14] Y. Yang, E. Barry, Z. Dogic, and M. Hagan, Self-Assembly
of 2D Membranes from Mixtures of Hard Rods and
Depleting Polymers, Soft Matter 8, 707 (2012).

[15] T. Gibaud, E. Barry, M. Zakhary, M. Henglin, A. Ward,
Y. Yang, C. Berciu, R. Oldenbourg, M. Hagan, D. Nicastro,
R. Meyer, and Z. Dogic, Reconfigurable Self-Assembly
through Chiral Control of Interfacial Tension, Nature
(London) 481, 348 (2012).

[16] L. Onsager, The Effects of Shape on the Interaction of
Colloidal Particles, Ann. N.Y. Acad. Sci. 51, 627 (1949).

[17] D. Frenkel, H. N.W. Lekkerkerker, and A. Stroobants,
Thermodynamic Stability of a Smectic Phase in a System
of Hard Rods, Nature (London) 332, 822 (1988).

[18] J.-L. Barrat and J.-P. Hansen, Basic Concepts for Simple and
Complex Liquids (Cambridge University Press, Cambridge,
England, 2003).

[19] A. Poniewierski, Nematic to Smectic-A Transition in the
Asymptotic Limit of Very Long Hard Spherocylinders, Phys.
Rev. A 45, 5605 (1992).

[20] A. V. Tkachenko, Nematic-Smectic Transition of Semiflex-
ible Chains, Phys. Rev. Lett. 77, 4218 (1996).

[21] P. Bolhuis and D. Frenkel, Tracing the Phase Boundaries of
Hard Spherocylinders, J. Chem. Phys. 106, 666 (1997).

[22] J. D. Parsons, Nematic Ordering in a System of Rods, Phys.
Rev. A 19, 1225 (1979).

[23] S. D. Lee, A Numerical Investigation of Nematic Ordering
Based on a Simple Hard-Rod Model, J. Chem. Phys. 87,
4972 (1987).

[24] B.Mulder,Density-Functional Approach to Smectic Order in
an Aligned Hard-Rod Fluid, Phys. Rev. A 35, 3095 (1987).

[25] A. M. Somoza and P. Tarazona, Nematic and Smectic Liquid
Crystals of Hard Spherocylinders, Phys. Rev. A 41, 965
(1990).

[26] A. M. Bohle, R. Holyst, and T. Vilgis, Polydispersity and
Ordered Phases in Solutions of Rodlike Macromolecules,
Phys. Rev. Lett. 76, 1396 (1996).

[27] P. van der Schoot, The Nematic-Smectic Transition in
Suspensions of Slightly Flexible Hard Rods, J. Phys. II
(France) 6, 1557 (1996).

[28] J. M. Polson and D. Frenkel, First-Order Nematic-Smectic
Phase Transition for Hard Spherocylinders in the Limit of
Infinite Aspect Ratio, Phys. Rev. E 56, R6260 (1997).

[29] H. H. Wensink,Columnar versus Smectic Order in Systems of
Charged Colloidal Rods, J. Chem. Phys. 126, 194901 (2007).

[30] Z. Dogic and S. Fraden, Smectic Phase in a Colloidal
Suspension of Semiflexible Virus Particles, Phys. Rev. Lett.
78, 2417 (1997).

[31] E. Grelet, Hexagonal Order in Crystalline and Columnar
Phases of Hard Rods, Phys. Rev. Lett. 100, 168301 (2008).

[32] O. J. Dammone, I. Zacharoudiou, R. P. A. Dullens, J. M.
Yeomans, M. P. Lettinga, and D. G. A. L. Aarts, Confine-
ment Induced Splay-to-Bend Transition of Colloidal Rods,
Phys. Rev. Lett. 109, 108303 (2012).

[33] Y. A. Wang, X. Yu, S. Overman, M. Tsuboi, G. J. Thomas
Jr., and E. H. Egelman, The Structure of a Filamentous
Bacteriophage, J. Mol. Biol. 361, 209 (2006).

[34] E. Barry, D. Beller, and Z. Dogic, AModel Liquid Crystalline
System Based on Rodlike Viruses with Variable Chirality and
Persistence Length, Soft Matter 5, 2563 (2009).

[35] W.M. Tan, R. Jelinek, S. J. Opella, P. Malik, T. D. Terry, and
R. N. Perham, Effects of Temperature and Y21 M Mutation
on Conformational Heterogeneity of the Major Coat Pro-
tein (pVIII) of Filamentous Bacteriophage fd, J. Mol. Biol.
286, 787 (1999).

[36] E. Pouget, E. Grelet, and M. P. Lettinga, Dynamics in the
Smectic Phase of Stiff Viral Rods, Phys. Rev. E 84, 041704
(2011).

[37] Z. Zhang and E. Grelet, Tuning Chirality in the
Self-Assembly of Rod-like Viruses by Chemical Surface
Modifications, Soft Matter 9, 1015 (2013).

[38] K. Zimmermann, H. Hagedorn, C. Chr. Heucks, M.
Hinrichsen, and H. Ludwig, The Ionic Properties of the
Filamentous Bacteriophages Pfl and fd, J. Biol. Chem. 261,
1653 (1986).

[39] J. X. Tang, P. A. Janmey, A. Lyubartsev, and L.
Nordenskiöld, Metal Ion-Induced Lateral Aggregation of
Filamentous Viruses fd and M13, Biophys. J. 83, 566 (2002).

[40] K. Kang, A. Wilk, A. Patkowski, and J. K. G. Dhont,
Diffusion of Spheres in Isotropic and Nematic Networks
of Rods: Electrostatic Interactions and Hydrodynamic
Screening, J. Chem. Phys. 126, 214501 (2007).

[41] E. Grelet, M. P. Lettinga, M. Bier, R. van Roij, and P. van
der Schoot, Dynamical and Structural Insights into the

HARD-ROD BEHAVIOR IN DENSE MESOPHASES OF... PHYS. REV. X 4, 021053 (2014)

021053-7

http://dx.doi.org/10.1038/320340a0
http://dx.doi.org/10.1038/416811a
http://dx.doi.org/10.1038/416811a
http://dx.doi.org/10.1038/nature01328
http://dx.doi.org/10.1038/1381051a0
http://dx.doi.org/10.1103/PhysRevLett.90.018303
http://dx.doi.org/10.1016/j.cocis.2004.12.001
http://dx.doi.org/10.1002/adma.200601112
http://dx.doi.org/10.1021/ja300527w
http://dx.doi.org/10.1021/ja300527w
http://dx.doi.org/10.1039/c2fd20084h
http://dx.doi.org/10.1073/pnas.1000406107
http://dx.doi.org/10.1073/pnas.1000406107
http://dx.doi.org/10.1039/c1sm06201h
http://dx.doi.org/10.1038/nature10769
http://dx.doi.org/10.1038/nature10769
http://dx.doi.org/10.1111/j.1749-6632.1949.tb27296.x
http://dx.doi.org/10.1038/332822a0
http://dx.doi.org/10.1103/PhysRevA.45.5605
http://dx.doi.org/10.1103/PhysRevA.45.5605
http://dx.doi.org/10.1103/PhysRevLett.77.4218
http://dx.doi.org/10.1063/1.473404
http://dx.doi.org/10.1103/PhysRevA.19.1225
http://dx.doi.org/10.1103/PhysRevA.19.1225
http://dx.doi.org/10.1063/1.452811
http://dx.doi.org/10.1063/1.452811
http://dx.doi.org/10.1103/PhysRevA.35.3095
http://dx.doi.org/10.1103/PhysRevA.41.965
http://dx.doi.org/10.1103/PhysRevA.41.965
http://dx.doi.org/10.1103/PhysRevLett.76.1396
http://dx.doi.org/10.1051/jp2:1996147
http://dx.doi.org/10.1051/jp2:1996147
http://dx.doi.org/10.1103/PhysRevE.56.R6260
http://dx.doi.org/10.1063/1.2730819
http://dx.doi.org/10.1103/PhysRevLett.78.2417
http://dx.doi.org/10.1103/PhysRevLett.78.2417
http://dx.doi.org/10.1103/PhysRevLett.100.168301
http://dx.doi.org/10.1103/PhysRevLett.109.108303
http://dx.doi.org/10.1016/j.jmb.2006.06.027
http://dx.doi.org/10.1039/B822478A
http://dx.doi.org/10.1006/jmbi.1998.2517
http://dx.doi.org/10.1006/jmbi.1998.2517
http://dx.doi.org/10.1103/PhysRevE.84.041704
http://dx.doi.org/10.1103/PhysRevE.84.041704
http://dx.doi.org/10.1039/c2sm27264d
http://dx.doi.org/10.1016/S0006-3495(02)75192-8
http://dx.doi.org/10.1063/1.2737446


Smectic Phase of Rod-like Particles, J. Phys. Condens.
Matter 20, 494213 (2008).

[42] K. R. Purdy, and S. Fraden, Influence of Charge and
Flexibility on Smectic Phase Formation in Filamentous
Virus Suspensions, Phys. Rev. E 76, 011705 (2007).

[43] G. Nägele, in The Physics of Colloidal Soft Matter, Lecture
Notes Vol. 14 (Polish Academy of Sciences Publication,
Warsaw, 2004).

[44] H. Graf and H. Löwen, Phase Diagram of Tobacco Mosaic
Virus Solutions, Phys. Rev. E 59, 1932 (1999).

[45] E. M. Kramer and J. Herzfeld, Avoidance Model for Soft
Particles. II. Positional Ordering of Charged Rods, Phys.
Rev. E 61, 6872 (2000).

[46] M. N. Tamashiro and H. Schiessel, Where the Linearized
Poisson-Boltzmann Cell Model Fails: Spurious Phase
Separation in Charged Colloidal Suspensions, J. Chem.
Phys. 119, 1855 (2003).

[47] G. S. Manning, Limiting Laws and Counterion Condensation
in Polyelectrolyte Solutions, J. Chem. Phys. 51, 924 (1969).

[48] G. S. Manning, Ionic Polarizability of Interacting Charged
Rods, Europhys. Lett. 86, 36001 (2009).

[49] G. S. Manning, Counterion Condensation on Charged
Spheres, Cylinders, and Planes, J. Phys. Chem. B 111,
8554 (2007).

[50] M. Deserno, C. Holm, and S. May, Fraction of Condensed
Counterions around a Charged Rod: Comparison of
Poisson-Boltzmann Theory and Computer Simulations,
Macromolecules 33, 199 (2000).

[51] E. Trizac, L. Bocquet, and M. Aubouy, Simple Approach for
Charge Renormalization in Highly Charged Macroions,
Phys. Rev. Lett. 89, 248301 (2002).

[52] L. Bocquet, E. Trizac, and M. Aubouy, Effective Charge
Saturation in Colloidal Suspensions, J. Chem. Phys. 117,
8138 (2002).

[53] E. Trizac, M. Aubouy, and L. Bocquet, Analytical Estima-
tion of Effective Charges at Saturation in Poisson-
Boltzmann Cell Models, J. Phys. Condens. Matter 15,
S291 (2003).

[54] E. Eggen, M. Dijkstra, and R. van Roij, Effective Shape and
Phase Behavior of Short Charged Rods, Phys. Rev. E 79,
041401 (2009).

[55] A. Stroobants, H. N.W. Lekkerkerker, and Th. Odjik, Effect
of Electrostatic Interaction on the Liquid Crystal Phase
Transition in Solutions of Rodlike Polyelectrolytes,
Macromolecules 19, 2232 (1986).

[56] G. J. Vroege and H. N.W. Lekkerkerker, Phase Transitions
in Lyotropic Colloidal and Polymer Liquid Crystals, Rep.
Prog. Phys. 55, 1241 (1992).

[57] K. R. Purdy and S. Fraden, Isotropic-Cholesteric Phase
Transition of Filamentous Virus Suspensions as a Function
of Rod Length and Charge, Phys. Rev. E 70, 061703
(2004).

[58] J. Tang and S. Fraden, Isotropic-Cholesteric Phase
Transition in Colloidal Suspensions of Bacteriophage fd,
Liq. Cryst. 19, 459 (1995).

[59] K. R. Purdy, Z. Dogic, S. Fraden, A. Rühm, L. Lurio, and
S. G. J. Mochrie, Measuring the Nematic Order of Suspen-
sions of Colloidal fd Virus by X-ray Diffraction and Optical
Birefringence, Phys. Rev. E 67, 031708 (2003).

[60] Z. Y. Chen, Nematic Ordering in Semiflexible Polymer
Chains, Macromolecules 26, 3419 (1993).

[61] B. Martinez-Haya and A. Cuetos, Stability of Nematic and
Smectic Phases in Rod-Like Mesogens with Orientation-
Dependent Attractive Interactions, J. Phys. Chem. B 111,
8150 (2007).

[62] A. Yethiraj, Tunable Colloids: Control of Colloidal Phase
Transitions with Tunable Interactions, Soft Matter 3, 1099
(2007).

[63] G. Cinacchi and L. de Gaetani, Phase Behavior of Wormlike
Rods, Phys. Rev. E 77, 051705 (2008).

[64] R. C. Hidalgo, D. E. Sullivan, and J. Z. Y. Chen, Smectic
Ordering of Homogeneous Semiflexible Polymers, Phys.
Rev. E 71, 041804 (2005).

[65] Z. Dogic, J. Zhang, A.W. C. Lau, H. Aranda-Espinoza, P.
Dalhaimer, D. E. Discher, P. A. Janmey, R. D. Kamien, T. C.
Lubensky, and A. G. Yodh, Elongation and Fluctuations of
Semiflexible Polymers in a Nematic Solvent, Phys. Rev.
Lett. 92, 125503 (2004).

[66] M. P. Lettinga and E. Grelet, Self-Diffusion of Rodlike
Viruses through Smectic Layers, Phys. Rev. Lett. 99,
197802 (2007).

ERIC GRELET PHYS. REV. X 4, 021053 (2014)

021053-8

http://dx.doi.org/10.1088/0953-8984/20/49/494213
http://dx.doi.org/10.1088/0953-8984/20/49/494213
http://dx.doi.org/10.1103/PhysRevE.76.011705
http://dx.doi.org/10.1103/PhysRevE.59.1932
http://dx.doi.org/10.1103/PhysRevE.61.6872
http://dx.doi.org/10.1103/PhysRevE.61.6872
http://dx.doi.org/10.1063/1.1579676
http://dx.doi.org/10.1063/1.1579676
http://dx.doi.org/10.1063/1.1672157
http://dx.doi.org/10.1209/0295-5075/86/36001
http://dx.doi.org/10.1021/jp0670844
http://dx.doi.org/10.1021/jp0670844
http://dx.doi.org/10.1021/ma990897o
http://dx.doi.org/10.1103/PhysRevLett.89.248301
http://dx.doi.org/10.1063/1.1511507
http://dx.doi.org/10.1063/1.1511507
http://dx.doi.org/10.1088/0953-8984/15/1/339
http://dx.doi.org/10.1088/0953-8984/15/1/339
http://dx.doi.org/10.1103/PhysRevE.79.041401
http://dx.doi.org/10.1103/PhysRevE.79.041401
http://dx.doi.org/10.1021/ma00162a020
http://dx.doi.org/10.1088/0034-4885/55/8/003
http://dx.doi.org/10.1088/0034-4885/55/8/003
http://dx.doi.org/10.1103/PhysRevE.70.061703
http://dx.doi.org/10.1103/PhysRevE.70.061703
http://dx.doi.org/10.1080/02678299508032007
http://dx.doi.org/10.1103/PhysRevE.67.031708
http://dx.doi.org/10.1021/ma00065a027
http://dx.doi.org/10.1021/jp0715171
http://dx.doi.org/10.1021/jp0715171
http://dx.doi.org/10.1039/b704251p
http://dx.doi.org/10.1039/b704251p
http://dx.doi.org/10.1103/PhysRevE.77.051705
http://dx.doi.org/10.1103/PhysRevE.71.041804
http://dx.doi.org/10.1103/PhysRevE.71.041804
http://dx.doi.org/10.1103/PhysRevLett.92.125503
http://dx.doi.org/10.1103/PhysRevLett.92.125503
http://dx.doi.org/10.1103/PhysRevLett.99.197802
http://dx.doi.org/10.1103/PhysRevLett.99.197802

