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The new challenges posed by the need of finding strong rare-earth-free magnets demand methods that
can predict magnetization and magnetocrystalline anisotropy energy (MAE). We argue that correlated
electron effects, which are normally underestimated in band-structure calculations, play a crucial role in the
development of the orbital component of the magnetic moments. Because magnetic anisotropy arises from
this orbital component, the ability to include correlation effects has profound consequences on our
predictive power of the MAE of strong magnets. Here, we show that incorporating the local effects of
electronic correlations with dynamical mean-field theory provides reliable estimates of the orbital moment,
the mass enhancement, and the MAE of YCo5.
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I. INTRODUCTION

Magnets play a central role in different types of devices
and motors, which are at the heart of modern technology.
There is an increasing need of permanent magnetic materi-
als for energy conversion and power generation [1].
Magnetocrystalline anisotropy (MA) is one of the most
important properties of permanent magnets [2]. Large MA
is achieved in existing strong magnets by using rare-earth
transition-metal intermetallic compounds, such as SmCo5
and Nd2Fe14B, which are of direct technological use.
However, the shortage of rare-earth elements has triggered
the search for rare-earth-free magnetic materials harnessing
sources of magnetic anisotropy other than that provided by
the rare-earth components [1]. In order to guide this search,
it is necessary to develop theoretical methods that can
estimate the magnetocrystalline anisotropy energy (MAE)
of 3d, 4d, and 5d transition metals, which are the natural
candidates for replacing rare-earth elements.
The contribution of itinerant ferromagnetic electrons to

MA arises from the spin-orbit (SO) interaction that couples
the spin and orbital components of the magnetic moments
[3]. MA results from the orbital component of the moment,
which is sensitive to the lattice anisotropy. The very first
electronic structure analysis of MAE for Ni was conducted
by Kondorskii and Straub [4]. While a band picture may
provide a MAE of the right order of magnitude for certain

transition-metal ferromagnets [5,6], accurate electronic
structure calculations of the MAE of 3d metals, such as
Fe, Co, and Ni, give numbers that are in disagreement with
experiment [7,8]. Moreover, the wrong easy axis is
obtained for Ni. This failure has been attributed to either
the omission of the orbital correlation induced by the intra-
atomic Coulomb interaction between electrons [9] or the
limitation of band-structure calculations for calculating
energy differences of the order of 0.1 meV [7].
YCo5 has one of the largest MAEs among ferromagnets

that do not include f-electron (actinide or lanthanide) ions.
The MAE is more than 50 times larger than in the pure
cobalt metal. Like SmCo5, it has an easy axis parallel to the
c axis of its hexagonal lattice structure. The primitive unit
cell contains six atoms with two different cobalt sites,
Co(2c) and Co(3g) [10]. Neutron scattering experiments by
Schweizer et al. have reported unusually large orbital
moments on these Co sites [11]: morbðCoð2cÞÞ ¼ 0.46μB
and morbðCoð3gÞÞ ¼ 0.28μB. However, our x-ray magnetic
circular dichroism (XMCD) measurements indicate that the
average orbital moment of Co is 0.2μB, in better agreement
with the value of 0.25μB reported by Heidemann et al. [12].
These measurements suggest that the rather large orbital
magnetic moments of the Co atoms are partially respon-
sible for the strong MAE of YCo5. Consequently, reliable
estimates of the MAE require an accurate calculation of
these orbital moments. This is not only true for YCo5, but
also for any other strong magnet based on transition metals.
We then use YCo5 as a prototype compound for developing
and testing methods for calculating the orbital moments and
the MAE of strong magnets.
Nordström et al. [10] have applied the force theorem to

compute the MAE of YCo5 from first-principles calcula-
tions. It was found that, in the absence of atomic orbital
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correlation, the MAE is too small and it even has the
incorrect sign, in agreement with Ref. [7]. After including
the orbital polarization (OP) scheme [13,14], they were
able to obtain a MAE that has the correct sign. However,
the MAE value of about 50 μRy, when extrapolated to the
infinitesimal grid in the momentum space, is still too small
in comparison with the experimental value of 292 μRy
[15]. A similar improvement is obtained for estimations of
the orbital magnetic moments of both Co sites. In the
absence of orbital correlation, the result is morbðCoð2cÞÞ ¼
0.1μB and morbðCoð3gÞÞ ¼ 0.13μB [16], while the
inclusion of OP leads to morbðCoð2cÞÞ ¼ 0.27μB and
morbðCoð3gÞÞ ¼ 0.20μB [10].
The OP scheme is taken from the theory of open-shell

atoms within the Russel-Saunders coupling. The ground-
state energy gain, which is obtained by maximizing the
orbital angular momentum L, is approximated by
EOP ¼ −BL2=2, where B is the Racah parameter for d
sates. This effect is just a consequence of the Coulomb
interaction between d electrons that occupy the same ion
and it must influence the final value of the orbital magnetic
moment and the MAE. However, it is well known that the
on-site electron-electron Coulomb interaction also renorm-
alizes the band states (electrons tend to avoid each other),
for which heavy fermion behavior in the f-electron systems
is a prototypical example [17]. Therefore, it is reasonable to
expect that this second consequence of the Coulomb
interaction will also affect the magnitude of the orbital
magnetic moment and the MAE. Here, we propose a
method for including these additional correlations.

II. ROLE OF COULOMB INTERACTION ON
LOCAL MOMENT FORMATION

The effect of electron-electron interaction is to reduce the
bandwidth of the quasiparticles and produce an incoherent
component in their spectral weight. The most dramatic
effect of this Coulomb repulsion is the emergence of Mott
insulators in half filled bands via localization of individual
electrons in their atomic orbitals. The electronic localiza-
tion is accompanied by the formation of a local magnetic
moment, whose spin and orbital components can be of the
order of a Bohr magneton (μB) [18]. It is clear that Coulomb
interaction cannot localize the electronic charge away from
half filling. However, the band narrowing effect can be
interpreted as a tendency towards localization that favors
local moment formation. This simple reasoning suggests
that the inclusion of electronic correlations should lead to
more realistic values of the effective mass of the quasi-
particles, orbital magnetic moments, and MAE.
Standard local density approximation (LDA) calcula-

tions lead to orbital magnetic moments of order 0.1μB. This
result can be understood in the following way. The typical
bandwidths W of 3d metals like Fe or Co are of the order
of a few electron volts. The SO interaction is about

λ≃ 0.05–0.07 eV. In the absence of SO coupling, the
ground state has zero orbital angular momentum, even if
it has a net spin magnetization, because single-particle
states with opposite values of the orbital magnetic moment
are degenerate and, therefore, equally occupied. A finite SO
coupling term splits states with opposite values of orbital
moment by an amount that is of order λ. This observation
implies that only the electronic states that are within a
distance λ from the Fermi level contribute to orbital
polarization. The fraction of electrons occupying these
states is of order λ=W ≃ 0.02. Because the maximum
possible value of the orbital moment per atom is of order
1μB, this rough estimate indicates that morb ≲ 0.1μB, in
agreement with previous results from standard band-
structure calculations [10]. However, as pointed out in
the Introduction, the orbital magnetic moment of strong
magnets, such as YCo5, can be higher than this rough
estimate.
It is natural to assume that the discrepancy arises from

the effects of rather strong intra-atomic electronic correla-
tions induced by the Coulomb interaction. The improve-
ment that is obtained after including the intra-atomic OP
effect provides empirical support for this assumption.
However, the most basic and general argument in favor
of this assumption is that intra-atomic Coulomb repulsion
favors local moment formation by suppressing double
occupancy of single atomic orbitals. The importance of
correlation effects on the magnetic anisotropy of Fe and Ni
was recognized more than 10 years ago by Yang et al. [19].
This problem is now timely because of the increasing need
of finding strong magnets that are free of rare-earth
elements. Therefore, it is crucial to propose new methods
that can incorporate the subtle effects of correlations in
solids (the OP effect that we discussed above is already
captured at the level of single-atom physics). For this
purpose, we propose a method based on the combination of
the dynamical mean-field theory (DMFT) and the LDA
[20]. A similar approach has been successfully applied to
the calculation of neutron magnetic form factors of acti-
nides by applying an external magnetic field [21], as well as
the bulk and surface quasiparticle spectra [22] and the
orbital magnetism [23] in Fe, Co, and Ni metals. The basic
idea is to treat each Co ion as an effective impurity that is
embedded into the bath generated by the rest of the ions.
The single-ion interactions (including the OP) are captured
by the single-impurity Hamiltonian. The correlations
developed via the interplay between the single-ion terms
and the interaction with the bath (solid) are captured by a
self-consistent treatment of the full Hamiltonian that we
describe in the next section.

III. LOCAL DENSITY APPROXIMATION PLUS
DYNAMICAL MEAN-FIELD THEORY

To study the role of electronic correlations on the orbital
moment of the magnetic 3d ions by combining the LDA
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with dynamical mean-field theory (LDAþDMFT) [20], we
start with a generalized many-body Hamiltonian:

Ĥ¼
X
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Here, k is a wave vector in the Brillouin zone, i is a lattice
site index for atoms with correlated orbitals, l is the orbital
angular momentum, ml ¼ −l;−lþ 1;…; l − 1; l, and σ is
the spin projection quantum number. The field operator
c†ilmlσ

(cilmlσ) creates (annihilates) an electron with spin σ
and orbital indices (lml) at site i, while c

†
klmlσ

(cklmlσ) is the
corresponding operator in momentum space. The first term
of Ĥ contains the single-particle contribution, which is
determined by solving the Kohn-Sham quasiparticle equa-
tions [24] within the LDA. We note that the SO coupling
can be included in a second variational way in the LDA
Hamiltonian. In the second term of Ĥ we restrict the
Coulomb repulsion to the correlated orbitals [e.g., open-
shell Co 3d orbitals (l ¼ 2) or Ce 4f orbitals (l ¼ 3)] to
reduce the complexity of the problem [20]. The Coulomb
matrix elements are obtained from atomic physics:

Vmlm0
lm

00
l m

000
l
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X2l
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00
l ; m
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where Fk and ak are the Slater integrals and the corre-
sponding expansion coefficients [25]. For solids, we
identify the atomic Slater integral F0 with the screened
effective Coulomb interaction parameter U of the corre-
lated orbitals. As a common practice, higher-order Slater
integrals are reduced by 20% from the atomic Hartree-Fock
calculations due to screening effects [26].
Within DMFT, the lattice problem of Eq. (1) is mapped

onto a multiorbital quantum single-impurity problem sub-
ject to the self-consistency condition (see Fig. 1):

Ĝ−1ðiωnÞ ¼ Ĝ−1
locðiωnÞ þ Σ̂ðiωnÞ: (3)

Here, ĜðiωnÞ is theWeiss function, Σ̂ðiωnÞ is ak-independent
self-energy, and the local Green function is defined as
ĜlocðiωnÞ ¼

P
kĜkðiωnÞ=N, where the lattice Green func-

tion reads

ĜkðiωnÞ ¼ ½ðiωn þ μÞÎ − Ĥ0ðkÞ − Σ̂ðiωnÞ�−1: (4)

Î is the identity matrix in the complete tight-binding basis
and μ is the chemical potential. Because we have added the
on-site Coulomb terms to the correlated valence orbitals

only, it is evident that the self-energy Σ̂ matrix has nonzero
elements only within the 10 × 10 d-d block for the case of
valence d orbitals or the 14 × 14 f-f block for the case of
valence f orbitals. This self-energy matrix is a function of

the Matsubara frequency: ΣddðffÞ
mlσ;m0

lσ
0 ðiωnÞ. Correspondingly,

the local Green function for the correlated orbitals has the

same structure GddðffÞ
loc;mlσ;m0

lσ
0 ðiωnÞ. We assume that the

dominant contributions to the spin and orbital components
of the magnetic moments come from the correlated orbitals
(Co 3d orbitals for the case of YCo5). After obtaining the
local Green function for the correlated orbitals through the
full self-consistency, we evaluate the spin and orbital
moments by computing Ms ¼

P
mlσ

σρmlσ;mlσ and Morb ¼P
mlσ

mlρmlσ;mlσ, respectively, in the spherical harmonics
basis. Here, the density matrix is related to the local Green
function as

ρ̂ ¼ ĜddðffÞ
loc ðτ → 0−Þ ¼ 1

β

X

iωn

ĜddðffÞ
loc ðiωnÞe−iωn0

−
; (5)

where β ¼ 1=kBT, with kB and T the Boltzmann constant
and temperature, respectively.
In earlier applications of the LDAþDMFT method, it is

common use to rotate the local Green function and the
corresponding self-energy into a basis in which the
diagonal matrix elements are dominant in order to neglect
the off-diagonal elements. For example, for actinide-based
materials, the correlated 5f orbitals are rotated into the J-J
basis because of the dominant SO coupling [27,28]. In
contrast, SO coupling is subdominant for d-electron mate-
rials, such as transition-metal oxides, and the self-energy
and local Green function matrices are diagonal in the
crystal field basis when the SO coupling is neglected
[29–32]. However, the off-diagonal matrix elements cannot
be neglected if our goal is to compute the MAE (the SO
coupling must be included to obtain a finite MAE and the
orbital magnetic moment has only off-diagonal contribu-
tions in this basis). This situation requires a further
development of quantum impurity solvers to meet this

LDA
eff

LDA

loc

FIG. 1. Schematic description of the LDAþDMFT approach.
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challenge and similar challenges posed by other correlated
electron materials, such as the inclusion of crystal field
terms in 4f and 5f compounds.

IV. COMPUTATIONAL RESULTS

Here, we use the spin-polarized T-matrix fluctuation-
exchange approximation technique (SPTF) [33] to solve
the effective quantum impurity problem. In this formalism,
the self-energy includes Hartree and Fock diagrams with
the bare interaction replaced by the T matrix and particle-
hole contributions with the bare interaction replaced by the
particle-hole potential fluctuation matrix. The T matrix and
the particle-hole potential fluctuation matrix are, in turn,
expressed in terms of particle-particle and particle-hole
susceptibilities. We use the charge self-consistent
LDAþDMFTðSPTFÞ approach as implemented in an
electronic structure code based on a full-potential linear
muffin-tin orbital method (LMTO) [22,34–36]. The LMTO
basis sets contain a triple basis for s and p states and a
double basis for the d orbitals of YCo5. The basis of the
valence electrons is constructed with 4s, 4p, and 3d states
for the Co atoms and 5s, 5p, 4d states for Y atoms. The Nk
k points are distributed with the conventional Monkhorst-
Pack grid, and the Brillouin zone integration is carried out
with the Fermi smearing at a temperature of T ¼ 474 K. To
explore the role of electronic correlation effects arising
from the screened Coulomb interaction U, we fix the
higher-order slater integrals of F2 ¼ 7.75 eV and F4 ¼
4.85 eV from Ref. [35]. These values of F2 and F4 for the d
orbitals result in a Stoner parameter J ¼ 0.9 eV, which is
consistent with the value used in earlier studies of Co
metals [22]. We treat the effect of the Coulomb exchange
interaction with F2 and F4 explicitly.
We first explore the relevance of the notion of electronic

correlation in the ferromagnetic metals by studying the
quasiparticle renormalization effect. In connection with the
specific-heat coefficient as measured from the thermody-
namic experiments, the effective mass enhancement is
proportional to the ratio of the quasiparticle density of
states to band one at the Fermi energy: m�=mb ¼ ~ρbðEFÞ=
ρbðEFÞ. For the cases where the d electrons are active
carriers, the band density of states has a predominant d
character: ρbðEFÞ ¼

P
i;αwiρb;i;αðEFÞ, where ρb;i;α is the

partial density of states at the Fermi energy from the 10 spin
orbitals for the ith type of Co atom. Here, α is the spin-
orbital index, while wi is the number of equivalent atoms
of a given type. Within a renormalized band theory, we
generalize the quasiparticle density of states at the Fermi
energy as ~ρbðEFÞ ¼

P
i;αwi ~ρb;i;αðEFÞ. Here, the spin-

orbital-dependent quasiparticle density of states at the
Fermi energy is given by ~ρb;i;αðEFÞ ¼ ρb;i;αðEFÞ=zi;α,
where the quasiparticle weight is zi;α ¼ ½1 − ∂ImΣα;iðiωnÞ=∂ωnjωn→0�−1, with the self-energy Σα;i defined on the
Matsubara frequency ωn axis.

Figure 2 shows the U dependence of the mass enhance-
ment relative to LDA calculations m�=mb obtained by
applying the LDAþDMFT method to YCo5. As expected,
the effective mass increases monotonically with U. The
mass enhancement takes values between 1.5 and 2 for U
varying between 2.5 and 4 eV. The Sommerfeld coefficient
γ of the specific heat is proportional to the effective mass of
the quasiparticles. Based on our specific-heat measure-
ments of YCo5, we obtain a Sommerfeld coefficient
γ ¼ 90 mJ=molK2 f:u:, which is ∼2.7 times larger than the
value γb ≃ 33 mJ=molK2 f:u: extracted from pure LDA
calculations (see Appendix A). Note that some additional
contribution to the electronic renormalization arising
from the electron-phonon coupling is not included in our
calculations. Because γ=γb is equal to m�=mb, this ratio
indicates that YCo5 is a rather correlated metal for U
between 2.5 and 4 eV. Values of U in this range have been
previously reported in the YCo5 literature [22,35].
Figure 3(a) shows the orbital magnetic moments on the

two inequivalent Co atoms as a function of U. The orbital
moment of the Coð2cÞ atoms is always larger than the
moment of the Coð3gÞ atoms and both depend nonmono-
tonically on U, reaching their maximum values at
U ≃ 2 eV. The results for U → 0 reproduce the values
obtained in previous LDA calculations [10,16], while the
moments increase by a factor of ∼2 for U ≃ 1–3 eV. This
increase is consistent with our XMCD measurements,
which indicate that the average orbital magnetic moment
on the Co ion is 0.20μB. This observation confirms the
relevant role of U on the formation of a strong orbital
moment.
However, the most dramatic effect of the on-site

Coulomb repulsion U appears when we compute the
MAE, as is clear from our LDAþDMFT results shown
in Fig. 3(b). By comparing Figs. 3(a) and 3(b), we see that
the MAE and the size of the orbital moments exhibit the
same nonmonotonic dependence on U. The extrapolated
LDA value of the MAE is much lower than the measured
value of K1V ¼ 250 μRy shown with a dashed line in

1 1.5 2 2.5 3 3.5 4
U (eV)

1

1.2

1.4

1.6

1.8

2

m
* /m

b

FIG. 2. Ratio between the effective electronic mass m�, in the
presence of on-site Coulomb interaction U, and the mass mb
obtained from a LDA calculation.
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Fig. 3(b) (V ¼ 0.84 × 10−22 cm3 is the volume of the
primitive unit cell and K1 ¼ 2.98 × 1018 Ry=cm3 [37]).
However, the MAE increases drastically with U, reaching
values that are more than an order of magnitude higher in
the range U ∼ 1–3.5 eV. This dramatic increase not only
explains the reason why LDA calculations systematically
underestimate the MAE of strong magnets, but also shows
the crucial role played by electronic correlations in the
development of large magnetic coercivity. In addition, the
MAE obtained from our LDAþDMFT calculations for U
between 3 and 3.5 eV is in good agreement with the
experimental value.

V. CONCLUSIONS

The fact that the strongest magnets are rare-earth-based
compounds suggests that the large magnitude of the SO
coupling plays a crucial role in the development of high
coercivity. One would then expect that the intrinsic MA of
Nd2Fe14B or SmCo5 originates from the crystal field
splitting of the rare-earth 4f levels. There is experimental
evidence, however, indicating that substantial magneto-
crystalline anisotropy may be associated with the transi-
tional metal sublattice itself. For instance, the coercive field

of magnetically hardened Gd2Fe14B is 2.5 kOe [38,39], but
the Gd3þ ion has no significant contribution from 4f
electrons to the orbital moment, suggesting an increasing
role of Gd 5d-orbital electrons [40]. In addition, the MAE
of SmCo5 is only 3 times higher than the MAE of YCo5 and
Y is nonmagnetic. Our results indicate that the MAE of a
magnet is dramatically modified by the presence of strong
on-site Coulomb interaction U that tends to localize the
electrons. We note that enhanced correlations could also be
playing a role in rare-earth-based compounds (rare-earth
elements have large ionic radii). This may explain why
rare-earth-based compounds, in which the rare-earth
element has no orbital moment, still have ery high MAE.
By a close comparison of our LDAþDMFT calculations

with different key experimental measurements, we show
that electronic correlation effects play an essential role in
determining the MAE of YCo5. These calculations suggest
that the figure of merit of strong magnets can be greatly
optimized by tuning the electron Coulomb repulsion U.
Our analysis has natural implications for the search of rare-
earth-free strong magnets. While it may be important to
retain a large SO coupling, it is equally or even more
important to find strongly correlated ferromagnets in order
to induce a large enough orbital moment on the transition
metal. Developing predictive tools for the MAE of strong
magnets is an essential precondition for guiding the search
for new materials. Our results indicate that LDAþDMFT
techniques are very promising because they incorporate the
relevant interplay between kinetic and Coulomb energies.
Further improvements in impurity solvers should allow one
to obtain even more reliable values of the MAE for magnets
that are in the intermediate or strong coupling regime (that
is, U comparable to or larger than the bandwidth).
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APPENDIX A: SPECIFIC-HEAT
MEASUREMENTS ON YCo5

We perform the specific-heat measurements on poly-
crystalline samples of YCo5, which were made by arc
melting the constituents on a water-cooled copper hearth. It
is measured down to 2 K in zero magnetic field using a
thermal relaxation method implemented in a Quantum
Design PPMS-9 device. The data are shown in Fig. 4.
The Sommerfeld coefficient (γ) is found to be 90 mJ=mol ·
K2 by fitting C=T below 10 K to the form of

FIG. 3. On-site Coulomb U dependence of the orbital magnetic
moments on Co sites and magnetocrystalline anisotropy energy
(MAE) per formula unit of YCo5. All of the solid curves
correspond to the results obtained with the LDAþDMFT method
described in the text. The dashed line corresponds to the
measured valued according to Ref. [37]. The inset of (b) shows
the MAE dependence on the number of k points in the Brillouin
zone for two representative values of Hubbard interaction
U ¼ 2.0 eV (red line with diamond symbols) and 2.5 eV (black
line with circle symbols). The k-point convergence is reasonably
reached.
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γ þ βT2 þ δT4. We attribute γ to the electronic contribution
to the heat capacity, while the lattice and magnetic con-
tributions are accounted for by the βT2 and δT4 terms.
To obtain the mass enhancement due to strong correla-

tions, we compare the measured Sommerfeld coefficient to
the bare density of states obtained by our DFT calculations
using the generalized gradient approximation with the
Perdew-Burke-Ernzerhof exchange correlation potential
[41]. Both the full-potential LMTO as implemented in
the RSPt [36] program and the full-potential linearized
augmented plane wave as implemented in Wien2k [42]
program give consistent results. By summing both spin
contributions, we find the density of states at the Fermi
level NðEFÞ ¼ 14 states=eV. From this, we obtain a mass
enhancement m�=mb ¼ γ=½π2k2BNðEFÞ=3� ¼ 2.7.

APPENDIX B: X-RAY CIRCULAR MAGNETIC
DICHROISM MEASUREMENTS ON YCo5

The XMCD measurements are carried out in a total
electron yield detection scheme at the beam line 4-ID-C
of the Advanced Photon Source, Argonne National
Laboratory. The beam line 4-ID-C has the ability to
generate circularly polarized x rays at the resonances of
3d elements with high degree of circular polarization
(> 97%) by means of an electromagnetic circularly polar-
izing undulator, including the ability to switch polarization
state with a 1 Hz frequency. For the XMCD measurements
the samples are ground into fine powder and pressed
directly into electrically conducting carbon tape and placed
in contact with a Cu holder. The Cu holder is electrically
isolated from the cold finger by a sapphire disk. The
samples are placed into a 7 T superconducting magnet with
a variable temperature insert. All scans are carried out at a
temperature T ¼ 20 K and over an energy range of 770 to
810 eV to measure the Co L3 and L2 edges (778.1 and
793.2 eV, respectively). Total electron yield data sets μþ

and μ− recorded with left- and right-circularly polarized
x rays, respectively, are background subtracted and edge-
step normalized (edge is normalized to one). Moreover,
each measurement is carried out for magnetic fields
H ¼ 6 T directed along and opposite to the photon wave
vector, respectively, to check for experimental artifacts.
Using μþ and μ−, the normalized intensity of x-ray
absorption near edge structure (XANES) (μ0 ¼ ðμþþ
μ−Þ=2) and XMCD (Δμ ¼ μþ − μ−) data sets for YCo5
are obtained. The orbital contribution to the magnetic
moment is then extracted using the sum rules for 3d
transition metals [43,44]:

L ¼ −
4

3
nh

ΔIL3
þ ΔIL2

IL3
þ IL2

; (B1)

where nh is the number of holes in the 3d shell, and nh ¼ 3
for the 3d7 configuration of Co in YCo5. IL2

=IL3
are the

integrated intensity in the isotropic white lines at the L2=L3

edges, and ΔIL2
=ΔIL3

are the integrated intensities in the
partial dichroic signal.
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