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Spatial tailoring of the material constitutive properties is a well-known strategy to mold the local flow of
given observables in different physical domains. Coordinate-transformation-based methods (e.g., trans-
formation optics) offer a powerful and systematic approach to design anisotropic, spatially inhomogeneous
artificial materials (metamaterials) capable of precisely manipulating wave-based (electromagnetic,
acoustic, elastic) as well as diffusion-based (heat) phenomena in a desired fashion. However, as versatile
as these approaches have been, most designs have thus far been limited to serving single-target
functionalities in a given physical domain. Here, we present a step towards a “transformation multiphysics”
framework that allows independent and simultaneous manipulation of multiple physical phenomena. As a
proof of principle of this new scheme, we design and synthesize (in terms of realistic material constituents)
a metamaterial shell that simultaneously behaves as a thermal concentrator and an electrical “invisibility
cloak.” Our numerical results open up intriguing possibilities in the largely unexplored phase space of
multifunctional metadevices, with a wide variety of potential applications to electrical, magnetic, acoustic,
and thermal scenarios.
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I. INTRODUCTION

Traditionally, conventional materials have been devised
and engineered to serve only single-target applications.
In an integrated circuit, for example, each component is
designed to play a specific role: metallic interconnection
lines carry electric currents, while a separated block works
as a heat sink for dissipating heat. If a single building block
could be designed to perform multiple functions in different
physical domains, independently but at the same time, this
could lead to a completely new way to design complex
systems. Natural media are not conceived to accomplish
multiple functionalities at the same time, and for this
reason, taming different physical phenomena at will is a
tough proposition.
A new avenue could be paved with the employment of

properly engineered artificial materials. Driven by the
ability to induce physical responses absent in nature, the
field of metamaterials has seen a tremendous growth in
recent years. One of the catalysts for the progress made in
this field, theoretically as well as experimentally, has been

the so-called transformation-optics theory [1,2]. Viewing
the rerouting of energy flow as a distortion of space from a
coordinate transformation, the correspondence between
constitutive material parameters and geometric transforma-
tions can serve as a powerful recipe for designing and
fabricating artificial structures. This approach has been
utilized not only for the manipulation of electromagnetic
waves [3–5], but also for acoustics [6–10], elastodynamics
[11–16], electrostatic [17–19] and magnetostatic [20–24]
fields, as well as liquid surface waves [25], and diffusive
heat flow [26–28]. See Refs. [29–31] for recent perspec-
tives and reviews of metamaterial applications to diverse
fields. Within this framework, it is also worth mentioning
some recent multiphysics studies aimed at exciting surface
plasmon polaritons in graphene via the interplay of light
and sound waves [32,33].
From the mounting experimental applications in various

physical branches, it is clear that the strength of the
transformation-optics theory is first and foremost its
unconventional versatility. Taking advantage of it, one
may envision applying the theory to simultaneously
manipulate multiple physical phenomena in independent
fashions. For example, a material may be designed to
exhibit a particular thermal functionality while its electrical
functionality is made drastically different via separate but
intertwined coordinate transformations.
Through the example of designing a metamaterial shell

that behaves as a thermal concentrator and an electrical
“invisibility cloak” at the same time, here we present a
framework that allows access to the phase space of
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multifunctionality with metastructures. Utilizing coordi-
nate transformations while effectively linking phenomena
in multiple physical domains, we demonstrate a step
towards a general platform that can be called transforma-
tion multiphysics.
Accordingly, the rest of the paper is organized as follows.

In Sec. II, with specific reference to thermal and electrical
scenarios, we outline the modeling aspects pertaining to the
transformation media, their effective-medium implementa-
tion, and the numerical simulations (with details provided
in Appendixes A and B). In Sec. III, we illustrate a proof-
of-principle example of synthesis in terms of realistic
material constituents. In Sec. IV, we provide further insight
into the response exhibited by our metastructure, as well
as some bounds dictated by practical limitations. Finally,
in Sec. V, we provide some brief conclusions and
perspectives.

II. MODELING ASPECTS

A. Thermal and electrical transformation media

Although, in principle, our approach could be applied to
different physical domains, our focus here is on the thermal
and electrical responses. As illustrated in Fig. 1(a), we
begin by considering an auxiliary space r0 ¼ ðx0; y0; z0Þ,
filled with an isotropic medium of thermal and electrical
conductivities κ0 and σ0. At equilibrium, the stationary heat
and electrical conduction equations in the absence of
sources are given by

∇ · ðκ0∇T 0Þ ¼ 0; ∇ · ðσ0 ∇V 0Þ ¼ 0; (1)

with T 0 and V 0 denoting the temperature and electrical
potential, respectively. In the homogeneous case (i.e., κ0

and σ0 constant), if temperature and potential differences
exist at the two boundaries, the heat flux and electrical
current density would be directed along straight, parallel
paths, as schematically depicted in Fig. 1(a). This is the
typical behavior of natural materials.
Next, we introduce two coordinate transformations to a

new curved-coordinate space r, namely,

r0 ¼
�
FtðrÞ
FeðrÞ ; (2)

with the subscripts t and e denoting the thermal and
electrical domains, respectively, which induce different
local metric distortions in the two physical domains. For
instance, as shown in Fig. 1(a), we consider a concentrator-
type transformation in the thermal domain and an invis-
ibility-cloak-type transformation in the electrical domain.
By exploiting the form-invariance properties of Eq. (1), the
temperature and potential distributions in the transformed
domains can be readily related to the original quantities
as [31]

TðrÞ ¼ T 0½FtðrÞ�; VðrÞ ¼ V 0½FeðrÞ�: (3)

Moreover, the distortion effects induced by the coor-
dinate transformations can be equivalently obtained in a
flat, Cartesian space r ¼ ðx; y; zÞ filled with an inhomo-
geneous, anisotropic transformation medium [cf. Fig. 1(b)]
characterized by thermal and electrical conductivity
tensors [31]

κ
↔ ¼ κ0 detðΛ

↔

tÞΛ
↔−1

t · Λ
↔−T

t ; σ
↔ ¼ σ0 detðΛ

↔

eÞΛ
↔−1

e · Λ
↔−T

e ;

(4)
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FIG. 1. (a) Auxiliary space filled with an isotropic, homogeneous medium, wherein heat flux and electrical current density follow
parallel straight paths. Two coordinate transformations are applied that induce different behaviors in the thermal (e.g., concentrator) and
electrical (e.g., cloak) domains. (b) Equivalent interpretation, in a flat-metric space filled with a transformation medium [cf. Eq. (4)].
The heat-flux and current-density paths are distorted in different fashions. (c) Metamaterial-based approximate implementation of the
required nominal constitutive parameters via a mixture of inclusions of different shapes and materials (as qualitatively depicted in the
magnified details) embedded in a host medium.
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with

Λ
↔

t ¼
∂Ft

∂r ; Λ
↔

e ¼
∂Fe

∂r (5)

denoting the Jacobian matrices associated with the two
coordinate transformations, and the superscripts −1 and
−T indicating the inverse and inverse transpose, respec-
tively. In such a medium, the heat flux and electrical current
density would follow markedly different paths. For in-
stance, in the concentrator-cloak example chosen, the heat
flux would tend to concentrate in the inner region, whereas
the current density would tend to circumvent that region, as
schematically depicted in Fig. 1(b).

B. Effective-medium modeling and synthesis

Although it is generally impossible to find a natural
material exhibiting the desired constitutive relationships in
Eq. (4), these can be approximated to a certain extent by
means of metamaterials. The results available in the
literature [18,27,28] deal with the design of a single
functionality (e.g., cloak or concentrator) in a single
domain (e.g., thermal or electrical), and the only example
of a bifunctional device implements the same functionality
in both thermal and electrical domains [34]. Here, the task
requires us to prescribe different functionalities in multiple
domains, and we proceed by following a synthesis
approach based on the mixture of N different types of
material inclusions embedded in a host medium [Fig. 1(c)].
The host and inclusions are characterized by their thermal
and electrical conductivities κn and σn, respectively,
and filling fractions fn, with n ¼ 0; 1; ...; N, with the
subscript 0 denoting the host medium. Each inclusion is
also characterized by a depolarization tensor Γ

↔

n,
which depends on its shape and orientation [35]. We are
therefore led to finding the material and structural com-
pound parameters κ¼fκ0;κ1;...;κNg, σ¼fσ0;σ1;...;σNg,
f ¼ ff0; f1; ...; fNg, Γ

↔ ¼ fΓ↔1;…; Γ
↔

Ng, so that

κ
↔

effðκ; f ; Γ
↔
Þ ¼ κ

↔
nom; σ

↔
effðσ; f ; Γ

↔
Þ ¼ σ

↔
nom; (6)

where κ
↔

nom and σ
↔

nom are the desired nominal constitutive

tensors [arising from Eq. (4)], whereas κ
↔

eff and σ
↔

eff are the
effective constitutive tensors characterizing the mixture,
which can be related to the host and inclusion parameters
via approximate mixing formulas [35] (see also
Appendix A for details). We highlight the nonlinear
character of Eq. (6) (stemming from the mixing formulas)
and the coupling between the thermal and electrical
domains via the structural compound parameters f and

Γ
↔
. Moreover, the search space is constrained by the

passivity requirements κn ≥ 0 and σn ≥ 0, as well as by
the self-consistency conditions 0 < fn < 1,

P
N
n¼0 fn ¼ 1,

and unit-trace conditions trðΓ↔nÞ ¼ 1. Overall, solving
Eq. (6) represents a formidable task.
The synthesis is significantly simplified if the same

functionality is required in both domains, as in Ref. [34]. In
this case, Ft ¼ Fe and [from Eq. (4)] κ

↔
nom=κ0 ¼ σ

↔
nom=σ0,

which implies that the problems in Eq. (6) are decoupled,
with only one synthesis needed. Here, the scenario is more
complex, and to induce two distinct functionalities, we
exploit the concept of “neutral” inclusions from the theory
of composites [36,37], i.e., inclusions that are matched
with the host medium in one physical domain, so that
they are effectively “visible” only in the other domain. This
assumption, too, decouples the thermal and electrical
syntheses in Eq. (6), but it does not constrain the two
functionalities to be identical. Clearly, working with natural
material constituents, the required neutrality conditions
may only be fulfilled approximately. Nevertheless, in
principle, such inclusions may be properly engineered
via multilayered composites, e.g., along the lines of
Refs. [38,39].
Focusing on a two-dimensional scenario in the associ-

ated ðρ;ϕ; zÞ cylindrical coordinate system, with κρ;nom,
κϕ;nom, σρ;nom, σϕ;nom the nominal values of relevant con-
stitutive-tensor components to be synthesized and κρ;eff ,
κϕ;eff , σρ;eff , σϕ;eff the corresponding effective parameters,
we consider a three-phase mixture featuring two types of
elliptic cylindrical inclusions with axes locally oriented
along the cylindrical coordinates ρ and ϕ. The search
parameter space therefore comprises the constitutive
parameters κ ¼ fκ0; κ1; κ2g and σ ¼ fσ0; σ1; σ2g, filling
fractions f ¼ ff0; f1; f2g (with f0 þ f1 þ f2 ¼ 1), and
relevant depolarization-tensor components Γ1ρ ¼ 1 − Γ1ϕ

and Γ2ρ ¼ 1 − Γ2ϕ. These latter components, for an ellip-
tical inclusion with axes Aρ (along the ρ direction) and Aϕ

(along the ϕ direction), are given by [35]

Γρ ¼ 1 − Γϕ ¼ Aϕ

Aρ þ Aϕ
: (7)

Assuming that the type-1 inclusions are thermally
neutral (κ1 ¼ κ0) and the type-2 inclusions are electrically
neutral (σ2 ¼ σ0), and considering standard Maxwell-
Garnett mixing formulas [35], the effective parameters
can be written as follows (see Appendix A for details):

κρ;eff
κ0

¼ κ0 þ ðκ2 − κ0Þ½Γ2ρð1 − f2Þ þ f2�
κ0 þ Γ2ρð1 − f2Þðκ2 − κ0Þ

; (8)

κϕ;eff
κ0

¼ κ0 þ ðκ2 − κ0Þ½Γ2ϕð1 − f2Þ þ f2�
κ0 þ Γ2ϕð1 − f2Þðκ2 − κ0Þ

; (9)

σρ;eff
σ0

¼ σ0 þ ðσ1 − σ0Þ½Γ1ρð1 − f1Þ þ f1�
σ0 þ Γ1ρð1 − f1Þðσ1 − σ0Þ

; (10)
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σϕ;eff
σ0

¼ σ0 þ ðσ1 − σ0Þ½Γ1ϕð1 − f1Þ þ f1�
σ0 þ Γ1ϕð1 − f1Þðσ1 − σ0Þ

: (11)

By substituting Eqs. (8–11) into Eq. (6), we observe that
the synthesis problem is now effectively decoupled, as the
thermal parameters in Eqs. (8) and (9) no longer depend on
the type-1 inclusions, whereas the electrical parameters in
Eqs. (10) and (11) do not depend on the type-2 inclusions.
Under these conditions, the synthesis problem can be
solved analytically in closed form. Referring to
Appendix A for the general solution, here we consider
the limiting case κ2 ≪ κ0 and σ1 ≪ σ0, which yields the
particularly simple results

κ1¼κ0¼κϕ;nom
1−Γ2ϕð1−f2Þ
ð1−Γ2ϕÞð1−f2Þ

;

Γ2ϕ¼
1− κ̄nomð1−2f2Þ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− κ̄nomÞ2þ4f22κ̄nom

p
2ð1−f2Þð1− κ̄nomÞ

; (12)

σ2 ¼ σ0 ¼ σϕ;nom
1 − Γ1ϕð1 − f1Þ
ð1 − Γ1ϕÞð1 − f1Þ

;

Γ1ϕ ¼ 1 − σ̄nomð1 − 2f1Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − σ̄nomÞ2 þ 4f21σ̄nom

p
2ð1 − f1Þð1 − σ̄nomÞ

;

(13)

where σ̄nom ¼ σϕ;nom=σρ;nom, κ̄nom ¼ κϕ;nom=κρ;nom, and the
filling fractions f1 and f2 appear as free parameters. It can
be readily verified that the results in Eqs. (12) and (13)
are inherently feasible, as they yield κ0 ≥ 0, σ0 ≥ 0,
0 < Γ1ϕ < 1, and 0 < Γ2ϕ < 1, for arbitrary values of the
nominal anisotropy ratios κ̄nom and σ̄nom. However, prac-
tical considerations (related to the spatial arrangement of
the inclusions) as well as model-consistency issues effec-
tively restrict the attainable anisotropy ratios to moderate
values. These aspects are discussed in more detail in
Sec. IV B.

C. Numerical modeling

All numerical simulations of the thermal and electrical
responses in our study are carried out by means of
COMSOL Multiphysics 4.2, a finite-element-based com-
mercial software package that allows multiphysics simu-
lations in the presence of anisotropic, inhomogeneous
constitutive parameters [40]. In particular, for our simu-
lations, we utilize the “Heat Transfer” and “AC/DC”
modules [40] in order to solve the stationary, sourceless
heat and electrical conduction equations, ∇ · ðκ↔ ·∇TÞ ¼ 0
and ∇ · ðσ↔ ·∇VÞ ¼ 0, in the square computational domain
shown in Fig. 2. The thermal and electrical conductivities
are generally described by tensor, inhomogeneous quan-
tities (κ

↔
and σ

↔
, respectively), which reduce to scalar,

piecewise-homogeneous quantities in the inclusion-based

implementations. For boundary conditions, we set a tem-
perature difference ΔT ¼ T3 − T1 and a potential differ-
ence ΔV ¼ V3 − V1 between the right and left boundaries
(labeled as 3 and 1, respectively, in Fig. 2), and enforce the
thermal-insulation and electrical-insulation conditions
n̂ · ð κ↔ · ∇TÞ ¼ 0, n̂ · ðσ↔ ·∇VÞ ¼ 0, at the two remaining
boundaries (labeled as 2 and 4, in Fig. 2), with n̂ denoting
the outward normal unit vector.
The computational domain is discretized via triangular

meshing (using default criteria), resulting in a number of
elements that, for the more complex inclusion-based struc-
tures, can be on the order of 107, i.e., about 15 × 106 degrees
of freedom. For the solution of the discretized problem, we
use the SPOOLES direct solver, with default parameters
[40]. For the more complex inclusion-based structures,
typical simulations (on a dedicated work station with a
quad-core Intel Core i-7 3.40 GHz processor, 16 GB RAM,
running 64bit Windows8) may require up to 13 h.
The observables shown in Figs. 3–6 below are the total

heat flux κ
↔
·∇T ðW=m2Þ and current density

σ
↔
·∇V ðA=m2Þ, normalized by the enforced quantities

κ0ΔT=L and σ0ΔV=L, respectively (with L denoting
the side length of the square computational domain,
cf. Fig. 2). More specifically, the magnitudes of these
(vector) observables are represented in false-color scale,
while their local directions are indicated by the super-
imposed streamlines.
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FIG. 2. Schematic of the computational domain considered in
the finite-element numerical simulations, consisting of a square
of side length L ¼ 28 cm filled with a background material with
constitutive parameters κ0 and σ0, and a metamaterial annular shell
of radii R1 ¼ 2 cm and R2 ¼ 12 cm. Also indicated are the
boundary conditions enforced at the left and right boundaries
(1 and 3, respectively), as well as the outward normal unit vectors
involved in the thermal- and electrical-insulation conditions
enforced at the boundaries 2 and 4.
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III. PROOF-OF-PRINCIPLE EXAMPLE

A. Thermal concentrator and electrical cloak

The above synthesis procedure can be applied to the
scenario illustrated in Fig. 1 by introducing two (scalar)
radial coordinate transformations

ρ0 ¼
�
FtðρÞ
FeðρÞ ; (14)

for which Eq. (4) can be particularized in terms of the
relevant components [34]

κρ ¼
κ02

κϕ
¼ κ0

FtðρÞ
ρ _FtðρÞ

; σρ ¼
σ02

σϕ
¼ σ0

FeðρÞ
ρ _FeðρÞ

; (15)

with the overdot denoting differentiation with respect to the
argument. As schematically illustrated in Fig. 3(a), the
transformations in the thermal and electrical domains map
an annular cylinder of radii R1 ¼ 2 cm and R2 ¼ 12 cm in

the transformed space r onto an annular cylinder of radii
Rc > R1 and R2 and a cylinder of radius R2, respectively, in
the auxiliary space r0. From the functional viewpoint, Ft
yields a concentration effect (with c ¼ Rc=R1 > 1 denot-
ing the concentration factor), whereas Fe yields an invis-
ibility cloaking effect. In order to achieve these effects, only
the boundary values

FeðR1Þ ¼ 0; FtðR1Þ ¼ cR1;

FtðR2Þ ¼ FeðR2Þ ¼ R2

(16)

are prescribed, whereas the function behaviors in between
are only partially constrained (see Appendix B for
more details). In our example below, we exploit this
degree of freedom by selecting the two mapping functions
so that

κρ
κϕ

¼ σϕ
σρ

: (17)
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FIG. 3. (a) Radial coordinate transformations implementing the ideal thermal concentrator (red) and electrical cloak (blue), within an
annulus of radii R1 ¼ 2 cm and R2 ¼ 12 cm. Also shown is a qualitative illustration of the mapping between auxiliary and transformed
spaces. (b) Corresponding relevant constitutive-tensor components κρ=κ0 ¼ κ0=κϕ (red) and σρ=σ0 ¼ σ0=σϕ (blue). Outside the annulus
R1 < ρ < R2, the coordinate transformations reduce to the identity, Ft;eðρÞ ¼ ρ, and the parameters coincide with those in the auxiliary
space (κ0 and σ0). The vertical dashed lines indicate the six-layer piecewise-constant radial discretization considered, with the markers
representing the constant values assumed in each layer. (c),(d) Numerically computed steady-state total heat-flux and electrical current-
density magnitudes, respectively, with the superimposed streamlines indicating the local directions.
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Though not strictly necessary, this choice allows us to
utilize two types of inclusions with identical shape (just
rotated of 90°) and filling fractions, which arguably
facilitates their spatial arrangement (see Sec. III B and
Appendix B for details). Figure 3(b) shows the correspond-
ing profiles for the constitutive parameters κρ ¼ κ02=κϕ
and σρ ¼ σ02=σϕ. We observe that an exact implementation
of the transformations would require extreme parameters
(either zero or infinite) at the inner boundary ρ ¼ R1.
Acknowledging the aforementioned practical limitations,
we approximate the continuous parameter distributions in
terms of six-layer piecewise-constant profiles [indicated by
dashed lines and markers in Fig. 3(b)], with truncation of
the (extreme) parameters so as to limit the anisotropy ratio
κρ=κϕ ¼ σϕ=σρ to moderate values ≤2.5 (see also the
discussion in Sec. IV B). Figures 3(c) and 3(d) show the
corresponding thermal (concentrator) and electrical (cloak)
responses, respectively. As can be observed, in the exterior
region ρ > R2, the two responses are essentially identical
with those observed in the unperturbed background
medium (constant heat flux and current density and
straight, parallel streamlines), whereas they differ substan-
tially inside the transformation-medium shell and in the
inner region. More specifically, the thermal response
[Fig. 3(c)] resembles that of a concentrator, with stream-
lines focusing toward the inner region, wherein an enhance-
ment of the enforced heat flux by a factor of 1.53 is
attained. Conversely, the electrical response [Fig. 3(d)]
resembles that of an (imperfect) invisibility cloak, with
only little penetration of the streamlines in the inner region,
wherein a reduction of the enforced current density by a
factor of 0.55 is attained.

B. Preliminary ideal-parameter metamaterial synthesis

Starting from the six-layer nominal profiles in Fig. 3(b),
for each sampled value, we extract the scaled conductivities
κρ=κ0, κϕ=κ0, σρ=σ0, and σϕ=σ0 (with κ0 and σ0 denoting
the background parameters) and compute the nominal
anisotropy ratios κ̄nom and σ̄nom. Next, we choose the
filling fractions f1 ¼ f2, taking into account the afore-
mentioned assumptions and limitations (see also
Appendixes A and B). As a rule of thumb, taking into

account that the transformation media to synthesize tend
to become more isotropic towards the exterior layers (see
Appendix B), we assume a gradually decreasing law (from
interior to exterior layers) fulfilling the bound f1 ¼ f2 ≤
0.2 (see also our discussion in Sec. IV B). Assuming
neutral inclusions (κ1 ¼ κ0 and σ2 ¼ σ0) with κ2 ≪ κ0
and σ1 ≪ σ0 (assumed, for simplicity, κ2 ¼ 0 and
σ1 ¼ 0), we now have all the entries in Eqs. (12) and
(13) to compute the unknown parameters κ0=κ0, σ0=σ0,
Γ1ϕ ¼ 1 − Γ1ρ, and Γ2ϕ ¼ 1 − Γ2ρ.
Table I shows, for each layer, the computed parameters.

As anticipated (see also Appendix B), we observe that, in
view of the particular choice in Eq. (17), we obtain
Γ2ϕ ¼ 1 − Γ1ϕ ¼ Γ2ρ; i.e., the two types of inclusions have
identical shape (just rotated of 90°). As a consequence,
from Eqs. (9) and (10), we also obtain κ0=κ0 ¼ σ0=σ0.
Assuming elliptical inclusions, also shown in Table I
are the axis ratios calculated from the depolarization
factors [35],

Aρ

Aϕ
¼ Γϕ

1 − Γϕ
¼ Γϕ

Γρ
: (18)

Table I provides the geometrical, structural, and constitu-
tive parameters for the host medium and the two types of
inclusions in each layer, which constitutes all of the
information needed for an inclusion-based implementation.
Based on this information, we generate the geometry in

Fig. 4(a) [with magnified details shown in Figs. 4(b)
and 4(c)], via heuristic placement of the elliptical inclu-
sions, oriented along the local ρ (and ϕ) directions [see
Fig. 4(d)], in different host materials. In particular, we
generate and replicate an angular sector of aperture ∼3°,
by manually placing the elliptical inclusions with the
prescribed axis ratios and with the number and size chosen
according to the prescribed filling fractions. We find that
working with the two types of inclusions having the same
shape (just rotated of 90°) and filling fractions significantly
facilitates their spatial arrangement. However, although
particular care is taken to ensure a uniform and spatially
efficient packing, avoiding dense concentrations, the

TABLE I. Geometrical, structural, and constitutive parameters of the ideal-parameter synthesis, from the piecewise-constant nominal
profiles in Fig. 3(b), assuming neutral inclusions (κ1 ¼ κ0, σ2 ¼ σ0) with κ2 ¼ 0 and σ1 ¼ 0.

Radii (cm) Host Inclusions
Type 1 (κ1 ¼ κ0, σ1 ¼ 0) Type 2 (κ2 ¼ 0, σ2 ¼ σ0) Fractions

Layer Rin Rout κ0=κ0 ¼ σ0=σ0 Γ1ϕ A1ρ=A1ϕ Γ2ϕ A2ρ=A2ϕ f1 ¼ f2

1 2 4.86 1.875 0.121 0.138 0.879 7.255 0.18
2 4.86 5.60 1.630 0.147 0.172 0.853 5.813 0.15
3 5.60 6.36 1.416 0.144 0.168 0.856 5.969 0.10
4 6.36 7.14 1.307 0.158 0.188 0.842 5.311 0.08
5 7.14 7.94 1.221 0.166 0.199 0.834 5.035 0.06
6 7.94 12 1.150 0.160 0.191 0.840 5.246 0.04
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procedure is not optimized, and there is room for further
improvement.
Figures 4(e) and 4(f) show the corresponding thermal

and electrical responses, respectively, assuming a back-
ground medium with κ0 ¼ 1 W=ðmKÞ and σ0 ¼ 1 S=m. By
comparison with the nominal-parameter predictions in
Figs. 3(c) and 3(d), we observe a generally good agree-
ment, both in the qualitative behaviors of the streamlines
(which tend to focus in the inner region in the thermal case
and to circumvent it in the electrical case) and in the
quantitative figures of merit. In particular, in the inner
region, the enforced heat flux is enhanced by a factor of

1.51 (concentrator), while the current density is reduced by
a factor of 0.55 (cloak).

C. Realistic-parameter metamaterial synthesis

The above design is idealized in the sense that assumes
the availability of host materials with strictly prescribed
constitutive parameters (cf. Table I) and neutral inclusions,
which, in practice, may only be approximated.
While maintaining the same geometrical and structural

parameters as those in Table I and Figs. 4(a)–4(c), we try to
approximate this ideal-parameter configuration by utilizing
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FIG. 4. (a) Geometry of the metamaterial implementation of the piecewise-constant constitutive parameter distributions in Fig. 3(b),
based on ideal material constituents (details in Table I). (b),(c) Magnified details of the inclusions. (d) Schematic of the generic type-1
(blue) and type-2 (red) elliptical inclusions. (e),(f) Corresponding thermal and electrical responses, respectively, as in Figs. 3(c) and 3(d),
assuming a background medium with κ0 ¼ 1 W=ðmKÞ and σ0 ¼ 1 S=m. Although a moderately larger dynamical range is observed in
the metamaterial shell, the same color scale as in Figs. 3(c) and 3(d) is used, so as to facilitate direct comparison of the quantities in the
inner and exterior regions.

TABLE II. Realistic materials (and corresponding thermal and electrical conductivities [41]) considered for approximating the
ideal-parameter synthesis in Table I and Fig. 4.

Material κ ½W=ðmKÞ� σ ½S=m�
Layers 1 and 2 Pyrolytic graphite (PG, Momentive) 300 2 × 105

Layers 3 and 4 Carbon fiber P-75S 2k (Thornel) 185 1.43 × 105

Layers 5 and 6, background Carbon fiber P-55S 2k (Thornel) 120 1.18 × 105

Type-1 inclusions Aluminum nitride 190 10−11
Type-2 inclusions Silver conductive epoxy 1.75 1.4 × 105
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only five realistic material constituents (detailed in
Table II), via a heuristic matching with a list of realistic
material parameters [41]. Also in this case, the procedure is
not optimized, and further improvements are possible.
Nevertheless, the obtained configuration provides a proof
of principle of the practical feasibility of our transforma-
tion-multiphysics approach.
Figures 5(a) and 5(b) show the corresponding thermal

and electrical responses, respectively, which are in good
agreement with the nominal-parameter predictions
[Figs. 3(c) and 3(d)] and the previous ideal-parameter
synthesis [Figs. 4(e) and 4(f)], in spite of the imperfect
fulfillment of the neutral-inclusion conditions. In particular,
in the inner region, the enforced heat flux is enhanced by a
factor of 1.45 (concentrator), while the enforced current
density is reduced by a factor of 0.52 (cloak), once again in
good agreement with the nominal-parameter predictions.

IV. REMARKS

A. Comparison with conventional material shell

To better understand the effects of our bifunctional
metamaterial shell, it is insightful to compare its thermal

and electrical responses with a reference configuration
based on a conventional material. To give an idea,
Figs. 6(a) and 6(b) show the thermal and electrical
response, respectively, of a shell of the same size made
of stainless steel [κ¼16.3W=ðmKÞ, σ ¼ 1.42 × 106 S=m]
[42] and immersed in the same P-55S 2k [κ¼120W=ðmKÞ,
σ ¼ 1.18 × 105 S=m] background medium as in Fig. 5,
with identical boundary conditions. By comparing the
electrical responses in Figs. 5(b) and 6(b), we note a
similar reduction (by a factor of 0.58) of the current density
in the inner region. However, for the stainless-steel shell,
this also implies a sensible reduction (by a factor of 0.3) of
the heat flux [compare Fig. 5(a) with Fig. 6(a)]. Moreover,
both the thermal and electrical responses are significantly
perturbed in the area surrounding the shell. Conversely, our
metamaterial shell is capable of enhancing the heat flux in
the inner region, while reducing the current density, with
very weak effects in the exterior background region.

B. Realistic anisotropy bounds

As anticipated in Sec. II B, although our synthesis
procedure in Eqs. (12) and (13) inherently yields physically
feasible parameters, irrespective of the nominal anisotropy
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FIG. 5. (a),(b) As in Figs. 4(e) and 4(f), respectively, but assuming the realistic material parameters in Table II.
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ratios κ̄nom and σ̄nom, there are certain practical limitations
to account for. It can be verified that extreme anisotropy
ratios require extreme values of the depolarization factors
and/or high values of the filling fractions. The former
requirement (Γϕ → 0 or Γϕ → 1) translates into needle-
shaped inclusions (Aρ ≪ Aϕ or Aϕ ≪ Aρ) that may be
difficult to arrange in a spatially efficient fashion. The latter
requirement (relatively high filling fractions), on the other
hand, entails significantly dense mixtures, for which the
assumed Maxwell-Garnett mixing formulas may not
represent an adequate model [35].
It is, therefore, important to estimate some realistic

bounds on the anisotropy ratios that arise from these
limitations and the consequent constraints in the coordinate
transformations that may be implemented. In our design
procedure above, we find that values of the depolarization
factors 0.1 ≤ Γ1;2ϕ ≤ 0.9 and of the filling fractions f1;2 ≤
0.2 usually allow spatially efficient arrangements of the
inclusions, which are also adequately modeled by the
Maxwell-Garnett mixing formulas (see Appendix A).
For the case of neutral inclusions (κ1 ¼ κ0 and σ2 ¼ σ0),
with κ2 ≪ κ0 and σ1 ≪ σ0, Fig. 7(a) shows the anisotropy
ratio κρ;eff=κϕ;eff or σρ;eff=σϕ;eff that can be attained from
Eqs. (8–11) by letting the depolarization factors and filling
fractions vary within the above-mentioned ranges. We
emphasize that the neutral-inclusion assumption decouples
the syntheses in the thermal and electrical domains, so that
the results in Fig. 7(a) are valid for either the thermal
parameters (κρ;eff=κϕ;eff , assuming Γ2ϕ on the abscissa) or
the electrical parameters (σρ;eff=σϕ;eff , assuming Γ1ϕ on the
abscissa). In addition to confirming the anticipated trends
(with the extreme values observed at the extrema of the
allowed range for Γϕ, and improving for increasing values of

the filling fractions), these results also quantify the attainable
anisotropy ratios to moderate values ranging from ∼0.25 to
∼2.5. In order to translate these bounds to the space of
coordinate transformations FðρÞ that can be implemented,
we note from Eq. (15) that the anisotropy ratios directly
affect the function FðρÞ=½ρ _FðρÞ�. It therefore makes sense to
represent these bounds in the two-dimensional space _FðρÞ
versus FðρÞ=ρ illustrated in Fig. 7(b). In such space, a given
anisotropy ratio corresponds to a straight line passing
through the origin, with the slope decreasing with increasing
values of the anisotropy ratio κρ;eff=κϕ;eff (or σρ;eff=σϕ;eff ).
In particular, the (dashed) bisector represents the identity
transformation FðρÞ ¼ ρ. Thus, for fixed filling fractions
(f1 ¼ f2 ¼ 0.2), by drawing the lines corresponding to the
maximum and minimum anisotropy ratios attainable
[extracted from Fig. 7(a)], we obtain an angular sector
[shaded cyan in Fig. 7(b)] that contains all of the possible

combinations between _FðρÞ and FðρÞ=ρ that can be imple-
mented within the assumed parameter constraints. To give
an idea, also shown in Fig. 7(b) are the curves pertaining to
the ideal concentrator (red) and cloak (blue) coordinate
transformations in Fig. 3(a). It can be observed that only a
portion of these curves actually fall within the allowed
angular sector. The inset shows a magnified view of these
portions, with the markers corresponding to the discretized
samples in Fig. 3(b), which were purposely chosen so as to
fall within the allowed region.
The above analysis provides useful indications for

synthesizing more general functionalities, different from
the concentrator and cloak in the chosen example.
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FIG. 7. (a) Anisotropy ratio κρ;eff=κϕ;eff or σρ;eff=σϕ;eff attainable from Eqs. (8–11) (for the case of neutral inclusions κ1 ¼ κ0 and
σ2 ¼ σ0, with κ2 ≪ κ0 and σ1 ≪ σ0) as a function of the depolarization factor Γϕ, for three representative filling-fraction values
f1 ¼ f2 ¼ 0.1, 0.15, 0.2 (square, circle, and triangle markers, respectively). (b) Representation of the anisotropy-ratio bounds in the
space _FðρÞ versus FðρÞ=ρ, assuming f1 ¼ f2 ¼ 0.2. The cyan-shaded angular sector represents the allowed region, and the dashed
bisector represents the identity transformation. Also shown are the curves pertaining to the concentrator (red) and cloak (blue)
coordinate transformations in Fig. 3(a). The inset shows a magnified view of the allowed portions of these curves, with the markers
corresponding to the discretized samples in Fig. 3(b).
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V. CONCLUSIONS AND PERSPECTIVES

The characteristics that we illustrate in this study are a
vivid example of artificial structures collectively tran-
scending their natural limitations, and doing so in multiple
physical domains independently and simultaneously. The
integration of this concept in advanced materials such as
ceramics, polymers, biomaterials, and thin films can span
multiple orders of magnitude in material scales (from
atomic and molecular level to macroscale composites)
and may be leveraged to design indiscrete structures from
the ground up while bringing about new dimensionalities.
Hybrid metamaterials, where functional substances are
embedded in bigger artificial heterostructures to induce
another level of functionalities, for instance, can now be
taken to multiple physical domains to bring more sophis-
tication to material properties.
The transformation-multiphysics framework presented

here may be extended and applied to a multitude of
electrical, magnetic, acoustic, and thermal systems in
various combinations, in both static equilibrium and
dynamic nonequilibrium states. In the case of designing
a material to manipulate electrical and thermal currents
independently, applications may range from multifunc-
tional electronic components to properly engineered
thermoelectric materials that affect the figure of merit in
ways unexplored in the past. We are currently exploring
these possibilities theoretically as well as experimentally.
Just as the transformation-optics paradigm has opened a

new door to artificial materials with unconventional attrib-
utes, material engineering based on simultaneous coordi-
nate transformations in multiple physical domains may lead
to various new possibilities for material characteristics that
did not exist in the past.

ACKNOWLEDGMENTS

S. S. and Y. S. acknowledge support from the Rowland
Institute at Harvard University.

APPENDIX A: DETAILS ON THE
EFFECTIVE-MEDIUM FORMULATION

In our approach, the effective thermal and electrical
constitutive parameters of a multiphase mixture composed
of N types of inclusions embedded in a host material are
modeled via simple Maxwell-Garnett mixing formulas
[35]. With specific reference to the cylindrical geometry
of interest for our study, with inclusions aligned along the
local ρ (and ϕ) direction [cf. Fig. 4(d)], for the relevant
constitutive-tensor components, we obtain [35]

κρ;eff
κ0

¼ 1þ
P

N
n¼1 fnðκn − κ0Þ=½κ0 þ Γnρðκn − κ0Þ�

1−P
N
n¼1 fnΓnρðκn − κ0Þ=½κ0 þΓnρðκn − κ0Þ�

;

κϕ;eff
κ0

¼ 1þ
P

N
n¼1 fnðκn − κ0Þ=½κ0 þΓnϕðκn − κ0Þ�

1−P
N
n¼1 fn Γnϕðκn − κ0Þ=½κ0 þΓnϕðκn − κ0Þ�

;

(A1)

σρ;eff
σ0

¼ 1þ
P

N
n¼1fnðσn−σ0Þ=½σ0þΓnρðσn−σ0Þ�

1−P
N
n¼1fnΓnρðσn−σ0Þ=½σ0þΓnρðσn−σ0Þ�

;

σϕ;eff
σ0

¼ 1þ
P

N
n¼1fnðσn−σ0Þ=½σ0þΓnϕðσn−σ0Þ�

1−P
N
n¼1fnΓnϕðσn−σ0Þ=½σ0þΓnϕðσn−σ0Þ�

;

(A2)

with all parameters already defined in Sec. II B. In
particular, Γnρ and Γnϕ ¼ 1 − Γnρ denote the components
of the (diagonal, in the cylindrical reference system)
depolarization tensor Γ

↔

n pertaining to the generic nth
inclusion. From Eqs. (A1) and (A2), the nonlinear character
of the general synthesis problem in Eq. (6) now becomes
evident, along with the coupling between the thermal and
electrical domains, as highlighted in Sec. II B.
The effective-medium model above relies on the calcu-

lation of the static polarizabilities of the inclusions,
assuming that each inclusion is embedded in an infinite
host medium. While this may be an acceptable assumption
for sparse mixtures, it becomes inaccurate for densely
packed inclusions, for which the medium effectively “seen”
outside the generic inclusion is different from the host
medium. In this latter scenario, more refined models can be
applied, such as, e.g., the Polder–van Santen mixing
formulas, which approximate the “apparent” medium out-
side the inclusions as something in between the host
medium and the effective medium [35]. However, this
yields implicit equations that need to be solved numeri-
cally. Acknowledging these limitations, in our approach,
we restrict the structural parameters of the mixtures so as to
avoid the dense-packing conditions, and remain within the
range of applicability of the Maxwell-Garnett mixing
formulas in Eqs. (A1) and (A2). As anticipated in
Sec. II B (and better quantified in Sec. IV B), this inherently
limits the attainable anisotropy ratios to moderate values.
The three-phase mixture considered in Sec. II B is the

simplest reduction (N ¼ 2) of Eqs. (A1) and (A2) that still
allows the joint and independent synthesis of different
functionalities in the thermal and electrical domains. To
better understand this aspect, we first consider the simpler
two-phase mixture, i.e., with only one type of inclusions
embedded in a host medium. By particularizing Eqs. (A1)
to this case (N ¼ 1), for the thermal parameters, we obtain

κρ;eff
κ0

¼ 1þ f1ðκ1 − κ0Þ=½κ0 þ Γ1ρðκ1 − κ0Þ�
1 − f1Γ1ρðκ1 − κ0Þ=½κ0 þ Γ1ρðκ1 − κ0Þ�

¼ κ̄1 − f0Γ1ϕðκ̄1 − 1Þ
1þ f0Γ1ρðκ̄1 − 1Þ ; (A3)

κϕ;eff
κ0

¼ 1þ f1ðκ1 − κ0Þ=½κ0 þ Γ1ϕðκ1 − κ0Þ�
1 − f1Γ1ϕðκ1 − κ0Þ=½κ0 þ Γ1ϕðκ1 − κ0Þ�

¼ κ̄1 − f0Γ1ρðκ̄1 − 1Þ
1þ f0Γ1ϕðκ̄1 − 1Þ ; (A4)
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with κ̄1 ¼ κ1=κ0, and the second equalities following from
the consistency conditions f0 þ f1 ¼ 1 and Γ1ρþΓ1ϕ¼1.
Similarly, for the electrical parameters, we obtain from
Eqs. (A2)

σρ;eff
σ0

¼ 1þ f1ðσ1 − σ0Þ=½σ0 þ Γ1ρðσ1 − σ0Þ�
1 − f1Γ1ρðσ1 − σ0Þ=½σ0 þ Γ1ρðσ1 − σ0Þ�

¼ σ̄1 − f0Γ1ϕðσ̄1 − 1Þ
1þ f0Γ1ρðσ̄1 − 1Þ ; (A5)

σϕ;eff
σ0

¼ 1þ f1ðσ1 − σ0Þ=½σ0 þ Γ1ϕðσ1 − σ0Þ�
1 − f1Γ1ϕðσ1 − σ0Þ=½σ0 þ Γ1ϕðσ1 − σ0Þ�

¼ σ̄1 − f0Γ1ρðσ̄1 − 1Þ
1þ f0Γ1ϕðσ̄1 − 1Þ ; (A6)

with σ̄1 ¼ σ1=σ0. We note that, for the extreme values
Γ1ϕ ¼ 0 and Γ1ϕ ¼ 1, Eqs. (A3–A6) reduce to the well-
known expressions pertaining to radial and angular multi-
layers [35], respectively, which have been widely utilized to
design coordinate-transformation-inspired metamaterial
structures implementing single functionalities (e.g., cloak,
concentrator) in the thermal, electrical, or magnetic
domains [17–24,26–28]. However, it can be verified that
the mixing formulas in Eqs. (A3–A6) do not provide
enough degrees of freedom to design different anisotropic
behaviors in the thermal and electrical domains. For
instance, assuming that the parameters κ̄1, f0, and Γ1ϕ in

Eqs. (A3) and (A4) are chosen so as to guarantee that
κρ;eff=κϕ;eff > 1, it will then be impossible to achieve an
anisotropy ratio σρ;eff=σϕ;eff < 1 from Eqs. (A5) and (A6),
for any choice (subject to the passivity condition) of the
material parameter σ̄1. This can be verified in a rather
straightforward fashion for the limit (multilayer) cases
Γ1ϕ ¼ 0 or Γ1ϕ ¼ 1, and in a more cumbersome fashion
(we relied on the “Reduce” symbolic algebra tool of
Mathematica™[43]) for general values of Γ1ϕ. Clearly, it
represents a significant curtailing of the capabilities to
independently manipulate the phenomena in the two
physical domains. For instance, it is clear from Fig. 3(b)
that the joint synthesis of a thermal concentrator (which
requires κρ=κϕ > 1) and an electrical cloak (which requires
σρ=σϕ < 1) would not be possible with this type of
mixtures. It is worth highlighting that these constraints
may be relaxed in the presence of negative-conductivity
material constituents. While these materials are not avail-
able in nature, they may be in turn synthesized as
metamaterials. For instance, Fang et al. [19] experimentally
demonstrated recently the possibility of synthesizing an
artificial material exhibiting negative electrical conduc-
tivity, by means of active devices together with resistor
networks.
An easier way to overcome the above limitations, while

maintaining the passivity requirements, entails considering
a three-phase mixture, featuring two types of inclusions
embedded in a host medium. For this scenario (N ¼ 2), we
now obtain from Eqs. (A1) and (A2)

κρ;eff
κ0

¼ 1þ f1ðκ1 − κ0Þ=½κ0 þ Γ1ρðκ1 − κ0Þ� þ f2ðκ2 − κ0Þ=½κ0 þ Γ2ρðκ2 − κ0Þ�
1 − f1Γ1ρðκ1 − κ0Þ=½κ0 þ Γ1ρðκ1 − κ0Þ� − f2Γ2ρðκ2 − κ0Þ=½κ0 þ Γ2ρðκ2 − κ0Þ�

; (A7)

κϕ;eff
κ0

¼ 1þ f1ðκ1 − κ0Þ=½κ0 þ Γ1ϕðκ1 − κ0Þ� þ f2ðκ2 − κ0Þ=½κ0 þ Γ2ϕðκ2 − κ0Þ�
1 − f1Γ1ϕðκ1 − κ0Þ=½κ0 þ Γ1ϕðκ1 − κ0Þ� − f2Γ2ϕðκ2 − κ0Þ=½κ0 þ Γ2ϕðκ2 − κ0Þ�

; (A8)

σρ;eff
σ0

¼ 1þ f1ðσ1 − σ0Þ=½σ0 þ Γ1ρðσ1 − σ0Þ� þ f2ðσ2 − σ0Þ=½σ0 þ Γ2ρðσ2 − σ0Þ�
1 − f1Γ1ρðσ1 − σ0Þ=½σ0 þ Γ1ρðσ1 − σ0Þ� − f2Γ2ρðσ2 − σ0Þ=½σ0 þ Γ2ρðσ2 − σ0Þ�

; (A9)

σϕ;eff
σ0

¼ 1þ f1ðσ1 − σ0Þ=½σ0 þ Γ1ϕðσ1 − σ0Þ� þ f2ðσ2 − σ0Þ=½σ0 þ Γ2ϕðσ2 − σ0Þ�
1 − f1Γ1ϕðσ1 − σ0Þ=½σ0 þ Γ1ϕðσ1 − σ0Þ� − f2Γ2ϕðσ2 − σ0Þ=½σ0 þ Γ2ϕðσ2 − σ0Þ�

: (A10)

While it is now possible, in principle, to achieve different
anisotropy ratios in the thermal and electrical domains,
the general synthesis in Eq. (6) remains a formidable
task, which, in the general case, can be addressed in a
weak fashion, i.e., by minimizing a suitable cost func-
tion parametrizing the mismatch of the effective and nominal
parameters, and possibly including regularization terms.
The synthesis problem is significantly simplified if we

consider neutral inclusions [36,37], i.e., inclusions that are
matched with the background medium in one physical

domain. Assuming, for instance, κ1 ¼ κ0 (i.e., thermally
neutral type-1 inclusions) and σ2 ¼ σ0 (i.e., electrically
neutral type-2 inclusions), Eqs. (A7–A10) reduce to
the forms in Eqs. (8–11), which effectively decouple
the synthesis problem. By substituting Eqs. (8–11) into
Eq. (6) (and letting κρ;nom, κϕ;nom, σρ;nom, and σϕ;nom the
relevant components of the nominal parameters to synthe-
size), we obtain four equations that can be solved analytically
in closed form. More specifically, the depolarization factors
can be found as solutions of second-degree equations, viz.,
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Γ2ϕ ¼ ð1 − κ̄2Þ½1 − κ̄nomð1 − 2f2Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ̄2Þ2ð1 − κ̄nomÞ2 þ 4f22κ̄nomð1 − κ̄2Þ2

p
2ð1 − κ̄2Þð1 − f2Þð1 − κ̄nomÞ

; (A11)

Γ1ϕ ¼ ð1 − σ̄1Þ½1 − σ̄nomð1 − 2f1Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ σ̄1Þ2ð1 − σ̄nomÞ2 þ 4f21σ̄nomð1 − σ̄1Þ2

p
2ð1 − σ̄1Þð1 − f1Þð1 − σ̄nomÞ

; (A12)

from which it is rather straightforward to find the constitutive parameters

κ0 ¼ κ1 ¼ κϕ;nom
1þ Γ2ϕð1 − f2Þðκ̄2 − 1Þ

1þ Γ2ϕð1 − f2Þðκ̄2 − 1Þ þ f2ðκ̄2 − 1Þ

¼ 2κρ;nom½1þ κ̄2 þ ð1 − κ̄2Þf2�
ð1þ κ̄2Þð1þ κ̄nomÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ κ̄2Þ2ð1 − κ̄nomÞ2 þ 4f22κ̄nomð1 − κ̄2Þ2

p ; (A13)

σ0 ¼ σ2 ¼ σϕ;nom
1þ Γ1ϕð1 − f1Þðσ̄1 − 1Þ

1þ Γ1ϕð1 − f1Þðσ̄1 − 1Þ þ f1ðσ̄1 − 1Þ

¼ 2σρ;nom½1þ σ̄1 þ ð1 − σ̄1Þf1�
ð1þ σ̄1Þð1þ σ̄nomÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ σ̄1Þ2ð1 − σ̄nomÞ2 þ 4f21σ̄nomð1 − σ̄1Þ2

p : (A14)

In Eqs. (A11–A14), κ̄2 ¼ κ2=κ0, σ̄1 ¼ σ1=σ0, κ̄nom ¼
κρ;nom=κϕ;nom, σ̄nom ¼ σρ;nom=σϕ;nom, and the � sign is
consistently chosen so as to ensure the passivity
(κ0 ≥ 0, σ0 ≥ 0) and model-consistency (0 < Γ1ϕ < 1,
0 < Γ2ϕ < 1) conditions. We note that the above solutions
contain as free parameters the normalized conductivities κ̄2
and σ̄2 (subject to the passivity conditions κ̄2 ≥ 0, σ̄2 ≥ 0)
as well as the fractions f1 and f2 (subject to 0 < f1 < 1,
0 < f2 < 1, and f0 þ f1 þ f2 ¼ 1). The further simplified
expressions in Eqs. (12) and (13) immediately follow by
setting κ̄2 ¼ σ̄1 ¼ 0 in Eqs. (A11–A14). Similarly, alter-
native simplified expressions can be derived in the opposite
asymptotic limit κ̄2 ≫ 1 and σ̄2 ≫ 1, viz.,

κ1 ¼ κ0 ¼ κϕ;nom
Γ2ϕð1 − f2Þ

Γ2ϕð1 − f2Þ þ f2
; (A15)

σ2 ¼ σ0 ¼ σϕ;nom
Γ1ϕð1 − f1Þ

Γ1ϕð1 − f1Þ þ f1
; (A16)

with Γ1ϕ and Γ2ϕ still given by Eqs. (12) and (13). Clearly,
mixed limits, such as κ̄2 ≪ 1 and σ̄2 ≫ 1, or κ̄2 ≫ 1 and
σ̄2 ≪ 1, may also be derived.

APPENDIX B: DETAILS ON THE COORDINATE
TRANSFORMATIONS

As mentioned in Sec. III A, the thermal-concentration
and electrical-cloak effects are essentially established by
the boundary values of the mapping functions in Eq. (A16),
whereas the function behaviors in between are only
partially constrained by the continuity requirement (in
order to avoid additional boundary conditions) as well as

by the non-negative character of their logarithmic deriva-
tives [Ft= _Ft ≥ 0, Fe= _Fe ≥ 0, in order to guarantee pas-
sivity, cf. Eq. (A15)]. The cloak transformation utilized in
our study [blue curve in Fig. 3(a)] belongs to the general
class of algebraic transformations

FeðρÞ ¼ R2

�
ρ − R1

R2 − R1

�
γ

; γ > 0; (B1)

which satisfy the required boundary conditions [Eq. (16)]
and map a cylinder of radius R2 in the auxiliary space onto
an annular cylinder of radii R1 and R2 in the transformed
space, thereby creating a “hole” of radius R1 that admits no
image in the auxiliary space. For γ ¼ 1, Eq. (B1) reduces to
the standard (linear) cloak transformation introduced by
Pendry et al. [2]. Here, we instead consider

γ ¼ 1 − R1

R2

; (B2)

which yields

_FeðR2Þ ¼
FeðR2Þ
R2

¼ 1. (B3)

Recalling Eq. (15), this ensures that

σρðR2Þ ¼ σϕðR2Þ ¼ σ0; (B4)

i.e., that the arising transformation medium tends (for
ρ → R2) to an isotropic material matched with the back-
ground medium. As mentioned in Sec. III, while not strictly

MOCCIA et al. PHYS. REV. X 4, 021025 (2014)

021025-12



necessary, this assumption simplifies the inclusion-based
implementation.
For the concentrator transformation, we exploit the

degrees of freedom in the choice of the mapping function,
by enforcing the condition in Eq. (17). Looking at Eqs. (12)
and (13), it can be observed that with this assumption (i.e.,
κ̄nom ¼ 1=σ̄nom), together with f1 ¼ f2, we obtain Γ2ϕ ¼
1 − Γ1ϕ ¼ Γ1ρ, which means that the two types of inclu-
sions have identical shape (just rotated of 90°). Once again,
while not strictly necessary, the above assumption may
facilitate the inclusion-based implementation, allowing
more efficient packing strategies. Recalling Eq. (6), the
condition in Eq. (17) yields the differential equation

ρ2 _FeðρÞ
FeðρÞ

_FtðρÞ − FtðρÞ ¼ 0; (B5)

with the boundary condition FtðR2Þ ¼ R2. By substituting
Eq. (B1) into Eq. (B5), we then obtain

γ ρ2

ðρ − R1Þ
_FtðρÞ − FtðρÞ ¼ 0; (B6)

which admits the simple analytical solution

FtðρÞ ¼ R2

�
ρ

R2

�1
γ

exp

�
R1ðR2 − ρÞ

γR2ρ

�
(B7)

considered in our study [red curve in Fig. 3(a)]. From
Eq. (B7), we can easily calculate the concentration factor,

c ¼ FtðR1Þ
R1

¼ e

�
R1

R2

�
R1=ðR2−R1Þ

> 1; (B8)

thereby verifying the concentrator functionality.
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