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The discovery of the Fermi-Pasta-Ulam (FPU) recurrence phenomenon in the 1950 s was a major step in
science that later led to the discovery of solitons in nonlinear physics. More recently, it was shown that
optical fibers can serve as a medium for observing the FPU phenomenon. In the present work, we have
found experimentally and numerically that in the low-dispersion region of an optical fiber, the recurrence is
strongly influenced by the third-order-dispersion (TOD) term. Namely, the presence of TOD leads to
several disappearances and recoveries of the FPU recurrence when the central frequency of the pump wave
is varied. The effect is highly nontrivial and can be explained in terms of reversible and irreversible losses
caused by Cherenkov radiations interacting with a multiplicity of modes sharing the optical energy in the
process of its partition.
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I. INTRODUCTION

The phenomenon of Fermi-Pasta-Ulam (FPU) recur-
rence has attracted massive attention from researchers
since the initially classified technical report of Fermi and
his colleagues was published in 1955 (see Ref. [1]). FPU
recurrence is a ubiquitous phenomenon observable in many
fields of physics ranging from plasma physics [2] to
hydrodynamics [3] and optics [4–6]. Specifically, Fermi
et al. were investigating the dynamics of a vibrating chain
of nonlinearly coupled identical oscillators [1]. An idea was
to model thermalization processes taking place in a solid
state. Because of the expected equipartition, the energy of
the excited vibrational mode was reckoned to spread out
equally between all other normal modes of the chain.
Counterintuitively, numerical simulations showed a differ-
ent dynamics: After the initial diffusion to other normal
modes, energy returned to the same mode that was excited
initially. This completely unexpected outcome of the
numerical experiment is sometimes called the FPU paradox
[7]. Later studies have shown that recurrence is not an
exception but happens in a variety of physical systems of
interest [2–4]. Remarkably, further attempts to solve the
paradox [8] resulted in a subsequent great leap in science—
the birth of the concept of solitons.

Among many fields of physics where the FPU recurrence
may occur, fiber optics offer one of the best platforms to
study the phenomenon, as all experiments are done with
standard compact tabletop equipment, rather than complex
experimental apparatus needed in plasma physics or hydro-
dynamics, for instance. The first experimental demonstra-
tion of the FPU recurrence in optical fibers was reported by
Van Simaeys et al. [4–6] in the high-dispersion regime of a
standard telecommunication fiber where the third-order-
dispersion (TOD) term is negligible. In this configuration,
the role played by higher-order linear terms is negligible, so
the dynamics is well reproduced by the pure nonlinear
Schrödinger equation (NLSE). As a consequence, analytic
solutions known as Akhmediev breathers (ABs) [9] accu-
rately describe the recurrence process. The latter can be
considered as the extension of the modulation-instability
process [10] beyond the linear approximation that captures
the full nonlinear dynamics of the system. These exact
solutions represent a fundamental tool for understanding
optical phenomena that start with a strong monochromatic
wave [4,5,11–15]. Among them, there were the first
experimental observations of the Peregrine [16] and
Kusnetzov-Ma [17] breathers, well after their first theo-
retical predictions [18–20].
The pure NLSE is valid for optical fields with relatively

narrow spectra. If the dispersion cannot be considered to
be a constant over the spectrum, the TOD term must be
taken into account [21–28]. This higher-order term strongly
modifies the dynamics of nonlinear systems by making
them convectively unstable [21]. In optical fibers, it leads to
the nonlinear symmetry breaking of parametric processes
[22–24,28], to the generation of Cherenkov radiations
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(CRs) by solitons [29], which are one of the key elements
of supercontinuum generation [30,31], and, in extreme
cases, to turbulent dynamics [32,33].
The FPU recurrence is also strongly affected by the TOD

[26]. In Ref. [26], it was found that the FPU recurrence may
disappear and appear again under its influence. The main
reason for this behavior is the Cherenkov radiation that
dissipates the energy of the pump into small-amplitude
radiation waves. The present experiment has been set up in
order to confirm this prediction. To our surprise, we have
found a quite different behavior. Namely, we have dis-
covered experimentally that the FPU recurrence experi-
ences multiple appearances and disappearances—not only
one—in contrast to the theoretical expectations of
Ref. [26]. We have found that they are related to reversible
and irreversible losses caused by the TOD.
Up to now, the multiple appearances and disappearances

of the FPU recurrence caused by reversible and irreversible
losses, respectively, have never been observed in physics.
Among similar phenomena, we can mention the photon-
echo phenomenon, which is a physical effect where
the radiation energy captured by a system of inhomoge-
neously broadened two-level atoms can be recovered and
reemitted as a coherent optical pulse [34]. The effect that
we have discovered here is another example of reversible
losses in optics, although it is quite different from the
optical echo. The uniqueness of this phenomenon lies in the
multiple cancellations and recoveries of the FPU recurrence
when the pump frequency, and consequently the group-
velocity dispersion, are varied. This new feature reveals
significantly more complex dynamics than previously

thought. Our experiment goes well beyond asymmetries
observed in spectra via Cherenkov-radiation-assisted para-
metric resonances either in the context of frequency combs,
as recently reported in Ref. [23], or in the framework of
noise-seeded modulation instability (MI) fiber systems
reported in Ref. [22], where random initial conditions
prevent the amplification of a single resonant mode (a
monochromatic wave in optics) that is crucial in the FPU
concept [1]. We show here that the system is capable of
recovering its initial state by reversing the energy-flow
transfers, which was not the case either in Ref. [23] or
in Ref. [22].

II. EXPERIMENTAL SETUP AND METHODS

Our experimental setup is depicted in Fig. 1(a). We use
two monochromatic tunable diodes, producing the pump
and signal waves shown in the upper left corner of Fig. 1.
The two optical fields are coupled together through a
polarization-maintaining 50=50 coupler. Each one is phase
modulated with a pseudorandom bit sequence at 3 Gbits/s
in order to avoid the stimulated Brillouin-scattering effect.
The two waves are then amplified in an erbium-doped fiber
amplifier (EDFA) before being launched into a dispersion-
shifted fiber (DSF). In order to reach perfect alignment
between the polarization states of the pump and the signal
waves before being launched into the DSF, the setup is
equipped with polarization-maintaining components in
front of the second coupler C2. The DSF is the same as
in Ref. [22]. The combined power of the pump and the
signal launched into the fiber is 27.7 dBm, and the
difference between the pump and the signal is 11 dB. In
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FIG. 1 (a) Experimental setup. Notations are as follows: C1;2 are optical couplers; PRBS, pseudorandom bit sequence; PM, phase
modulator; and OSA, optical spectrum analyzer. Experimental data: (b) Evolution of the spectrum versus fiber length. Spectra at specific
lengths at (c) L ¼ 0 m and (d) L ¼ 2000 m (red line) and L ¼ 3600 m (blue line). (e) Evolution of the pump and signal powers versus
fiber length. All these experimental results have been obtained with a second-order-dispersion value β2 ¼ −1.116 × 10−27 s2=m
(11.7 nm above the fiber ZDW).
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other words, PP ¼ 530 mW and PS ¼ 44.7 mW. In order
to achieve the strongest MI gain, the signal wavelength is
chosen at the maximum of the MI gain band. This
corresponds to a value of a ¼ 0.25, if we refer to the
dimensionless parameter a used in the standard AB theory
[16]. This wavelength is measured from the experimental
MI spectra recorded without the signal launched into the
fiber, i.e., assuming noisy initial conditions. We pay special
attention to keeping the powers of the two waves constant
during the wavelength sweep (maximum fluctuations
of 0.3 dB).
Before investigating the role played by TOD in the FPU

process, we have made sure that our experimental setup
allows us to observe the “standard” FPU recurrence in an
optical fiber, as it was reported in Refs. [4,5]. In order to do
so, first, we look for a configuration such that the role
played by TOD is negligible. We fix the pump wavelength
far away from the zero-dispersion wavelength (ZDW) of
the fiber in order to have a relatively large dispersion over
the whole spectrum, which can be assumed to be constant.
Figure 1(b) represents the evolution of the spectrum versus
the fiber length. An immediate observation is that the
spectrum is almost symmetric at each side of the pump
wavelength, as expected from the theory based on the
NLSE equation [9]. This observation confirms that we have
achieved the configuration where the TOD does not
significantly affect the process. The second essential
observation is that the MI process naturally turns into
the FPU recurrence as fiber length increases. The energy
that was initially confined to the pump and the signal waves
[see the input spectrum in Fig. 1(c)] is progressively
transferred to the signal’s harmonics on each side of the
pump [Figs. 1(b) and 1(d)]. To get a better insight, Fig. 1(d)
represents the evolution of the signal and the pump powers
versus fiber length. A maximum energy-transfer rate of
92% with 8% left in the pump is reached at L ¼ 2000 m.
At this position, the signal power is maximal and the
spectrum is the broadest, with more than six harmonics
generated on each side of the spectrum [see the red trace in
Fig. 1(d)]. The energy transfer is stopped and further
reversed, starting from this fiber length. It then flows from
the harmonics back to the pump. It reaches about 79%
of the initial pump power at L ¼ 3600 m [see Fig. 1(e) and
the blue trace in Fig. 1(d)].
This high value illustrates that the FPU process is very

efficient. Indeed, by only accounting for the linear losses,
we would find the pump power after propagating 3600 m
inside the fiber to be equal to 84% of the initial value. After
one period of this process, the energy of the wave flows
again from the pump to the sidebands, starting a second
cycle of recurrence. We are able to observe more than one-
and-a-half periods of recurrence, just as in the original work
of Van Simaeys et al. This result is a clear and clean
signature of the FPU recurrence phenomenon. Now, after
the confirmation of the existence of FPU recurrence, we

can move to the observation of the impact of the TOD on it.
In order to do so, the pump wavelength has been shifted
toward the ZDWof the fiber. As a consequence, MI spectra,
with the width being inversely proportional to the second-
order dispersion, will be broadened, and it will no longer be
possible to consider the dispersion over the whole spectral
span to be constant. It will thus be necessary to account for
the TOD term, as in other studies in nonlinear fiber optics
related to MI [22,24,25] in the low-dispersion region of
optical fibers.

III. RESULTS

Thepumpwavelength is tunedbetween1561.6nmand the
ZDWof the fiber (1550.2 nm) with 61 steps and the spectra
recorded every 200 m after successive cutbacks. This tuning
rangecausesβ2 tovary fromβ2 ¼ −12 × 10−28 s2=mto0. In
this relatively short-wavelength span, the slope of the
dispersion can be assumed to be constant, and tuning the
pump wavelength, i.e., the dispersion value, is equivalent to
varying the ratio β3=β2. Figures 2(a) and 2(b) represent the
evolution of the pump power and the signal powers,
respectively, along the fiber for these jβ2j values. These
data are presented in the form of a 3D plot with “hot” colors
corresponding to the highest powers. It is worth noting that
the usual FPU recurrence process [where TOD is negligible;
see Fig. 1(e)] corresponds to the highest value of jβ2j. A
comparable behavior with this process can still be observed
by decreasing jβ2j up to about 6 × 10−28 s2=m, where more
than one–and-a-half periods of recurrence still occur.
Thus, in this range, the contribution of β3 is much

smaller than that of β2, and it does not significantly affect
the FPU recurrence process. However, as jβ2j further
decreases (as the pump wavelength shifts toward the
ZDW in our experiments), the TOD becomes significant.
A much more complex dynamics is then observed [see
Figs. 2(a) and 2(b)].
In order to explain this behavior, we show in Figs. 2(e)

three striking examples. In Fig. 2(e) [α], the pump- and
signal-power evolutions are very similar to the reference
curves given in Fig. 1(e). The FPU recurrence is clearly
visible with more than one-and-a-half periods. By slightly
decreasing the absolute value of the second-order
dispersion to jβ2j ¼ 2.78 × 10−28 s2=m, we can see in
Fig. 2(e) [β] that once the pump power is transferred to
the normal modes, the reversed process does not occur, and
the pump power remains fixed around this lower value. We
can then conclude that the recurrence process is canceled
for this specific value of jβ2j. However, a further slight
decrease of the jβ2j value to 2.4 × 10−28 s2=m restores the
FPU recurrence again, as shown in Fig. 2(e) [χ]. As can be
seen from Figs. 2(a) and 2(b), this oscillating behavior is
repeated several times when reducing the value of the
jβ2j=β3 ratio. More details of the evolution of the pump
and signal powers for each value that switches the FPU
recurrence on and off can be found in the Appendix.
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These experimental results are well supported, with
realistic numerical simulations performed by integrating
the generalized nonlinear Schrödinger equation

∂Eðz;τÞ
∂z ¼−iβ2

2

∂2Eðz;τÞ
∂τ2 þβ3

6

∂3Eðz;τÞ
∂τ3 þ i

β4
24

∂4Eðz;τÞ
∂τ4

þ iγjEj2Eðz;τÞþ iγ
Z
hRðtÞjEðz;τ−τ0Þj2dτ0Eðz;τÞ;

where β2;3;4 are the second-, third-, and fourth-order-
dispersion terms, respectively, γ is the fiber nonlinear
coefficient, and hRðtÞ is the Raman response, taken from
the experimental measurements. It has been numerically
integrated using an adaptive split-step Fourier method
[35], with a precision of 10−7. We use the following
parameters, which are close to the experimental ones:
β2ðλPÞ ¼ −100 × 10−29 to −1 × 10−29 s2=m (200 steps),
β3ðλPÞ¼ 1.2×10−40 s3=m, β4ðλPÞ ¼ −2.5 × 10−55 s4=m,
γ ¼ 2.4=W=km, fiber length L ¼ 6000 m, linear attenu-
ation α ¼ 0.2 dB=km, PP¼ 530mW, and PS ¼ 44.7 mW.
Numerical results are summarized in Figs. 2(c), 2(d),
and 2(f). While no adjustable parameter has been used,
very good agreement is achieved, apart from the fact that
the beginning of the second period of recurrence occurrs at
L ¼ 3000 m in simulations against L ¼ 4000 m in experi-
ments. This slight discrepancy may be explained by
inaccuracies in the pump-power measurements and/or
due to longitudinal fluctuations of the dispersion and/or
polarization-mode dispersion in the actual fiber. In a
previous theoretical work performed by one of us in
Ref. [26], the FPU recurrence process was expected to
disappear under the action of the slope of the dispersion and
to appear again in very low-dispersion regions. In our
present work, we find that the dynamics is in fact much
more complex, since there is a range of jβ2j values where it

appears and disappears many times. This remarkable
feature has never been observed in any other physical
system, and it shows that, against intuition, such complex
parametric processes of FPU recurrence also depend on
the TOD.

IV. DISCUSSION

In order to get a clearer insight into the multiple
disappearances and restorations of the FPU recurrence,
we plot them in Fig. 3(a) for a fixed fiber length. The
data are taken from numerical results shown in Figs. 2(c)
and 2(d) at L ¼ 4000 m, a length for which the FPU
recurrence has the strongest contrast. This figure clearly
illustrates the multiple disappearances and restorations of
the FPU recurrence when the jβ2j value is varied. For
instance, FPU is on for each maximum of the pump and it
exhibits one-and-a-half periods of recurrence in all these
cases. (See the figures in the Appendix with a green
background.) In order to understand the origin of this
behavior, let us remind ourselves that the frequency of the
signal has been fixed at the maximum of the MI gain
spectrum. Its frequency shift from the pump can then be
expressed as follows: ΔωMI ¼ωp−ωs¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−2γp=β2ðωpÞ
p

.
In Ref. [26], it has been demonstrated that under the action
of TOD, Akhmediev breathers shed energy to small-
amplitude Cherenkov radiations. This process happens
under the following phase-matching condition: β3Δω3

CRþ
3β2Δω2

CR − 6γp ¼ 0, where ΔωCR is the frequency shift of
Cherenkov radiations from the pump. A combination of
these two equations provides the values that are plotted in
Fig. 3(a) using vertical dash-dotted green lines. These lines
correspond to the cases when Cherenkov radiations are
generated exactly on MI harmonics, i.e., when ΔωCR ¼
n × ΔωMI, with n an integer. Each of these lines is close to

∆ωCR = n x ∆ωMI

∆ωCR = (n +1/2) x ∆ωMI
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one of the maxima of the pump power [blue curve in
Fig. 3(a)]. In this case, the FPU is on and it is not affected
by the TOD.
On the other hand, the vertical dashed red lines represent

the cases in which the radiation modes fall exactly
in the middle between the two MI harmonics [ΔωCR ¼
ðnþ 0.5Þ × ΔωMI]. Each of these lines is close to one of

the minima of the pump power [blue curve in Fig. 3(a)],
meaning that the FPU recurrence disappears. This simple
observation can be explained as follows. When Cherenkov
radiations are generated exactly on MI harmonics, it leads
to a modification of the energy repartition in the spectrum,
but most of the energy transferred to Cherenkov radiations
remains within the MI frequency comb. Figure 3(b)
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illustrates schematically this process. Then, multiple four-
wave-mixing processes involved in the FPU recurrence
may allow the energy of these normal modes to flow back
to the pump. Thus, the losses here caused by Cherenkov
radiations are reversible. On the contrary, when Cherenkov
radiations are generated in between two successive MI
harmonics, most of their energy is lost and is not

recoverable for multiple four-wave-mixing processes [see
the scheme in Fig. 3(c)]. The losses here are thus irrevers-
ible, and it leads to the suppression of the FPU recurrence
due to the generation of Cherenkov radiations.
This procedure leads to multiple disappearances and

restorations of the FPU recurrence, up to an upper limit
(from about jβ2j > 8 × 10−27 s2=m in our case). From this
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FIG. 5 Numerical data. Left two columns: False color plots of the pump and signal powers versus fiber length and dispersion. The third
column: Evolution of the signal power (solid red lines) and of the pump power (dotted blue lines) versus fiber length for specific values
of dispersion. Right column: Corresponding spectra at L ¼ 3000 m (blue bars) and L ¼ 0 (red bars). Light pink panels in the two right
columns show the cases where FPU recurrence is on, while the white panels show the cases where FPU recurrence is off.
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value, whatever the ΔωCR=ΔωMI ratio, we do not observe
any deviations from the standard FPU recurrence dynamics
because the energy shed into Cherenkov radiations is very
small [29]. The impact of Cherenkov radiations (and thus of
the TOD) on the whole system is then negligible.
This behavior is not only valid for signals located at the

maximum of the MI gain spectrum but similar behavior
is expected for any other frequency shifts, i.e., for other
values of the parameter a used in the AB theory [16], as
long as the energy shed by CRs is strong enough and the
spectral width of CRs is lower than the frequency shift
between two MI harmonics. In both cases, it corresponds
to a ≪ 0.5.

V. CONCLUSION

In conclusion, we have shown theoretically, numerically,
and experimentally, for the first time to our knowledge,
that FPU recurrence can be observed in an optical fiber with
the remarkable feature of multiple disappearances and
restorations due to third-order dispersion. These notewor-
thy features have been observed when the optical frequency
changes in a small interval close to the zero-dispersion
wavelength of the fiber. We have found that this behavior
is related to the Cherenkov-radiation process and, more
specifically, to the resonance between these small-
amplitude radiation waves generated due to third-order
dispersion and the MI harmonics. In the presence of perfect
phase matching, the radiation into the MI harmonics is
reversible, thus providing favorable conditions for the FPU
recurrence to occur. On the other hand, the irreversible
dissipation of energy into the radiation modes (when CRs
fall in between two successive MI harmonics) causes the
FPU recurrence to disappear. As far as we know, the effect
that we have discovered here has never yet been observed in
physics. The only other comparable case is the photon-echo
phenomenon that allows us to restore optical energy
coherently when it is lost within a system of two-level
atoms. In the latter case, the system can be “reversed” in
time by an external pulse, while the restoration of optical
energy in the FPU phenomenon is caused by the coherent
interaction of Cherenkov radiation with a multiplicity of MI
sidebands. We anticipate that the effect could be observed
in other convective systems that are modeled by the NLSE
with higher-order-dispersion terms. In particular, it should
be observable in the case of water waves or plasma.
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APPENDIX

Figure 4 provides additional information related to
experimental results.
The two left panels in this figure represent the top view

of Figs. 3(a) and 3(b), and the third column represents the
evolution of the pump and signal powers (in dashed blue
lines and solid red lines, respectively) for specific second-
order-dispersion values. The chosen values correspond to
the extrema of the pump power in Fig. 4(a) at a distance
L ¼ 3000 m, where the FPU contrast is maximal. When
the pump power reaches a maximum value, the FPU
recurrence is on. This fact is highlighted by coloring the
corresponding panels in pink. The right panel in Fig. 4
shows the initial (L ¼ 0) and the final (L ¼ 4000 m)
spectra at the same values of jβ2j as in the third panel.
Similar data taken from numerical simulations are

presented in Fig. 5. The qualitative features of this plot
are the same as in Fig. 4.
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