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In this article, we analyze the Casimir-Polder interaction of atoms with a solid grating and the repulsive
interaction between the atoms and the grating in the presence of an external laser source. The Casimir-
Polder potential is evaluated exactly in terms of Rayleigh reflection coefficients and via an approximate
Hamaker approach. The laser-tuned repulsive interaction is given in terms of Rayleigh transmission
coefficients. The combined potential landscape above the solid grating is probed locally by diffraction of
Bose-Einstein condensates. Measured diffraction efficiencies reveal information about the shape of the
potential landscape in agreement with the theory based on Rayleigh decompositions.
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The Casimir-Polder (CP) interaction is one of a class of
examples where fluctuating electromagnetic fields give rise
to (normally attractive) forces between matter [1,2]. For
infinitely extended plane surfaces, CP forces can be readily
calculated from the polarizability of the atom and the
dielectric properties of the substrate [3] and have been
measured in a number of experiments [4–11]. However, of
particular importance is the influence of the surface
geometry [12–14]. Nontrivial geometries can have a large
impact on the exact force profile and can potentially be
used for manipulating the closely related Casimir forces
[15]. The possibility of tailoring the Casimir force is also of
importance for applications in the microelectromechanical
systems (MEMS) and nanoelectromechanical systems
(NEMS) industry, where it is one of the limiting factors
in the miniaturization of micromachines and microsen-
sors [16].

One class of nontrivial geometries that have been
investigated theoretically, both in the framework of
atom-surface and surface-surface interactions, are periodic
structures such as gratings [17–19]. Please note that the
reflection of fast atoms from crystalline planar surfaces can
also be understood as diffraction caused by the periodic
shape of the attractive Casimir-Polder interaction.
Corresponding experiments with hot atomic beams were
reported some time ago [20]. In recent experiments, CP
forces above gratings were measured by different methods
[21–25]. In those experiments, the power-law coefficients
describing the CP potential in the electrostatic and in the
retarded regimes were determined. Recently, theoretical
proposals have been put forward to measure the CP
potential at corrugated surfaces with Bose-Einstein con-
densates [26].
In this article, we present both theoretical simulations

and experimental measurements of the potential landscape
for a single atom that is positioned at a submicron distance
from a grating of metal nanowires. The potential landscape
is composed of an attractive contribution due to the CP
force and a repulsive contribution due to an evanescent
light wave (EW) at the surface. The quantitative agreement
between theory and experiment in the absence of free
parameters demonstrates that complex surface-assisted
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potentials resulting from a combination of geometric
structure and tunable evanescent laser potentials are now
well understood both theoretically and experimentally.
Whereas in previous experiments the measured values of
the CP potential represent only an average over the
complicated potential landscape above the structures, in
this work we fully account for the dependence of the
potential on the lateral position above such a surface.
The evanescent light wave is generated by the internal

total reflection of a laser beam in the dielectric substrate
carrying the grating. A repulsion from the surface is
achieved by a laser (λ ¼ 765 nm) that is blue detuned
with respect to the transition frequency of the atoms
(Rb: λ0 ¼ 780 nm). Recently, we used this setup and
enhanced the evanescent waves by exciting surface plas-
mon polaritons at the surface [27]. In a similar way, nano-
objects have been optically trapped in a patterned light field
above a structured metallic film [28]. Here, we exploit the
fact that the exact shape of the total potential landscape can
be tuned by the strength of the optical dipole potential via
the laser intensity. This allows us to acquire spatially
resolved information of the surface potentials: Fig. 1 shows
a simulation of the potential landscape for a typical laser
power of P ¼ 211 mW, including the optical dipole
potential of the evanescent wave and the Casimir-Polder
potential.
The CP potential with its strong attraction towards the

gold stripes and the repulsive EW potential with its
maximal repulsion above the sapphire surface combine
to a periodic potential landscape that resembles a chain of

hills in front of the grating surface with valleys that lead to
the centers of the gold stripes. The heights and widths of the
hills depend on the laser power (Fig. 2), with larger powers
resulting in higher and broader hills.
The EW potential

UEWðrÞ ¼
X
i¼1;2

jdij2jEðrÞj2
3ℏΔi

(1)

is the potential due to the external monochromatic electric
field E with its frequency ω close to a specific set of atomic
transitions of Rb with dipole matrix elements di and
detunings Δi ¼ ω − ωi. It is dominated by these atomic
transitions and the transmission properties of the grating at
a single laser frequencyω. The EW potential is expressed in
terms of Rayleigh transmission coefficients in the
Appendix.
In the simulations, the ground-state CP potential of the

Rb atoms is calculated to lowest order in their isotropic
ground-state polarizability as [29]

UCPðrÞ ¼
ℏμ0
2π

Z
∞

0

dξξ2αðiξÞTrGð1Þðr; r; iξÞ: (2)
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FIG. 1 Simulation of the combined potential landscape, in-
cluding the evanescent-wave potential and Casimir-Polder land-
scape as calculated from Eqs. (1) and (2) for a laser power of
P ¼ 211 mW. The repulsive evanescent-wave potential is gen-
erated by a laser beam that is reflected by the total internal
reflection in the substrate. The gold stripes weaken the intensity
of the evanescent wave and thus modulate the strength of the
repulsion. The attractive Casimir-Polder potential reaches its
maximum value above the gold stripes and further increases this
modulation. At a distance of z ¼ 200 nm, the potential is laterally
modulated with an amplitude of ΔE=kB ¼ 14 μK.
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FIG. 2 Geometry of the metal grating.
Approximately 200 gold stripes with h ¼ 50 nm height and
500 nm width are deposited on a sapphire substrate and form a
grating with a d ¼ 1 μm period. A laser beam impinges under an
angle of θ ¼ 35.50° from the sapphire substrate onto the interface
to vacuum (respectively, gold) with its k vector in the ðy; zÞ plane.
The laser beam is internally reflected and generates an evanescent
wave. The combination of the repulsive potential due to the
evanescent wave with the Casimir-Polder interaction forms a
potential landscape above the grating. The colored lines (black to
brown, corresponding to laser powers P ¼ 120, 126, 133, 138,
144, 151, 156, 162, 169, 174, 187, 198, 211, 247 mW) are
simulations of equipotential lines using exact theory based on
Rayleigh decompositions for a 87Rb atom moving towards the
surface with velocity v ¼ 3.4 cm=s. From those, we deduce the
width bðPÞ where atoms are reflected. The two horizontal lines at
the top represent the incoming matter wave and are drawn at a
distance given by the de Broglie wavelength λdB ¼ 2πℏ

mv ¼
135 nm, with atomic mass m.
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Here, the polarizability αðiξÞ is approximated by an eight-
line model (see the Appendix), and Gð1Þ is the scattering
Green tensor which, for the grating structure in Fig. 2, can
be given as a Rayleigh decomposition in terms of Rayleigh
reflection coefficients. Because of the integral over all
imaginary frequencies as a result of the vacuum fluctua-
tions of the electromagnetic field, the CP potential depends
on all atomic transition frequencies and all eigenfrequen-
cies of the macroscopic system (grating).
From the theoretical point of view, it is quite interesting

to perform a comparison of an exact approach to the
calculation of CP potentials near gratings with an approxi-
mate Hamaker approach [30,31], which is based on a
pairwise summation of van der Waals forces between
volume elements of one body with those of the other.
However, such an approach neglects many-body inter-
actions that can lead to wrong results, in particular, for
complex geometric structures [32,33]. The nonadditivity of
Casimir forces induced by many-body interactions [34]
implies that the position, shape, and material dependencies
of such forces are intertwined in a complicated way.
Nevertheless, the Hamaker approach is widely used in
applications such as colloid science and biology [35]. The
most prominent example is the adhesive force of gecko
feet [36].
Surprisingly, so far not a single experiment has

addressed the accuracy of the Hamaker approach in
atom-surface interactions, despite there being a large
amount of work that has addressed deviations of the
proximity force approximation (PFA) from the exact
calculations, taking diffraction into account in the context
of surface-surface interactions [33,37–41]. In our case, the
CP potential contribution to the combined potential
(CPþ EW) is relevant at given separations, and one can
discern the difference between the result of exact simu-
lation of the Casimir-Polder potential expressed in terms of
Rayleigh coefficients and the result of an approximate
Hamaker approach.
The CP potential in the Hamaker approach is calcu-

lated in the local-field-corrected first-order Born approxi-
mation as

Gð1Þðr; r;ωÞ ¼ ω2

c2
χðωÞ

1þ χðωÞ=3
×
Z

d3sRð0Þðr; s;ωÞRð0Þðs; r;ωÞ; (3)

where Rð0Þðr; s;ωÞ is the regular part of the Green tensor,
χðωÞ is the susceptibility of the gold stripes, and the
integration extends over the total volume V of the grating.
Details of all the calculations are contained in the
Appendix.
Experimentally, we probe the width b of the reflection

zones in Fig. 2 by reflecting Bose-Einstein condensates
(BEC) from the surface. The experiment is carried out as

follows. A BEC is prepared in a magnetic trap at a distance
of several hundred μm from the grating and accelerated
such that it moves towards the surface with a constant
velocity v ¼ 3.4 cm=s. Thereby, the cloud is ballistically
expanding and transforms its interaction energy in velocity
spread. For that reason, interaction effects do not play a role
during reflection from the surface. The experimental details
of this preparation are contained in the Appendix. The
atoms reflect from the surface only at those lateral positions
where the potential height exceeds the kinetic energy of the
atoms. This happens in a zone with width b in each lattice
site (see Fig. 2). Note that considerable quantum reflection
of Rb atoms at the CP potential of a solid surface would
require atomic velocities below a few mm=s [9]. For the
velocity of v ¼ 3.4 cm=s, it is completely negligible. By
tuning the laser power, the reflection zone width b is
changed and different distances from the surface are
probed. Each atom of the BEC approaching the surface
constitutes a matter wave with a lateral extension that is
given by the size of the BEC on the order of several tens of
microns. This size is much larger than the grating period;
thus, the matter wave is diffracted from the periodic
structure of reflection zones in a direction x of period d.
In a simplified model that neglects the curvature of the

equipotential lines, we consider reflection of the matter
wave from the same reflection zones of width b as for a
single atom. The resulting atomic momentum distribution
in the far field is analogous to Fraunhofer diffraction. For
an arrangement of rectangular stripes as shown in Fig. 2,
the occupation pn of diffraction order n (normalized to p0)
is given by

pn ¼
����sinc

�
πn ·

b
d

�����
2

: (4)

It depends only on the ratio b=d. This is illustrated in the
theoretical curves in Fig. 3, where we plot the relative
occupations (normalized to

P
pn) of the diffraction orders

as determined from Eq. (4). In the limit of b=d → 0, the
situation resembles the emission of waves from a chain of
pointlike sources, in which all diffraction orders are equally
occupied. In contrast, the limit b=d → 1 corresponds to a
reflection from a surface with a constant density profile.
Here, the atomic cloud remains fully in the diffraction
order n ¼ 0.
In the experiment, we analyze the relative occupation of

individual diffraction orders by measuring the momentum
distribution px ¼ ℏkx of the atoms. This is done by taking
an absorption image of the cloud after ballistic expansion
for a time of flight of ttof ¼ 21.5 ms after reflection from
the surface. A typical image is shown in the inset of Fig. 3.
From the image, the atom numbers Nn corresponding to
diffraction orders n with momentum px;n ¼ nℏ 2π

d are
counted within the yellow boxes and are scaled to the
total number of reflected atoms. This provides us data
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triples of relative populations of diffraction orders n ¼ 0,
�1, �2 for each value of laser power. The populations for
n ≠ 0 are averaged over the populations of the orders with
�n. Each triple is individually fitted by the theoretical
curves in Fig. 3 and is thus attributed a certain value of b=d.
Although all data points coincide with the corresponding

theory curves very well, it is notable that the model used is
valid only for the lower laser powers used, corresponding to
the small values of b=d. The model is based on amplitude
modulation only and thus neglects phase modulation of the
reflected matter wave. As shown in the Appendix, this
approximation is valid for laser powers P≲ 140 mW,
whereas phase imprinting becomes an important effect
for the large laser powers used. Because a complete
calculation of the diffraction problem is more difficult
than electromagnetic diffraction and would not affect the
overall meaning of the results presented here, we restrict the
conclusions of this work to the data points with small
laser power.
The fitted values of b=d are now compared with the

theoretical prediction that is accessible from the width of
the equipotential lines shown in Fig. 2. As can be seen in
Fig. 4, the measured diffraction cannot be explained by the
spatial modulation of the optical potential alone. Thus, the
experiment is sensitive to the Casimir-Polder potential.
Moreover, it can partly discriminate between different
theoretical models: The data points agree with exact theory
based on Rayleigh decompositions within their statistic and
systematic errors. The Hamaker approach underestimates
the strength of the Casimir-Polder potential. The corre-
sponding values of b=d for low values of P in Fig. 4 are

thus larger than the observed data points and deviate from
them by more than 1 standard deviation. In the range of
large P in Fig. 4, the optical potential dominates over the
CP potential and reduces the difference between exact
theory and the Hamaker model.
It is obvious from Fig. 4 that the functional profile of the

data points differs from that of the simulations for laser
powers P≳ 140 mW. In particular, the value of b=d of the
measured data points saturates for large laser powers. This
observation is caused by the growing influence of phase
imprinting for increasing laser power, as shown in the
Appendix. This leads to a principally different behavior of
the scattered field, which manifests e.g., in the absence of
missing orders [42]. Qualitatively, for high reflectivity, the
assumption of instantaneous reflection is not justified.
Instead, the interaction time of the atoms with the surface
potential and the strength of the latter depend on the lateral
position x; i.e., depending on the lateral position, the matter
wave acquires a different phase. A periodic potential
imprints a phase that leads to a substantial diffraction even
when all atoms are reflected and thus simulates a saturation
of b=d for large laser powers [43–45].
It is worth considering the possible influence of surface

potential generated by Rb atoms adsorbed to our grating.
As reported in Ref. [46], surface potentials are primarily
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zone b=d. The curves are obtained from Eq. (4). Data points
represent the measured occupation of diffraction orders as shown
in the inset. The horizontal position of each triple of data points
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FIG. 4 Comparison between theory and experiment. Width of
the reflection zone b=d versus laser power P. Red circles are
experimental data points obtained from the fit in Fig. 3. Error bars
of the data points are due to the combined statistic and systematic
uncertainties in the atom-number measurement. Blue dots show
the theoretical values taken from the equipotential lines in Fig. 2
and represent the result of the exact calculation based on Rayleigh
decompositions. Black points are the corresponding results based
on a Hamaker approach. Green points stem from a simulation of
the optical potential alone, neglecting any influence of the
Casimir-Polder potential. Error bars of the theoretical points
represent the systematic error due to the uncertainty in the laser
intensity at the surface ΔI ¼ �5% and the velocity of the atoms
Δv ¼ �0.3 cm=s. Please note that the data points are horizon-
tally shifted one line width (≲1 mW) for clarity.
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generated on metal surfaces such as the grating bars. The
authors report an electric field of 1 μV=cm per adsorbed
atom at a distance z ¼ 10 μm, with a 1=z2.3 distance
dependence, corresponding to roughly 0.1 V=m at a dis-
tance of 430 nm. At this distance, adsorbed atoms from a
surface area of about 1 μm × 1 μm ¼ 1 μm2 contribute to
the field. The 2 × 105 atoms involved in a single run of the
experiment are spread out over a cloud of dimensions
100μm×50μm¼5000μm2 so that 2 × 105 × ð1=5000Þ×
ð1=2Þ ¼ 20 atoms potentially impinge on this area, where
the factor 1=2 represents the filling factor of the grating.
With the small sticking probability of 0.8% as observed in
Ref. [47], 1600 atoms could accumulate in the relevant
surface area in the course of 10000 runs of the experiment.
This would lead to a total electric field of the order of
2 × 102 V=m, much smaller than the value of the evan-
escent laser field of about 3 × 104 V=m at the same
distance calculated for a laser power of 247 mW.
Alternative measurements [48] predict even smaller values
of the electric fields due to adsorbed atoms.
In conclusion, we have experimentally probed

surface potential landscapes that are composed of
Casimir-Polder forces and optical dipole forces above
metallic nanostructures. We have used matter-wave dif-
fraction of Bose-Einstein condensates as a measuring tool,
which, in principle, can be applied to arbitrary surfaces.
Complementary to previous experiments in which spatial
averages of the Casimir-Polder coefficients were deter-
mined, we obtain additional spatial information by analyz-
ing the occupation of individual diffraction orders. Our data
agree quantitatively with numerical calculations of the
surface potentials (1) and (2) based on exact theory where
potentials are expressed in terms of Rayleigh coefficients,
whereas a Hamaker approach leads to incompatible results
for low laser powers. The difference is so large that an
experiment can distinguish between both approaches. From
the theoretical point of view, the main result is the first
comparison of exact theoretical results for atom-surface
potentials above a structured surface (based on Rayleigh
decompositions) and experimental data used to measure the
structure of the potential landscape. The results open a wide
range of possibilities for exact theoretical simulations and
design of atomic-surface potentials in the vicinity of
nanostructured and microstructured surfaces.
The fact that we understand these potentials very well is

crucial for the design and realization of nanoscale surface
traps for surface quantum optics experiments with cold
atoms. Our analysis demonstrates the possibility to couple
atoms to light near structured surfaces in a controlled way.
Moreover, the metallic parts of the surface can give rise to
spectrally broad surface plasmon resonances in the optical-
frequency range. Related phonon polariton resonances in
the infrared frequency range have e.g., led to the observa-
tion of repulsive Casimir-Polder forces of highly excited Cs
atoms [49]. A plasmon-based repulsive Casimir-Polder

force would give a perspective on fascinating scenarios
for controlling CP forces [50] and for generating surface
traps for cold atoms that do not require external magnetic or
optical fields.
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APPENDIX

1. Simulation of the Casimir-Polder potential

The ground-state CP potential of an atom or molecule
can be given as [29]

UCPðrÞ ¼
ℏμ0
2π

Z
∞

0

dξξ2Tr½αðiξÞ ·Gð1Þðr; r; iξÞ�: (A1)

To allow for potentially anisotropic molecules, we have
included the ground-state polarizability tensor αðiξÞ;Gð1Þ is
the scattering Green tensor. We are neglecting thermal
contributions to the CP force, which is a good approxi-
mation for the distances considered in this work. For the
structure in Fig. 2, the scattering Green tensor can be given
in a Rayleigh decomposition as

Gð1Þðr;r0;ωÞ¼ i
8π2

Z
π=d

−π=d
dkx

X∞
m;n¼−∞

Z
∞

−∞
dky

×
X

σ;σ0¼E;H

eiðkmx x−knxx0Þþikyðy−y0Þþiðkmz zþknz z0Þ

knz

×eσmþðkx;ky;ωÞRσσ0
mnðkx;ky;ωÞeσ0n−ðkx;ky;ωÞ:

(A2)

Here, k ¼ ðkmx ; ky; kmz Þ is the wave vector; its x and z
components read kmx ¼ kx þmq (q ¼ 2π=d: lattice vector

of the grating) and kmz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2 − ðkmx Þ2 − k2y

q
, with Im

kmz > 0. The polarization unit vectors for upward or down-
ward moving waves are defined by
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eEm�ðkx; ky;ωÞ ¼
c

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=c2 − k2y

q
0
B@

kmx ky

k2y − ω2=c2

�kykmz

1
CA; (A3)

eHm�ðkx; ky;ωÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2=c2 − k2y
q

0
@

∓kmz
0

kmx

1
A: (A4)

The latter are chosen such that the y components of the
electric or magnetic fields vanish for σ ¼ H, E. The
Rayleigh reflection coefficients Rσσ0

mnðkx; ky;ωÞ are calcu-
lated by numerically integrating the Maxwell equations
within the grating (0 < z < h) and imposing conditions of
continuity at its upper (free-space) and lower (sapphire)
boundaries [17]. They are even functions of ky and obey the
following symmetries: Rσσ0

mnðkx; ky; iξÞ ¼ �Rσσ0�−m−nð−kx;
ky; iξÞ and Rσσ0

mnðkx; ky; iξÞβnz ¼ �Rσ0σ�−n−mðkx; ky; iξÞβmz , with
βnz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2=c2 þ ðknxÞ2 þ k2y

q
, the sign þ for σσ0 ¼ EE, HH,

and the sign − otherwise. Our theory is able to allow for
anisotropic atoms or molecules. For a sufficiently aniso-
tropic molecule, we find a repulsive CP potential in
particular spatial locations, similar to the repulsive Casimir
force predicted in Ref. [15] (see also Refs. [51–53]). Note
that for the isotropic atoms used in the current experiment,
α ¼ αI (I: unit tensor), Eq. (A1) simplifies to Eq. (1) and
our formalism reduces to that of Ref. [18].

2. Simulation of the evanescent-wave potential

The evanescent-wave potential is generated by an
incoming wave of (free-space) wavelength λ ¼ 765 nm,
which impinges on the sapphire-grating interface at an
incidence angle θ ¼ 35.50° ¼ 0.6196 rad, with the plane
of incidence being parallel to the grating bars. The
components of the wave vector in the sapphire layer are
hence kmx ¼ 0, ky ¼ k sin θ ¼ 8.39 × 106 m−1, k0þz ¼
kcosθ¼1.18×107m−1 (k ¼ Rensappω=c, with Rensapp ¼
1.76 and ω ¼ 2πc=λ ¼ 2.46 × 1015 rad=s). The incoming
field is polarized such that its component perpendicular to
the grating vanishes; it can hence be written as
EinðrÞ ¼ EsappeE0þð0; ky;ωÞeiðkyyþk0þz zÞ. The field amplitude
inside sapphire can be related to the respective laser power
Psapp and beam waist wsapp via 1

2
ϵ0nsappcE2

sapp ¼ Isapp ¼
Psapp=ð2πw2

sappÞ. The laser power is in turn related to its
free-space value by Psapp ¼ Tfree-space→sappPfree-space, where
Tfree-space→sapp ¼ 0.88 has been determined experimentally
from a setup with symmetric light paths. The measured
beam waist of 170 μm in free space results in an effective
beam waist wsapp ¼ 182.9 μm in sapphire after transitions
through the free-space–glass and glass-sapphire interfaces.
After transmission through the grating, the external laser
leads to a field

EðrÞ ¼ Esapp

X∞
n¼−∞

X
σ¼E;H

eiðnqxþkyyÞ−κnþz z

× eσnþðnq; ky;ωÞTσE
n0 ð0; ky;ωÞ (A5)

with κnþz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y − ω2=c2 þ n2q2

q
, where the Rayleigh

transmission coefficients Tσσ0
mnðkx; ky;ωÞ are found from

numerical integration in the same way as the respective
reflection coefficients. When interacting with a Rb atom,
this evanescent field generates an optical potential

UEWðrÞ ¼
X
i¼1;2

jdij2jEðrÞj2
3ℏΔi

¼
X
i¼1;2

jdij2E2
sapp

3ℏΔi

×
X∞

m;n¼−∞

X
σ;σ0¼E;H

eiðm−nÞqx−ðκmþ
z þκnþ�

z Þz

× eσmþðmq; ky;ωÞ · eσ0�nþðnq; ky;ωÞ
× TσE

m0ð0; ky;ωÞTσ0E�
n0 ð0; ky;ωÞ: (A6)

3. Details of calculations

The potential UEWðrÞ (1) was evaluated using transition
frequencies ω1¼2.37×1015 rad=s, ω2¼2.41×1015 rad=s
and dipole-matrix elements d1 ¼ 2.53 × 10−29 Cm, d2 ¼
3.57 × 10−29 Cm for the D1 (52S1=2 → 52P1=2) and D2

(52S1=2 → 52P3=2) lines of the isotropic Rb atom [54,55];
one can neglect the contribution of other transition lines
in Eq. (1).
In the calculation of the CP potential (2), the polar-

izability

αðiωÞ ¼
X8
i¼1

2ωijdij2
3ℏðω2

i þ ω2Þ (A7)

for the isotropic Rb atom was evaluated within a model,
taking into account eight transition frequencies [54]:
ω1 ¼ 2.37 × 1015 rad=s, d1 ¼ 2.53 × 10−29 Cm, ω2 ¼
2.41 × 1015 rad=s, d2 ¼ 3.57 × 10−29 Cm, ω3¼4.468×
1015 rad=s, d3¼0.200×10−29Cm, ω4¼4.482×1015 rad=s,
d4 ¼ 0.324 × 10−29 Cm, ω5¼5.245×1015 rad=s, d5¼
0.069×10−29Cm, ω6 ¼ 5.251 × 1015 rad=s, d6¼0.121×
10−29Cm, ω7¼5.622×1015 rad=s, d7¼0.035×10−29Cm,
ω8 ¼ 5.625 × 1015 rad=s, d8 ¼ 0.067 × 10−29 Cm.
Distances in the range λ8 ∼ 300 nm≲ z≲ λ1 ∼ 800 nm

are in between the Casimir-Polder regime (z ≫ λi) and the
nonretarded van der Waals regime (z ≪ λi) of the CP
potential. In the range of separations 100 nm ≤ z≲ λi used
in the calculations, the frequencies ω≲ ωi yield the leading
contribution to the integral (2).
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The numerical error in the evaluation of the combined
potential (which is the sum of the Casimir-Polder and
evanescent-wave potentials) is 0.1%. The number of
Rayleigh coefficients used was selected to obtain the
needed accuracy; N ¼ 30 (2N þ 1 terms in every
Rayleigh expansion) is sufficient to obtain the potential
with the required accuracy even at closest separations from
the grating, as shown in Fig. 2.

4. Casimir-Polder potential using the Hamaker
approach

The scattering Green tensor Gð1Þðr; r;ωÞ in Eq. (A1) can
be expanded in a Born series with respect to a known
reference Green tensor Gð0Þðr; r;ωÞ as [3,56]

Gð1Þðr;r;ωÞ¼ω2

c2

Z
d3sGð0Þðr;s;ωÞδϵðωÞGð0Þðs;r;ωÞ

þ
�
ω2

c2

�
2
Z

d3sd3s0Gð0Þðr;s;ωÞδϵðωÞ

×Gð0Þðs;s0;ωÞ×δϵðωÞGð0Þðs0;r;ωÞþ���;
(A8)

where the integration range covers the volume of the
material under investigation. The perturbation δϵðωÞ ¼
ϵð1ÞðωÞ − ϵð0ÞðωÞ denotes the deviation from the reference
permittivity. In the case of the free-space Green tensor as
our reference, the difference permittivity simply equals the
susceptibility [here, δϵðωÞ ¼ χAuðωÞ] of the material. The
free-space Green tensor can be written as (ϱ ¼ r − s,
ϱ ¼ jϱj) [3]

Gð0Þðϱ;ωÞ ¼ − c2

3ω2
δðϱÞ

þ ω

4πc

�
f

�
c
ωϱ

�
I − g

�
c
ωϱ

�
ϱ ⊗ ϱ

ϱ2

�
eiϱω=c

(A9)

with fðxÞ ¼ xþ ix2 − x3 and gðxÞ ¼ xþ 3ix2 − 3x3.
The Hamaker approach only uses the first term of the

Born series expansion. Because the Born series is a
perturbative expansion in the susceptibility χðωÞ, it con-
verges badly for materials with a large susceptibility such
as gold. To improve this convergence, and to implement a
local-field correction, the reference Green tensor is sepa-
rated into a regular R and a singular part D ¼ − c2

3ω2 δðϱÞ.
Inserting this into Eq. (A8) and performing the integrals
over the δ distributions yields the local-field-corrected first-
order scattering Green tensor

Gð1Þðr; r;ωÞ ¼ ω2

c2
χðωÞ

X∞
n¼0

�
− 1

3
χðωÞ

�
n

×
Z

d3sRð0Þðr; s;ωÞRð0Þðs; r;ωÞ; (A10)

which leads to

Gð1Þðr; r;ωÞ ¼ ω2

c2
χðωÞ

1þ χðωÞ=3

×
Z

d3sRð0Þðr; s;ωÞRð0Þðs; r;ωÞ (A11)

with (ϱ ¼ r − s, ϱ ¼ jϱj)

Rð0Þðϱ;ωÞ ¼ ω

4πc

�
f

�
c
ωϱ

�
I − g

�
c
ωϱ

�
ϱ ⊗ ϱ

ϱ2

�
eiϱω=c:

(A12)

Equation (A11) has to be evaluated numerically. Because of
the smooth shape of the potential, numerical integration
methods converge quickly, with errors proportional to, at
most, the curvature of the potential, which is small in the
range of investigation.
In the Hamaker approach (pairwise summation), the

potential is clearly additive. The total potential can be
separated into three parts: one related to the evanescent
field, one related to the dispersion interaction between Rb
and Au, and one part for the Casimir-Polder interaction
between the Rb atoms and the sapphire substrate. The latter
can be neglected because the interaction with the gold
stripes by far dominates every other CP interaction, as we
have explicitly checked.

5. BEC preparation

The BEC is prepared in an ultrahigh vacuum chamber.
After precooling and trapping 87Rb atoms in a magneto-
optic trap, the atoms are adiabatically transferred into a
highly compressed magnetic trap, where they are further
cooled by forced radio-frequency evaporation by which
Bose-Einstein condensates with, typically, 2 × 105 atoms
are generated. This is done at a distance of several hundred
μm from the surface of a glass prism. A thin sapphire
substrate containing the gold grating investigated in this
paper is glued to the top of this prism. After preparation of
the BEC, we suddenly displace the magnetic trapping
minimum by a distance Δz, thereby raising the potential
energy of the atoms by ΔE ¼ 1

2
mω2Δz2, with atomic mass

m and magnetic trapping frequency ω. The BEC is
accelerated towards the new trapping minimum. After a
quarter of the oscillation period δt ¼ π

2ω, we switch off the
magnetic trap and apply a constant magnetic-field gradient
of B0 ¼ 15 Gcm−1, which compensates the gravitational
force. Thus, the atoms are not further accelerated or
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decelerated because of gravitation while moving towards
the grating. We measure the actual velocity of the atoms by
taking absorption images of the cloud at several time
intervals of 1 ms after the acceleration.

6. Comparison between amplitude
and phase modulation

Experimental data are evaluated in this paper, for
simplicity, only with an amplitude modulation model.
This is, as will be shown below, a good approximation
for the small laser powers used, whereas for large laser
powers, the phase of the matter wave is also significantly
modulated, leading to an increased diffraction as com-
pared to amplitude modulation alone. For a normal
incidence of the matter wave on the grating (like in
the experiment—see also Fig. 2), the diffracted intensity
is given within the Fraunhofer limit as [57]

IðκÞ ¼ I0k2
����
Z

∞

−∞
e−iκxrðxÞdx

����
2

; (A13)

where k ¼ 2π=λdB with de Broglie wavelength λdB ¼ h
mv

of the matter wave and κ ¼ k · sinðθrÞ with angle θr of
the reflected wave. Diffraction order n is reflected at the
angle θðnÞr ≈ n λdB

d . For the estimation of the relevance of
phase imprinting, only relative occupations are important.
Thus, neglecting prefactors in Eq. (A13), we calculate the
Fourier transform r̂ðκÞ of the complex reflection function
rðxÞ and evaluate r̂ðκÞ at the values corresponding to
the diffraction orders. The reflection function rðxÞ ¼
rAðxÞ · eiϕðxÞ contains both amplitude and phase modu-
lation. The phase at a certain lateral position x is
calculated from the simulated combined EW and CP
potential landscape via [58]

ϕðxÞ ¼ − 2

ℏv

Z
zRðxÞ

þ∞
ðUEWðxÞ þ UCPðxÞÞdz; (A14)

where the integral is evaluated from distances far from
the surface (z → þ∞) to the distance zRðxÞ, where the
potential energy UEW þ UCP equals the kinetic energy of
the atoms Ekin ¼ 1

2
mv2. The factor of 2 before the

integral stems from the fact that the incoming and the
reflected matter wave acquire the same phase. The
amplitude of the reflection function is rAðxÞ ¼ 1 for
those lateral positions where atoms are reflected and
rAðxÞ ¼ 0 for those positions where they are transmitted.
Please note that Eq. (A14) is the phase along the classical
path in the eikonal approximation and that it neglects the
influence of the curvature of the potential on the path.
The expressions above are thus not a full solution to the
scattering problem, but they are a reasonable approxi-
mation in the limit of small scattering angles (θð1Þr ≈ 8°).
Solving Eq. (A13), we deduce the influence of phase

imprinting on the diffraction by comparing the results of
the full reflection function rðxÞ with those where the
phase is artificially set to be constant, ϕðxÞ ¼ 0. The
corresponding occupations are shown in Fig. 5. For laser
powers P < 140 mW, the deviation is ≲20% such that
the diffraction can be described in some approximation
by amplitude modulation alone. In contrast, this approxi-
mation is not valid for the high laser powers used where
the deviation exceeds 50%.
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