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Classical rate theories often fail in cases where the observable(s) or order parameter(s) used is a poor
reaction coordinate or the observed signal is deteriorated by noise, such that no clear separation between
reactants and products is possible. Here, we present a general spectral two-state rate theory for ergodic
dynamical systems in thermal equilibrium that explicitly takes into account how the system is observed.
The theory allows the systematic estimation errors made by standard rate theories to be understood and
quantified. We also elucidate the connection of spectral rate theory with the popular Markov state modeling
approach for molecular simulation studies. An optimal rate estimator is formulated that gives robust and
unbiased results even for poor reaction coordinates and can be applied to both computer simulations and
single-molecule experiments. No definition of a dividing surface is required. Another result of the theory is
a model-free definition of the reaction coordinate quality. The reaction coordinate quality can be bounded
from below by the directly computable observation quality, thus providing a measure allowing the reaction
coordinate quality to be optimized by tuning the experimental setup. Additionally, the respective partial
probability distributions can be obtained for the reactant and product states along the observed order
parameter, even when these strongly overlap. The effects of both filtering (averaging) and uncorrelated
noise are also examined. The approach is demonstrated on numerical examples and experimental single-
molecule force-probe data of the p5ab RNA hairpin and the apo-myoglobin protein at low pH, focusing
here on the case of two-state kinetics.
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I. INTRODUCTION

The description of complex molecular motion through
simple kinetic rate theories has been a central concern of
statistical physics. A common approach, first-order rate
theory, treats the relaxation kinetics among distinct regions
of configuration space by single-exponential relaxation.
Recently, there has been interest in estimating such rates
from trajectories of single molecules, resulting from the
recent maturation of measurement techniques able to
collect extensive traces of single-molecule extensions or
fluorescence measurements [1,2]. When the available
observable is a good reaction coordinate, in that it allows
the slowly converting states to be clearly separated [see
Fig. 2(I), left], classical rate theories apply and the robust
estimation of transition rates is straightforward using a
variety of means [3]. However, in the case in which the

slowly converting states overlap in the observed signal [see
Fig. 2(III), left], either due to the fact that the molecular
order parameter used is a poorly separates them or there is
large noise of the measurement (see the discussion in
Refs. [4,5]), a satisfactory theoretical description is missing
and many estimators break down.
Most two-state rate theories and estimators are based on

dividing the observed coordinate into a reactant and a
product substate and then in some way counting transition
events that cross the dividing surface. Transition state
theory (TST) measures the instantaneous flux across this
surface, which is known to overestimate the rate due to the
counting of unproductive recrossings over the dividing
surface on short time scales [6].
Reactive flux theory [7] copes with this by counting a

transition event only if it has succeeded to stay on the product
side after a sufficiently long lag time τ. Reactive flux theory
involves derivatives of autocorrelation functions that are
numerically unreliable to evaluate [8]. In practice, one
therefore typically estimates the relaxation rate via integra-
tion or by performing an exponential fit to the tail of a
suitable correlation function, such as the number correlation
function of reactants or the autocorrelation function of the
experimentally measured signal [3,9,10]. In order to split
this relaxation rate into a forward and backward rate
constant, a clear definition of the reactant and product
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substates is needed, which is difficult to achieve when these
substates overlap in the observed signal.
Markov state models (MSMs) have recently become a

popular approach to producing a simplified statistical
model of complex molecular dynamics from molecular
simulations. While applicable only when the discretization
of state space succeeds in separating the metastable con-
formations, these models can be regarded as steps towards a
multistate rate theory. MSMs use a transition matrix
describing the probability that a system initially found in
a substate i is found in substate j a lag time τ later. When
the state division allows the metastable states of the system
to be distinguished [11–14], the transition matrix with a
sufficiently large choice of τ can be used to derive a
phenomenological transition rate matrix that accurately
describes the interstate dynamics [15]. This is explicitly
done for the two-state case in Ref. [8]. It was shown in
Refs. [14,16] that by increasing the number of substates
used to partition state space, and hence using multiple
dividing surfaces instead of a single one, these rate
estimates become more precise. In the limit of infinitely
many discretization substates, the eigenfunctions of the
dynamical propagator in full phase space are exactly
recovered, and the rate estimates become exact even for
τ → 0þ [17]. In practice, however, a finite choice of τ is
necessary in order to have a small systematic estimation
error, especially if “uninteresting” degrees of freedom such
as momenta or solvent coordinates are discarded. An
alternative way of estimating transition rates is by using
a state definition that is incomplete and treats the transition
region implicitly via committor functions that may better
approximate the eigenfunctions of the dynamical propa-
gator in this region [18–20].
The quality of the rate estimates in all of the above

approaches relies on the ability to separate the slowly
converting states in terms of some dividing surface or state
definition. These approaches often break down in practice
when the available observables do not permit such a
separation, i.e., when kinetically distinct states overlap in
the histogram of the observed quantity. However, such a
scenario may often arise in single-molecule experiments
where the available order parameter depends on what is
experimentally observable and may not necessarily be a
good indicator of the slow kinetics. Moreover, conse-
quences of the measurement process may increase the
overlap between states, for example, by bead diffusion in
optical tweezer experiments or by shot noise in single-
molecule fluorescence measurements. In favorable situa-
tions, the signal quality can be improved by binning the
data to a coarser time scale (often simply referred to as
“filtering”), thus reducing the fluctuations from fast proc-
esses and shot noise. However, the usefulness of such
filtering is limited because the time window used needs to
be much shorter than the time scales of interest—otherwise
the kinetics will be distorted. In general, one has to deal

with a situation where overlap between the slowly con-
verting states is present, both theoretically and practically.
Hidden Markov models (HMMs) [21–23] and related

likelihood methods [24] are able to estimate transition rates
even in such situations, and recently have been successful in
distinguishing overlapping states in molecules with complex
kinetics [25,26]. However, HMMs need a probability model
of the measurement process to be defined, which can lead to
biased estimates when this model is not adequate for the data
analyzed. A recent approach, the signal pair-correlation
analysis (PCA) [27], provides rate estimates without an
explicit probability model, and instead requires the definition
of indicator functions on which the measured signal can
uniquely be assigned to one of the kinetically separated
states. While this is often easier to achieve than finding an
appropriate dividing surface, there is a trade-off between
using only data that are clearly resolved to be in one state or
the other (thus minimizing the estimation bias) while
avoiding discarding too much data (thus minimizing the
statistical error). Despite these slight limitations, both
HMMs and PCA are practically very useful to identify
and quantify hidden kinetics in the data. Yet, both are
algorithmic approaches rather than a rate theory.
The recent success of single-molecule experiments and

the desire for a robust rate estimation procedure that yields
viable rate estimates even when highly overlapping states
indicate clearly that the observed signal is a poor reaction
coordinate highlights the need for a general and robust two-
state rate theory for observed dynamics. Here, we make an
attempt towards such a general rate theory for stochastic
dynamics that are observed on a possibly poor reaction
coordinate—often because the probed molecular order
parameter is a poor choice, or because the measurement
device creates overlap by noise broadening the signal.
Our approach requires only mild assumptions to hold for

the dynamics of the observed system. First, the dynamical
law governing the time evolution of the system in its full
phase space—including all positions and velocities of the
entire measured construct and the surrounding solvent—is
assumed to be a time-stationary Markov process. We also
require that the system obeys microscopic detailed balance
in the full phase space and supports a unique stationary
distribution. These mild criteria are easily satisfied by a
great number of physical systems of interest in biophysics
and chemistry.
When projected onto some measured observable, the

dynamics of the system are no longer Markovian. In
addition, the observed dynamics may be contaminated with
measurement noise. As a result, the resulting signal may not
be easily separable into kinetically distinct states by a simple
dividing surface, something that is often required for existing
rate estimation procedures to work well.
Our framework allows us to (i) evaluate the quality of

existing estimators and propose optimal estimators for the
slowest relaxation rate, (ii) provide a model-free definition
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of the reaction coordinate quality (RCQ) and the observa-
tion quality (OQ) of the signal, and (iii) derive an optimal
estimator for the transition rates between the slowly
converting states, as well as their stationary probability
densities, even if these strongly overlap in the observation.
The present rate theory is exclusively concerned with the

systematic error in estimating rates and proposes “optimal”
methods that minimize this systematic rate estimation error.
Therefore, all statements are strictly valid only in the data-
rich regime. Explicit treatment of the statistical error in the
data-poor regime is beyond the scope of the present work,
but it is briefly discussed at the end of the paper and in the
Supplemental Material [28].

II. FULL-SPACE DYNAMICS

We consider a dynamical system that follows a stationary
and time-continuous Markov process xt in its full (and
generally large and continuous) phase space Ω. xt is
assumed to be ergodic with a unique stationary density
μðxÞ. In order to be independent of specific dynamical
models, we use the general transition density pτðxt;xtþτÞ;
i.e., the conditional probability density that, given the
system is at point xt ∈ Ω at time t, it will be found at
point xtþτ ∈ Ω a lag time τ later. At this point, we will also
assume that the dynamics obey microscopic detailed
balance, i.e.,

μðxtÞpτðxt;xtþτÞ ¼ μðxtþτÞpτðxtþτ;xtÞ; (1)

which is true for systems that are not driven by external
forces. In this case, μðxÞ is a Boltzmann distribution in
terms of the system’s Hamiltonian. In some dynamical
models, e.g., Langevin dynamics, Eq. (1) does not hold, but
rather some generalized form of it does hold [29]. In this
case, the present theory also applies (see comment below),
but in the interest of the simplicity of the equations, we
assume Eq. (1) subsequently.
For a two-state rate theory, we are interested in the

slowest relaxation processes, and hence rewrite the tran-
sition density as a sum of relaxation processes (each
associated with a different intrinsic rate) by expanding in
terms of the eigenvalues λi and eigenfunctions ψ i of the
corresponding transfer operator [14,16]:

pτðxt;xtþτÞ ¼
X∞
i¼1

e−κiτψ iðxtÞμðxtþτÞψ iðxtþτÞ: (2)

Here,

λiðτÞ ¼ e−κiτ (3)

are eigenvalues of the propagator that decay exponentially
with lag time τ. We order relaxation rates according to
κ1 < κ2 ≤ κ3 ≤ � � �, and thus, λ1ðτÞ > λ2ðτÞ ≥ λ3ðτÞ ≥ � � �.
The first term is special in that it is the only stationary

process: κ1 ¼ 0, λ1ðτÞ ¼ 1, ψ1ðxÞ ¼ 1; thus, the first term
of the sum is identical to μðxÞ. All other terms can be
assigned a finite relaxation rate κi or a corresponding
relaxation time scale ti ¼ κ−1i , which are our quantities of
interest. The eigenfunctions ψ i are independent of τ and
determine the structure of the relaxation process occurring
with rate κi. The sign structure of ψ iðxÞ determines
between which substates the corresponding relaxation
process is switching and is thus useful for identifying
metastable sets, i.e., sets of states that are long lived and
interconvert only by rare events [30,14]. The eigenfunc-
tions are chosen to obey the normalization conditions

hψ i;ψ jiμ ¼
Z
Ω
dxψ iðxÞψ jðxÞμðxÞ ¼ δij; (4)

and integration always runs over the full space of the
integrated variable if not indicated otherwise. At a given
time scale τ of interest, fast processes with κ ≫ τ−1 (and,
correspondingly, ti ≪ τ) will have effectively vanished,
and we are typically left with relatively few slowly relaxing
processes.
Finally, we define the μ-reweighted eigenfunctions,

ϕiðxÞ ¼ μðxÞψ iðxÞ; (5)

such that the normalization condition of the eigenfunctions
can be conveniently written as

hϕi;ψ ji ¼
Z
Ω
dxϕiðxÞψ jðxÞ ¼ δij: (6)

Finally, the correlation density cτðxt;xtþτÞ, i.e., the joint
probability density of finding the system at xt at time t and
at xtþτ at time tþ τ, is related to the transition density pt by

cτðxt;xtþτÞ ¼ μðxtÞpτðxt;xtþτÞ: (7)

III. OBSERVED DYNAMICS AND TWO-STATE
SPECTRAL RATE THEORY

Consider the case that we are only interested in a single
relaxation process—the slowest. Below, we sketch a rate
theory for this case. Details of the derivation can be found
in the Supplemental Material [28]. Based on the definitions
above, the correlation density can then written as

cτðxt;xtþτÞ ¼ μðxtÞμðxtþτÞ
þ e−κ2τμðxtÞψ2ðxtÞμðxtþτÞψ2ðxtþτÞ
þ e−κ3τμðxtÞpτ;fastðxt;xtþτÞ; (8)

where, if detailed balance (1) holds, the correlation density
for the fast decaying processes (which are not of interest
here) is given by Eq. (2):
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pτ;fastðxt;xtþτÞ ¼
X∞
i¼3

e−ðκi−κ3Þτψ iðxtÞμðxtþτÞψ iðxtþτÞ:

(9)

If detailed balance does not hold on the full phase space,
but rather some generalized form of it, the spectrum may
have complex eigenvalues. Even in this case, the fast part of
the dynamics can be bounded by e−κ3τ, and, therefore,
Eq. (8) and the subsequent theory hold. See also the
discussion in Ref. [16].

A. Exact rate

κ2 is often termed the phenomenological rate because it
governs the dominant relaxation rate of any observed signal
in which the slowest relaxation process is apparent. The
exact rate of interest κ2 can, theoretically, be recovered as
follows: If we know the exact corresponding eigenfunction
ψ2ðxÞ, it follows from Eqs. (2) and (4) that its autocorre-
lation function evaluates to

λ2ðτÞ ¼ hψ2ðxtÞψ2ðxtþτÞit
¼

Z
Ω
dxt

Z
Ω
dxtþτcτðxt;xtþτÞψ2ðxtÞψ2ðxtþτÞ

¼ e−κ2τ; (10)

where h·it denotes the time average, which here is identical
to the ensemble average due to the ergodicity property of
the dynamics.
The correlation function hψ2ð0Þψ2ðτÞit yields the exact

eigenvalue λ2ðτÞ and thus also an exact rate estimate
κ̂2 ¼ −τ−1 ln λ2ðτÞ ¼ κ2, independently of the choice of τ.

B. Projected dynamics without measurement noise

Suppose we observe the dynamics of an order parameter
y ∈ R that is a function of the configuration x. Examples
are the distance between two groups of the molecule or a
more complex observable, such as the Förster resonance
transfer efficiency associated with a given configuration.
See Fig. 1 for an illustration. We first assume that no
additional measurement noise is present. The analysis of a
molecular dynamics simulation where a given order
parameter is monitored is one example of such a scenario.
Now, it is no longer possible to compute the rate via
Eq. (10) or some direct approximation of Eq. (10), since the
full configuration space Ω in which the eigenfunction ψ2

exists can no longer be recovered once the dynamics has
been projected onto an order parameter. Instead, we are
forced to work with functions of the observable y. While
the theory is valid for multidimensional observables y, the
equations below assume y ∈ R for simplicity.
We have two options for deriving the relevant rate

equations for the present scenario. As a first option, we
note that a projection that is free of noise can be regarded as

a function yðxÞ: Ω → R. Thus, any function ~ψ2ðyÞ of
elements in observable space R that aims at approximating
the dominant eigenfunction ψ2 can also be regarded as a
function in full space Ω via ~ψ2ðyÞ ¼ ~ψ2ðyðxÞÞ. When
following this idea, one can use the variational principle of
conformation dynamics [31] (see also the discrete-state
treatment in Ref. [20]), in order to derive the rate equations
for the observed space dynamics. See Supplemental
Material [28] for details.
However, since we aim to include the possibility of

stochastic measurement noise in a second step, we derive a
more general approach (see Supplemental Material [28]),
which is summarized subsequently. Consider the function
χpðy∣xÞ that denotes the output probability density with
which each configuration of the full state space x ∈ Ω
yields a measured value y ∈ R. In the case of simply
projecting x values without noise to specific y values, χ has
the simple form:

χpðy0∣xÞ ¼ δ½y0 − yðxÞ�: (11)

This allows the correlation density in the observable space
to be written as

cτðy0; yτÞ

¼
Z
Ω
dx0

Z
Ω
dxτχpðy0∣x0Þcτðx0;xτÞχpðyτ∣xτÞ

¼ μyðy0ÞμyðyτÞ þ
X∞
i¼2

λiðτÞϕy
i ðy0Þϕy

i ðyτÞ; (12)

where we have used superscript y to indicate the projection
of a full configuration space function onto the order
parameter: μyðyÞ is the observed stationary density that
can be estimated from a sufficiently long recorded trajectory
by histogramming the values of y. Mathematically, the
observed stationary density is given by

μyðyÞ ¼
Z
Ω
dxχpðy∣xÞμðxÞ: (13)

ϕy
i are the projected eigenfunctions:

ϕy
i ðyÞ ¼

Z
Ω
dxχpðy∣xÞϕiðxÞ: (14)

In order to arrive at an expression for the rate κ2, we propose
a trial function in observation space ~ψ2ðyÞ, whichwe require
to be normalized by

h ~ψ2; 1iμy ¼ 0; h ~ψ2; ~ψ2iμy ¼ 1; (15)

and evaluate its autocorrelation function as
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h ~ψ2ðy0Þ ~ψ2ðyτÞi ¼
Z
R
dy0

Z
R
dyτ ~ψ2ðy0Þcτðy0; yτÞ ~ψ2ðyτÞ

¼ αye−κ2τ þ
X
i>2

h ~ψ2;ϕ
y
i i2e−κiτ; (16)

where

αy ¼ h ~ψ2;ϕ
y
2i2: (17)

In contrast to Eq. (10), both ~ψ2 andϕ
y
i live on the observable

space R. In the special case that ψ2ðxÞ is constant in all
variables other than yðxÞ, the projection is lossless
[ϕy

2ðyðxÞÞ ¼ φ2ðxÞ and ψy
2ðyðxÞÞ ¼ ψ2ðxÞ for all x],

and using the choice ~ψ2 ¼ ψy
2, we recover h ~ψy

2;ϕ
y
2i ¼

hψ2;ϕ2i ¼ 1, and thus the exact rate estimate via
Eq. (10). In general, however, the eigenfunction
ψ2ðxÞ does vary in variables other than y, and, therefore,
~ψ2 can at best approximate the full-space eigenfunction
via ~ψ2ðyðxÞÞ ≈ ψ2ðxÞ.

C. Observed dynamics with measurement noise

Suppose that an experiment is conducted in which each
actual order parameter value yðxÞ ∈ R is measured with
additional noise, yielding the observed value o ∈ R. In
time-binned single-molecule fluorescence experiments,
such noise may come from photon-counting shot noise
for a given binning time interval. In optical tweezer
experiments, such noise may come from bead diffusion
and handle elasticity, assuming that bead and handle
dynamics are faster than the kinetics of the molecule of
interest. See Fig. 1 for an illustration. Note that we treat the
situation of uncorrelated noise only. In situations where the
experimental configuration changes the kinetics, e.g., when
the optical bead diffusion is slow, thus exhibiting transition
rates different from the isolated molecule, our analysis
always reports the rate of the overall observed system. The
task of correcting the measured rates so as to estimate the
rates of the pure molecule is beyond the scope of this work
and can, for example, be attempted via dynamical decon-
volution [32,33] or other approaches [34].

FIG. 1. Illustration of the observed dynamics for which a rate theory is formulated here. Top row: The full-dimensional dynamics xðtÞ
in phase space Ω. These dynamics are assumed to be Markovian, ergodic, and reversible as is often found for physical systems in
thermal equilibrium. Furthermore, the theory here is formulated for two-state kinetics, i.e., the system has two metastable states
exchanging at rates kAB and kBA, giving rise to a relaxation rate of κ2 ¼ kAB þ kBA. Middle row: One order parameter yðxÞ of the system
is observed, such as the distance between two groups of a molecule, or the Förster Resonance Energy Transfer (FRET) efficiency
between two fluorescent groups. The projection of the full-space dynamics xðtÞ onto the order parameter y generates a time series yðtÞ
that, however, may not be directly observable. The projection also acts on functions of state space, such as the stationary distribution of
configurations in full state space that is projected onto a density in the observable μðyÞ. The reaction coordinate quality α̂y measures how
well the order parameter y resolves the slow transition. It is 1 when A and B are perfectly separated and 0 when they completely overlap.
Bottom row: The experimental device used may distort or disperse the signal, for example, by adding noise. The resulting observed
signal oðtÞ is distorted and the observable density μoðoÞ is smoothed. α̂o measures the observation quality (OQ) of the observed signal,
and it is shown in the Supplemental Material [28] that α̂o ≤ α̂y holds.

SPECTRAL RATE THEORY FOR TWO-STATE KINETICS PHYS. REV. X 4, 011020 (2014)

011020-5



As before, the probability of observing a measurement
value o ∈ R given that the true configuration was x ∈ Ω
can be given by an output probability:

χpdðo∣xÞ ¼
Z
R
dyχdðo∣yÞχpðy∣xÞ; (18)

which convolves the projection from x to the value of the
order parameter χpðy∣xÞ, with the subsequent dispersion of
the signal by noise χdðo∣yÞ. Despite the fact that dispersion
operates by a different physical process than projection, the
same analysis as above applies. We define the projected and
dispersed stationary density and eigenfunctions:

μoðoÞ ¼
Z
Ω
dxχpdðo∣xÞμðxÞ

¼
Z
R
dyχdðo∣yÞμyðyÞ; (19)

ϕo
i ðoÞ ¼

Z
Ω
dxχpdðo∣xÞϕiðxÞ ¼

Z
R
dyχdðo∣yÞϕy

i ðyÞ;
(20)

which are “smeared out” by noise compared to the purely
projected density and eigenfunctions ϕy

i . As above,
the autocorrelation function of a probe function ~ψ2ðoÞ is
given by

h ~ψ2ðo0Þ ~ψ2ðoτÞi ¼ αoe−κ2τ þ
X
i>2

h ~ψ2;ϕo
i i2e−κiτ; (21)

with

αo ¼ h ~ψ2;ϕo
2i2: (22)

The observation process including noise is a more general
process than the observation process excluding noise;
therefore—unless the distinction is important—we will
generally refer to the observation as o subsequently,
whether or not noise is included in the observation.

D. Filtered dynamics

The effect of measurement noise may be reduced by
filtering (averaging) the observed signal oðtÞ → ōðtÞ, for
example, by averaging the signal value over a time window
of length W. Note that this operation will introduce
memory of length W into the signal and will impair the
estimation of all rates which are close to W−1. Figure 1 of
the Supplemental Material [28] illustrates the effect of
filtering on the estimation quality of rates in a simple
example. To make sure that the filter used does not impair
the rate estimates, we recommend that the filter length be at
least a factor of 10 smaller than the time scales of interest,
t2 ¼ κ−12 . The filtered signal ōðtÞ can then be used as input
to the various rate estimators discussed in this paper, but the

theory of systematic errors given in the subsequent section
may no longer apply because filtering destroys the
Markovianity of the original dynamic process in the full
state space. A more extensive treatment of filtering is given
in the Supplemental Material [28].

E. Direct rate estimate

In all of the above cases, the autocorrelation function of
the trial function ~ψ2 does not yield the exact eigenvalue
λ2ðτÞ, but some approximation ~λ2ðτÞ. For τ ≫ κ−13 , which
can readily be achieved for clear two-state processes where
a time-scale separation exists (κ2 ≪ κ3), the terms involv-
ing the fast processes disappear:

~λ2ðτÞ ≈ αoe−κ2τ: (23)

This suggests that the true rate κ2, as well as the prefactor
αo may serve as a basis to measure the observation quality,
could be recovered from large τ decay of an appropriately
good trial function even from the observed signal. We
elaborate this concept in subsequent sections. Note that in
experiments the relaxation rates κ2, κ3, etc, are initially
unknown and, hence, the validity of Eq. (23) can be
checked only a posteriori, e.g., by the fact that estimates
based on Eq. (23) are independent of the lag time τ.

IV. EXISTING RATE ESTIMATORS

Many commonly used rate estimators consist of two
steps: (1) they (explicitly or implicitly) calculate an
autocorrelation function ~λ2ðτÞ of some function ~ψ2 and
(2) transform ~λ2ðτÞ into a rate estimate ~κ2. In order to derive
an optimal estimator, it is important to understand how the
systematic error of the estimated rate depends on each of
the two steps. Therefore, we now recast existing rate
estimators in the formalism of spectral rate theory. The
Supplemental Material [28] contains a detailed derivation
of the subsequent results.
Many rate estimators operate by defining a single

dividing surface which splits the state space into reactants
A and products B. Calling hAðoÞ the indicator function
which is 1 for set A and 0 for set B, one may define
the normalized fluctuation autocorrelation function of state
A [35]:

~λ2ðtÞ ¼
hhAð0ÞhAðτÞi − hhAi2

hh2Ai − hhAi2
¼ h ~ψ2ð0Þ ~ψ2ðτÞi; (24)

which can also be interpreted as an autocorrelation function
~λ2ðtÞ for the step function ~ψ2;divideðoÞ ¼ ½hAðoÞ − πA�=ffiffiffiffiffiffiffiffiffiffi
πAπB

p
. Here, πA ¼ hhAiμ is the stationary probability of

state A, and πB ¼ 1 − πA the stationary probability of state
B. Other rate estimates choose ~ψ2 to be the signal ot itself
or the committor function between two predefined subsets
of the o coordinate [19]. We show that none of these
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choices is optimal, and the optimal choice of ~ψ2 will be
derived in the subsequent section.
Existing rate estimators largely differ in step (2), i.e.,

how they transform ~λ2ðtÞ into a rate estimate ~κ2. This
procedure then determines the functional form of the
systematic estimation error. We subsequently list bounds
for these errors (see Supplemental Material [28] for the
derivation). The prefactor α in the equations below refers to
either αp (purely projected dynamics) or αo (dynamics with
noise), whichever is appropriate.

A. Reactive flux rate

Chandler, Montgomery, and Berne [7,36] considered the
reactive flux correlation function as a rate estimator:
~κ2;rfðτÞ ¼ − d

dt
~λ2ðτÞ. Its error is

~κ2;rf − κ2 ¼ κ2ðα − 1Þ þ
X
i>2

h ~ψ2;ψ ii2μκ2e−κiτ ≥ 0; (25)

which becomes 0 for the perfect choice of ~ψ2 ¼ ψ2 that
leads to α ¼ 1, but can be very large otherwise.

B. Transition state theory rate

The transition state theory rate, which measures the
instantaneous flux across the dividing surface between A
and B, is often estimated by the trajectory length divided by
the number of crossings of the dividing surface. Its
simplicity makes it a widely popular choice for practical
use in experiments and theory (despite its tendency to
produce biased estimates, as we discuss later).
In order to arrive at an expression for the estimation

error, the TST rate can be expressed as the short-time limit
of the reactive flux [7], κ̂2;TST ¼ limτ→0þ ~κ2;rfðτÞ, such that
the error in the rate is given by

~κ2;TST − κ2 ¼ κ2ðα − 1Þ þ
X
i>2

h ~ψ2;ψ ii2μκ2 ≥ ~κ2;rf − κ2;

(26)

which is always an overestimate of the true rate and of the
reactive flux rate.

C. Integrating the correlation function

Another means of estimating the rate is via the integral of
the correlation function, ~κ2;int ¼ −½R∞

0 dτ~λ2ðτÞ�−1 [see, e.g.,
Eq. (3.6) of Ref. [7]], with the error

~κ2;int − κ2 ¼ κ2

�
1 − αþP

i>2hψ i; ~ψ2i2μ κ2
κi

αþP
i>2hψ i; ~ψ2i2μ κ2

κi

�
(27)

in the special case that κ3 ≫ κ2 (time scale separation);
the error is approximately given by κ2ð1 − αÞ=α. Thus, the
error of this estimator becomes zero for α ¼ 1, which is the
case only for a reaction coordinate with no noise and no

further projection (e.g., by using a dividing surface). The
error may be very large in other cases (α < 1).

D. Single-τ rate estimators

A simple rate estimator takes the value of the autocor-
relation function of some function ~ψ2 at a single value of τ
and transforms it into a rate estimate by virtue of Eq. (23).
We call these estimators single-τ estimators. Ignoring

statistical uncertainties, they yield a rate estimate of the
form

~κ2;single ¼ − ln ~λ2ðτÞ
τ

: (28)

Quantitatively, the error can be bounded by the expression
(see derivation in the Supplemental Material [28])

~κ2;single − κ2 ≤ − ln α

τ
: (29)

The error becomes identical to this bound for systems with
a strong time-scale separation, κ3 ≫ κ2. Equation (29)
decays relatively slowly in time (with τ−1; see Fig. 2 for
a two-state example). It is shown below that methods that
estimate rates from counting the number of transitions
across a dividing surface, such as MSMs, are single-τ
estimators and are thus subject to the error given
by Eq. (29).
The systematic error of single-τ estimators results from

the fact that Eq. (28) effectively attempts to fit the tail of a
multiexponential decay ~λ2ðτÞ by a single exponential with
the constraint ~λ2ð0Þ ¼ 1. Unfortunately, the ability to
improve these estimators by simply increasing τ is limited
because the statistical uncertainty of estimating Eq. (23)
quickly grows with increasing τ [37].

E. Multi-τ rate estimators

To avoid the error given by Eq. (29), it is advisable to
estimate the rate by evaluating the autocorrelation function
~λ2ðτÞ at multiple values of τ. This can be done, e.g., by
performing an exponential fit to the tail of the ~λ2ðτÞ, thus
avoiding the constraint ~λ2ð0Þ ¼ 1 [3,10]. The correspond-
ing estimation error κ̂2;multi − κ2 is bounded by

κ̂2;multi − κ2 < c
1 − α

α
e−τ1ðκ3−κ2Þ; (30)

where τ1 is the first lag time from the series ðτ1; :::::; τmÞ
used for fitting, and the constant c also depends on the lag
times and the fitting algorithm used. The Supplemental
Material [28] shows that, for several fitting algorithms,
such as a least-squares procedure at the time points
ðτ; 2τ; :::::; mτÞ, c is such that

κ̂2;multi ≤ ~κ2;single: (31)
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FIG. 2. Estimation results using overdamped Langevin dynamics in a two-dimensional two-well potential that is projected onto
different observables: (I) perfect projection, (II) average-quality projection, (III) poor projection. Results are compared without noise
(left half of panels) and with additional measurement noise (right half of panels). (1) Full state space with indicated direction of the used
order parameter. (2) Top: Stationary density μyðyÞ in the observable of the two partial densities of states A (orange) and B (gray). Results
with noise are shaded lighter and are more spread out. Bottom: Second eigenvector without noise (solid, blue), with noise (solid, red),
and dividing surface (black, dashed line). (3) Estimation quality α from spectral estimation (OQ, red line), and from exponential fitting to
the number correlation function using a diving surface at y ¼ 0 (green line). (4) Estimated relaxation rate κ2: TST with averaging
window of size W (indicated in the x axis). Dividing surface at o ¼ 0 with single-τ (dashed green line) and multi-τ (solid green line)
estimators. Estimates from a MSM-derived second eigenvector ~ψ2 with a single-τ estimate (normal MSM, dashed red line) and multi-τ
estimate (spectral estimation, solid red line). The black line is the reference solution, obtained from a direct MSM estimate for τ ¼ 50 in
row 1. (5) The transition rates kAB from state A to B. The coloring is identical to panels (4).
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Thus, the multi-τ estimator is never worse (and generally
better) than the single-τ estimator (see the Supplemental
Material [28]). The main advantage of multi-τ estimators is
that their convergence rate is exponential in τ when the
time-scale separation κ3 − κ2 is not vanishing [compare to
Eq. (29)]. Thus, multi-τ estimators are better when the
time-scale separation between the slowest and the other
relaxation rates in the system is larger.
In the absence of statistical error, all of the above rate

estimation methods are seen to yield an overestimation of
the rate, ~κ2 ≥ κ2.

V. OPTIMAL CHOICE OF ~ψ2

It was shown above that multi-τ estimators are the best
choice for converting an autocorrelation function into a rate
estimate. However, what is the best possible choice ψ̂2 ¼
~ψ2;optimal given a specific observed time series ot? In other
words, which function should the observed dynamics be
projected upon in order to obtain an optimal rate estimator?
Following Eq. (29), the optimal choice ψ̂2 is the one that
maximizes the parameter α, as this will minimize the
systematic error from a direct rate estimation by virtue
of Eq. (29) and also minimize the systematic error involved
in estimating κ2 from an exponential fit to Eq. (23). We are
thus seeking the solution of

ψ̂2 ¼ argmax
~ψ2

α ¼ argmax
~ψ2

~λ2ðτÞ; (32)

for some τ > 0, subject to the normalization in Eq. (15).
Here, arg max ~ψ2

α denotes the function that maximizes α
over the space of functions ~ψ2ðoÞ. If the system has two-
state kinetics, i.e., only ψ1ðxÞ ¼ 1 and ψ2ðxÞ are present as
dominant eigenfunctions, the problem (32) s solved by the
projected eigenfunction:

ψ̂2 ¼ ψo
2: (33)

How can the best possible ψ̂2 be determined from the
observed time series? For a sufficiently large set of n basis
functions, γ ¼ fγ1ðoÞ; :::::; γnðoÞg, the optimal eigen-
function ψ̂2 is approximated by a linear combination
ψ̂2ðoÞ≈

P
n
i¼1ciγiðoÞ, with coefficients c ¼ fc1; :::::; cng.

When γ is chosen to be an orthogonal basis set, ψ̂2 ¼
argmax ~ψ2

α can be approximated by the Ritz method
[31,38]. An easy way to do this approximation in practice
is to perform a fine discretization of the observable o by
histogram windows. Using a binning with bin boundaries
b1; :::::; bnþ1, and the corresponding indicator functions

γiðoÞ ¼
�
1 if i ∈ ½bi; biþ1Þ
0 else;

(34)

the above optimization problem is solved by estimating the
transition probability matrix with elements

Tij ¼ P½oðτÞ ∈ ½bj; bjþ1Þ∣oð0Þ ∈ ½bi; biþ1Þ�Þ (35)

and calculating c as the second eigenvector

Tc ¼ λ2c; (36)

where λ2 < 1 is the second-largest eigenvalue of T. If the
system has two-state kinetics, i.e., only ψ1ðxÞ ¼ 1 and
ψ2ðxÞ are present as dominant eigenfunctions, the estimate
ψ̂2 is independent of the choice of τ in Eq. (35). Thus, in
real systems, τ should be chosen to be at least a multiple of
κ−13 [e.g., τ ≥ 3κ−13 , as indicated by a constant rate κ2
estimate using a multi-τ estimator (Eq. (30)]. Note that a
given optimal ψ̂2ðoÞ can still be used with single-τ and
multi-τ rate estimators that would produce different esti-
mates for κ2.
Note that ψ̂2, according to the procedure described here,

is optimal only for the case when the observed signal is
obtained by projecting the high-dimensional data onto the
observable, but is no longer optimal in the presence of
noise, and especially large noise. In order to choose ψ̂2

optimal when noise is present, a generalized Hermitian
eigenvalue problem must be solved instead of Eq. (36),
which includes a mixing matrix whose elements quantify
how much the observable bins are mixed due to measure-
ment noise. Since this approach is not very straightforward
and in most practical cases leads only to small improve-
ments, we do not pursue this approach further here. Rather,
we note that it is often practical to reduce the noise level by
carefully filtering the recorded data, provided that the filter
length is much shorter than the time scales of interest.

VI. REACTION COORDINATE QUALITY,
ESTIMATION QUALITY, AND
OBSERVATION QUALITY

Evaluating the suitability of a given observable for
capturing the slow kinetics is of great general interest.
Although there is not a unique way of quantifying this
suitability of the observable, the term reaction coordinate
quality (RCQ) is often used. Previous studies have pro-
posed ways to measure the RCQ that are based on
comparing the observed dynamics to specific dynamical
models or testing the ability of the observable to model the
committor or splitting probability between two chosen end
states A and B [4,5,39]. These metrics are either valid only
for specific models of dynamics or themselves require a
sufficiently good separation of A and B by definition,
restricting their applicability to observables with rather
good RCQs.
The prefactor α̂y (see also Fig. 1) is a measure between 0

and 1, quantifying the relative amplitude of the slowest
relaxation in the autocorrelation function after projection of
the full-space dynamics onto the molecular observable
employed. The value α̂y depends only on the observable
itself and is free of modeling choices and of the way rates
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are estimated from the signal. Therefore, we propose that αy
is the RCQ.
However, αy is not directly measurable: for a given

observation, both the projection of the full-space dynamics
and the measurement noise compromise the quality of the
signal, and these effects cannot be easily separated. In
addition, the actual prefactor that is obtained in a given
estimate of the signal autocorrelation function αo depends
on the way the data are analyzed, namely, the functional
form ~ψ2ðoÞ used to compute the autocorrelation function
~λ2ðτÞ. Therefore, αo is just an estimation quality.
Fortunately, the ambiguity of the estimation quality is

eliminated for the optimal choice ~ψ2 ¼ ψ̂2 [Eq. (32)],
which maximizes αo. In this case, we denote this prefactor
α̂o, where α̂o ¼ αoðψ̂2Þ ≥ αoð ~ψ2Þ. Since α̂o depends only
on the observed signal, and not on the method of analyzing
it, we term it observation quality (OQ). The OQ is a very
important quantity because, by virtue of Eqs. (29) and (30),
α̂o quantifies how large the error in our rate estimate can be
for the optimal choice ~ψ2 ¼ ψ̂2.
Our definitions of RCQ and OQ are very general, as they

make no assumptions about the class of dynamics in the
observed coordinate and do not depend on any subjective
choices, such as the choice of two reaction end states A and
B in terms of the observable o. Through the derivation
above, it has also been shown that α̂o measures the fraction
of amplitude by which the slowest process is observable,
which is exactly the property one would expect from a
measure of the RCQ: α̂0 is 1 for a perfect reaction
coordinate with no noise and 0 if the slowest process is
exactly orthogonal to the observable, or has been com-
pletely obfuscated by noise.
While the OQ is the quantity that can be computed from

the signal, an analyst is typically interested in the RCQ α̂y
that is due to the choice of the molecular order parameter.
Unless a quantitative model of the dispersion function
χdðo∣yÞ is known, the RCQ α̂y before adding noise cannot
be recovered (see also Fig. 1 for an illustration). However,
we can still quantitatively relate α̂y and α̂o, and thereby
show that even the OQ is very useful. For this, we derive a
theory of observation quality. While the detailed derivation
is found in the Supplemental Material [28], we summarize
the most important results here.

1. When observing the order parameter y without noise
and projecting the observation onto the optimal
indicator function ~ψ2 ¼ ψ̂o

2 , the RCQ can be ex-
pressed as the weighted norm of the projected
eigenfunction, expressed by the scalar product:

α̂y ¼ hϕy
2;ψ

y
2i: (37)

2. Unless the projection perfectly preserves the struc-
ture of the full-space eigenfunction ψ2, we have
α̂y < 1. Thus, almost every observable attains a
suboptimal RCQ.

3. When additional noise is present, the OQ can be
expressed as the weighted norm of the projected and
noise-distorted eigenfunction:

α̂o ¼ hϕo
2;ψ

o
2i: (38)

4. The RCQ α̂y is determined by the projection onto the
selected molecular order parameter alone, and the
OQ α̂o including measurement noise are related by

α̂o ≤ α̂y; (39)

i.e., adding noise means that the OQ is smaller than
the RCQ.

The inequality (39) implies that we can use the OQ α̂o in
order to optimize both the experimental setup and the order
parameter used. For example, in an optical tweezer meas-
urement, we can change laser power and handle length so
as to maximize α̂o, thus making α̂o and α̂y more similar and
reducing the effect of noise on the measurement quality. On
the other hand, since α̂o is a lower bound for α̂y, we can also
use it to ensure a minimal projection quality: When the
measurement setup itself is kept constant, we can compare
the measurements of different constructs (e.g., different
FRET labeling positions or different attachment sites in a
tweezer experiment). The best value α̂o corresponds to the
provably best construct.
Finally, α̂o can be determined by fitting the autocorre-

lation function of ψ̂2, as described in the spectral-estima-
tion procedure described below. Figures 2–5 show
estimates of the OQ of different observed dynamics (via
spectral estimation) and of the estimation quality using
other rate estimators.

VII. MARKOV (STATE) MODELS

MSMs have recently gained popularity in the modeling
of stochastic dynamics from molecular simulations
[40,14,41,15,12]. MSMs can be understood as a way of
implicitly performing rate estimates via discretizing state
space into small substates. Let us consider a MSM obtained
by finely discretizing the observed space y into bins and
estimating a transition matrix TðτÞ among these bins. We
have seen that this procedure approximately solves the
optimization problem of Eq. (32), and the leading eigen-
vector of TðτÞ approximates the projection of the true
second eigenfunction ψ̂o

2ðoÞ available for the given observ-
able o. Reference [15] has suggested to use the implied
time scale t̂2 ¼ −τ= ln½λ̂2ðτÞ� as an estimate for the system’s
slowest relaxation time scale, and at the same time for a test
of which choice of τ leads to a MSM with a small
approximation error. These implied time scales correspond
to the inverse relaxation rates, and therefore, the MSM rate
estimate is described by Eq. (28) with the choice ~ψ2 ¼ ψ̂2.
A sufficiently finely-discretized MSM thus serves as an
optimal single-τ rate estimator as its estimation quality
approaches the true OQ α̂o for the observed signal that is
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being discretized. However, when this signal has a poor OQ
α̂o since it is poorly separating the slowly converting states,
there is a substantial rate estimator error according to
Eq. (29) that decays slowly with τ−1. This likely explains
the slow convergence of implied time scales shown in
recent MSM simulation studies [12–15,42].

VIII. ESTIMATING STATE DENSITIES AND
MICROSCOPIC TRANSITION RATES

When the rate κ2 is exactly known, the microscopic
transition rates between the two interchanging states, kAB
and kBA, could be calculated from the equations

πAkAB ¼ πBkBA; (40)

kAB þ kBA ¼ κ2; (41)

and B:

πA ¼
Z
o
doμoAðoÞ; (42)

πB ¼
Z
o
doμoBðoÞ ¼ 1 − πB; (43)

with μoAðoÞ and μoBðoÞ being the partial densities of states A
and B in the observable o, respectively.
Here, we attempt to estimate both the partial densities

μoAðoÞ and μoBðoÞ and from these the microscopic transition
rates via Eqs. (40) and (41). The difficulty is that the
projections of A and B can significantly overlap in o, due to
both the way the order parameter used projects the
molecular configurations onto the observable and the noise
broadening of the measurement device. This reveals a
fundamental weakness of dividing-surface approaches.
Although a dividing-surface estimator can estimate the
rate κ2 for sufficiently large τ without bias via Eq. (30), it
cannot distinguish between substates on one side of the
barrier, and thus assumes the partial densities μoAðoÞ and
μoBðoÞ to be given by cutting the full density μoðoÞ at the
dividing surface. When the true partial densities overlap,
this estimate can be far off [compare the curves in
Figs. 2(II5) and 2(III5)]. Consequently, incorrect estimates
for the microscopic rates kAB and kBA are obtained when
Eqs. (40) and (41) are used with πA and πB computed from
the total densities “left” and “right” of the dividing surface.
Hidden Markov models approach this problem by

proposing a specific functional form of μoAðoÞ and μoBðoÞ,
for example, a Gaussian distribution, and then estimating
the parameters of this distribution with an optimization
algorithm [21,23]. This approach is very powerful when the
true functional form of the partial densities is known, but
will give biased estimates when the wrong functional form
is used.

Here, we propose a nonparametric solution that can
estimate the form of the partial densities μoA and μoB and the
microscopic transition rates k̂AB and k̂BA in most cases
without bias. For this, we employ the theory of Perron
cluster cluster analysis (PCCAþ) [17,30]—which is based
on PCCA theory [30,44]—which allows for a way to split
the state space into substates and at the same time maintain
optimal approximations to the exact eigenfunctions (here,
ψ2): The state assignment must be fuzzy; i.e., instead of
choosing a dividing surface that uniquely assigns points o
to either A or B, we have fuzzy membership functions
χAðoÞ and χBðoÞ with the property χAðoÞ þ χBðoÞ ¼ 1.
These membership functions can be calculated after ψ2

is known.
In order to compute the membership χA and χB, the

memberships of two points of the observable o must be
fixed. The simplest choice is to propose two observable
values that are pure, i.e., that have a membership of 1 to A
and B each. Such an approach is also proposed by the
signal-pair correlation analysis approach [27] where the
pure values need to be defined by the user. However, at this
point of our analysis, an optimal choice can be made,
because the eigenfunction ψ̂o

2 has been approximated.
Thus, we propose to follow the approach of Ref [43]
and choose the o values, where ψ̂o

2 achieves a minimum and
a maximum, respectively, as purely belonging to A and B.
Typically, these are the states that are on the left and right
boundaries of the histogram in o. This approach will start to
give a biased estimate only when the overlap of the A and B
densities is so large that not even these extreme points are
pure [see Fig. 2(III), last row, for such an example].
Let ψ̂2 be the second eigenvector of the Markov model

TðτÞ of the finely binned observable [Eq. (36)]. Then, ψ̂2 is
a discrete approximation to the projected eigenfunction ψ̂o

2 .
Following the derivation given in the Supplemental
Material [28], the fuzzy membership functions on the
discretized observable space are given by

χ̂A;i ¼
maxjψ̂2;j − ψ̂2;i

maxjψ̂2;j −minjψ̂2;j
; (44)

χ̂B;i ¼
ψ̂2;i −minjψ̂2;j

maxjψ̂2 −minjψ̂2

; (45)

where the subscripts i and j denote the discrete state index.
Note that the extreme values maxjψ̂2;j and minjψ̂2;j may
have large statistical uncertainties when a fine and regular
binning is used to discretize the observation. In order to
avoid the situation in which our estimates are dominated by
statistical fluctuations, we choose the outermost discretiza-
tion bins such that at least 0.05% of the total collected
data are in each of them. The exact choice of this value
appears to be irrelevant; as shown in the Supplemental
Material [28], any choice between 0.005% and 5% of the
data yields similar results. Since we are restricted to the
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projected eigenfunction ψ̂2, we can determine the optimal
choice χ̂AðoÞ and χ̂BðoÞ from ψ̂2ðoÞ.
Together with the estimated stationary density μoðoÞ,

which can, e.g., be obtained by computing a histogram
from sufficiently long equilibrium trajectories, the proba-
bility of being in A and B is thus given by

πA ¼
X
i

μoi χ̂A;i; (46)

πB ¼
X
i

μoi χ̂B;i ¼ 1 − πA: (47)

These probabilities can be used to split κ̂2 into micro-
scopic transition rates kAB and kBA:

k̂AB ¼ πBκ̂2; (48)

k̂BA ¼ πAκ̂2: (49)

Note that the assignment of labels A and B to parts of state
space is arbitrary. Equation (48) is the transition rate from A
to B as defined by Eqs. (44) and (45), and Eq. (49) is the
corresponding transition rate from B to A.

IX. SPECTRAL-ESTIMATION PROCEDURE

The optimal estimator for κ2 is thus one that fits the
exponential decay of λ̂2ðτÞ while minimizing the fitting
error Eq. (30). As analyzed above, the systematic fitting
error is minimized by any multi-τ estimator. In order to
obtain a numerically robust fit, especially in the case when
statistical noise is present, it is optimal to fit to an
autocorrelation function ~λ2ðτÞ, where the relevant slowest
decay has maximum amplitude α̂0. This is approximately
achieved by constructing a fine-discretization MSM on the
observed coordinate (see Sec. V). Thus, the optimal
estimator of κ2 proceeds as outlined in points (1)–(4) below.
The full spectral-estimation algorithm (1)–(6) additionally
provides estimates for the microscopic rates kAB, kBA, and
for the partial densities μA and μB.

1. Obtain a fine discretization of the observed coor-
dinate o into n bins, say, ½oi; oiþ1�, for i ∈ 1; :::::; n.
When using an equidistant binning, make sure to
increase the outermost states to a size to cover a
significant part (e.g., 0.05%) of the total population.

2. Construct a row-stochastic transition matrix TðτÞ for
different values of τ. The estimation of transition
matrices from data has been described in detail
Ref. [14]. A simple way of estimating TðτÞ is the
following: (i) for all pairs i; j of bins, let cijðτÞ be the
number of times the trajectory has been in bin i at
time t and in bin j at time tþ τ, summed over all
time origins t, and (ii) estimate the elements of TðτÞ
by TijðτÞ ¼ cijðτÞ=ΣkcikðτÞ. A numerically superior

approach is to use a reversible transition matrix
estimator [14].

3. Calculate the discrete stationary probability μ and
the discrete eigenvector ψ̂2 by solving the eigen-
value equations:

TTðτÞμ ¼ μ; (50)

TðτÞψ̂2 ¼ λ̂2ψ̂2; (51)

denotes the transpose of the transition matrix. The ith
element of the vectors μ and ψ̂2 approximates the
stationary density μðoÞ and ψ̂2 on the respective point
o ¼ oiþoiþ1

2
. Functions μoðoÞ and ψo

2ðoÞ can be ob-
tained by some interpolation method.

4. Estimate the relaxation rate κ̂2 and the OQ α̂
via an exponential fit of αe−κ2τ to the tail
of λ̂2ðτÞ ¼ hψ̂2ðtÞψ̂2ðtþ τÞit.

5. Calculate the partial densities μA and μB from
Eqs. (46) and (47) using transition matrix eigenvec-
tors estimated at a lag time τmin at which the rate
estimate κ̂2 is converged.

6. Calculate the microscopic transition rates kAB and
kBA from Eqs. (48) and (49).

Note that this estimator is optimal in terms of minimizing
the systematic error. When dealing with real data, the finite
quantity of data may set restrictions of how fine a
discretization is suitable and how large a lag time τ will
yield reasonable signal to noise. For a discussion of this
issue, refer to, e.g., Ref. [37].

X. ILLUSTRATIVE TWO-STATE EXAMPLE

To illustrate the theory and the concepts of this paper, we
compare the behavior of different order parameters, meas-
urement noise, and different estimators in Fig. 2. The full-
space model here is a two-dimensional model system using
overdamped Langevin dynamics in a bistable potential.
This choice was made because the exact properties of this
system are known and the quality of different estimates can
thus be assessed. The potential is chosen such that the
eigenfunction associated with the slow process ψ2ðxÞ
varies in x1 and is constant in x2, such that the choice o ¼
x1 represents a perfect projection and the choice o ¼ x2
represents the worst situation in which the slow process is
invisible.
Figure 2 shows three scenarios using
I. y ¼ x1 (perfect order parameter—projection

angle 0°),
II. y ¼ 1

2
ðx1 þ x2Þ (average order parameter—

projection angle 45°),
III. y ¼ 1

4
ðx1 þ 3x2Þ (poor order parameter—projection

angle 72°).
Additionally, we compare the results when the order
parameter y is traced without noise [left half of panels
(3)–(5)] and when measurement noise is added [right half
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of panels (3)–(5)]. Here, noise consists of adding a
uniformly distributed random number from the interval
½−1; 1� to the signal, such that the noise amplitude is
roughly 25% of the signal amplitude.
Figure 2, panels (2), show the apparent stationary density

in the observable y, μyðyÞ, or in the noisy observable o,
μoðoÞ, as a black solid line. The partial densities of
substates A (orange) and B (gray), which comprise the
total stationary density, are shown as well. The lower part of
the figure shows the observed eigenfunction associated
with the two-state transition process (ψy

2 or ψ
o
2) as a black

solid line with gray background. For comparison, the
results in the case of noise are shown in the background
with lighter colors. It is apparent that when the quality of
the observation is reduced, either by choosing a poor order
parameter or by adding experimental noise, the overlap of
the partial densities increases and the continuous projected
eigenfunction ψo

2 becomes smoother and, thus, increasingly
deviates from the dividing surface model, which is a step
function switching at the dividing surface (dashed line).
Figure 2, panels (3), show the estimation qualities or

observation qualities in these different scenarios. The fact
that the green and red lines are approximately constant after
τ ¼ 5 (when the fast processes have relaxed) shows that the
OQ can be reliably estimated at these lag time ranges using
either the dividing-surface or the spectral-estimation
approach. The red line (spectral estimation) corresponds
to the OQ, which varies between 1 (perfect order parameter
I) and 0.15 (poor order parameter III with additional
measurement noise). It is seen that the OQ given by the
spectral estimator can be much larger than the suboptimal
estimation quality of the dividing-surface estimator that
uses a fit to the number correlation function Eq. (24) (green
line). This is especially apparent in the case of an
intermediate-quality order parameter [Fig. 2(II3)].
Figure 2, panels (4), show the estimate of the relaxation

rate κ2 obtained for the three scenarios where each panel
compares five different rate estimators with the exact result
(black solid line). (1) Direct counting of transitions from
time-filtered data (TST estimate, blue line). For this
estimator, the x axis denotes the length of the averaging
window W, ranging from 1 to 100 frames. (2),(3) The
dividing-surface estimates using either a single-τ estimator
(28) (dashed green line) or the multi-τ estimator (solid
green line). (4),(5) The single-τ MSM estimate (dashed red
line) and the multi-τ MSM estimate (spectral estimation,
solid red line). For the single-τ and the exact estimators. the
x axis indicates the used lag time τ in the estimation where,
for the multi-τ estimators (i.e., dividing surface and spectral
estimation), the x axis specifies τ, which is the start of the
time range [τ, τ þ 10] used for an exponential fit.
In the case of a perfect order parameter (I), all estimators

yield the correct rate at lag times τ > 5 time steps (where
the fast processes with rates κ3 or greater have disap-
peared). Only in the case of TST (blue line), with increasing

size W of the filtering window, the estimated rate tends to
be too slow because an increased number of short forward-
and-backward transition events become smeared out by the
filtering window, therefore systematically underestimating
the rate. For the perfect order parameter I, the noise has
little effect on the estimate because the partial densities of
states A and B are still well separated.
For the average-quality and poor order parameters, the

MSM estimate breaks down dramatically, providing a
strongly overestimated rate for 0 < τ < 100 time steps.
Figures 2(II4) and 2(III4) show the typical behavior of the
τ−1 convergence of the MSM estimate predicted by the
theory [Eq. (29)]. Clearly, the MSM estimate will converge
to the true value for very large values of τ, but, especially
for the situation of a poor order parameter, the minimal τ
required to obtain a small estimation error is larger than the
time scale κ−12 of the slowest process, thus rendering a
reliable estimation impossible.
It is seen that the magnitude of the error for a given value

of τ increases when either adding noise [left half of panels
(4) of Fig. 2 versus right half] or decreasing the quality of
the order parameter [Figs. 2(II4) versus Figs. 2(III4)]. This
is because, in this sequence, the OQ deteriorates, as
predicted by the theory of reaction coordinate qualities
(see above), and, hence, the prefactor of the MSM error
increases [see Eq. (29)].
As predicted by Eq. (31), the multi-τ estimators (divid-

ing-surface and spectral estimates, red and green solid
lines) are always better than the single-τ estimates (red and
green dashed lines). As predicted by Eq. (30), both the
dividing-surface and spectral estimates of κ̂2 converge
when the fast processes have died out (here, at approx-
imately τ > 5 time steps). Also, Figs. 2(II4) and 2(III4)
show that the spectral estimate is more stable than the
dividing-surface estimate; i.e., it exhibits weaker fluctua-
tions around the true value κ2. This is because the spectral
estimate uses the OQ α̂o as the estimation quality, which is
larger than the estimation quality of other estimators, and
thus the exponential tail of the autocorrelation function can
be fitted using a larger amplitude of the process relaxation
with rate κ2, achieving a better signal-to-noise ratio.
Figure 2, panels (5), show the microscopic rate kAB that

quantifies the rate at which rare transition events between
the large (orange) state A and the smaller (gray) state B
occur. The solid lines indicate the estimates from Eq. (48),
using either the partial densities from the dividing surface
(green) or PCCAþ (spectral estimate, red). Corresponding
rates computed from a MSM using the different projections
are shown in dashed lines. As expected, the partial densities
from the dividing-surface estimate are significantly biased
as soon as the states overlap in the observable, due to either
choosing a poor order parameter or experimental noise.
As a result, the dividing-surface estimates for the micro-
scopic rates kAB and kBA are biased for all of these cases
[Figs. 2(II5) and 2(III5)]. The spectral estimate gives an
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unbiased estimate for average overlap [Fig. 2(II5)]. For
strong overlap, even the spectral estimator has a small bias
because no pair of observable states can be found that is
uniquely assignable to states A and B. Still, the spectral
estimator yields good results even in the poor order
parameter case [Fig. 2(III5)]. As it is for the relaxation
rate (κ2) estimate, the spectral estimator exhibits less
fluctuations here because the larger estimation quality
yields a better signal-to-noise ratio.

XI. APPLICATIONS TO OPTICAL
TWEEZER DATA

In order to illustrate the performance of spectral esti-
mation on real data, it is applied to optical tweezer
measurements of the extension fluctuations of two bio-
molecules examined in a recent optical force spectroscopy
study: the p5ab RNA hairpin [45] and the H36Q mutant of
sperm whale apo-myoglobin at low pH [46]. The p5ab
hairpin forms a stem-loop structure with a bulge under
native conditions [Fig. 3(1)] and zips and unzips repeatedly
under the conditions used to collect data [Fig. 3(2a)], while
apo-myoglobin [crystal structure shown in Fig. 3(4)] hops
between unfolded and molten globule states at the exper-
imental pH of 5 [Fig. 3(5a)] [46].
Experimental force trajectory data were generously

provided by the authors of Refs. [45,46]. Experimental

details are given therein, but we briefly summarize aspects
of the apparatus and experimental data collection procedure
relevant to our analysis.
The instrument used to collect both data sets was a dual-

beam counterpropagating optical trap [47]. The molecule of
interest was tethered to polystyrene beads by means of
dsDNA handles, with one bead suctioned onto a pipette and
the other held in the optical trap. A piezoactuator controlled
the position of the trap and allowed position resolution to
within 0.5 nm, with the instrument operated in passive
(equilibrium) mode such that the trap was stationary
relative to the pipette during data collection. The force
on the bead held in the optical trap was recorded at 50 kHz,
with each recorded force trajectory 60 s in duration.
It is common practice to estimate rates in such data by

directly counting the number of transitions across some
user-defined dividing surface and dividing by the total
trajectory length. Often, this procedure is applied after
filtering the data with a time-running average. The results
of this common procedure (effectively a TST estimate or a
MSM estimate with τ ¼ 1) are shown in Figs. 3(3) and 3(6)
(blue line) using various averaging window sizes W and
compared to the optimal estimator (spectral estimation) for
a range of estimation lag times τ. Although the TST
estimate shows less fluctuations, the spectral-estimation
result converges much faster and provides a more stable
result in terms of the varying parameter (lag time τ=window

Κ
Κ

FIG. 3. Probed systems by optical tweezer experiments. Top: RNA hairpin p5ab. Bottom: H36Q mutant of sperm whale apo-
myoglobin. Panels (1) and (4) show schematic views of the probed system in its native secondary or tertiary structure including the
direction of the pulling force (green and black arrows). Panels (2) and (5) show the traces used for analysis. Row (a) reports the results
when directly analyzing the measured 50 kHz data, while row (b) reports the results when analyzing data that has been binned to 1 kHz
to reduce the noise amplitude. Panels (3) and (6) show the estimated phenomenological rates κ̂2 for TPT (blue line) using different
averaging window sizes W (x axis) and spectral estimation (red line) for different lag times τ (x axis). For apo-myoglobin, the inset
displays the behavior of TST at large window sizes W, where the rate is systematically underestimated.
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size W). TST also tends to underestimate the true rate for
large window sizes W. Moreover, the TST estimate never
shows any plateau, thereby making it impossible to decide
which rate estimate should be used.

XII. RNA HAIRPIN ANALYSIS

Figure 4 compares the results of several rate estimators
for optical tweezer measurement of the p5ab RNA hairpin
extension fluctuations. A sketch of the RNA molecule
and the experimental trajectory analyzed can be found in
Figs. 3(1) and 3(2), top. The trajectory exhibits a two-state-
like behavior with state lifetimes on the order of tens of
milliseconds. Figure 4(1a) shows the stationary probability
density of measured pulling forces, exhibiting two nearly
separated peaks. Figure 4(2a) shows the estimation quality
αo (OQ α̂o for the spectral estimator), which is approx-
imately constant at lag times τ > 5 ms, indicating a reliable
estimate for this quantity at lag times greater than 5 ms. An
optimum value of α̂o ≈ 0.96 (spectral estimator) is found
while the best possible dividing surface results in
αo ≈ 0.94. These values indicate that the present reaction
coordinate is well suited to separate the slowly intercon-
verting states and that different approaches, including a
Markov model, a dividing-surface estimate, and a spectral
estimate, should yield good results.
Figure 4(3a) compares the estimates of the relaxation

rate κ2 using the direct MSM estimate (black), a fit to the
fluctuation autocorrelation function using a dividing sur-
face at the histogram minimum o ¼ 12:80 pN (green), and
spectral estimation (red). For the multi-τ estimators
(dividing-surface and spectral estimations), the lag time

τ specifies the start of the time range [τ, τ þ 2.5 ms] that
was used for an exponential fit. All estimators agree on a
relaxation rate of about κ̂2 ≈ 58 s−1, corresponding to a
time scale of about 17 ms. The MSM estimate is strongly
biased for short lag times, exhibiting the slow τ−1 con-
vergence predicted by the theory for single-τ estimators
[Eq. (29)]. It converges to an estimate within 10% of the
value frommulti-τ estimates after a lag time of about 10 ms.
The dividing-surface and spectral estimators behave almost
identically and converge after about τ ¼ 5 ms. According
to the error theory of multi-τ estimators [Eq. (30)], this
indicates that there are additional, faster kinetics in the data,
the slowest of which have time scales of 2–3 ms. In
agreement with the theory [Eq. (31)], the multi-τ estimators
(dividing-surface and spectral estimates) converge faster
than the single-τ estimate (MSM).
As indicated in Fig. 4(1a), the substates estimated from

PCCAþ are almost perfectly separated and can be well
distinguished by a dividing surface at the histogram mini-
mum o ¼ 12:80 pN. Consequently, both the dividing-
surface estimate and the spectral estimate yield almost
identical estimates of the microscopic transition rates—
the folding rate being kAB ≈ 45 s−1 and the unfolding rate
being kBA ≈ 15 s−1 [Fig. 4(4)]. In summary, the two-state
kinetics of p5ab can be well estimated by various different
rate estimators because the slowly converting states are well
separated in the experimental observable.
Figure 4, panels (1b)–(4b), show estimation results for

data that have been filtered by averaging over 50 frames
(1 ms). This averaging further reduces the already small
overlap between substates A and B, while the filter length is
much below the time scale of A-B interconversion.

FIG. 4. Estimates for rates and estimation qualities from passive-mode single-molecule force-probe experiments of the p5ab RNA
hairpin. All panels report the estimation results, showing the direct MSM estimate (black line), a fit to the fluctuation autocorrelation
function using a dividing surface at o ¼ 12:80 pN (green line), and spectral estimation (red line). (1a),(1b) The stationary probability of
observing a given force value (solid black line). The partial probabilities of states A (gray) and B (orange) obtained by spectral estimation
show that there is very little overlap between the states. (2a),(2b) The estimation quality αo, coinciding with the OQ α̂o for spectral
estimation. (3a),(3b) Estimated relaxation rate κ2. (4a),(4b) Estimated microscopic transition rates: the folding rate kAB (dashed line) and
the unfolding rate kBA (solid line).
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Therefore, filtering has a positive result on the analysis: The
effective OQ α̂o increases and is now approximately
equal to 1 according to spectral estimation. The estimation
results are largely identical to the case with noise. In
Fig. 4(3b), the error made by the Markov model estimate
has become smaller because the error prefactor reported in
Eq. (29), ln αo, has become smaller. Note that, in contrast
to the unfiltered data analysis, some of the rate estimates
(MSM and spectral estimate) underestimate the rate for
small lag times τ. This is not in contradiction with our
theory, which predicts an overestimation of the rate for
Markovian processes. By using the filter, one has effec-
tively introduced memory into the signal, and the present
theory will apply only at a lag time τ that is a sufficiently
large multiple of the filter length, such that the introduced
memory effects have vanished.

XIII. APO-MYOGLOBIN ANALYSIS

Figure 5 shows estimation results for an optical tweezer
experiment that probes the extension fluctuations of apo-
myoglobin [46]. Figure 3(4) shows a sketch of the
experimental pulling coordinate (green arrows) depicted
at the crystal structure of apo-myoglobin. Figure 3(5)
shows the trajectory that was analyzed. Out of the trajec-
tories reported in [46], here we have chosen one where the
two slowest-converting states have a large overlap. While
the trajectory indicates that there are at least two kinetically
separated states, the stationary probability density of
measured pulling forces [Fig. 5(1a)] does not exhibit a
clear separation between these states in the measured
pulling force. This is also indicated by Fig. 5(2a), which
shows that the optimal OQ has a value of α̂o ≈ 0.5 (spectral

estimator) at τ ¼ 15 ms while the best possible dividing-
surface results yield only an estimation quality of αo ≈ 0.4
at τ ¼ 15 ms. Thus, the quality of the apo-myoglobin data
is similar to that of the two-state model with intermediate-
quality order parameter and noise [Fig. 2(IIb)]. These data
thus represent a harder test for rate estimators than the p5ab
hairpin and should show differences between different rate
estimators.
Figures 5(3a), 5(3b), 5(4a), and 5(4b) compare the

estimates of κ2 from the direct MSM estimate (black), a
fit to the fluctuation autocorrelation function using a
dividing surface at the local histogram maximum (mini-
mum between two maxima with filtering) of the binned
data at o ¼ 4.6 pN (green), and spectral estimation (red).
For the multi-τ estimators (dividing-surface and spectral
estimations), the lag time τ specifies the start of a time
range [τ, τ þ 2.5 ms] that was used for an exponential fit.
Figure 5(3a) shows again that the MSM estimate of κ2

exhibits the slow τ−1 convergence predicted by the theory
[Eq. (29)] and does not yield a converged estimate using lag
times of up to 20 ms. Since the MSM estimate still
significantly overestimates the rate at τ ¼ 50 ms when
the relaxation process itself has almost entirely decayed,
this estimator is not useful to analyze the apo-myoglobin
data. In contrast, both the dividing-surface multi-τ
approach and the spectral estimator do yield a converged
estimate of κ̂2 ≈ 26 s−1, corresponding to a time scale of
about 38 ms [Fig. 5(3a)]. In Ref. [46], a hidden Markov
model with Gaussian output functions was used and the
rate was estimated to be κ̂2 ≈ 46 s−1, corresponding to a
time scale of approximately 21 ms. These differences are
consistent with our theory, which shows that rate estimation

FIG. 5. Estimates for rates and estimation qualities from passive-mode single-molecule force-probe experiments of apo-myoglobin.
All panels report the estimation results, showing the direct Markov model estimate (black line), a fit to the fluctuation autocorrelation
function using a dividing surface at the histogram maximum (minimum between two maxima for filtering) o ¼ 4.6 pN (green line), and
spectral estimation (red line). (1a),(1b) The stationary probability of observing a given force value (solid black line). The partial
probabilities of states A (gray) and B (orange) obtained by spectral estimation show that there is very little overlap between the states.
(2a),(2b) The estimation quality αo, coinciding with the OQ α̂o, for spectral estimation. (3a),(3b) Estimated relaxation rate κ2. (4a),(4b)
Estimated microscopic transition rates kAB (dashed line) and kBA (solid line).
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errors lead to a systematic overestimation of the rate (and
underestimation of the time scale). Figure 5(1a) shows the
possible reason why the Gaussian HMM in Ref. [46] yields
a rate overestimate: the partial probabilities are clearly not
Gaussians. Following our theory, the smallest rate estimates
the best estimates, which here are provided by the multi-τ
estimators using either dividing-surface or spectral-
estimation approaches.
In agreement with the theory [Eq. (31)], the multi-τ

estimators (dividing-surface and spectral estimates) con-
verge faster than the single-τ estimate (MSM). A double-
exponential fit to the spectral estimation autocorrelation
function yields an estimate of κ3 ≈ 100 s−1, corresponding
to a time scale of 10 ms. Thus, there is a time-scale
separation of a factor of about 4 between the slowest and
the next-slowest process, indicating that, when viewed at
sufficiently large time scales (> 20 ms), the dynamics can
be considered to be effectively two state. However, since
the presence of faster processes is clearly visible in the data,
it may be worthwhile to investigate further substates of the
A and B states with multistate approaches, such as hidden
Markov models [23] or pair correlation analysis [27]. Such
an analysis is beyond the scope of the present paper on two-
state rate theory.
As indicated in Fig. 5(1a), the substates A and B

estimated from PCCAþ do strongly overlap. Thus, even
though the dividing-surface estimator can recover the true
relaxation rate κ2, the estimated microscopic rates kAB
and kBA depend on the choice of the position of the
dividing surface. Figure 5(4a) shows the estimates of the
dividing-surface multi-τ estimator, evaluated to kAB ≈
12 s−1 and kBA ≈ 15 s−1. In contrast, the spectral esti-
mator yields estimates of kAB ≈ 16 s−1 and kBA ≈ 10 s−1.
Even though it is not strongly different, the dividing-
surface approach suggests a reversed dominant direction
of the process.
As for the two-state model results shown in Fig. 2, the

spectral estimate is numerically more stable in τ compared
to the dividing-surface estimate as a result of achieving a
better signal-to-noise ratio. Clearly, in the dividing-surface
approach, it is possible to pick a dividing-surface position
that yields the same estimates for kAB and kBA, as for the
spectral estimator. However, the dividing-surface estimator
itself does not provide any information that is the correct
choice, and, therefore, this theoretical possibility is of no
practical use. Figure 2 in the Supplemental Material [28]
compares the estimation results of κ2, kAB, and kBA for
different choices of the dividing surface. In contrast to the
dividing-surface approach, the spectral estimator assumes
only that the extreme values of o are pure, which is a much
weaker requirement than assuming that an appropriate
dividing surface exists (see theory), and hence provides
more reliable rate estimates.
Figures 5(1b)–5(4b) show the effect of filtering the data

on the estimation results. Here, the data were averaged over

a window length of 1 ms, corresponding to an averaging of
50 data points of the original 50 kHz data. Figure 5(1b)
indicates that this filtering enhances the separation of states,
and the apparent OQ increases to about α̂0 ≈ 0.7 (spectral
estimate) while the dividing-surface estimation quality is
α0 ≈ 0.6. The relaxation rate κ2 is still estimated to have
κ̂2 ≈ 26 s−1, and the estimate becomes more robust for both
the dividing-surface and the spectral estimates [Fig. 5(3b)].
The MSM estimate slightly improves but is still signifi-
cantly too high. Figure 5(4b) shows that the dividing-
surface derived-rate estimates kAB and kBA have improved
and are now similar to the spectral-estimation results, while
the spectral estimate itself remains at kAB ≈ 16 s−1 and
kBA ≈ 10 s−1, independent of the filtering, which is in
support of the reliability of the spectral estimate.

XIV. SUMMARY

We have described a rate theory for observed two-state
dynamical systems. The underlying system is assumed to
be ergodic, reversible, and Markovian in full phase space,
as fulfilled by most physical systems in thermal equilib-
rium. The observation process takes into account that the
system is not fully observed, but rather one order parameter
is traced (the extension to multiple or multidimensional
order parameters is straightforward). During the observa-
tion process, the observed order parameter may be a
dditionally distorted or dispersed, for example, by exper-
imental noise. Such observed dynamical systems occur
frequently in the molecular sciences and appear in both the
analysis of molecular simulations as well as of single-
molecule experiments.
The presented rate theory for observed two-state dynam-

ics is a generalization to classical two-state rate theories in
two ways. First, most available rate theories assume that the
system of interest is either fully observable or the relevant
indicators of the slowest kinetic process can be observed
without projection error or noise. Second, most classical
rate theories are built on specific dynamical models, such as
Langevin or Smoluchowski dynamics. The present
theory explicitly allows the two kinetic states to overlap
in the observed signal (either due to using a poor order
parameter or to noise broadening), and does not require a
specific dynamical model, but rather works purely based on
the spectral properties of a reversible ergodic Markov
propagator—hence, the name spectral rate theory.
Given the spectral rate theory, the systematic errors of

available rate estimators can be quantified and compared.
For example, the relatively large systematic estimation
error in the implied time scales or implied rates of Markov
state models is explained. Additionally, the theory provides
a measure for the observation quality α̂o of the observed
signal, which is independent of any specific dynamical
model and also does not need the definition of an A or B
state and bounds the error in rates estimated from the
observed signal. α̂o includes effects of the order parameter
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measured as well as the effect of the experimental construct
on the signal quality, such as experimental noise. It is
shown that α̂o is a lower bound to the true reaction
coordinate quality due to choosing the order parameter,
and can thus be used as an indicator to improve both the
quality of the experimental setup and the choice of the order
parameter.
The theory suggests steps to be taken to construct an

optimal rate estimator which minimizes the systematic error
in the estimation of rates from an observed dynamical
system. We propose such an estimator and refer to it as a
spectral estimator. It provides rather direct and optimal
estimates for the following three types of quantities:

1. The observation quality (OQ) α̂o of the observed
signal.

2. The dominant relaxation rate κ2, as well as the
microscopic transition rates kAB and kBA, even if A
and B strongly overlap in the observable.

3. The partial probability densities, and hence projec-
tions of the states A and B in the observable, μoAðoÞ
and μoBðoÞ, as well as their total probabilities, πA and
πB. This information is also obtained if A and B
strongly overlap in the observable.

Other rate estimators that rely on fitting the exponential tail
of a time-correlation function calculated from the exper-
imental recorded trajectories can also estimate κ2 without
systematic error. However, the spectral estimator is unique
in also being able to estimate kAB, kBA, μoAðoÞ, μoBðoÞ, and
the OQ in the presence of states that overlap in the
observable order parameter.

XV. DISCUSSION

The present study concentrates on systematic rate
estimation errors that are expected in the data-rich regime.
We expect that taking the statistical error into consideration
will make the spectral estimator described here even more
preferable over more direct approaches such as fitting the
number autocorrelation function of a dividing surface. This
intuition comes from the fact that the spectral estimator
maximizes the amplitude α with which the slow relaxation
of interest is involved in the autocorrelation function. In the
presence of statistical uncertainty, this will effectively
maximize the signal-to-noise ratio in the autocorrelation
function and thus lead to an advantage over fitting
autocorrelation functions that were obtained differently.
Consideration of the statistical error will also aid in

selecting an appropriate τ that balances systematic and
statistical error in rate estimates. τ-dependent fluctuations
of the sort observed in Fig. 2(III5) might also be suppressed
by averaging over multiple choices of τ in a manner that
incorporates the statistical error estimates in weighting.
The presented idea of building an optimal estimator for a

single relaxation rate upon the transition matrix estimate of
the projected slowest eigenfunction ψ̂2 is extensible to

multiple relaxation rates, and this will be pursued in future
studies.
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