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The lattice thermal conductivity (κω) is a key property for many potential applications of compounds.
Discovery of materials with very low or high κω remains an experimental challenge due to high costs and
time-consuming synthesis procedures. High-throughput computational prescreening is a valuable approach
for significantly reducing the set of candidate compounds. In this article, we introduce efficient methods
for reliably estimating the bulk κω for a large number of compounds. The algorithms are based on a
combination of machine-learning algorithms, physical insights, and automatic ab initio calculations. We
scanned approximately 79,000 half-Heusler entries in the AFLOWLIB.org database. Among the 450
mechanically stable ordered semiconductors identified, we find that κω spans more than 2 orders of
magnitude—a much larger range than that previously thought. κω is lowest for compounds whose elements
in equivalent positions have large atomic radii. We then perform a thorough screening of thermodynamical
stability that allows us to reduce the list to 75 systems. We then provide a quantitative estimate of κω for this
selected range of systems. Three semiconductors having κω < 5 Wm−1 K−1 are proposed for further
experimental study.
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I. INTRODUCTION

High-throughput (HT) computational materials science
is a rapidly expanding area of materials research. It merges
a plethora of techniques from a variety of disciplines. These
include the kinetics and thermodynamics of materials,
solid-state physics, artificial intelligence, computer science,
and statistics [1]. The application of HT has recently led to
new insights and novel compounds in different fields [2–9].
Despite the importance of thermal transport properties for
many crucial technologies, there are to date no high-
throughput investigations into lattice thermal conductivity.
Here, we seek to address this challenge. We concentrate

on the lattice thermal conductivity of half-Heusler (HH)
compounds, as they have great promise for applications as
thermoelectric materials [10–13]. Half-Heusler compounds
are ternary solids. Their crystalline structure consists of two
atoms (A and B), located in equivalent positions in a rock-
salt structure. A third atom (X) sits in an inequivalent

position, filling half of the octahedrally coordinated
sites [Fig. 1a].
Experimental studies have reported the thermoelectric

figure of merit for a small set of these systems and their
alloys [14–18]. Theoretical electronic characterizations
have been performed for 36 candidates [19]. It has been
speculated that their high thermal conductivity, close to
10 Wm−1K−1, could limit thermoelectric performance
[20,21]. At room temperature, the lattice thermal conduc-
tivity κω represents the largest contribution to the total
conductivity.
Promising thermoelectric figures of merit have been

reported both for n-type (1.5 at 700 K [22]) and for p-type
(0.8 at 1000 K [17]) half-Heuslers. Such values are
comparable to the best thermoelectric materials proposed
thus far [23]. Those values, however, were not found in
ordered half-Heuslers but rather in alloyed or nanostruc-
tured systems. Furthermore, finding ordered compounds
with very low κω is advantageous, as their electronic
mobilities are expected to be higher than in alloys. In
addition, alloying the already low-κω ordered compounds
would lower κω even further.
The pool of candidate compounds analyzed in this article

is larger than in previous investigations. All possible half-
Heusler compounds from all combinations of nonradioac-
tive elements in the periodic table are considered, as
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included in the AFLOWLIB.org consortium repository [24]
[Fig. 1b]. The formation enthalpies of the fully relaxed
structures are obtained through density functional theory
within the AFLOW high-throughput framework [25].
From a total of 79,057 entries, those with positive

formation enthalpies are removed. When several half-
Heuslers are related by permutations of elements, only
the lowest-enthalpy configurations are considered. Finally,
zero-gap compounds are removed from the list. For the
surviving subset of 995 compounds, the second-order force
constants are characterized with full phonon dispersion
curves. This allows further reduction of the set to a total of
450 mechanically stable semiconductors. Although these
requirements do not guarantee global thermodynamical
stability, metastable compounds with long lifetimes have
been synthesized and used [26]. Hence, their inclusion
should not be disregarded a priori.
For the 450 resulting stable half-Heuslers, we compute a

large set of structural, electronic, and harmonic properties. In
principle, one could directly compute κω for all the com-
pounds. The computational requirements for this approach
would be prohibitive. To solve this issue, our strategy is to
obtain κω for a smaller subset of systems. We use physical
insights and machine learning techniques to predict the
remaining values. Cross validation shows that the approach
is reliable for rapidly identifying low-κω compounds.
Once the main factors correlated with a low thermal

conductivity are identified for the 450-HH library, we use
the thermodynamical information in the AFLOWLIB.org
database to test the stability of these HHs against more than
110,000 phases. All competing ternary compounds from
the Inorganic Crystal Structure Database (ICSD) [27] and
all binaries in that database sharing two elements with each
HH are included. The final list of thermodynamically stable
compounds contains 75 entries. For these, we devise and
implement a novel approach to compute the lattice thermal
conductivity. Our accuracy is better than 50% of the exact
calculation and has a much lower computational cost.
This allows us to provide estimates of κω that can be
compared with experiment for 75 thermodynamically
stable compounds.

II. PREDICTING BULK LATTICE THERMAL
CONDUCTIVITIES

The general expression for κω at temperature T is [28]

κω ¼ 1

kBT2V

X

λ

n0ðn0 þ 1ÞjvðzÞλ j2ℏ2ω2
λτλ; (1)

where λ denotes the phonon branch index α and wave
vector q, kB is Boltzmann’s constant, n0 is the Bose-
Einstein distribution, ωλ is the frequency of phonons, v

ðzÞ
λ is

the phonon group velocity in the transport direction z, and
τλ is the relaxation time. The relaxation time is determined
by third-order derivatives of the total energy with respect to
the atomic displacements of any three atoms i, j, and k in
directions a, b, and c (Φabc

ijk , the anharmonic force con-
stants) in a large supercell [29].
In ordered half-Heuslers, the dominant source of

scattering is due to three-phonon processes, and we can
calculate thermal conductivities with the full ab initio
anharmonic characterization [30,31]. For CoSbZr, one of
the most thoroughly studied half-Heuslers, we obtain
κω ¼ 25:0 Wm−1K−1. The value is very close to a previous
theoretical estimate (∼22 Wm−1K−1) for monocrystalline
CoSbZr [19] and slightly higher than the experi-
mental values [32,33] (between 15 and 20 Wm−1K−1).
Synthesized samples of Refs. [32,33] may contain micro-
structures and imperfections not considered in our work.
Despite their accuracy, “full ab initio calculations” of κω
[Eq. (1)] are prohibitive for HT studies because of the
computational requirements of the derivatives giving τλ.
In this section, we present two different approaches

circumventing the limitation. The first method is based on
the empirical observation that the force constants show a
high degree of transferability between compounds sharing
crystal structure [34]. This suggests that a single set of
anharmonic force constants could be used to get an estimate
of the bulk κω. We call this thermal conductivity calculated
with “transferred” forces κtransf (see Table II).
We want to preserve the choice between equivalent

positions for maximizing transferability. Thus, instead of

(a) (b)

FIG. 1 (color online). (a) Prototype Half-Heusler structure with primitive vectors and a conventional cell. (b) Elements considered in
this study.
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taking the anharmonic force constants of a particular half-
Heusler compound, we choose those of Mg2Si. This
compound shares the half-Heusler lattice with sites A
and B occupied by Mg atoms. For cross validation, we
also fully compute the anharmonic force constants of 32
half-Heusler systems. These are randomly selected with
uniform probability inside the convex hull of Fig. 2a, to
ensure a wide variety of harmonic and anharmonic features.
Comparison between κω and κtransf indicates that, although
the latter has limited quantitative precision, the qualitative
agreement is very good, with a Spearman rank correlation
coefficient of 0.93. Hence, the descriptor can be effectively
used to separate compounds having high or low κω. Note
that we chose the Spearman rank correlation [35] instead of
the usual Pearson one. The former is invariant under any

monotonic transformation of one or both variables and
takes values �1 for any strict monotonic (not just linear)
dependence.
The second proposed approach is based on a completely

different direction: We use “random-forest regression” by
leveraging the 32 fully calculated κω as a training set. We
can then employ the fitted model to predict the remaining
conductivities. We call these predictions κforest (see
Table II). Random forests [36] are a family of general
classification and regression algorithms and are well
adapted to dependent input data. They have already been
successfully applied to numerous problems [37,38], includ-
ing compound classification [39]. Here, the 32 compounds
represent only around 7% of the mechanically stable half-
Heuslers. Our input data comprise a large set of descriptor
variables, which are expected to correlate with κω
(Supplemental Material [40]) but is less expensive to
obtain. Descriptors include the following:
(i) A priori chemical information: atomic number and

weight, position in the periodic table, atomic radius,
Pauling electronegativity [41], and Pettifor’s chemical
scale χ (Ref. [42]).

(ii) General compound information: lattice constant alatt,
band gap, formation enthalpy, effective masses of
electrons and holes, Born effective charges, and
dielectric tensor.

(iii) Specific thermal conductivity information: specific
heat cv, spherically averaged speed of sound cs, scaled
nanograined-limit thermal conductivity ~κgrain, and
phase-space volume available for three-phonon scat-
tering processes P3.

After an exploratory phase, we conclude that a satisfactory
fit can be safely achieved using only a priori data.
The random-forest method is performed in three steps.

First, a large ensemble of decision trees is built by
randomly selecting subsets of descriptors and observations.
Second, the predictions of all trees are obtained for each
data point. Third, the mode (for classification) or the mean
(for regression) are taken as the result from the whole
ensemble. The algorithm also provides an intrinsic metric
to evaluate the importance of each descriptor. This is
defined in relation to the effect of randomly permuting
the values of that variable on the result [36] (the less
resilient upon permutation, the more important).
The prediction of each tree in a random forest can only

be a value from the training set, and thus the result of the
regression is a weighted average. This average is bounded
by the minimum and maximum values within the training
data. A small set is unlikely to contain elements having
extreme values. Hence, our random-forest regression is
expected to have a marked centralizing effect, yielding
values tightly grouped around their mean. The frequency
densities of both κtransf and this new κforest are displayed in
Fig. 2b. The latter avoids extreme predictions with non-
physical magnitudes, a result of the aforementioned cen-
tralizing effect.

(a)

(b)

(c)

FIG. 2 (color online). (a) Joint scatter plot of cv at 300 K and
P3, colored according to our low- and high-κω classification
based on κforest (see text); the convex hull of the point set is also
included for guidance. (b) Frequency densities of the estimators
of thermal conductivity at 300 K κtransf and κforest as defined in the
text. (c) “Violin plot” showing the distribution of alatt within the
low- and high-κω classes.
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In this sense, machine-learning algorithms outperform
crude extrapolations such as those behind κtransf .
Additionally, κforest has the advantage that its predictions
can be refined with controlled accuracy by changing the
size of the training set. Even so, the Spearman rank
correlation coefficient between κtransf and κforest is still
0.66, corroborating the validity of the analysis based on
κforest. Furthermore, we find that κforest is strongly correlated
with physical descriptors like cv, ~κgrain, and P3. This
confirms our earlier speculation about these methods.
An important concern when training a machine-learning

model is whether the training set is diverse or representative
enough to justify extrapolating the model to the remaining
elements. The values of κω needed for direct validation of
the predicted κforest are unavailable. Thus, we resort to a
repeated fourfold cross validation among the data points in
the training set to obtain an estimate of the out-of-sample
error. More specifically, we evenly split our training set into
four subsets. Then, we obtain a random-forest prediction
for the HHs in each of the subsets by using only the
remaining 75% of compounds as the new training set. We
repeat the process 10 times for different divisions of the
data and compute the standard deviation of these predic-
tions. The results are included in Table. I. These estimates

support the notion that the model behind κforest is reason-
ably insensitive to our choice of training sets. For each
cross validation, we compute the Spearman rank correla-
tion coefficient between the out-of-sample random-forest
results for the 32 training compounds and their κω. The
median value of these Spearman rank correlation coeffi-
cients is 0.74, corroborating κforest as a reliable tool for
predicting compound ordering.
The ordering predicted by descriptor κforest is strongly

correlatedwith that of κω. This allows us to pinpoint themain
factors determining high or low thermal conductivities. The
bimodal shape of the distribution in Fig. 2b suggests that two
groups of half-Heuslers can be identified, with thermal
conductivities spread around two different values. A robust
version of the “k-means” algorithm [43] is employed to
optimally place the medians of the low- and high-thermal-
conductivity classes at 450 and 23:1 Wm−1K−1, respec-
tively. By analyzing the importance of variables in the
classification, we identify a low Pettifor scale χX and a
large average Pauling electronegativity ēAB as the most
critical descriptors for low conductivity (Supplemental
Material [40]).
Given the underlying correlations, many different

choices can be used for the classification. A trend can
even be suggested on the grounds of atomic radii by
following a chain of correlations: If the two elements in
equivalent positions are chosen so that their average radius
is larger than 150 pm, then the probability of the compound
being in the low-κω class is 84%. Physically, this follows
from the fact that κω is highly correlated with the specific
heat cv [Fig. 2a]. The latter is strongly negatively correlated
with the lattice parameter alatt: The larger alatt the lower
cv [44].
In addition, alatt correlates well with the sum of the

atomic radii of the three elements, quantities known
a priori. The atomic radii of the species in positions X
concentrate around the average value. This leads to an
accurate prediction of alatt by using only the average atomic

TABLE II. Notation for thermal conductivities.

Label Definition

κω Lattice contribution to κ from the “full
calculation”

κtransf Approximated κω with anharmonic force
constants from Mg2Si

κforest κω obtained random-forest regression
κanh κω obtained with four exact anharmonic force

constants and a linear model for the rest
κe Electronic contribution to κ
~κgrain Scaled nanograined limit κω

TABLE I. Fully calculated thermal conductivities κω for 32 compounds. These results are then used as the training set for the random-
forest predictions. An estimate of the relative standard deviation of κforest for each compound in the training set, as obtained using
repeated fourfold cross validation, is also included. Compounds are always labeled with the element in position X first.

κω ðWm−1 K−1Þ σforest;CV (%) κω ðWm−1 K−1Þ σforest;CV (%) κω ðWm−1 K−1Þ σforest;CV (%)

AgKTe 0.508 42 GeCaZn 2.75 9.6 PtGaTa 32.9 11
BeNaP 4.08 20 GeNaY 8.06 14 PtGeTi 16.9 9.0
BiBaK 2.19 11 LiBaSr 0.582 15 PtLnNb 16.5 8.2
BiKSr 1.96 6.4 IrPTi 27.4 7.8 RhHfSb 21.8 13
BiLiSr 3.04 10 NiPbTi 109 10 RhNbSi 15.3 11
CoAsZr 24.0 7.4 NiSbSc 19.5 11 RuAsV 23.5 13
CoBiHf 18.6 14 NiSnTi 17.9 9.3 SbCaK 2.70 9.3
CoSbZr 25.0 2.4 NiSnZr 19.6 11 SiCdSr 13.5 19
CoScSe 15.0 13 OsSbTa 29.6 12 SnBaSr 2.01 43
CoSiTa 37.8 7.7 PdAsY 5.48 9.5 TeAgLi 1.52 11
FeNbP 109 4.2 PdSrTe 1.16 19

CARRETE, LI, MINGO, WANG, AND CURTAROLO PHYS. REV. X 4, 011019 (2014)

011019-4



radius of atoms in positions A and B, r̄AB. A large r̄AB
causes a large lattice constant, small specific heat, and
finally, low thermal conductivity. Alternatively, the lattice
parameter can be used as a good discriminant: Panel (c) in
Fig. 2 is a “violin plot” illustrating the distribution of alatt in
the classes of half-Heuslers with low and high thermal
conductivities. Also, as it can be seen in Fig. 2a, our choice
of easily computable descriptors such as cv and P3 is
supported by the result of this classification.
Our calculations are for the true bulk lattice thermal

conductivity. They are unrelated to the minimum value
proposed by other authors [45,46]. Nevertheless, some of
the κω obtained directly seem ultralow. They are even lower
than ∼0.70 Wm−1K−1, as reported in the literature for
AgSbTe2 and AgBiSe2 [47], and described as close to the
achievable minimum. However, the minimum depends on
the compound’s structure. Even within the most stringent
hypothesis of the shortest possible mean free path equal to
interatomic spacing, the lowest found κω is much higher
than the theoretical minimum. Therefore, none of our
predicted values violates the minimum lattice thermal
conductivity. Note also that, once the goal of reducing
the κω under ≲1 Wm−1 K−1 is achieved, its precise value
loses relevancy as it is overtaken by the contribution of
charge carriers, κe.

III. SCREENING FOR
THERMODYNAMICAL STABILITY

The ingredients of κω for bulk ordered semiconductors
depend only on a semilocal characterization of the potential
energy surface around the equilibrium configuration.
Hence, mechanical stability is sufficient to permit the
calculation of the lattice thermal conductivity of a HH.
For the analysis performed in the previous section, having
the set of 450 mechanically stable HHs reduced and biased
by external considerations such as thermodynamical sta-
bility would be detrimental to the performance of machine-
learning techniques.
On the other hand, in order to propose particular

candidates for experimentation, we must maximize the
probability that they can be obtained in the laboratory. To
this end, we obtain the ternary phase diagrams for each of
the 450 mechanically stable HHs. This involves taking into
account the formation enthalpies of a large number of
possible competing phases. These include but are not
limited to all relevant binary and ternary compounds in
the ICSD [27]. More specifically, all the elemental com-
pounds, 109,36 binary structures, and 4,363 ternary phases
were considered. Many of these phases were already
present in AFLOWLIB.org; others were computed specifi-
cally for this work. The total number of DFT calculations
necessary to obtain the results presented here exceeds
300,000. Our thermodynamic analysis reveals that 77 of
the 450 HHs are thermodynamically stable. Spin-polarized
calculations reveal that two of the 77 have semimetallic

ground states. Then, only the remaining 75 compounds are
further considered. The ternary phase diagrams of the final
75 systems are included in the Supplemental Material [40].
Interestingly, all of the 75 predicted stable compounds

satisfy the octet or expanded octet rules by virtue of having
8 or 18 valence electrons per unit cell, respectively. We
compare these numbers with the frequency distribution of
valence electron counts in the initial 79,057-HH library. We
conclude that the conditional probabilities of compounds
having 8 or 18 valence electrons per unit cell being stable
are 1.2% and 3.8%, respectively. While still small, the
conditional likelihood of a compound satisfying one of
these rules making it through all the filtering steps is much
higher than the 0.1% a priori probability. Figure 3 shows
the distribution of the valence during the reduction of
the prototypes’ list.
Even among the reduced list, κforest still spans more than

1 order of magnitude, its extreme values being 2.33 and
40:3 Wm−1 K, reinforcing our previous conclusions.

IV. A DESCRIPTOR WITH
QUANTITATIVE POWER

Neither of the two descriptors of κω presented so far
contains any information about the anharmonic interatomic
force constants (IFCs) of each compound. On one hand, the
last round of thermodynamical screening puts the number
of surviving HHs within the limits of what can be
realistically considered for anharmonic calculations. On
the other, the qualitative success of κtransf shows that a
detailed anharmonic description is not required. To enhance
our estimates of the thermal conductivity of stable half-
Heuslers, in this section we present a new machine-learning
descriptor of κω that integrates only the crucial pieces of the
anharmonic properties of the solid. This aids in achieving
quantitative accuracy with a much lower computational
cost than the full calculation.

FIG. 3 (color online). Number of compounds during the screen-
ing (left panel) and evolutionof thevalenceper unit cell distribution
(right panel).All the final 75 compounds follow the8=18octet rule.
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Crystallographic symmetries and the equality of mixed
partials impose linear constraints on the anharmonic IFCs.
With the parameters described in the “Methods” section
below and those constraints, we are left with 737

independent anharmonic IFCs per compound. However,
many elements of this set are correlated among them, and
others are too small to have a decisive role in the value of
κω. To quantify these assertions, we perform a principal
component analysis [48] on the third-order IFCs for the 32
compounds in Table I.
We find that the first four components account for ∼99%

of the variance in the set. From the results, we can extract an
expression for each of the 737 IFCs as a linear combination
of those components. Then we perform a multivariable
multiple linear regression of the four components on four
large and weakly correlated IFCs. By combining the two
results, we arrive at a linear model for the whole set of
anharmonic IFCs in terms of four parameters that can be
obtained with 16 DFT calculations per compound. We use
the term κω to describe the third-order IFCs thus recon-
structed, and κanh for the second-order IFCs for each
compound.
The blue circles in Fig. 4a show a comparison between

κanh and the exact κω for the 32 compounds in the training
set. With two exceptions (compounds with comparatively
very high thermal conductivities), this new descriptor
yields excellent quantitative estimates of κω. Moreover,
fourfold cross validation shows that it is insensitive to the
particular choice of training set. As a final test, we perform
full thermal conductivity calculations for four compounds
selected at random from those outside the training set:
AgBaSb, AgNaTe, InCdY, and TlLaMg. The results are
depicted as red crosses in Fig. 4a. This shows that the
quality of the prediction is as good as for the 32 training
compounds.
The distribution of κanh over the 75 thermodynamically

stable HHs [Fig. 4b] confirms the presence in the sample of

(a)

(b)

FIG. 4 (color online). (a) Comparison of κanh with the exact κω
for the 32 compounds in the training set and the three compounds
used for validation. (b) Distribution of κanh over the 75 thermo-
dynamically stable HHs.

TABLE III. The values of κanh for the 75 thermodynamically stable half-Heusler compounds.

κanh ðWm−1 K−1Þ κanh ðWm−1 K−1Þ κanh ðWm−1 K−1Þ κanh ðWm−1 K−1Þ
AuAIHf 16.7 FeAsNb 47.6 NiGaNb 22.9 RhAsZr 27.1
BLiSi 62.1 FeAsTa 32.9 NiGeHf 19.6 RhBiHf 12.8
BiBaK 1.24 FeGeW 32.8 NiGeTi 25.3 RhBiTi 13.0
CoAsHf 20.0 FeNbSb 29.1 NiGeZr 21.1 RhBiZr 13.0
CoAsTi 37.1 FeSbTa 31.2 NiHfSn 19.5 RhLaTe 2.84
CoAsZr 27.7 FeSbV 24.1 NiPbZr 15.2 RhNbSn 15.7
CoBiHf 22.5 FeTeTi 26.2 NiSnTi 16.8 RhSnTa 20.3
CoBiTi 27.1 GeAILi 16.5 NiSnZr 17.5 RuAsNb 43.7
CoBiZr 17.8 IrAsTi 30.1 OsNbSb 24.8 RuAsTa 33.4
CoGeNb 36.2 IrAsZr 17.4 OsSbTa 28.8 RuNbSb 22.7
CoGeTa 27.2 IrBiZr 12.8 PCdNa 6.05 RuSbTa 20.9
CoGeV 29.1 IrGeNb 33.0 PdBiSc 9.95 RuTeZr 21.3
CoHfSb 21.9 IrGeTa 37.2 PdGeZr 18.2 SbNaSr 3.49
CoNbSi 30.1 IrGeV 30.0 PdHfSn 15.1 SiAILi 20.9
CoNbSn 20.7 IrHfSb 24.7 PdPbZr 10.3 ZnLiSb 6.44
CoSbTi 23.3 IrNbSn 19.8 PtGaTa 32.3
CoSbZr 24.4 IrSnTa 22.1 PtGeTi 26.7
CoSiTa 36.9 NiAsSc 17.5 PtGeZr 15.9
CoSnTa 22.7 NiBiSc 14.3 PtLaSb 1.72
CoSnV 19.8 NiBiY 10.6 RhAsTi 33.1
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compounds with thermal conductivities much lower than
10–20 Wm−1 K−1. This is characteristic of experimentally
measured HHs. The values of κanh for the 75 stable HHs
are listed in Table III. Notably, the subset of 10 thermo-
dynamically stable half-Heuslers for which κω was
directly computed already contains BiBaK, with
κω ¼ 2.20 Wm−1K−1. Outside of the training sample,
the lowest κanh values are 1.72, 2.84, and 3.49 for
PtLaSb, RhLaTe, and SbNaSr, respectively.

V. CONCLUSIONS

In this article, we have presented three computational
methods for estimating the bulk κω of a large library of half-
Heusler compounds. We surmount the formidable task of
full ab initio characterization. We find that κω is spread over
more than 2 orders of magnitude over mechanically stable
half-Heuslers. This is a much broader range than that
suggested by limited experimental available data. By using
a set of descriptors and random-forest regression, we have
built and tested an effective classification model. We found
that compounds are most likely to have low thermal
conductivity if the average atomic radius of the atoms in
structural positions A and B is large. This also correlates
with large lattice parameters and low specific heat.
Extensive thermodynamical calculations allow one to

remove compounds with more stable competing phases
from the list. We employ our third method, with better
quantitative accuracy and higher computational cost, to
perform a finer analysis of the distribution of κω over the
reduced library. We conclude that ordered half-Heusler
compounds with a κω ≲ 3 Wm−1K−1 value (a factor of 3
below the best scenarios for ordered compounds and
comparable to alloyed systems) very likely exist. The
results corroborate the competitiveness of machine-
learning methods in accelerated material design [1].

VI. METHODS

AFLOWLIB library of half-Heusler systems.—The
79,057 half-Heusler systems are calculated with the
high-throughput framework AFLOW [4,25,49,50] based
on ab initio calculations of the energies by the VASP
software [51] with projector augmented wave (PAW)
pseudopotentials [52], and Perdew, Burke, and Ernzerhof
exchange-correlation functionals [53]. The AFLOWLIB
energies are calculated at zero temperature and pressure,
with spin polarization and without zero-point motion or
lattice vibrations. All crystal structures are fully relaxed
(cell volume and shape and the basis atom coordinates
inside the cell). Numerical convergence to about
1 meVatom−1 is ensured by a high-energy cutoff (30%
higher than the highest-energy cutoff for the pseudopoten-
tials of the components) and by the dense 6,000 k-points
per reciprocal atom Monkhorst-Pack meshes [54].

Interatomic force constants.—3 × 3 × 3 supercells are
used in second-order IFC calculations. The Phonopy [55]
package is used to generate a minimal set of atomic
displacements by harnessing the point and translational
symmetries of the crystal structure, and custom software
was developed in order to do the same in anharmonic IFC
calculations. For those calculations, 4 × 4 × 4 supercells
are generated and a cutoff radius of 0.85alatt is imposed on
the interactions. The 2 × 2 × 2 and 3 × 3 × 3 Monkhorst-
Pack k-point grids are employed, and spin polarization is
excluded to improve speed.
Solution of the Boltzmann transport equation.—Our

self-consistent iterative approach is described in detail in
Ref. [30]. Both three-phonon processes and the natural
isotopic distribution of each element are taken into account
as sources of scattering. A Gaussian smearing scheme with
adaptive breadth [31] is chosen for integrations in the
Brillouin zone. When using anharmonic IFCs from Mg2Si
to approximate κω for all materials, the solution to the
Boltzmann transport equation failed to converge for five
compounds, which are consequently excluded from the
associated analysis.
Regression and classification.—The R statistical com-

puting environment [56] is chosen for all statistical analy-
ses. Random-forest models are used as implemented in the
“randomForest” package [57]. As a check, all regressions
and classifications are repeated using a generalized boosted
tree algorithm [58]; in all cases, the results are found to be
in good agreement with those afforded by random forests.

ACKNOWLEDGMENTS

The authors thank Professor D. Broido and Dr. L.
Lindsay for providing us with a set of an harmonic force
constants for Mg2Si, and Dr. A. Stelling, Dr. O. Levy,
Professor S. Sanvito, Professor M. Buongiorno Nardelli,
and Professor M. Fornari for useful comments. This work is
partially supported by the French “Carnot” project SIEVE,
by DOD-ONR (N00014-13-1-0635, N00014-11-1-0136,
and N00014-09-1-0921) and by Duke University—Center
for Materials Genomics.

[1] S. Curtarolo, G. L. W. Hart, M. Buongiorno Nardelli, N.
Mingo, S. Sanvito, and O. Levy, The High-Throughput
Highway to Computational Materials Design, Nat. Mater.
12, 191 (2013).

[2] J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff, and
J. K. Nørskov, Computational High-Throughput Screening
of Electrocatalytic Materials for Hydrogen Evolution, Nat.
Mater. 5, 909 (2006).

[3] G. Ceder, G. Hauthier, A. Jain, and S. P. Ong, Recharging
Lithium Battery Research with First-Principles Methods,
MRS Bull. 36, 185 (2011).

[4] S. Wang, Z. Wang, W. Setyawan, N. Mingo, and S.
Curtarolo, Assessing the Thermoelectric Properties of

FINDING UNPRECEDENTEDLY LOW-THERMAL- … PHYS. REV. X 4, 011019 (2014)

011019-7

http://dx.doi.org/10.1038/nmat3568
http://dx.doi.org/10.1038/nmat3568
http://dx.doi.org/10.1038/nmat1752
http://dx.doi.org/10.1038/nmat1752
http://dx.doi.org/10.1557/mrs.2011.31


Sintered Compounds via High-Throughput Ab-Initio Cal-
culations, Phys. Rev. X 1, 021012 (2011).

[5] I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S.
Thygesen, and K.W. Jacobsen, Computational Screening of
Perovskite Metal Oxides for Optimal Solar Light Capture,
Energy Environ. Sci. 5, 5814 (2012).

[6] L. Yu and A. Zunger, Identification of Potential Photo-
voltaic Absorbers Based on First-Principles Spectroscopic
Screening of Materials, Phys. Rev. Lett. 108, 068701
(2012).

[7] K. Yang, W. Setyawan, S. Wang, M. Buongiorno Nardelli,
and S. Curtarolo, A Search Model for Topological Insula-
tors with High-Throughput Robustness Descriptors, Nat.
Mater. 11, 614 (2012).

[8] G. Ceder and K. Persson, How Supercomputers Will Yield a
Golden Age of Materials Science (Scientific American,
New York, 2013).

[9] G. L. W. Hart, S. Curtarolo, T. B. Massalski, and O. Levy,
Comprehensive Search for New Phases and Compounds in
Binary Alloy Systems Based on Platinum-Group Metals,
Using a Computational First-Principles Approach, Phys.
Rev. X 3, 041035 (2013).

[10] C. Uher, J. Yang, S. Hu, D. T. Morelli, and G. P. Meisner,
Transport Properties of Pure and Doped MNiSn
(M ¼ Zr, Hf), Phys. Rev. B 59, 8615 (1999).

[11] H. Hohl, A. P. Ramirez, C. Goldmann, G. Ernst, B. Wölfing,
and E. Bucher, Efficient Dopants for ZrNiSn-Based
Thermoelectric Materials, J. Phys. Condens. Matter 11,
1697 (1999).

[12] G. S. Nolas, J. Poon, and M. Kanatzidis, Recent Develop-
ments in Bulk Thermoelectric Materials, MRS Bull. 31, 199
(2006).

[13] C. Yu, T.-J. Zhu, R.-Z. Shi, Y. Zhang, X.-B. Zhao, and J. He,
High-Performance Half-Heusler Thermoelectric Materials
Hf1−xZrxNiSn1−ySby Prepared by Levitation Melting and
Spark Plasma Sintering, Acta Mater. 57, 2757 (2009).

[14] T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka,
Thermoelectric Properties of ðTi;Zr;HfÞCoSb Type Half-
Heusler Compounds, Mater. Trans., JIM 46, 1481
(2005).

[15] S. R. Culp, S. J. Poon, N. Hickman, T. M. Tritt, and J.
Blumm, Effect of Substitutions on the Thermoelectric
Figure of Merit of Half-Heusler Phases at 800∘C, Appl.
Phys. Lett. 88, 042106 (2006).

[16] G. Joshi, X. Yan, H. Wang, W. Liu, G. Chen, and Z. F. Ren,
Enhancement in Thermoelectric Figure of Merit of an
n-Type Half-Heusler Compound by the Nanocomposite
Approach, Adv. Energy Mater. 1, 643 (2011).

[17] X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J. W.
Simonson, S. J. Poon, T. M. Tritt, G. Chen, and Z. F. Ren,
Enhanced Thermoelectric Figure of Merit of p-Type Half-
Heuslers, Nano Lett. 11, 556 (2011).

[18] X. Yan, W. Liu, H. Wang, S. Chen, J. Shiomi, K. Esfarjani,
H. Wang, D. Wang, G. Chen, and Z. F. Ren, Stronger
Phonon Scattering by Larger Differences in Atomic Mass
and Size in p-Type Half-Heuslers Hf1-xTixCoSb0.8Sn0.2,
Energy Environ. Sci. 5, 7543 (2012).

[19] J. Shiomi, K. Esfarjani, and G. Chen, Thermal Conductivity
of Half-Heusler Compounds from First-Principles Calcu-
lations, Phys. Rev. B 84, 104302 (2011).

[20] F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Half-
Heusler Compounds: Novel Materials for Energy and
Spintronic Applications, Semicond. Sci. Technol. 27,
063001 (2012).

[21] W. Xie, A. Weidenkaff, X. Tang, Q. Zhang, J. S. J. Poon,
and T. M. Tritt, Recent Advances in Nanostructured
Thermoelectric Half-Heusler Compounds, Nanomaterials
2, 379 (2012).

[22] S. Sakurada and N. Shutoh, Effect of Ti Substitution on the
Thermoelectric Properties of ðZr;HfÞNiSn Half-Heusler
Compounds, Appl. Phys. Lett. 86, 082105 (2005).

[23] J.-F. Li, W.-S. Liu, L.-D. Zhao, and M. Zhou, High-
Performance Nanostructured Thermoelectric Materials,
NPG Asia Mater. 2, 152 (2010).

[24] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R. H.
Taylor, L. J. Nelson, G. L.W. Hart, S. Sanvito, M. Buon-
giorno Nardelli, N. Mingo, and O. Levy, AFLOWLIB.ORG:
A Distributed Materials Properties Repository from High-
Throughput Ab Initio Calculations, Comput. Mater. Sci. 58,
227 (2012).

[25] S. Curtarolo, W. Setyawan, G. L.W. Hart, M. Jahnatek, R.
V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O.
Levy, M. Mehl, H. T. Stokes, D. O. Demchenko, and D.
Morgan, AFLOW: An Automatic Framework for High-
Throughput Materials Discovery, Comput. Mater. Sci. 58,
218 (2012).

[26] X. Zhang, L. Yu, A. Zakutayev, and A. Zunger, Sorting
Stable versus Unstable Hypothetical Compounds: The
Case of Multi-Functional ABX Half-Heusler Filled
Tetrahedral Structures, Adv. Funct. Mater. 22, 1425
(2012).

[27] F. Karlsruhe, Inorganic Crystal Structure Database, http://
icsd.fiz‑karlsruhe.de/icsd.

[28] J. M. Ziman, Electrons and Phonons: The Theory of Trans-
port Phenomena in Solids (Oxford University, New York,
2001).

[29] A. Ward, D. A. Broido, D. A. Stewart, and G. Deinzer, Ab
Initio Theory of the Lattice Thermal Conductivity in
Diamond, Phys. Rev. B 80, 125203 (2009).

[30] D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A.
Stewart, Intrinsic Lattice Thermal Conductivity of Semi-
conductors from First Principles, Appl. Phys. Lett. 91,
231922 (2007).

[31] W. Li, N. Mingo, L. Lindsay, D. A. Broido, D. A. Stewart,
and N. A. Katcho, Thermal Conductivity of Diamond
Nanowires from First Principles, Phys. Rev. B 85,
195436 (2012).

[32] Y. Xia, S. Bhattacharya, V. Ponnambalam, A. L. Pope, S. J.
Poon, and T. M. Tritt, Thermoelectric Properties of Semi-
metallic ðZr; HfÞCoSb Half-Heusler Phases, J. Appl. Phys.
88, 1952 (2000).

[33] T. Sekimoto, K. Kurosaki, H. Muta, and S. Yamanaka,
High-Thermoelectric Figure of Merit Realized in p-Type
Half-Heusler Compounds: ZrCoSnxSb1-x, Jpn. J. Appl.
Phys. 46, L673 (2007).

[34] P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Ab
Initio Calculation of Phonon Dispersions in Semiconduc-
tors, Phys. Rev. B 43, 7231 (1991).

[35] E. L. Lehmann, Nonparametrics: Statistical Methods Based
on Ranks (Springer, New York, 2006).

CARRETE, LI, MINGO, WANG, AND CURTAROLO PHYS. REV. X 4, 011019 (2014)

011019-8

http://dx.doi.org/10.1103/PhysRevX.1.021012
http://dx.doi.org/10.1039/c1ee02717d
http://dx.doi.org/10.1103/PhysRevLett.108.068701
http://dx.doi.org/10.1103/PhysRevLett.108.068701
http://dx.doi.org/10.1038/nmat3332
http://dx.doi.org/10.1038/nmat3332
http://dx.doi.org/10.1103/PhysRevX.3.041035
http://dx.doi.org/10.1103/PhysRevX.3.041035
http://dx.doi.org/10.1103/PhysRevB.59.8615
http://dx.doi.org/10.1088/0953-8984/11/7/004
http://dx.doi.org/10.1088/0953-8984/11/7/004
http://dx.doi.org/10.1557/mrs2006.45
http://dx.doi.org/10.1557/mrs2006.45
http://dx.doi.org/10.1016/j.actamat.2009.02.026
http://dx.doi.org/10.2320/matertrans.46.1481
http://dx.doi.org/10.2320/matertrans.46.1481
http://dx.doi.org/10.1063/1.2168019
http://dx.doi.org/10.1063/1.2168019
http://dx.doi.org/10.1002/aenm.201100126
http://dx.doi.org/10.1021/nl104138t
http://dx.doi.org/10.1039/c2ee21554c
http://dx.doi.org/10.1103/PhysRevB.84.104302
http://dx.doi.org/10.1088/0268-1242/27/6/063001
http://dx.doi.org/10.1088/0268-1242/27/6/063001
http://dx.doi.org/10.3390/nano2040379
http://dx.doi.org/10.3390/nano2040379
http://dx.doi.org/10.1063/1.1868063
http://dx.doi.org/10.1038/asiamat.2010.138
http://dx.doi.org/10.1016/j.commatsci.2012.02.002
http://dx.doi.org/10.1016/j.commatsci.2012.02.002
http://dx.doi.org/10.1016/j.commatsci.2012.02.005
http://dx.doi.org/10.1016/j.commatsci.2012.02.005
http://dx.doi.org/10.1002/adfm.201102546
http://dx.doi.org/10.1002/adfm.201102546
http://dx.doi.org/http://icsd.fiz-karlsruhe.de/icsd
http://dx.doi.org/http://icsd.fiz-karlsruhe.de/icsd
http://dx.doi.org/http://icsd.fiz-karlsruhe.de/icsd
http://dx.doi.org/http://icsd.fiz-karlsruhe.de/icsd
http://dx.doi.org/10.1103/PhysRevB.80.125203
http://dx.doi.org/10.1063/1.2822891
http://dx.doi.org/10.1063/1.2822891
http://dx.doi.org/10.1103/PhysRevB.85.195436
http://dx.doi.org/10.1103/PhysRevB.85.195436
http://dx.doi.org/10.1063/1.1305829
http://dx.doi.org/10.1063/1.1305829
http://dx.doi.org/10.1143/JJAP.46.L673
http://dx.doi.org/10.1143/JJAP.46.L673
http://dx.doi.org/10.1103/PhysRevB.43.7231


[36] L. Breiman, Random Forests, Mach. Learn. 45, 5
(2001).

[37] D. S. Palmer, N. M. O’Boyle, R. C. Glen, and J. B. O.
Mitchell, Random Forest Models to Predict Aqueous
Solubility, J. Chem. Inf. Model. 47, 150 (2007).

[38] L. Auret and C. Aldrich, Unsupervised Process Fault
Detection with Random Forests, Ind. Eng. Chem. Res.
49, 9184 (2010).

[39] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P.
Sheridan, and B. P. Feuston, Random Forest: A Classifica-
tion and Regression Tool for Compound Classification and
QSAR Modeling, J. Chem. Inf. Comput. Sci. 43, 1947
(2003).

[40] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.4.011019 for a full table
of descriptors for the 450 half-Heuslers library, a correlo-
gram between variables and a set of ternary phase diagrams
for the proposed 75 thermodynamically stable compounds.

[41] L. Pauling, The Nature of the Chemical Bond and the
Structure of Molecules and Crystals: An Introduction to
Modern Structural Chemistry (Cornell University Press,
New York, 1960), 3rd ed.

[42] D. G. Pettifor, A Chemical Scale for Crystal-Structure
Maps, Solid State Commun. 51, 31 (1984).

[43] S. P. Lloyd, Least Square Quantization in PCM,
IEEE Trans. Inf. Theory 28, 129 (1982).

[44] The decreasing trend can be understood by considering
that the specific heat per atom at high temperatures relates
to the number of degrees of freedom, through the
equipartition theorem. Hence, a cv ∝ a3latt dependence
should be expected. In fact, the observed trend is sharper
because of the differences in Debye temperature among
the compounds.

[45] G. A. Slack, The Thermal Conductivity of Nonmetallic
Crystals, in Solid State Physics Vol. 34, edited by H.
Ehrenreich, FX. Seitz, and D. Turnbull (Academic, New
York, 1979), p. 1.

[46] D. G. Cahill, S. K. Watson, and R. O. Pohl, Lower Limit to
the Thermal Conductivity of Disordered Crystals, Phys.
Rev. B 46, 6131 (1992).

[47] D. T. Morelli, V. Jovovic, and J. P. Heremans, Intrinsically
Minimal Thermal Conductivity in Cubic I-V-VI2 Semi-
conductors, Phys. Rev. Lett. 101, 035901 (2008).

[48] I. T. Jolliffe, Principal Component Analysis (Springer,
New York, 2002).

[49] W. Setyawan and S. Curtarolo, High-Throughput Electronic
Band Structure Calculations: Challenges and Tools,
Comput. Mater. Sci. 49, 299 (2010).

[50] W. Setyawan, R. M. Gaume, S. Lam, R. S. Feigelson, and S.
Curtarolo, High-Throughput Combinatorial Database of
Electronic Band Structures for Inorganic Scintillator
Materials, ACS Comb. Sci. 13, 382 (2011).

[51] G. Kresse and J. Furthmüller, Efficient Iterative Schemes for
Ab Initio Total-Energy Calculations Using a Plane-Wave
Basis Set, Phys. Rev. B 54, 11 169 (1996).

[52] P. E. Blöchl, Projector Augmented-Wave Method, Phys.
Rev. B 50, 17 953 (1994).

[53] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
Gradient Approximation Made Simple, Phys. Rev. Lett. 77,
3865 (1996).

[54] H. J. Monkhorst and J. D. Pack, Special Points for Brillouin-
Zone Integrations, Phys. Rev. B 13, 5188 (1976).

[55] A. Togo, F. Oba, and I. Tanaka, First-Principles Calcu-
lations of the Ferroelastic Transition between Rutile-Type
and CaCl2-Type SiO2 at High Pressures, Phys. Rev. B 78,
134106 (2008).

[56] R Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Comput-
ing, (Vienna, Austria 2013), http://www.R‑project.org/.

[57] A. Liaw and M. Wiener, Classification and Regression by
randomForest, R News 2, 18 (2002).

[58] Y. Freund and R. E. Schapire, A Decision-Theoretic
Generalization of On-line Learning and an Application
to Boosting, J. Comput. Syst. Sci. 55, 119 (1997).

FINDING UNPRECEDENTEDLY LOW-THERMAL- … PHYS. REV. X 4, 011019 (2014)

011019-9

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1021/ci060164k
http://dx.doi.org/10.1021/ie901975c
http://dx.doi.org/10.1021/ie901975c
http://dx.doi.org/10.1021/ci034160g
http://dx.doi.org/10.1021/ci034160g
http://link.aps.org/supplemental/10.1103/PhysRevX.4.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.4.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.4.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.4.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.4.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.4.011019
http://link.aps.org/supplemental/10.1103/PhysRevX.4.011019
http://dx.doi.org/10.1016/0038-1098(84)90765-8
http://dx.doi.org/10.1109/TIT.1982.1056489
http://dx.doi.org/10.1103/PhysRevB.46.6131
http://dx.doi.org/10.1103/PhysRevB.46.6131
http://dx.doi.org/10.1103/PhysRevLett.101.035901
http://dx.doi.org/10.1016/j.commatsci.2010.05.010
http://dx.doi.org/10.1021/co200012w
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.78.134106
http://dx.doi.org/10.1103/PhysRevB.78.134106
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://dx.doi.org/10.1006/jcss.1997.1504

