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We report here a novel fiber-based test bed using tailored spectral shaping of an optical-frequency comb

to excite the formation of two Akhmediev breathers that collide during propagation. We have found

specific initial conditions by controlling the phase and velocity differences between breathers that lead,

with certainty, to their efficient collision and the appearance of a giant-amplitude wave. Temporal and

spectral characteristics of the collision dynamics are in agreement with the corresponding analytical

solution. We anticipate that experimental evidence of breather-collision dynamics is of fundamental

importance in the understanding of extreme ocean waves and in other disciplines driven by the continuous

nonlinear Schrödinger equation.
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I. INTRODUCTION

Nonlinear coherent phenomena in continuous media
have been a key subject of research over the last decades
in the framework of the nonlinear Schrödinger equation
(NLSE), with applications to plasma physics, fluid dynam-
ics, and nonlinear optics [1]. In particular, much attention
has been focused on the common solitary wave structures,
known as solitons, and their interactions in almost conser-
vative media. Recently, nonlinear fiber optics has proved
its capabilities to demonstrate the existence of solitons
(or breathers) on finite background (SFB) solutions to the
NLSE [2–4] predicted for more than 25 years. These
coherent localized waves evolving on a continuous back-
ground exactly describe the dynamical growth of perturba-
tions on a continuous wave related to the nonlinear
modulation instability. This includes Akhmediev breath-
ers, Kuznetsov-Ma solitons, and the Peregrine (rational)
soliton, which are now considered the simplest models to
describe the growth and decay of isolated steep wave
events, i.e., rogue waves, in nonlinear dispersive systems
[5–9]. But although their first observations were confirmed
in different domains of nonlinear science over the past few
years, including hydrodynamics [10] and plasma physics
[11], no experiment has been performed in order to reveal a
synchronized interaction between these first-order periodic
solutions of the NLSE. Interaction and collision of com-
mon solitons, in contrast, have already been studied in
detail [12]; integrable models are known for allowing
elastic soliton collisions.

Nonlinear coherent structures are also known to coexist
with wave turbulence. Even in the presence of phase

randomization inherent to the study of incoherent waves
or chaotic states, various numerical works have shown the
spontaneous emergence of coherent localized waves (even
rational solutions of the NLSE) from a turbulent environ-
ment [7,13–15]. Rogue waves are not just an offshoot of
breather collisions, but other mechanisms depending on the
physical system must be taken into account in the forma-
tion of rogue waves, including the statistical approach,
when noise is present [16]. The main objective of the
present work is to demonstrate the existence of the colli-
sion process of Akhmediev breathers in real physical sys-
tems, so complete control of all the physical parameters is
required in the first phase, which prevents any statistical
analysis. It is still of fundamental importance to consider
the coherent and deterministic approach to the under-
standing of rogue-wave phenomena in realistic oceanic
conditions [17,18]. A recent work has investigated the
interaction between waves and ships during extreme ocean
conditions using such breather solutions [19]. In this re-
spect, it is also interesting to mention the recent observa-
tion of higher-order rational solitons that can explain
higher-amplitude rogue waves in deep water [20,21].
These doubly localized waves have been generated in a
water-wave tank through nonlinear focusing of initial
modulated waves derived from their analytic solutions.
However, these higher-order solutions can be interpreted
as a nonlinear superposition of two or more rational solu-
tions of first order [7]. As an alternative to describing giant
waves, one can consider the collision of first-order periodic
solutions of the NLSE theoretically studied in Ref. [7].
Collision between emerging breather structures from
waves undergoing modulation instability also appears
to be a precursor to the formation of rogue soliton
pulses in the process of supercontinuum generation [22].
More generally, collision processes between solitons are
known to play an important role in the generation
of a supercontinuum [23,24] and the formation of
rogue solitons [25] in quasicontinuous-wave pumped-fiber
systems.
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Besides a better understanding of extreme events, a first
experimental proof of the control of such an interaction
between more complex solutions of the NLSE than
‘‘ordinary’’ solitons is an important advance in nonlinear
wave propagation for cross-disciplinary research. From a
general point of view, the generation of higher-order
breathers is of great interest since they offer the possibility
of higher energy concentration in space and time, and the
generation of waves with giant amplitudes. The large
family of breather solutions might become new central
objects of nonlinear science thanks to their additional
degrees of freedom for energy localization and the sponta-
neous formation of complex patterns from an initial plane
wave, which could be exploited in all domains driven by
the NLSE. We report here a novel optical fiber-based test
bed using tailored modulated initial conditions of a con-
tinuous wave to excite the formation of two Akhmediev
breathers (ABs) that collide during propagation. Our
experimental work confirms the analytical predictions of
breather collision by Akhmediev et al. [7,26]. We have also
investigated the synchronization of the collision by con-
trolling the phase and velocity differences between ABs.
This work is organized as follows. In Sec. II, we first
recall the main properties of single ABs; next, we present
the analytical solution (derived by Akhmediev et al.)
describing the breather collision and the corresponding
numerical predictions in real conditions. In Sec. III, we
describe the specific experimental setup implemented here,
and we present the experimental results. We also discuss
the limitations of our experiment compared to the mathe-
matical ideal. In Sec. VI, we investigate the impact
of small variations of initial conditions on the collision
phenomenon. In Sec. V, we conclude this work.

II. ANALYTICAL AND
NUMERICAL PREDICTIONS

The emergence of an isolated steep wave event related to
nonlinear modulation instability is explained by the crea-
tion of ABs and, in a more general way, by the family of
SFB solutions to the NLSE. The dimensionless self-
focusing NLSE is written as follows:

i
@c

@�
þ 1

2

@2c

@�2
þ jc j2c ¼ 0; (1)

where c is a wave group or pulse envelope that is a
function of � (a propagation distance or longitudinal vari-
able) and � (a comoving time or transverse variable). The
general first-order SFB solution of the NLSE can bewritten
compactly as follows:

c SFBð�;�Þ¼ei�
�
1þ2ð1�2aÞcoshðb�Þþ ibsinhðb�Þffiffiffiffiffiffi

2a
p

cosð!�Þ�coshðb�Þ
�
:

(2)

Here, the parameter a governs the global physical behavior
of the solution in the plane ð�; �Þ through the function

arguments b¼½8að1�2aÞ�1=2 and ! ¼ 2ð1� 2aÞ1=2 [4].

In the following, we focus on the particular family of AB
solutions [2], c AB ¼ c SFBð0< a< 1=2Þ, which describes
the nonlinear compression of a modulated continuous
wave field into a periodic train of ultrashort pulses with
temporal period T ¼ 2�=!. c AB is valid over the range
of modulation frequencies that experience MI gain
(0<!< 2), and the parameter b > 0 governs the MI
growth. The maximum gain condition b ¼ 1 occurs for
a ¼ 1=4, as shown by Fig. 1(a). The corresponding tem-
poral dynamics given by Eq. (2) exhibits only one ideal
growth-return cycle in propagation distance [see Fig. 1(b)].
However, certain initial conditions used in practice are

known to yield periodic evolution as a function of propa-
gation [2], but even in this case, the first growth-return
cycles remain well-described individually by the analytic
AB solution. Figures 1(c) and 1(d) illustrate such a biperi-
odic behavior through the evolution of the following
periodic perturbation c IN ¼ ½1þ �mod cosð!�Þ� for two
distinct values of amplitude �mod ¼ 0:01 and 0.1, respec-
tively. We clearly note that increasing �mod allows us to
generate the maximally compressed AB over a shorter
propagation distance. Besides a spectral symmetric seed
of the MI process, another simple method is the use
of a single-frequency perturbation such as c IN ¼
½1þ �mod expði!�Þ�, for which longitudinal evolution is

FIG. 1. (a) MI gain related to the general parameter a of AB
theory. (b) False color plot showing the temporal evolution of the
exact AB solution for a ¼ 1=4. Note that only three temporal
periods are shown. (c-e) NLSE numerical simulations showing
the evolution of distinct (nonideal) initial perturbations on a
continuous wave to excite a single AB. (c-d) Cosine perturba-
tions with amplitudes equal to 0.01 and 0.1, respectively.
(e) Exponential perturbation with amplitude equal to 0.1.
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depicted in Fig. 1(e) with �mod ¼ 0:1. We again retrieve
the previous biperiodic evolution, but the spectral asym-
metry of such an input implies that the breather propagates
with a certain angle to the line � ¼ 0. Indeed, the clear
inclined trajectory comes from the first steps of the initial
growth of the perturbation whose spectrum asymmetry
induces a distinct mean group velocity of AB compared
to the previous symmetric perturbation. Similar dynamics
are also observed in the final decay of the breather cycle.
Note that the relative frequency position of the single
perturbation to the continuous wave enables the control
of the mean group velocity of the AB.

In addition to the simple SFB model, larger extreme
waves can also build up when two SFBs collide; the
analytic description of the limiting case of AB collision
has been derived in Ref. [7] using Darboux transforma-
tions. In that case, the higher-order solution obtained
through the nonlinear superposition of first-order solutions
depends on the governing parameter of each AB (0<
a1;2 < 0:5). The higher-order solution corresponding to

the AB collision is

c 12ð�; �Þ ¼ ei� � 4i
ffiffiffiffiffiffiffiffi
2a1

p
s1r

�
1

jr1j2 þ js1j2
� 4i

ffiffiffiffiffiffiffiffi
2a2

p
s12r

�
12

jr12j2 þ js12j2
; (3)

where the parameters s1, r1, s12, and r12 are also functions
of �, �, a1, and a2. For the explicit form of Eq. (3), we refer
to Ref. [7], where the governing parameter l can be linked

to our parameter a through the following relation: l ¼
i

ffiffiffiffiffiffi
2a

p
. Figure 2 presents the maximal peak power generated

by the colliding ABs obtained from Eq. (3) as a function of

their governing parameter. Note that collision can only be
studied for two different ABs (i.e., two distinct values a1
and a2). A more general solution can be found in Ref. [27],
which provides a comprehensive understanding of new
SFB interactions and their hierarchical nature.
In Fig. 2, the peak power range of the collision is limited

by the plane-wave solution (the lowest value) and the
second-order rational solution (the highest value). The
region above the dashed black line indicates that a large
range of collisions can create a giant localized wave with
peak power higher than the Peregrine soliton. In the fol-
lowing, our experimental equipment allows us to study the
interaction of ABs in this region of interest. Specifically,
the AB parameters under study are a1 ¼ 0:14 and a2 ¼
0:34 (see Fig. 2). We plot the corresponding solution
of Eq. (3) in Fig. 3(a). This particular choice of parameters
is driven by our experimental conditions, and it corresponds
to commensurate frequencies of ABs (2!1 ¼ 3!2). The
resulting wave is periodic in time, but for a better view of
the giant wave emerging from the collision, we only high-
light one period in Fig. 3. Periodicity of the solution is
reported later in the manuscript when the theoretical solution
is compared to the experimental results. Nevertheless, Eq. (3)
is valid for incommensurate frequencies of ABs; in that case,
the nonlinear superposition has one absolute maximum (no
periodicity of the collision in time) [7]. Here, we see clearly
that breather collision produces a high peak that is doubly
localized in the space ð�; �Þ. Note that it is arbitrarily located
at the origin. The peak power expected during the collision is
about 14 times the initial average power.
More generally, the present work can be linked to the

process of higher-order MI known as the simultaneous
excitation of multiple instability modes, each mode asso-
ciated with a corresponding nonlinear breather [28]. The
construction of the higher-order solution strongly depends
on the synchronization between the centers of the constitu-
ent elementary solutions. When the separation is weak, the
superposition solution becomes a nonlinear combination of
elementary solutions. Here, the synchronization of non-
linear superposition allows colliding ABs and the genera-
tion of a giant wave that strictly differs from simple linear
interference. Among previous approaches of experiments
on SFB, only single excitation of the MI process has been
studied. A single-frequency modulation of the initial con-
tinuous (plane) wave is then needed [3,4]. But a small
deviation from ideal initial conditions can lead to complex
evolution dynamics even for a single SFB [28,29], in
particular, when a > 0:375. Consequently, there is always
a tradeoff between the simplicity of the initial modulated
wave (inherent to experiments) and the degree of accuracy
with which we reach the mathematical ideal. We have
used the numerical integration of the NLSE in order to
confirm the phenomenon of AB collision in realistic con-
ditions. First, one can use a superposition of two ideal AB
profiles calculated at an arbitrary distance [see Eq. (2)],

FIG. 2. Maximal peak power jc 12j2max generated by two
colliding ABs as a function of their governing parameter a.
Note that 1< jc 12j2max < 25. jc 12j2max ¼ 1 corresponds to the
background power (i.e., the plane wave). The highest limiting
case jc 12j2max ¼ 25 corresponds to the collision of two Peregrine
solitons (i.e., the second-order rational soliton). The dashed
black line matches jc 12j2max ¼ 9, which is the peak power of
the Peregrine soliton. The black x corresponds to the physical
parameters used in the experiment.
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c INð�0;�Þ¼c a1ð�1;�Þþc a2ð�2;�Þ, as input for the simu-
lation. But an efficient collision between both ABs re-
quires, at least, that their maximal intensities coincide in
the plane ð�; �Þ [26]. The appropriate choice of �1 and �2 is
such that it gives rise to the nonlinear evolution depicted
in Fig. 3(b), in excellent agreement with the higher-order
solution (here, values of j�1j and j�2j are 1.5 and 1.6, and
the input field is normalized so that hjc INð�0;�Þj2i¼1).
Unfortunately, ideal initial conditions involve a complex
shaping of the continuous wave [3], which is difficult to
achieve in practice.

The easiest way is to generate two ABs by seeding the
modulation instability process at two distinct frequencies
[26]. To this end,we can use a superposition of two complex
exponentials for the input field, c IN¼½1þ�1 expði!1�Þþ
�2 expði!2�Þ�, where !1, !2 are the frequencies of pertur-
bation, and �1, �2 are small real amplitudes. The initial
continuous wave (CW) then contains a bimodulation in the
temporal domain. By controlling the initial asymmetry of
the two spectral sidebands, we can find specific conditions
where the two ABs collide efficiently. Figures 4(a) and 4(b)
show the evolution of single breathers obtained with NLSE.

FIG. 3. Collision of two Akhmediev breathers (a1 ¼ 0:14 and a2 ¼ 0:34). (a) Corresponding higher-order solution derived from
Darboux transformations [see Eq. (3)]. (b) NLSE simulation: Evolution of the superposition of two ideal ABs calculated at arbitrary
optimized distances to excite the AB collision. Note that only one period in time is plotted and that initial conditions are arbitrarily
injected at �0 ¼ �4 to get the collision at the origin.

FIG. 4. NLSE simulations: Single breather evolution with nonideal excitation (a) for a1 ¼ 0:14 and (b) for a2 ¼ 0:34. (c) Collision
of the two ABs when excited simultaneously by using the superposition of initial conditions of (a) and (b). Note that initial conditions
are arbitrarily injected at �0 ¼ �4 to get the collision at the origin for a better comparison with theory (see Fig. 3).
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The adjustments of the sideband amplitudes are the same as
those determined for the collision reported below. The
spectral asymmetry of such an input implies that a single
AB propagates with a certain angle to the line � ¼ 0; i.e.,
depending on the relative sideband position, themean group
velocity of theAB is slower or faster than the group velocity
of the CW. It is therefore possible to control the group
velocity difference between ABs through a suitable choice
of perturbations (with opposite sign of modulation fre-
quency) in order to favor the collision on a short propaga-
tion distance.

These simple initial conditions enable the creation of
nonideal ABs so that only the evolution over the first
growth-return cycles is described almost accurately by
analytical AB solutions [2]. Note that we present here
specific conditions that lead to the collision before the
end of the second growth-return cycle of single breather
evolutions. Perturbation amplitudes are relatively high in
order to keep a short propagation distance (limiting the
effect of losses in experiments), �1 ¼ 0:96 and �2 ¼ 0:49,
thus not satisfying the mathematical ideal of AB theory.
Even if large amplitude modulations can excite Kuznetsov-
Ma dynamics along the propagation distance [4], we have
checked that such initial conditions give rise to spatiotem-
poral dynamics that are well described by AB theory. A
more complete analysis would require the complex use of
two-parameter periodic solutions of the NLSE expressed in
terms of Jacobi elliptic functions [30].

The numerical simulation corresponding to the initial
bimodulated CW with careful adjustment of �1 and �2

shows two colliding ABs at the shortest distance, here equal
to j�0j ¼ 4, in Fig. 4(c). We observe the emergence of a
high-intensity peak at the collision point, in good agreement
with the analytical solution shown in Fig. 3(a). The double
localization of the giantwave also presents similar widths in
both dimensions � and �. Here, the maximal peak power is
14.5 times the initial power. On the other hand, small dis-
crepancies in the form of secondary peaks also arise from
the nonideal excitation of ABs. However, it is remarkable to
note that the wave evolution obtained with nonideal initial

conditions reproduces almost exactly the main giant wave
previously predicted.
In conclusion of this section, we have shown from NLSE

simulations that AB collision can be observed even using
simple and real excitations of ABs. The experimental
investigations of AB collision are described in the follow-
ing section.

III. EXPERIMENTS

The preliminary NLSE simulations described in Sec. II
have allowed us to design experiments where the phe-
nomenon of AB collision can be tested for the first time.
The experimental setup shown in Fig. 5 is mainly based on
high-speed telecommunications-grade components. It ben-
efits from a novel fiber-based test bed in comparison to
previous studies of single SFB [3,4,28,29]. In particular,
we have used the spectral shaping of an optical-frequency
comb to synthesize tailored modulated initial conditions of
the continuous wave. The initial frequency comb is gen-
erated by the implementation of a 20-GHz repetition rate
pulse source centered at 1550 nm, based on the nonlinear
compression of an initial beat signal in a cavityless optical-
fiber-based device. More technical details about a similar
fiber-based source can be found in Ref. [31]. The spectrum
of such a pulse source can be approximated to a series of
Dirac delta functions separated by the repetition rate. The
width of the comb envelope depends on the nonlinear
compression of the initial modulated CW, and it deter-
mines the number of sidebands and their decreasing am-
plitude. Next, a programmable optical filter (wave shaper)
provides extremely fine control of the amplitude and phase
characteristics across the frequency comb. The high reso-
lution (around 1 GHz) of this solid-state liquid crystal on
silicon (LCoS) system allows us to select or remove indi-
vidual spectral peaks of the comb. As shown schematically
in Fig. 5, a superposition of two complex exponentials for
the input field can be created through the spectral shaping
of harmonics of the frequency comb. Moreover, the relative
amplitude and phase differences of the selected sidebands

FIG. 5. Experimental setup.
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with the central peak at 1550 nm (i.e., the continuous
wave) are also managed.

In our experiments, an erbium-doped fiber amplifier
(EDFA) was used to amplify the average power of the
modulated CW up to 1.1 W. Note that to mitigate the
effects of Brillouin scattering, a phase modulator is already
included in the 20-GHz-frequency comb system [31]. The
optical-wave profile was characterized using an ultrafast
optical sampling oscilloscope (OSO) with subpicosecond
resolution and a high-dynamic-range optical spectrum an-
alyzer (OSA) with 2.5-GHz resolution. The bimodulated
CW is injected into a standard optical fiber (SMF-28) with
group velocity dispersion �2 ¼ �20 ps2 km�1 and non-
linearity � ¼ 1:2 W�1 km�1.

Dimensional distance z (m) and time t (s) are related to
the previous normalized parameters by z ¼ �LNL and t ¼
�t0, where the characteristic length and time scale are

LNL ¼ ð�P0Þ�1 and t0 ¼ ðj�2jLNLÞ12, respectively. !0 is
the CW frequency. The modulation frequency !mod of the
CW is then related to the general parameter a by 2a ¼
½1� ð!mod

!c
Þ2�, with !2

c ¼ 4�P0

�2
. The dimensional field

Aðz; tÞ (W1=2) is A ¼ P
1
2

0c , P0 being the average power

of the input wave. Here, the superposition of two
complex exponentials for the input field is Aðz ¼ 0; tÞ ¼ffiffiffiffiffiffi
P0

p ½1þ �1 expði!mod;1tÞ þ �2 expði!mod;2tÞ�.
We have performed intensive numerical simulations to

determine all the parameters of the input wave A ðz ¼ 0; tÞ
and the collision length. Numerical integration of the
generalized nonlinear Schrödinger equation (GNLSE)
was used since it is known to provide an accurate descrip-
tion of the propagation of the optical wave Aðz; tÞ in optical
fibers [32],

@A

@z
¼��

2
A� i

�2

2

@2A

@t2
þ�3

6

@3A

@t3

þ i�

�
1þ i

!0

@

@t

��
Aðz;tÞ

Z þ1

�1
Rðt0ÞjAðz;t� t0Þj2dt0

�
:

(4)

The first term on the right-hand side of the equation
accounts for the fiber losses (here, �dB ¼ 4:343� ¼
0:2 dB km�1). The second and third terms describe the
second- and third-order dispersion properties (�3 ¼
0:12 ps3 km�1). The time-derivative term accounts for
the self-steepening effects. The GNLSE also describes
the instantaneous (Kerr) and delayed (Raman) nonlinear
effects described by the response function RðtÞ ¼
ð1� fRÞ�ðtÞ þ fRhRðtÞ. For a complete discussion of the
different terms of Eq. (4), we refer the reader to Ref. [32].
Note that GNLSE simulations consider other experimental
conditions such as the bandwidth-limited noise of ampli-
fied spontaneous emission in the EDFA and a phenomeno-
logical one-photon-per-mode background to model
quantum noise (the latter was also included in previous
NLSE simulations). However, we underline the fact that

only the effect of fiber losses significantly affects the
previous results obtained with the NLSE model. Indeed,
both the spectral bandwidth and peak power of the wave
evolving into the fiber are low enough here to avoid the
impact of higher-order effects.
We have checked that the phenomenon of AB collision

observed in GNLSE simulations is very similar to that
found with the NLSE [see Fig. 4(c)]. In the GNLSE
integration, initial conditions are the following: average
power P0 ¼ 0:83 W, sidebands at !mod;1=2� ¼ 60 GHz
and !mod;2=2� ¼ �40 GHz (i.e., a1 ¼ 0:14 and a2 ¼
0:34) with amplitudes �1 ¼ 0:96 and �2 ¼ 0:54 (note
that we slightly increase the initial excitation of the second
breather to counteract the effect of fiber losses in compari-
son to previous NLSE simulations). In Figs. 6(a) and 6(b),
we report the experimental observation of the optical-wave
profile (red points) injected into the fiber and that obtained
at z ¼ 3:8 km corresponding to the predicted collision
distance. These results are compared to GNLSE simula-
tions (blue line), exhibiting very good agreement. We
clearly note the presence of a giant wave far above
other secondary peaks, as predicted by Fig. 4(c) at the
collision point. We retrieve a periodicity in time of the
collision phenomenon, which is related to the difference
between AB frequencies (here, tcoll ¼ 3tmod;1 ¼ 2tmod;2 ¼
1=20 GHz�1). Obviously, when one of the initial side-
bands is switched off, we recover the evolution of a single
breather [see Figs. 6(c) and 6(d)]. Without an interaction
between ABs, the intensity profile of the emerging wave at
the fiber output clearly exhibits a lower peak power.
In order to assess the observation of AB collision in a real

physical system, we now compare the experiments to the
ideal theory and to the results from NLSE [see Fig. 4(c)] in

FIG. 6. Temporal intensity profiles obtained before and after
propagation into the fiber. (a) Initial condition for two colliding
ABs (a1 ¼ 0:14 and a2 ¼ 0:34). (b) Giant wave emerging at
3.8 km (i.e., the collision point). (c-d) Breather profile at 3.8 km
for a1 ¼ 0:14 and a2 ¼ 0:34, respectively, when only one AB is
excited. Experimental profiles (red points) are compared to
corresponding GNLSE simulations (blue line).
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both the time and frequency domains and using normalized
variables. Note that the NLSE prediction of the collision
distance (�0 ¼ 4) is almost satisfied in the experiments
where � ¼ �P0z ¼ 3:8. We present in Fig. 7(a) the corre-
sponding normalized wave profiles jc ð�Þj2 at the collision
point. Besides the presence of secondary side lobes attrib-
uted to nonideal excitation of ABs, the main discrepancy
with the ideal solution from Eq. (3) is the maximal peak
power of the giant wave that can be reached. A better
agreement would be conceivable if one could excite the
collision on a shorter propagation distance. Indeed, remov-
ing the loss term in the GNLSE allows us to retrieve the
NLSE results. Moreover, we can note that the collision
periodicity in time is well predicted by the theory.

Detailed spectral measurements were carried out and
shown in Fig. 7(b). Experimental results (red line) are
compared to corresponding NLSE simulations (blue
circles) in a logarithmic scale, and we see good agreement.
The grey line plots the spectrum of the higher-order solu-
tion, and it reproduces well the decay of the measured
sideband intensities on the high-frequency side. The origin
of discrepancies on the low-frequency side is again the
nonideal excitation of ABs since the giant wave spectrum
created with ideal conditions in NLSE simulations [see
Fig. 3(b)] would be indistinguishable from the theoretical

one jgc 12j2. These results are important in showing that the
observation of AB collision is possible even though the
ideal higher-order solution exists only in the limit of zero
losses and ideal excitation of ABs. In particular, we con-
firm the creation of a giant localized wave with peak power
higher than first-order solutions to the NLSE (jc j2max > 9).

IV. SYNCHRONIZATION OF AB COLLISION

In previous sections, the giant peak results from a
‘‘synchronized collision’’ of the two Akhmediev breathers.
Indeed, the maximal intensity is obtained when the local
maxima of both ABs coincide in the plane ð�; �Þ [26]. Two

characteristics of the excited ABs are known to be crucial,
their velocity and phase difference. The control of the
velocity difference was performed through the adjustment
of both amplitude and frequency of the initial perturba-
tions. In the present section, we study how other variations
of the initial conditions impact the collision. First, we
simply change the input average power P0 of the initial
bimodulated wave around the optimal power used before.
This change implies that general parameters, a1 and a2, are
slightly modified so that the collision between both ABs no
longer occurs efficiently. The maximal peak power of the
temporal profile obtained at the fiber output is reported in
Fig. 8(a). The small variation of a values leads to distinct
characteristics (distance of compression) of excited ABs
and the displacement of their local maxima in the plane
ð�; �Þ. Even if ABs can intersect, the analysis of temporal
profiles indicates that the combined evolution of ABs does
not necessarily produce a high peak.
Besides the careful choice of input power and properties

of initial perturbations described above, the experimental

setup allows us to control the spectral phases of exponen-

tial functions, ’1 and ’2, as follows: Aðz¼0;tÞ¼ffiffiffiffiffiffi
P0

p ½1þ�1 expði!mod;1�þ i’1Þþ�2 expði!mod;2�þ i’2Þ�.
Once we fix the phase of one AB, the phase change of the

second AB modifies their relative phase difference �’ ¼
j’1 � ’2j, thus preventing ‘‘in-phase’’ or ‘‘synchronized’’
collision. The corresponding numerical simulations based

on the GNLSE are reported in Fig. 8(b); this figure shows a

false color plot of the temporal wave profile at the distance

of collision, which is analyzed for values of ’2 in the range

0–2�, while ’1 ¼ 0. We note that the giant wave emerges

periodically with �’. This 2�=3 period is simply related

to the initial superposition of two commensurate temporal

modulations. The spectral phase shift on the second AB

implies its temporal shift relative to the first AB, so one can

recover the same initial condition when �’ ¼ 2k�j!1�!2j
!1

,

where k is an integer (here, 2!1 ¼ 3!2). The experimental

FIG. 7. (a) Experimental collision (red points) profile compared to ideal theory and NLSE simulations with nonideal excitation by
using normalized variables. Note that the experimental profile has been normalized here to the average output power. The experimental
giant wave reaches almost 11 at maximum, as shown by the zoom on the main peak. (b) Corresponding spectral characteristics from
experiment (red) and NLSE simulation (blue circles, shown at peaks only for clarity) and for the ideal higher-order solution (grey).
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results in excellent agreement with simulations are shown
in Fig. 8(c). We confirm that the synchronization of the
collision between ABs strongly depends on their relative
phase difference. Indeed, we are able to suppress the col-
lision event and prevent the emergence of a giant wave by
introducing only an initial phase shift between ABs.

V. CONCLUSION

We have reported the first experimental observation
of collision between Akhmediev breathers in almost
conservative media driven by the continuous nonlinear
Schrödinger equation. A novel fiber-based test bed using
tailored spectral shaping of an optical-frequency comb has
been used to excite the formation of two Akhmediev
breathers that collide during propagation. Specific initial
conditions are required to lead, with certainty, to their
efficient collision at an arbitrary point in the plane ð�; �Þ
and the appearance of a giant-amplitude wave whose am-
plitude is higher than the Peregrine soliton. The qualitative
characteristics of the extreme wave are described by the
analytical higher-order solution derived from Darboux
transformation. Moreover, we have shown that the control
of both velocity and phase differences can be used to
prevent the emergence of a giant wave. We have also
demonstrated that the collision is generated from simple
and nonideal initial conditions after a short propagation
distance (about 4 nonlinear lengths); this can corroborate
the fact that nonlinear coherent structures are known to
emerge locally (i.e., a few nonlinear lengths) in a turbulent
environment [15]. To conclude, this work opens the way to
experimentally investigate interactions between more
complex nonlinear coherent structures than ‘‘ordinary’’
solitons. The richer family of multirogue wave solutions
of the NLSE is also very attractive for future works. These
more general higher-order solutions exhibit multiple max-
ima, i.e., multiple rogue waves, with a complex spatiotem-
poral arrangement [27,33–36].
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