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Three-dimensional (3D) topological superconductors (TScs) protected by time-reversal (T ) symmetry

are characterized by gapless Majorana cones on their surface. Free-fermion phases with this symmetry

(class DIII) are indexed by an integer �, of which � ¼ 1 is realized by the B phase of superfluid 3He.

Previously, it was believed that the surface must be gapless unless time-reversal symmetry is broken. Here,

we argue that a fully symmetric and gapped surface is possible in the presence of strong interactions, if a

special type of topological order appears on the surface. The topological order realizes T symmetry in an

anomalous way, one that is impossible to achieve in purely two dimensions. For odd � TScs, the surface

topological order must be non-Abelian. We propose the simplest non-Abelian topological order that

contains electronlike excitations, SOð3Þ6, with four quasiparticles, as a candidate surface state.

Remarkably, this theory has a hidden T invariance that, however, is broken in any two-dimensional

realization. By explicitly constructing an exactly soluble Walker-Wang model, we show that it can be

realized at the surface of a short-ranged entangled 3D fermionic phase protected by T symmetry, with

bulk electrons transforming as Kramers pairs, i.e. T 2 ¼ �1 under time reversal. We also propose

an Abelian theory, the semion-fermion topological order, to realize an even � TSc surface, for which

an explicit model is derived using a coupled-layer construction. We argue that this is related to the

� ¼ 2 TSc, and we use this to build candidate surface topological orders for � ¼ 4 and � ¼ 8 TScs. The

latter is equivalent to the three-fermion state, which is the surface topological order of a Z2 bosonic

topological phase protected by T invariance. One particular consequence of this equivalence is that a

� ¼ 16 TSc admits a trivially gapped T -symmetric surface.

DOI: 10.1103/PhysRevX.3.041016 Subject Areas: Strongly Correlated Materials, Superfluidity,

Topological Insulators

I. INTRODUCTION

Recently, it was pointed out that there exist exotic
varieties of insulators and superconductors which form
distinct phases of matter. This distinction is based on
topological properties and hence falls outside the
Ginzburg-Landau-Wilson symmetry-based classification.
On the other hand, these distinctions often appear only in
the presence of certain symmetries (e.g., time reversal T ),
leading to the terminology ‘‘symmetry-protected topologi-
cal phases’’ (SPTs). Many such phases can be realized at
the level of noninteracting fermions [1–3], and several
experimental realizations now exist. Their hallmark signa-
ture is the existence of gapless edge or surface modes. The
best-known example is the three-dimensional (3D) topo-
logical insulator, which is protected by charge conservation
and time-reversal symmetry and has a single Dirac cone on
its two-dimensional (2D) surface. Another example is the
three-dimensional topological superconductor. Here,

time-reversal symmetry protects gapless Majorana cones
at the surface. Within a free-fermion (quadratic-
Hamiltonian) description, different topological phases are
labeled by an integer �. The gaplessness of these surfaces is
protected by the symmetry.
While a fairly complete picture exists of free-fermion

topological phases [4,5], less is known about topological
phases in the presence of interactions. Even if we restrict
our attention to SPTs (which may be adiabatically
connected to a trivial gapped phase in the absence of
symmetry), the qualitatively new phenomena that occur
when strong interactions are present are only now begin-
ning to be studied. Two advances in this general area
include the result that the free-fermion classification of
SPT phases may be reduced in the presence of interactions,
as shown for a class of one-dimensional (1D) topological
superconductors [6–9] and a class of 2D topological super-
conductors with Z2 or reflection symmetry [10–13],
and the discovery of SPT phases of bosons in different
dimensions, that necessarily require interactions for their
realization [5,14–20].
An important lesson that emerged from studying

interacting bosonic SPT phases is that the surface of a
3D phase can be gapped without breaking the symmetry
(either spontaneously or explicitly) if the surface develops
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topological order. In other words, the system must have
deconfined anyons at the gapped, symmetric surface.
Moreover, the anyons transform under the symmetries in
a way that is disallowed in a strictly two-dimensional
system[18]. Explicit examples of such symmetric topologi-
cally ordered surfaces have been constructed for 3D bo-
sonic SPT phases [20–22]. The simplest example is a
bosonic version of the 3D topological superconductor pro-
tected by time-reversal symmetry. In a conventional sur-
face termination, time-reversal symmetry is broken at the
surface, leading to a gap. Domain walls between time-
reversed domains carry chiral edge modes with net chiral
edge central charge c� ¼ 8, and so each domain is asso-
ciated with half that chiral central charge. However, it was
realized that the surface can be gapped while retaining
time-reversal symmetry if it acquires the three-fermion
[5] Z2-gauge-theory topological order [18]. If this topo-
logical order were realized in 2D, it would always breakT
symmetry since it is associated with chiral edge states with
c� ¼ 4 (exactly half the value associated with the surface
domain walls). However, when realized on the boundary of
a 3D system, no edge is present, and the theory can remain
time-reversal symmetric. Explicit constructions of such
surface phases were given in [21,22].

While 3D SPT phases of bosons still need to be
experimentally realized, it is interesting to consider the
analogous topologically ordered surface states for the 3D
fermionic topological insulators and superconductors,
which we know are realized in nature. The topologically
ordered surface states provide a rare example of a qualita-
tively new phenomenon that lies beyond the free-fermion
description of these phases. Moreover, as we will see
shortly, we will require non-Abelian topological order
in some cases. This is a rare example where preserving
symmetry requires not just topological order, but also
particles with non-Abelian statistics, and may eventually
help in realizing these exotic excitations.

In this paper, we propose gapped, topologically ordered,
T -invariant terminations for 3D topological superconduc-
tors (topological insulators will be discussed in a separate
publication). In terms of the free-fermion classification,
these correspond to class DIII, where one has a Z classifi-
cation [4,23]; the � ¼ 1 member of this class is the Balian-
Werthamer (BW) [24,25] state of the B phase of liquid 3He,
whose single Majorana cone describing the surface disper-
sion is protected by time reversal in the noninteracting
setting. A principal feature of this surface is that a domain
wall between regions of opposite T breaking is associated
with a single chiral Majorana mode, which has chiral
central charge c� ¼ 1

2 . Hence, each domain may be asso-

ciated with c� ¼ 1
4 , something that is impossible in a

purely 2D fermionic system without topological order,
where c� is quantized in units of 1

2 . One strategy is then

to look for patterns of fermionic 2D topological order (i.e.,
those that contain a fundamental fermion that has trivial

braiding statistics with every other excitation and can be
identified with the electron) and attempt to find a theory
with both c� ¼ 1

4 mod 1
2 and T symmetry. Fortunately, this

approach turns out to be fruitful because 2D fermionic
topological orders are extremely constrained.
First, we can rule out Abelian theories, for the following

reason: The fusion-braiding universality class of any
fermionic Abelian topological order can be realized in a
K-matrix formulation, which has integral chiral central
charge. Adding in layers of a pþ ip superconductor—
which does not change the anyon spectrum—can only
change this chiral central charge in integer multiples of 1

2

and can never generate c� ¼ 1
4 mod 1

2 . A well-known non-

Abelian example is the Moore-Read Pfaffian state [26], but
it is not T invariant nor does it have the correct c� [27].
However, the Pfaffian, with 12 quasiparticle types, is not
the simplest non-Abelian fermionic theory. Indeed, from a
classification standpoint, the smallest such theory contains
only four quasiparticle types: In addition to the trivial
particle and the electron, there is a self-semion s and its
time-reversed partner ~s. This is the integral spin subtheory
of SUð2Þ6, equivalent to SOð3Þ6 [28,29]. Serendipitously,
SUð2Þ6 has c� ¼ 9

4 ¼ 1
4 mod 1

2 , and the braiding and fusion

rules of its integral-spin subtheory are invariant under a T
symmetry that exchanges s and ~s. A strict 2D realization of
this phase should breakT as we argue below, based on the
nontrivial-edge chiral central charge c� ¼ 9

4 in one real-

ization. However, it is conceivable that it may appear as a
T -invariant surface state of a 3D bulk, based on the
statistics of the excitations. In that case, one cannot inter-
rogate the edge content, and hence a hidden T symmetry
may exist. We substantiate this claim by explicitly con-
structing a 3DT -symmetric model whose surface displays
the SOð3Þ6 topological order.
Our central tool is the Walker-Wang (WW) construction

[30,31], which, in essence, converts a given surface topo-
logical order into a prescription for the bulk wave function
(similar to the connection, one dimension lower, between
quantum Hall wave functions and edge conformal field
theories). The construction also provides an exactly soluble
model to realize this wave function and surface topological
order—so we know explicitly that it can be realized at the
surface of an appropriate 3D system. Moreover, in the case
of fermionic topological phases, it allows us to fix the
transformation law for fermions under the protecting sym-
metry. Here, we will see that the electrons must transform
projectively, i.e., with T 2 ¼ �1 under time-reversal sym-
metry. For constructing the exactly soluble 3D models, one
is given the surface topological order, specified in terms of
quasiparticle labels and fusion and braiding rules, collec-
tively denoted B (mathematically, a premodular unitary
category). When the only particle that braids trivially
with everything in B is the identity—the so-called
modular case—the WW models realize a confined 3þ
1-dimensional phase, with topological order B on the
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surface. Although the bulk is trivial, these models some-
times naturally allow for an incorporation of symmetry
that can protect the surface topological order and hence
result in a nontrivial 3D bosonic SPT [22]. This strategy
was successfully applied to construct WW models that
realize the three-fermion surface topological order with
time-reversal symmetry, which realizes a 3D bosonic SPT
phase [22]. In the present case, however, the input B ¼
SOð3Þ6 contains the electron, which has trivial braiding
statistics with all other excitations. We will see that this
leads to a 3D WW model whose only bulk deconfined
excitation is a T 2 ¼ �1 fermion—the electron—and
whose surface realizes SOð3Þ6. We note a minor caveat
here. Since it is convenient to work entirely in terms of a
bosonic WW model, rather than introducing fundamental
fermions (electrons), the deconfined bulk fermions carry
Z2 gauge charge and realize the Z2-gauged 3D topologi-
cal superconductor. Ungauging this theory by suppressing
Z2 flux loops is straightforward and yields the topological
superconductor.

Finally, we discuss Abelian topological orders that are
candidates for surfaces of even � topological superconduc-
tors. Specifically, we propose three such topological
orders—the semion-fermion model, the doubled semion-
fermion model, and the fermionization of the bosonic SPT.
The semion-fermion model is simply Uð1Þ2 times f1; fg,
where f is the electron; however, time reversal acts in a
nontrivial way, exchanging the semion s with sf. We argue
that this theory cannot be realized in 2D withT symmetry,
but it can appear on the surface of a 3D topological
phase. In addition to a Walker-Wang model, we provide a
coupled-layer construction of this phase. An important
point is that there are two varieties of the semion-fermion
model, distinguished by the action ofT 2. These models are
opposite to each other in the sense that placing one on top of
the other allows one to condense everything and yields a
trivial T -symmetric theory; i.e., one corresponds to � and
the other to ��. However, two copies of the same variety
yield the double semion-fermion model. Two copies of the
latter yield the three-fermion Z2 gauge theory discussed
above in the context of the bosonic SPT, times f1; fg. We
argue that this fermionic theory cannot be realized in 2D
with T symmetry either, but two copies of it can be. It has
been conjectured previously [32] that the noninteracting Z
classification of 3D topological superconductors breaks
down to Z16; if the SOð3Þ6 and semion-fermion topological
superconductors we construct adiabatically connect to
free-fermion topological superconductors, then the three
Abelian topological orders must correspond to � ¼ 2 mod
4, � ¼ 4 mod 8, and � ¼ 8 mod 16. Taken together,
these would then give topological terminations for all
free-fermion topological superconductors.

This paper is organized as follows. In Sec. II, we treat the
SOð3Þ6 topological order, corresponding to �¼1 mod 2. An
intuitive discussion of why it can be realized at the surface of

a 3D T SPT of electrons is presented in Sec. II B, and the
Walker-Wang construction is discussed in the following two
subsections. Next, in Sec. III, the Abelian topological orders
are discussed, starting with the semion-fermion state, for
which we also provide a coupled-layer construction. We
provide an argument for the semion-fermion state being
realized at the surface of a � ¼ 2 mod 4 TSc, and then
derive the Abelian topological orders corresponding to � ¼
4 mod 8 and � ¼ 8 mod 16. The Conclusion connects our
results with the classification of fermionic TScs and com-
ments on future directions; the appendixes contain a con-
struction of a 2D Z2 gauge theory in whichT exchanges the
Z2 charge e and the Z2 flux m particles, and a discussion of
the stability of bosonic SPT phases protected by T , in the
presence of fundamental electrons.

II. SOð3Þ6 TOPOLOGICAL ORDER AND
WALKER-WANG CONSTRUCTION

OF THE 3D PHASE

A. SOð3Þ6 topological order of surface state
Before delving into the construction of the Walker-

Wang model, let us describe the fusion and braiding
properties of SOð3Þ6. A useful viewpoint on this phase
is to begin with the well-known topological order SUð2Þ6
[33], which is a bosonic Read-Rezayi state [29,34] with
six quasiparticles labeled by spins j 2 f0; 12 ; 1; 32 ; 2; 52 ; 3g,
and it is described by the SUð2Þk¼6 Wess-Zumino-Witten
chiral edge theory with chiral central charge c� ¼ 9

4 . The

topological spins of the quasiparticles are �j ¼ ei2�
jðjþ1Þ

8 .

Thus, j ¼ 1 and j ¼ 2 particles are self-semions, with
topological spins �i, while the j ¼ 3 particle is a fer-
mion. However, the fermion has mutual statistics with the
half-integer spin particles. The latter can be eliminated if
we introduce fundamental fermions (electrons) into the
theory and condense the bound state of the j ¼ 3 particle
and the electron. This bound state can be condensed since
it is a self-boson. However, since it has mutual statistics
with the half-integer spin particles j ¼ 1

2 ,
3
2 ,

5
2 , they

are confined, and one is left with just the integer spin
particles. Of these, the fourth particle j ¼ 3 has trivial
braiding statistics with the remaining excitations, and it is
identified as the electron (note that this results in a non-
modular theory, as in any topological order that contains
fundamental fermions). Since only the integer representa-
tions of the spins remain in the final theory, we call it
SOð3Þ6 topological order [35]. The condensation process
that converts the SUð2Þ6 to SOð3Þ6 does not change the
edge central charge, and hence, the final theory is also
expected to have c� ¼ 9

4 . We henceforth denote the two

self-semions by s, ~s, and the fermion by e: f0; 1; 2; 3g !
f1; s; ~s; eg. Their fusion rules and topological spins are
shown in Fig. 1.
In our analysis, we will need more information about

the fusion and braiding, however: The data that enter the
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WW Hamiltonian require the F and R symbols, which
describe the associativity of fusion (a quantum analogue
of Clebsch-Gordon coefficients) and exchange of an arbi-
trary pair of quasiparticles, respectively, and uniquely de-
termine SOð3Þ6 as a premodular category [29]. For the
definition of the F symbols, see Fig. 2, which also contains
some of their symmetries. All of the nontrivial F symbols
(i.e., those not equal to 1) can be obtained from those in
Fig. 1 by using compositions of these symmetries, together
with their invariance up to a sign under s $ ~s. A repre-
sentative set of F symbols that change sign under this
exchange are also shown in Fig. 1.

B. Time-reversal symmetry and SOð3Þ6
topological order

We first elaborate on the question of time-reversal
symmetry and the SOð3Þ6 topological order. As discussed
in the overview, since this topological order is obtained by
condensing particles in the SUð2Þ6 theory, which is modu-
lar and has an edge central charge c� ¼ 9

4 , we expect the

same edge central charge in at least some realizations of
this phase. Could one potentially realize the same SOð3Þ6
topological order with a trivial edge? We now argue that it
is impossible to realize this topological order in 2D without
a chiral edge mode. This fact guarantees that it cannot be
realized in a 2D system with T symmetry, and thus, if
realized on the surface of a 3D T symmetric system, it
defines a 3D topological phase. For modular topological
orders, where all nontrivial quasiparticles have nontrivial
braiding statistics with at least one other particle, a power-
ful formula relates the topological properties to the chiral
edge central charge c� mod 8 [5]:

1

D

X

a

d2a�a ¼ ei2�c�=8; (1)

where da (D) are the individual (total) quantum dimen-
sions of the quasiparticles. Unfortunately, we cannot
directly apply this formula since we have a nonmodular
theory (the electron has trivial braiding with all quasipar-
ticles). In fact, we can easily see that the edge central
charge can be changed by units of c� ¼ 1

2without affecting

the topological order, simply by putting the electrons in a
FIG. 2. Graphical definition of the F symbol, together with
some identities satisfied by F.

FIG. 1. Braiding statistics and fusion data for SOð3Þ6.
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p� ip topological superconductor phase, which suggests
that the edge of SOð3Þ6 is necessarily chiral. This result can
be further argued as follows. Imagine that there is also a
realization of the same topological order with a c� ¼ 0
edge, and consider it in conjunction with the existing
c� ¼ 9

4 realization. Then, we could perform a reflection

on the first phase and combine it with the second. In this
way, we will have realized a quantum double model, which
can always be confined by condensing a bosonic quasipar-
ticle. In this process, the edge central charge will not
change and will remain c� ¼ 9

4 . However, we now have

eliminated all topological order. A fermionic system with
no topological order must have half-integer quantized
edge central charge, so we have arrived at a contradiction.
Therefore, there cannot be a 2D system with SOð3Þ6
topological order and without a chiral edge state.

Let us now consider time reversal purely at the level of
fusion and braiding rules. An examination of the topologi-
cal spins in our theory (Fig. 1) suggests that it is time-
reversal invariant under the exchange s $ ~s. Indeed, such
an exchange, together with complex conjugation, gives a
set of F and R symbols that must be gauge equivalent to the
original ones because SOð3Þ6 is the unique theory with
these topological spins and fusion rules. However, T
invariance of the WW Hamiltonian (constructed in the
next section) requires more: We will need a time-reversal
transformation law that leaves the F and R symbols exactly
invariant, not just invariant up to gauge transformation.

Quick examination of ½Fs;s;s
e �~s;~s and ½F~s;~s;~s

e �s;s shows that

there is no gauge in which such a transformation law takes
the simple form s $ ~s followed by complex conjugation—
this is because these two F symbols differ by a sign in our
gauge and transform by complex-conjugate phases under a
gauge transform, so they cannot be complex conjugates in
any gauge. However, the following, more general T trans-
formation law does work and, in fact, forces T 2 ¼ �1 on
the electrons: We defineT as the operation that exchanges
s $ ~s, complex conjugates, and multiplies by certain

phase factors �a;b
c (see below) associated with the fusion

spaces Va;b
c in our anyon theory [36]. It is this T trans-

formation that commutes with all of the F and R symbols;
link invariants (i.e., braiding amplitudes) computed in the
corresponding picture calculus are then invariant under it.

The phase factors �a;b
c are defined as follows. For ver-

tices of type ðs; ~s; eÞ, �a;b
c is �i depending on the sign of

the permutation that takes ðs; ~s; eÞ to ða; b; cÞ. Specifically,

�s;~s
e ¼ �~s;e

s ¼ �e;s
~s ¼ i; �s;e

~s ¼ �e;~s
s ¼ �~s;s

e ¼ �i:

For vertices at which one or more of a, b, c is the trivial

anyon 1, we set �a;b
c ¼ 1. In the remaining vertices a, b, c

are all either s or ~s. We take

�s;s
s ¼ �~s;~s

~s ¼ i

and �a;b
c ¼ �i when ða; b; cÞ consists of some permutation

of two s’s and one ~s or vice versa.
With this definition, T commutes with F. Since in our

gauge the F symbols are all real, this commutation reads

�j;k
n �i;n

l ½Fi;j;k
l �m;n ¼ ½F~i;~j;~k

~l
� ~m;~n�

i;j
m �m;k

l ; (2)

where i ! ~i is just the permutation that fixes i ¼ 1, e and
exchanges i ¼ s, ~s. T also commutes with R:

�j;i
k ðRi;j

k Þ� ¼ R
~i;~j
~k
�i;j
k : (3)

These two relations are sufficient to show that Wilson lines
computed in the corresponding picture calculus are invari-

ant underT . Note that ð�~i;~j
~k
Þð�i;j

k Þ� ¼ 1 for all vertex types,

except those where ði; j; kÞ is a permutation of ðs; ~s; eÞ, for
which ð�~i;~j

~k
Þð�i;j

k Þ� ¼ �1. This means that T 2 fixes all

particle types and gives minus signs to ðs; ~s; eÞ vertices. In
any string net that respects the fusion rules, there are an
even number of such vertices, so T 2 acts as the identity on
them. In the exactly solved Walker-Wang model of the next
section, this fact translates to the many-body ground state
being invariant underT , withT 2 ¼ 1. However, string-net
configurations of the Walker-Wang model also include
fusion-rule violating vertices such as ð1; 1; eÞ; a consistent
definition of time reversal that includes these will require
them to have T 2 ¼ �1, which will necessitate decorating
the Walker-Wang model with additional spin 1=2’s
(Kramers doublets). In the next section, we will see how
to do this by binding Haldane chains to the e links of the
model. Ultimately, this ensures that the fundamental fermi-
ons in the theory (the electrons) must transform under time
reversal as T 2 ¼ �1. Since this is an important point, we
elaborate on its origin in a more intuitive way below.
Emergence of T 2 ¼ �1 for fermions in the Walker-

Wang model.—Let us briefly review the idea behind the
Walker-Wang construction in order to make this point. The
Hilbert space, defined on the links of the 3D lattice model,
contains a state for each quasiparticle in the theory—in this
case, there are four states per link, labeled by the four
particle types. The ground-state wave function is a quan-
tum superposition of loops labeled by these four indices
(or four colors). At the vertices (we consider a trivalent
lattice for simplicity—it is always possible to deform a
lattice such as a cubic lattice into a trivalent one by splitting
vertices), the loops are allowed to branch and combine
according to the fusion rules. The amplitudes for these
loop configurations are determined by imagining them
as space-timeWilson loops of the 2þ 1D TQFT represent-
ing the surface topological order and calculating the
quantum amplitudes within that theory. Thus, �3DðCÞ ¼
hWðCÞi2þ1TQFT. In practice, these amplitudes are imple-

mented by writing down a parent Hamiltonian. Consider a
part of the ground-state wave function as shown in the top-
left diagram of Fig. 3. The s and ~s particles of the theory,
which have semion and ‘‘antisemion’’ self-statistics, fuse
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to give the electron e. Say this has an associated amplitude
�. Then, in order to preserve time-reversal symmetry, one
needs to not only complex conjugate this amplitude, but
also multiply by a phase factor �i. Only then does the
transformation commute with the R moves and produce a
time-reversal symmetric wave function. The choice of
phase factor is fixed by the orientation of the vertex—
e.g., if we choose i for the vertex, where the fe; ~s; sg
appear moving anticlockwise continuously, we must
choose �i for the vertex of the opposite sense, shown on
the bottom-left diagram. Since time reversal exchanges
s and ~s, and hence these two vertices, we have the sequence

�!T i��!T � iði��Þ� ¼ �� and thus T 2 ¼ �1.
Since this vertex results in the creation of a fermion, we
will ultimately associate this transformation law with
the fermions in the theory. Note that in the Walker-Wang
models, clockwise and counterclockwise orientations are
fixed since the projection of the 3D lattice on the 2D plane
is fixed a priori in order to define the model. Hence, one
can imagine that a crystal axis is picked when defining the
models, and the remaining sense along the axis, required to
define a spinning particle, is provided by the permutation
of the three labels.

The time-reversal symmetry described above assigns a
phase factor that depends jointly on the state of three bonds
that meet at a vertex. Such a non-onsite transformation, i.e.,
one that does not act independently on the physical varia-
bles that reside at links, is not a fully satisfactory imple-
mentation of symmetry. This situation is readily fixed by
attaching additional link variables that are put into a
‘‘Haldane chain’’ phase protected by time-reversal sym-
metry, along the e strings. When these strings end (for
example, by splitting into an s, ~s pair, as in Fig. 3), the
spin-1=2 excitation generated at the ends automatically pro-
vides the requisite phase factors to keep the state invariant
under time reversal. Furthermore, the vertex-term-violating

configurations mentioned previously are also made time-
reversal symmetric by this construction.
Variants of T action on SOð3Þ6.—Another important

point is that if SOð3Þ6 indeed corresponds to some odd-�
topological superconductor, then one would expect its
parity conjugate—i.e., a flipped version of SOð3Þ6—to be
distinct and correspond to��. We address this issue for the
(easier) Abelian semion-fermion theory in the following
section, but leave the case of SOð3Þ6 to future work.

C. Review of standard Walker-Wang construction

We now construct our exactly soluble model. First, we
review the standard Walker-Wang construction [30,31], for
the specific case of the premodular category B ¼ SOð3Þ6.
This model will have SOð3Þ6 topological order on the
surface, and its only deconfined bulk excitation will be a
fermion. Then, we describe how to extend it by ‘‘gluing
Haldane chains’’ [39] to the e lines; the resulting model
will be T invariant under a natural onsite T symmetry,
with the bulk deconfined fermion—the electron—carrying
T 2 ¼ �1.
Informally, the states in the WW model are string nets

obeying the fusion rules of B. The Hamiltonian is engi-
neered in such a way that the ground state consists of a
superposition of such string nets, with amplitudes equal to
their evaluation in the picture calculus ofB. It is important
to note that the WW models work with a particular planar
projection of the 3D lattice, yielding a natural choice of
framing. Only the deconfined strings correspond to the so-
called symmetric center ZðBÞ: quasiparticles in B that
have trivial braiding with all other quasiparticles. In our
case, these are just the electrons. Furthermore, the statis-
tics of the bulk deconfined excitations are just those of
ZðBÞ, so our bulk deconfined quasiparticle is indeed a
fermion [30,40].
In order to explicitly describe the Walker-Wang model,

we closely follow Ref. [30] and refer the reader there for
further details. We start with a planar projection of a
trivalent resolution of the cubic lattice, as in Fig. 4. The
links are labeled with the quasiparticle types of SOð3Þ6.

FIG. 4. Trivalent resolution of the cubic lattice [30].

FIG. 3. Origin ofT 2 ¼ �1 in Walker-Wang models of SOð3Þ6
surface topological order. The additional phase factor shown in
red depends on the orientation of the vertices and is required to
ensure time-reversal symmetry. This leads to T 2 ¼ �1 for
fermions in this model.
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The Hamiltonian enforces fusion rules at the vertices and
contains some plaquette terms. For any quasiparticle s and
plaquette P (Fig. 5), there is a term in the Hamiltonian
which acts on the links of that plaquette, labeled in Fig. 5.
This term can change the labels of these links and can
also depend on the labels of adjoining links, which have
primes on them (but cannot change these). Explicitly,
the matrix element between a state with plaquette links
ðabcdpqruvwÞ and ða00b00c00d00p00q00r00u00v00w00Þ is

ðBs
PÞa;...;wa00;...;w00 ¼ Rq0b

q ðRc0r
c Þ�ðRq0b00

q00 Þ�Rc0r00
c00 ½Fa00;s;p

a0 �a;p00

� ½Fp00;s;q
p0 �p;q00 ½Fq00;s;b

q0 �q;b00 ½Fb00;s;c
b0 �b;c00

� ½Fc00;s;r
c0 �c;r00 ½Fr00;s;u

r0 �r;u00 ½Fu00;s;d
u0 �u;d00

� ½Fd00;s;v
d0 �d;v00 ½Fv00;s;w

v0 �v;w00 ½Fw00;s;a
w0 �w;a00 : (4)

The intuition behind this complicated-looking term is
that it fuses in the loop s to the skeleton of the plaquette
using multiple F moves, but in the process of doing so, it
must use R symbols to temporarily displace certain links
(c0 and q0 in Fig. 5). The Hamiltonian then contains a sum
of all these plaquette terms, weighted by the quantum
dimensions ds. It is possible to check that all of these terms
commute, and the result is a model that satisfies the prop-
erties described above—again, we refer the interested
reader to [30,31] for more details. We have thus con-
structed an exactly solved model that explicitly realizes
the SOð3Þ6 theory on its surface.

D. Improved Walker-Wang model—onsite
T symmetry and ungauging the bulk

topological order

1. Exactly soluble model with onsite T symmetry

One way to make the model of Sec. II C time-reversal
invariant is by defining the T operator to act by s $ ~s on

link labels and the phase factors �i;j
k on vertices. As dis-

cussed in Sec. II B, this commutes with the F and R
symbols and, hence, with the Walker-Wang Hamiltonian.
However, in order to interpret this as the time-reversal
invariance of the Z2-gauged topological superconductor,
we have to vary this definition slightly.

To see why, note that in the Walker-Wang model, one
has to make some choice about how it will act on vertices

that violate the fusion rules. For example, consider a
configuration of an electron string that terminates at a
ð1; 1; eÞ fusion-rule violating vertex on one end, and at an
ðs; ~s; eÞ fusion-rule respecting vertex on the other. This is
certainly not a low-energy state, with respect to the vertex
or plaquette terms, but it is an allowed Hilbert-space
configuration. Unless we change the ð1; 1; eÞ vertex into a
Kramers pair, which requires introducing extra spin-1=2
degrees of freedom not present in the original Walker-
Wang model, we will have T 2 ¼ �1 on this configuration
[from the one ðs; ~s; eÞ vertex]. But this cannot happen in a
finite Z2-gauged topological superconductor, where the
odd-charge sector has been projected out. Hence, we are
forced to introduce some additional spin-1=2 degrees of
freedom in order to have a T symmetry consistent with
that of a Z2-gauged topological superconductor—this
is another argument for the introduction of additional
spin-1=2 degrees of freedom.
Specifically, we proceed as follows: Decorate each link

with four extra states, to be thought of as two spin 1=2’s,
one associated with each of the two vertices adjacent to the
link. Then, add a term HV to the Hamiltonian that projects
these into a singlet, unless the link is labeled with an e, in
which case it forces the two spin 1=2’s into singlets with
spin 1=2’s from other e lines adjacent to those vertices. If
there are none (or if a total of 3e lines meet at the vertex),
there will be an unpaired spin 1=2 there. This result is very
similar to the construction in Ref. [39], and it has the effect
of binding Haldane chains to the e lines. At a ðs; ~s; eÞ
vertex, we also add a term to HV that energetically prefers
either the up spin or the down spin, depending on the
sign of the permutation that takes ðs; ~s; eÞ into a counter-
clockwise labeling of the three links adjoining the vertex
(see Fig. 6). Finally, we modify the plaquette terms in the
original WW Hamiltonian in such a way that they move
between low-energy spin configurations—for details, see
Appendix C.

FIG. 5. Plaquette term in the Walker-Wang model (taken from
Ref. [30]).

FIG. 6. Sample spin configuration in the decorated Walker-
Wang model. Black dots represent spin 1=2’s, and blue ellipses
represent spin singlets. The leftmost vertex has a counterclock-
wise ðe; s; ~sÞ ordering of labels and so prefers a down spin,
whereas at the rightmost vertex, the counterclockwise label
ordering is ðe; ~s; sÞ and an up spin is preferred (red arrow).
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The Hamiltonian constructed in Appendix C commutes
with a global symmetry T that acts on the spin 1=2’s in
the usual way, by complex conjugation followed by
multiplication by �y (note the extra factor of i in our
definition—it can be eliminated by a gauge transform if
desired; it is only T 2 ¼ �1 that is important), and on the
Walker-Wang labels by exchanging s $ ~s and applying the

phase factors �a;b
c on vertices at which all of the a, b, c are

either s or ~s. Although this is not a true onsite action, it can
be made so by a suitable gauge transformation [42]. In this
system, all endpoints of e lines effectively contribute a
minus sign to T 2, and since the number of such endpoints
is even in any configuration, the Hilbert space hasT 2 ¼ 1.

2. Ungauging the bulk Z2 topological order

Asecondpoint has to dowith the nature of the bulk phase in
the WWmodel, when the surface topological order contains
an electron, i.e., a fermion with trivial braiding statistics with
all other excitations. In this case, the fermionic excitation is
deconfined in the bulk. However, note that all the degrees of
freedom entering the microscopic WW model are bosonic,
since they simply consist of local ‘‘qbits’’ defined on the links
of the lattice.Hence, in order to produce fermionic excitations
in the bulk, one must have bulk topological order, which is
readily seen as arising by ‘‘gauging’’ the fermion parity. In
other words, themicroscopic symmetry that is always present
for physical fermions—the conservation of their number
modulo 2—here is attributed to their Z2 gauge charge.
Thus, one has an emergent Z2 gauge theory in the bulk.
Additionally, there are Z2 flux loops in the bulk that are
gapped. Fermions circling these flux lines pick up a � phase
shift—indicating that the fermion parity has been gauged.
However, this bosonic theory is readily related to the free-
fermion topological phases by the following slave particle
construction: Say we decompose the physical boson destruc-
tion operator into a pair of fermionic partons, br ¼ fr"fr#.
Time reversal is assumed to act projectively on the fermions:

f"!T f#; f#!T � f". The fermions are then governed by a

mean-field Hamiltonian in a topological phase: H ¼
P

ijðtijfyi fj þ �ijfifj þ H:c:Þ (here i refers to both the

space and spin indices). To ‘‘ungauge’’ the Z2 symmetry,
one simply introduces fundamental fermions cr� in themodel

and condenses the pair amplitude hP�c
y
r�fr�i. Now, the Z2

flux loops are confined since they have nontrivial mutual
statistics with the condensate. Hence, the bulk topological
order is removed, and one realizes the short-range entangled
topological phase in the bulk.

III. ABELIAN SURFACE TOPOLOGICAL
ORDERS AND THE 16-FOLD WAY

A. The semion-fermion state and
time-reversal symmetry

So far, we have been discussing SOð3Þ6, a non-Abelian
theory that we propose as a candidate for theT -symmetric

surface termination of a � ¼ 1 (mod 2) topological super-
conductor. Now, let us consider even �. In this section, we
introduce an Abelian fermionic theory that we call the
semion-fermion theory, which also has an anomalous real-
ization of T . The theory is the product of Uð1Þ2, which
describes the universality class of bosonic fractional quan-
tum Hall systems at 1=2 filling and has quasiparticle con-
tent f1; sg, with s a semion (�s ¼ iÞ, and the trivial
fermionic theory, with quasiparticle content f1; fg, f being
a fermion. Letting ~s ¼ sf, we obtain the quasiparticles
f1; s; ~s; fg with topological spins f1; i;�i;�1g (labeled

Z
1
2

2 � Z1
2 in the notation of Ref. [29]). Potentially, one could

imagine that this theory may be time-reversal symmetric if
T exchanged s and ~s. However, this is not possible in a 2D
system. This time, the simple chiral central charge argu-
ment does not work. Instead, we make the following
argument.
First, consider gauging the Z2 fermion parity symmetry;

when this is done, the resulting theory is bosonic, and the
electron carries Z2 gauge charge. It is hence described by a
unitary modular tensor category, called a modular exten-
sion of the original fermionic theory. Note that a modular
extension is not unique: Indeed, the trivial theory f1; fg,
which has no anyons, has 16 possible modular extensions
[5]. These result from the fact that even a trivial theory can
have nontrivial behavior of � fluxes—e.g., a pþ ip su-
perconductor is trivial in that it has no anyons, but its
modular extension—the Ising theory f1; �; fg—is different
from the modular extension f1; e; m; fg of the trivial 2D
fermionic state.
Now consider the 16 modular extensions of f1; s; ~s; fg,

obtained by taking the product of ð1; sÞ with Kitaev’s 16
modular extensions of f1; fg; these have chiral central
charges j=2 (mod 8), j ¼ 0; . . . ; 15, and j ¼ 0 could po-
tentially be T invariant. Since Uð1Þ2 has chiral central
charge 1, this j ¼ 0 theory is the product of Uð1Þ2 and the
� ¼ �2 theory of Ref. [5]; the latter has quasiparticles

f1; a; �a; fg, with aa ¼ �a �a ¼ f, and �a ¼ � �a ¼ e�i=4. Let
us show that there is no way that T could act and be
consistent with the fusion rules. First, note that T has to
fix 1, f and exchange s, sf. On the remaining quasipar-
ticles, it must do one of two things: either a $ sa and �a $
s �a, or �a $ sa and a $ s �a. In the first case, sf ¼ aðsaÞ
goes to ðsaÞa ¼ sf under T , which is inconsistent, and in
the second case, it also goes to ðs �aÞ �a ¼ sf, which is again
an inconsistency.
This argument shows that the original fermionic

f1; s; ~s; fg theory cannot exist in a 2D T -symmetric sys-
tem, assuming that the above theories exhaust the modular
extensions of f1; s; ~s; fg. The following argument estab-
lishes that this is so: Given any realization of f1; s; ~s; fg,
and forgetting T , we can continuously deform the
Hamiltonian to any other one in this universality class. In
particular, we can choose a special one, which is effec-
tively a bosonic fractional quantum Hall layer in parallel
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with some pþ ip superconductor; we know that gauging
this will yield one of our 16 modular extensions. Since the
type of modular extension one obtains after gauging is a
discrete object, it cannot change under continuous defor-
mation. Hence, gauging any fermionic realization of
f1; s; ~s; fg—including the putative T -invariant one we
started with—must yield one of the 16 above theories,
none of which is T invariant. Hence, we have reached a
contradiction.

However, it is possible to realize this theory in a
T -symmetric way on the surface of a 3D topological
phase. Just as for the case of SOð3Þ6, we can define a T
symmetry that exchanges s $ ~s and acts with appropriate
phase factors on the fusion vertices. We, once again, find
that demanding T to commute with the F and R symbols
requires T 2 ¼ �1 on the ðs; ~s; fÞ vertices.

1. Walker-Wang model

Once again, we can build a Walker-Wang model based
on the semion-fermion theory. Because the theory is
Abelian, we can actually use a simplified cubic lattice
instead of the original trivalent one here [31]. The defini-
tion of T symmetry also follows as in the SOð3Þ6 case:
Haldane chains are bound to the f lines, so that f becomes
a deconfined bulk fermion with T 2 ¼ �1: the electron.
The Walker-Wang model, once again, describes the
Z2-gauged version of the topological superconductor.
For completeness, note that the F and R symbols of
the semion-fermion theory are just products of those of
the f1; fg theory, in which the only nontrivial symbol is

Rf;f
1 ¼ �1, and the f1; sg theory, defined by Rs;s

1 ¼ i and
½Fs;s;s

s �1;1 ¼ �1.

2. Coupled-layer construction of the semion-fermion
surface topological order

We provide a coupled-layer construction of a 3D topo-
logical superconductor with a surface termination that
realizes the semion-fermion Abelian topological order
f1; fg � Uð1Þ2 ¼ f1; s; ~s; fg with time-reversal symmetry.
The building blocks are (i) a Z2 toric-code topological
order with four quasiparticles, f1; e; m; c g, in which time
reversal exchanges the two bosonic particles. This order is
only possible if the fermion transforms projectively under
time-reversal symmetry, as discussed in Appendix A.
(ii) The second building block is a doubled-semion topo-
logical order also with four quasiparticles, f1; S; S0; bg,
where time reversal exchanges the semion and antisemion.
Collecting together the action of time reversal on these
excitations, we obtain

e$T m; S$T S0; c$T � c : (5)

Consider a layered structure where, in each layer, a
topological state of each of these two types is present
(see Fig. 7). We define a unit cell as consisting of pairs

of these layers, and unit cell j will consist of layers 2j and
2jþ 1. Now, consider the four bosonic operators associ-
ated with every unit cell (we suppress the coordinates that
represent the spatial position in the plane):

Ejþ ¼ e2jS2jm2jþ1S
0
2jþ1; (6)

Mjþ ¼ m2jS
0
2je2jþ1S2jþ1; (7)

Ej� ¼ e2jS2jm2j�1S
0
2j�1; (8)

Mj� ¼ m2jS
0
2je2j�1S2j�1: (9)

It is readily seen that this set of four operators are
bosonic and commute with one another. Hence, they can
be simultaneously ‘‘condensed.’’ The resulting state will
confine any excitation that has nontrivial mutual statistics
with these objects. In a system with periodic boundary
conditions, the only excitation that has trivial mutual
statistics with these four condensates is the bound state
fk ¼ c kbk in each layer. This is the deconfined fermion in
the bulk of the system. It is readily verified that all other
anyon excitations are confined in the bulk.
If, however, a surface is present, one can identify

anyonic excitations that are deconfined within the sur-
face. Consider a semi-infinite system with layers indexed
by j ¼ 0; 1; . . . ;1. Therefore, the condensates Ej¼0�,
Mj¼0� are absent. Then, the surface excitations that are

now liberated (Fig. 7) are s0 ¼ e0S
0
0 and ~s0 ¼ m0S0. Their

FIG. 7. Coupled-layer construction of semion-fermion topo-
logical order on the surface of a 3D topological superconductor
(with even �). Each layer has a double-semion model and a Z2

gauge theory. The composite excitations enclosed by the brack-
ets can be condensed simultaneously, after which the only
deconfined excitations in the bulk are electrons, c ¼ bc , shown
by the dashed green boxes. At the surface, two additional
excitations emerge—shown by the dashed green lines—which
are exchanged by T . A key ingredient is that the two bosons
(electric and magnetic charges) of the Z2 gauge theory are
exchanged by T , which requires T 2 ¼ �1 acting on electrons.
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combination s0~s0 ¼ e0s
0
0m0s0 ¼ c 0b0 ¼ f0 is just the

fermion in the theory. Also, note that, using Eq. (5), under
time-reversal symmetry,

s0$T ~s0: (10)

This result is exactly the surface topological order that
we sought. Moreover, it transforms under time reversal in
exactly the way we require.

We note a couple of important points that have been
alluded to while discussing the alternate Walker-Wang
construction. First, as discussed in the Appendix, the trans-
formation law for fermions c , and hence for f, requires
that T 2 ¼ �1 when acting on these objects. Second, we
note that the models used here are entirely bosonic—i.e.,
they do not contain microscopic fermion excitations with
trivial statistics with all other particles, which can be
identified with electrons. Although there are fermionic
excitations f that are deconfined in the bulk, these are
emergent fermions and hence have mutual statistics with
a Z2 flux loop excitation. This result leads to bulk Z2

topological order. To rectify this and produce a fermionic
model free of bulk topological order, we introduce electron
operators c� that transform as Kramers pairs under time-
reversal symmetry. Then, one can condense the combina-
tion cyf, which is a boson that transforms trivially under
time-reversal symmetry, since both components are
Kramers pairs. As a consequence, flux excitations in the
bulk of the system are confined since they have mutual
statistics with this condensate, and there is no remaining
bulk topological order. Now, the f fermion may be inter-
preted as the physical electron.

B. Connecting the Abelian semion-fermion
state to free-fermion TScs

In this section, we discuss a physical argument that links
the Abelian semion-fermion state with the free fermion
� ¼ 2 TSc, with a pair of Majorana cones on the surface.
Our key idea is to exploit a larger symmetry that is allowed
by this problem—a U(1) symmetry that emerges upon
allowing for rotations between the fermions in the pair of
Majorana modes, to constrain the surface topological or-
der. One may then constrain a candidate surface topologi-
cal order by requiring it to satisfy a number of physical
criteria. The resulting topological order [that respects the
additional U(1) symmetry] that we conjecture is the same
as the T-Pfaffian that was discussed in the context of
topological-insulator (TI) surface topological order.
However, here, there are important differences from the
case of TIs, since time reversal is combined differently
with charge conservation. While in the case of TIs the
charge is left invariant under T , here the charge will
change sign under time reversal. Therefore, ‘‘charge’’
here should be viewed more appropriately as a component
of spin (e.g., Sz). Technically, this means that for the case
of the insulators, the symmetry is Uð1Þ 2T , while here it is

Uð1Þ �T . On destroying the artificial U(1) symmetry by
condensing an appropriate excitation, we are left with the
Abelian semion-fermion model, which provides evidence
for our assertion of the connection with the � ¼ 2 TSc.
A more systematic derivation of the connection to free-
fermion TScs will appear in a forthcoming publication.
Consider the free-fermion surface state of a � ¼ 2

topological superconductor:

H ¼ X2

a¼1

�T
a ðpx�x þ py�zÞ�a: (11)

Here, �T
a ¼ ð�"

a; �
#
aÞ are two-component Majorana fields,

and� are the Pauli matrices in the usual representation that
act on the Majorana indices. The flavor index a ¼ 1; . . . ; �.
In other words, , there are � ‘‘right-handed’’ Majorana
cones on the 2D surface.
The time-reversal symmetry transformation is

�"
a!T �#

a and �#
a!T � �"

a; (12)

which leaves the Hamiltonian in Eq. (11) invariant. The
Oð2Þ ¼ Uð1Þ symmetry is obtained by rotating between
the two flavors, so the complex fermions

c � ¼ ��
1 � i��

2 (13)

transform as c � ! ei’c � under the U(1) rotation. In
these variables, the Hamiltonian 11 is

H ¼ c yðpx�x þ py�zÞc ; (14)

where the Pauli matrices act on the spin � indices,
which are suppressed. This is exactly the dispersion of
the Dirac surface state of a topological insulator. The
important difference, though, is the transformation under
time-reversal symmetry:

c "!T c y
# and c #!T � c y

" : (15)

Thus, the U(1) charge is reversed under T . Moreover,

the Cooper-pair operator, defined as ei�Cooper ¼ c y
" c

y
# ,

transforms under time-reversal symmetry as �Cooper !
�Cooper þ �. This transformation implies that a Cooper-

pair condensate automatically breaks time-reversal symme-
try in this case. Thus, there are no gapping terms for this
surface at the quadratic level that preserve T , as expected
for the TSc surface.
Since with U(1) symmetry the � ¼ 2 TSc maps to the

single Dirac-cone surface state, we can use our knowledge
of the topological insulator surface topological order
(STO) to guess the relevant state. The charge conserving
STO, when realized purely in a 2D system, must break T
symmetry and have �xy ¼ 1=2 and �xy=T ¼ 1=2, as

argued for the TI surface state, by appropriately gapping
the single Dirac cone with a T -breaking mass term.
Furthermore, given the presence of Majorana fermions in
vortices on the surface when superconductivity is induced,
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we expect Ising topological order to be involved. The
simplest such theory that has a chance of being T sym-
metric at the level of statistics is the T-Pfaffian theory
[43,44], a 12-particle topological order that is a subset of
Ising�Uð1Þ�8, where the latter is the Laughlin state
�QH ¼ �1=8 of charge 2e Cooper pairs. TheUð1Þ�8 leads,

in a 2D system with the same topological order, to a Hall

conductance of �xy ¼ � 1
2
e2

h . Also, on combining with the

neutral sector of the Ising theory, a simple count of all edge
modes reveals �xy=T ¼ � 1

2 , as required. The Ising�
Uð1Þ�8 theory has 24 particles. However, an electronlike
excitation with charge ‘‘e’’ is identified, and this particle is
required to have trivial statistics with all other particles,
reducing the number of quasiparticles to 12. The quasipar-
ticles are labeled Xq, where X 2 fI; �; c g is the Ising part

and q ¼ 0; . . . ; 7 is theUð1Þ�8 part, and they carry a charge
2e q

8 . The electron is identified as c 4, and the locality of

this excitation restricts q to be even in fIq; c qg particles
and odd in the f�qg. Note, here, that the charge is reversed
under T ; i.e., q ! �q under T .

The excitations left invariant by time-reversal symme-
try are then I0, c 0, I4, c 4, which can be assigned T 2

values. In addition, I2, c 2 are mapped to c 6, I6 under T ,
differing from the first pair by an electron, which is a
local excitation, allowing for the assignment of a T 2

value to the pair. Indeed, T is fermionic when acting
on the pair ðI2;c 6Þ, and therefore, T 2 ¼ �ið�1ÞF; details
of this projective representation of fermion parity and
time-reversal symmetries are worked out in detail in the
next section, in the context of the semion-fermion model.
Finally, since �k ! ��k, no assignment of T 2 values is
possible for them.

Note that c 0 hasT 2 ¼ �1 because it is a bound state of
I2 and c 6, which are mutual semions that are exchanged
by T [45]. On the other hand, since I4 is a bound state
of a pair of I2 (or c 2), it will have T 2 ¼ þ1.
[T 2¼ðT 1T 2ÞðT 1T 2Þ¼�T 2

1T
2
2¼�ðiÞðiÞ¼1, where

T 1=2 are the fermionic local actions of T near

the two copies of I2. This is elaborated in the follow-
ing section.] Thus, I4 is a charge e boson with T 2 ¼ þ1.
Since c 4 differs from I4 by c 0, it must have T 2 ¼ �1,
consistent with its identification as an electron.

We can now consider breaking the U(1) charge
conservation to obtain a simpler STO for � ¼ 2 TSc.
Consider condensing I4. The consequence is that the
�k are confined. The remaining theory contains c 2~k,

I2~k, where ~k ¼ 0, 1. (The particles with ~k ¼ 2, 3 are
obtained from these by combining with I4, which is
condensed.) This is just the Abelian semion-fermion
theory f1; sgf1; fg discussed above. The two possibilities
� ¼ �2 are naturally associated with the T 2 assign-
ments of the semion (which is possible since it differs
from the antisemion by a local excitation, the electron—
see the next section). Here, those two assignments are
related to the corresponding transformation law for I2.

This argument links the surface of a � ¼ �2 TSc with
the Abelian semion-fermion state.

C. Remaining Abelian topological orders
and the 16-fold way

One subtlety that we have glossed over for the semion-
fermion theory is the value of T 2 for s and ~s. At first,
one might think that there should not be a well-defined
value for T 2 for these anyons, since they are not fixed
under T . However, because they only differ by an
electron that is a local (albeit fermionic) degree of free-
dom, we should really think of s and ~s as odd and even
sectors of the same deconfined quasiparticle. Then,
T 2 ¼ ei�ð�1ÞF must hold locally for this quasiparticle,
where � is some phase. It is easy to see that since T
anticommutes with ð�1ÞF, we must have � ¼ ��, i.e.,
T 2 ¼ �i on s and ~s. In other words, the value of T 2 is
equal to the value of the topological spin on ðs; ~sÞ up to a
sign 	 ¼ �1 that does not depend on whether we are
acting on s or ~s. Thus, the two possibilities 	 ¼ �1
correspond to two distinct theories. Indeed, flipping the
theory corresponding to 	 ¼ 1 (i.e., taking the parity
conjugate) gives the theory corresponding to 	 ¼ �1
since such a flip reverses the topological spin but does
not change the T 2 eigenvalue. The theories with 	 ¼ �1
thus correspond to � and ��, respectively, for some even
integer � (argued to be congruent to 2 mod 4 in the next
section).
Two copies of semion-fermion theory,—Consider now

taking two copies of the 	 ¼ 1 semion-fermion theory.
The result is [two copies of Uð1Þ2 times f1; fg] with time
reversal again exchanging s1 $ s1f and s2 $ s2f, where
s1 and s2 are the two semions, both with the same topo-
logical spin. Then, s1s2 is a fermion with T 2 ¼ 1. To see
this, let T 1 and T 2 be the local actions of time reversal
near s1 and s2, respectively. They are both fermionic
operators; i.e., they anticommute with fermion parity and
hence with themselves. Then,T ¼ T 1T 2 is a local action
of time reversal on s1s2. We then have

T 2 ¼ ðT 1T 2ÞðT 1T 2Þ ¼ �T 2
1T

2
2 ¼ �ðiÞ2 ¼ 1:

Thus, this state has particles f1; f; s1; s2; s1f; s2f; B; Fg,
where the fermion F ¼ s1s2 transforms as T 2 ¼ þ1 and
the boson B ¼ s1s2f transforms as T 2 ¼ �1.
Had we taken a copy of 	 ¼ 1 with a copy of 	 ¼ �1,

s1s2 would have been a fermion with T 2 ¼ �1, and we
would have been able to condense s1s2f without breaking
T and to eliminate all the topological order, as expected.
However, in the present case, we cannot do this; in fact, the
double semion-fermion theory cannot be realized in 2D
with T symmetry. Based on the arguments above, we
identify this topological order with the surface of a TSc
with � ¼ �4.
Three-fermion topological order.—Although we could

argue the nontrivialness of the double semion-fermion
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theory directly, we proceed by taking two copies of this
theory and showing that the result cannot be realized in 2D
with T symmetry. This stronger result implies, in particu-
lar, that the double semion-fermion theory cannot be real-
ized in 2D with T either. In this theory, s1s2s

0
1s

0
2 is a

T 2 ¼ 1 boson and can be condensed. The nontrivial par-
ticles in the resulting theory are the bilinears fss2 ¼
s01s02; s1s01 ¼ s2s

0
2; s1s

0
2 ¼ s2s

0
1g times f1; fg. The bilinears

are all fermions and mutual semions, which shows that this
is the three-fermion Z2 topological order times f1; fg. We
can label the bilinears fe;m; "g; the fusion and associativity
rules are then the same as the toric code. Also, T 2 ¼ 1 for
e, m, ". It was argued in Ref. [22] that the three-fermion
theory can be realized at the surface of an interacting
bosonic SPT with T symmetry. In fact, we can argue
that its fermionized version also corresponds to a nontrivial
T -invariant topological superconductor, as follows.

Supposing, for a contradiction, that the fermionized
version could be realized in 2D in a T -invariant way, we
could use gauge fermion parity symmetry to obtain a
modular T -invariant theory. This would have to be the
product of f1; e; m; "g, with a modular extension of f1; fg;
because the result is assumed to be T invariant, it must be
nonchiral, forcing the modular extension of f1; fg to be
another copy f1; e0; m0; fg of the three-fermion Z2 topologi-
cal order. Since T 2 ¼ �1 on f, we must have T 2 ¼ �1
on one of the other nontrivial particles—say, e0—while
T 2 ¼ 1 on m0. However, then we could condense the
T 2 ¼ 1 boson mm0 while maintaining T invariance. The
particles that remain after this condensation are T 2 ¼ �1
self-bosons E � ee0 ¼ "f, M � ef ¼ "e0, and the
T 2 ¼ 1 fermion � � m ¼ m0. However, this result is
just the toric code f1; E;M;�g, with the E and M bosons
being Kramers doublets. This case was argued to be im-
possible to realize in a time-reversal-invariant way
purely in 2D in Ref. [18], which proposed that, instead,
this topological order should be realized as the surface of
the within-cohomology bosonic T SPT. Hence, the
f1; e; m; "g three-fermion theory times f1; fg cannot be
realized in a 2D fermionic system with T symmetry.

The 16-fold way.—However, two identical copies of the
‘‘three-fermion’’ times f1; fg theory can be condensed into
the trivial phasewithout breakingT . We have argued that the
semion-fermion theory corresponds to � ¼ 2 mod 4, which
puts the three-fermion theory at� ¼ 8mod16 and shows that
� ¼ 0 mod 16 should be trivial and hence correspond to a
trivial topological superconductor. This result is consistent
with the recent result of Kitaev, showing that the free-fermion
classification of 3D topological superconductors breaks down
to Z16 [32]. Combining the Abelian topological orders we
have constructed in this section with SOð3Þ6 allows us to
construct a gapped T -symmetric surface termination for
any free-fermion topological superconductor. These results
are summarized in Table I.

IV. CONCLUSION

We have provided several examples of time-reversal-
symmetric topological orders, realized on the surface of
3D gapped fermionic systems, that are impossible to real-
ize in a purely 2D system with time-reversal symmetry.
This result immediately implies that these phases are 3D
fermionic SPT phases protected by T . In particular, it is
impossible to confine the surface states without breaking
symmetry or closing an energy gap. If it were possible
to do so, then one could eliminate the surface state on
one face of a slab and be left with the ‘‘impossible’’
2D topological order on the other. Since the slab can then
be deformed into a 2D system, this result leads to a contra-
diction. It is natural to identify these phases with the free-
fermion topological superconductors protected by T .
However, we note that we have not proved this equiva-
lence, e.g., by demonstrating that the free-fermion
Majorana cone edge states can annihilate one of our sur-
face topological orders. If this could be shown, it would
eliminate the logical possibility that the phases we are
describing are some yet-unknown topological supercon-
ductors of fermions, which are only realized in the pres-
ence of interactions. Potentially, a classification of
interacting SPT phases of fermions in 3D could resolve

TABLE I. Summary of surface topological orders of TScs: The first row is the non-Abelian SOð3Þ6 topological order corresponding
to the odd � TSc, where S represents the non-Abelian excitation with semionic topological spin. The second row is the Abelian
semion-fermion theory that we have argued is related to the � ¼ �2 TSc. The third row contains two copies of the semion-fermion
theory. Finally, the last row shows four copies of the semion-fermion theory, which corresponds (modulo the electron) to the three-
fermion topological order that is also the surface topological order of a purely bosonic topological phase with aZ2 classification. Thus,
eight copies of the semion-fermion topological order are trivial, i.e., realizable in a purely two-dimensional system with T , which
implies that interactions unravel the � ¼ 16 TSc connecting it to the trivial phase, consistent with Ref. [32]. The fermion f transforms
as T 2 ¼ �1.

Label Topological order T action on anyons T 2 action on anyons

� ¼ 1 (mod 2) f1;S;Sf; fg S ! Sf
� ¼ �2 (mod 8) f1; sgf1; fg s ! sf T 2 ¼ �i acting on s; T 2 ¼ �i acting on sf
� ¼ �4 f1; s1gf1; s2gf1; fg s1;2 ! s1;2f T 2 ¼ �i acting on s1, s2; T 2 ¼ �i acting on s1f, s2f;

T 2 ¼ þ1 acting on s1s2
� ¼ 8 f1; F1; F2; F3gf1; fg Fi ! Fi T 2 ¼ þ1 acting on Fi
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this question, but that classification is also currently un-
available (Ref. [46] attempts to study this question in some
other symmetry classes). These are important directions
for future work.

However, there are several pieces of evidence that link
the surface topological orders we mention with the free-
fermion topological superconductors. First, our topological
orders are only possible if the electrons transform as
T 2 ¼ �1. This transformation is also a requirement to
realize the class-DIII free-fermion topological phases.
Next, it is well known that odd-� topological supercon-
ductors have an odd number of chiral Majorana modes
bound to surface domain walls between domains of oppo-
site T breaking. Indeed, this is what we would find for the
SOð3Þ6 surface if the topological order is removed while
breaking T . Imagine placing a 2D realization of the same
topological order on the surface to obtain a quantum
double model that can be confined to completely destroy
topological order. Of course, in this process, one breaks T
symmetry by the choice of the 2D topological order. If this
is done in opposite ways, at the domain wall one expects an
odd number of Majorana modes since the edge central
charge of SOð3Þ6 is c� ¼ �2 1

4 . The difference between

these two opposite values is consistent with the odd num-
ber of Majorana modes at the surface domain wall. Given
the simple nature of the topological order in this case,
it is tempting to attribute this to � ¼ 1, although a proof
of this requires a way to bridge these different descriptions.
Similarly, if the semion-fermion topological order
describes a 3D free-fermion topological superconductor,
it must correspond to even � since it is compatible with a
gapped edge when realized in 2D. According to the
arguments above, the semion-fermion topological order
corresponds to � ¼ 2 mod 4. Similarly, the double
semion-fermion theory corresponds to � ¼ 4 mod 8, and
the ‘‘three-fermion’’ times f1; fg theory to � ¼ 8 mod 16.
Taken together, these would then generate topological
terminations for all possible 3D free-fermion T -invariant
topological superconductors.

One can also discuss analogous surface terminations for
topological insulators. Shortly after this work appeared,
several papers proposing such terminations were submitted
[43,44,47,48]. In the future, we hope to connect our work
on topological surface terminations with other nonpertur-
bative definitions of the surface of fermionic SPT phases.
Finally, we wish to emphasize the remarkable fact that, in
some cases, the fermionic SPT phase provides a guarantee
of non-Abelian topological order—if the surface of a
� ¼ 1 topological superconductor is found to be gapped
andT symmetric, it must contain non-Abelian excitations.
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APPENDIX A: Z2 TOPOLOGICAL ORDER IN
WHICH TIME REVERSAL EXCHANGES
ELECTRIC AND MAGNETIC CHARGES

Consider the toric-code model with the Z2 topological
order, leading to four particles f1; e; m; c g, where the first
particle is the identity, the next two are bosons (electric and
magnetic charges), and the last is a fermion. The last three
particles all have mutual semionic statistics with one an-
other. Consider the action of time-reversal symmetry T .
The quasiparticles can transform projectively, and we can
choose a pair of them to transform asT 2 ¼ �1. Let one of
these particles be the fermion c . The c fermions are
gapped in this topological phase. Consider modifying their
dispersion so that they undergo a quantum phase transition
into a topological superconductor (class DIII) for which
there is a Z2 classification in 2D. Now, we can investigate
how the excitations transform under time-reversal symme-
try. The fermions c still transform as T 2 ¼ �1. The
electric and magnetic particles can both be interpreted as
the � flux for the fermions. If we choose the electric
particle, we can label the object that is obtained by attach-
ing it to the fermion as the magnetic particle; i.e., we use
the fusion rule c � e ¼ m. In the language of the free-
fermion topological superconductor, if we call the � flux
the electric particle, then the magnetic particle has the
opposite fermion parity. Now, it is readily seen that under

time-reversal symmetry, e$T m. This result is related to the
fact that fermion parity and time reversal anticommute [49]
when acting on a � flux in this phase, ½T ð�1ÞNf ¼
�ð�1ÞNfT �. This anticommutation can be seen by con-
sidering the class-DIII topological superconductor as a
tensor product of up-spin and down-spin electrons in a
px þ ipy and a px � ipy state, respectively. Since time

reversal exchanges these two systems, they remain invari-
ant. But a � flux inserted through both superconductors
will trap a pair of Majorana zero modes 
";#. Under time

reversal, we have 
"$T 
# and 
#$T � 
". This result en-

sures that the fermion parity i
"
# for the vortex changes

sign under time-reversal symmetry.
We note that although this symmetry transformation

can be achieved in 2D, it cannot be described by the
K-matrix formulation of Abelian topological orders, de-
spite the underlying topological order being an Abelian
one, specifically, that of the Z2 toric code. Indeed, in a
recent classification of symmetry enhanced topological
orders, using the K-matrix technique, this state was not
produced [50]. Here, time-reversal symmetry exchanges
the electric and magnetic particles, which have mutual
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statistics. In general, we can show that when time-reversal
symmetry is implemented within the K matrix, it cannot
exchange anyons with nontrivial mutual statistics.

The proof is as follows. Consider theK matrix of a time-
reversal-invariant state. This matrix is an even-dimensional
(2N � 2N) symmetric matrix that can be diagonalized and
brought into the form

K ¼ XN

�¼1

��½L�L
T
� � R�R

T
��: (A1)

Since this is a symmetric matrix, the eigenvalues and
eigenvectors are real. The pairing of eigenvalues results
from the fact that the signs of the eigenvalues � refer to the
chirality of edge modes that should be coupled into time-
reversal-symmetric nonchiral pairs. Hence, for every left
mover, there must be a right mover that is related by time

reversal, L�$T R�. Now, consider a quasiparticle repre-
sented by the integer vector l and its time-reversed partner
~l. Now, expanding them in terms of the eigenstates,

l ¼ XN

�¼1

½a�L� þ b�R��;

where the coefficients are real numbers. Using the trans-
formation of eigenvectors under time-reversal symmetry,
we can write the time-reversed partner as

~l ¼ XN

�¼1

½b�L� þ a�R��:

Now, it is readily verified that the two quasiparticles have
trivial mutual statistics since

lTK�1~l ¼ 0:

APPENDIX B: STABILITY OF 3D BOSONIC SPT
PHASES IN THE PRESENCE OF FERMIONS

Recently, symmetry-protected topological phases of bo-
sons were classified—for example, with just time-reversal
T symmetry (the bosonic analog of the class-DIII systems
discussed here), it was found that there were three non-
trivial phases composed together in a Z2 � Z2 structure.
The nontrivial phases are generated by (i) a group
cohomology state and another state (ii) based on Kitaev’s
E8 state that lies outside the ‘‘group cohomology’’
classification.

When discussing bosonic SPT phases, one assumes that
the bosons are fundamental particles. However, we could
consider the possibility that the bosons are composites
(like spins or Cooper pairs) of fermions. In this case, there
will also be gapped fermions, in addition to the bosonic
degrees of freedom. Sometimes, the bosonic topological
phase can be unwound in the presence of fermions, or it can
be related to one of the free-fermion topological phases.
Several instances of this type were discussed in the context

of interacting fermionic SPT phases in 2D. Here, we will
discuss the 3D systems, with special reference to the
topological superconductors.
A useful tool to discuss this question in the 3D case is the

topologically ordered surface termination of the 3D bo-
sonic SPT phases. Based on this tool, we will argue that the
Z2 � Z2 classification of bosonic SPTs is reduced to a
single Z2 in the presence of fermions. Let us begin by
discussing the surface-topological orders for the two bo-
sonic SPT states, which are (i) the three-fermion state, with
quasiparticles f1; f1; f2; f3g, where the three fermions have
mutual semionic statistics and transform with T2 ¼ þ1
under time reversal, and (ii) the Z2 toric-code topological
order f1; v1; v2; fg, where the two bosonic excitations v1,
v2 both transform as T2 ¼ �1 Kramers doublets.
We argue that this classification collapses to a single Z2

in the presence of fermions c that transform as T 2 ¼ �1.
To see this, consider putting together the fundamental
fermion f1; c g with these topological orders. In each case
we obtain the results shown in Tables II and III.
Clearly, the Tables II and III are identical—we can

represent the particles as B0 . . .B3, F0 . . .F3, and they
have identical self-statistics and mutual statistics as well
as transformation laws under time reversal. Therefore,
these topological orders are identical in the presence of
fundamental fermions that transform under time-reversal
symmetry as T 2 ¼ �1. In other words, some of the bo-
sonic SPT phases ‘‘unwind’’ in the presence of fundamental
fermions [51].

APPENDIX C: HAMILTONIAN FOR DECORATED
WALKER-WANG MODEL

In this section, we describe in detail the Hamiltonian for
our exactly solved model of a SPT realizing a gapped
surface with SOð3Þ6 topological order. As discussed in
Sec. II D, this is a decorated bosonic Walker-Wang model
and is conjectured to describe the universality class of the
� ¼ 1 topological superconductor, after Z2 fermion parity

TABLE II. The group-cohomology-state surface-topological
order with v1;2, which transforms as T 2 ¼ �1 attached to

electrons. The � value is the action of T 2 on that quasiparticle.

Label 0 1 2 3

B 1þ v1� v2� fc�
F c� v1cþ v2cþ fþ

TABLE III. The beyond-group-cohomology state and the re-
lated three-fermion surface topological order, attached to elec-
trons. The � value is the action of T 2 on that quasiparticle.

Label 0 1 2 3

B 1þ f1c� f2c� f3c�
F c� f1þ f2þ f3þ
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has been gauged. Although we ultimately want such a
bosonic model to be built out of Kramers singlets, we first
introduce auxiliary degrees of freedom, which are Kramers
doublets—i.e., spin 1=2’s—and write a Hamiltonian for
this model. As described in Sec. II D, there will be two
spin 1=2’s per link, one associated with each endpoint
vertex—together, these form a four-dimensional Kramers

singlet Hilbert space H spin
l , where l labels the link. Thus,

the total Hilbert space associated with each link isHWW
l �

H spin
l ; the Hilbert space of the model is the tensor product

of these spaces over all links.
The Hamiltonian has the general form

H ¼ Hconst þHplaq:

The first term is

Hconst ¼ Vfusion þ Vlinks þ Vspins þ Vvert;

where Vfusion is the vertex-fusion-rule-enforcing potential
energy term present in the standard Walker-Wang model,
Vlinks is a potential-energy term preferring singlets along
links not labeled with e, Vspins is an energetic preference for

spin up or down at a ðs; ~s; eÞ vertex [depending on the sign
of the permutation that takes ðs; ~s; eÞ into a counterclock-
wise labeling of the three links adjoining the vertex], and
Vvert is a term that acts on any vertex adjoined by exactly
two e lines by forcing the spin 1=2’s corresponding to the
e’s into a singlet. All of these terms will give an energy
penalty of the same order V to configurations that violate
the constraints.

Below, we will describe the plaquette terms Hplaq that

move between different string-net and spin configurations.
These terms will be modifications of the Walker-Wang
plaquette terms; in particular, they will be defined to act
as 0 on configurations that violate any of the constraints in
Hconst in a neighborhood of the plaquette in question (i.e.,
on any of the links and vertices in Fig. 5). Furthermore,
they will commute with each other and with all the terms
in Hconst. We will construct a state that satisfies all of
the constraints and is the lowest eigenvalue state of all of
the plaquette terms—this will be our ground state, and it
will have the form described in Sec. II D, as desired.
Furthermore, any other ground state must also satisfy all
of the constraints, and since the spin part of a configuration
that satisfies all the Hconst constraints is uniquely deter-
mined by the anyon labels, this model must have the same
ground-state degeneracy as the original Walker-Wang
model—i.e., it is nondegenerate, according to arguments
along the lines of Ref. [22].

We still need to construct Hplaq. We have

Hplaq ¼
X

P

~Bs
P;

where the sum is over plaquettes P, and ~Bs
P is an

‘‘improved’’ Walker-Wang plaquette term. To describe

this term, first recall the original Walker-Wang plaquette
term Bs

P defined in Eq. (4), which gives its matrix
elements between fusion-rule-respecting string-net con-
figurations (by definition, it is 0 when acting on non-
fusion-rule-respecting string-net configurations). Now,
~Bs
P will, by definition, be 0 unless all fusion rules and

all constraints in Hconst are satisfied; when they are sat-
isfied, we know that the spin part of the wave function is
uniquely determined by the string-net labeling (we have
to choose a fixed sign convention for all of the spin
singlets), so we can define ~Bs

P to have nonzero matrix
elements precisely between those states. The operators ~Bs

P

defined automatically commute with all the constraints—
because they act nontrivially only on configurations that
satisfy them and move them to other configurations that
satisfy them—and they commute among each other for
different plaquettes P, for the same reason that the Bs

P do.
The ground state of the original Walker-Wang model,
with the unique spin configuration slaved to it via the
above constraints, is then also the lowest-eigenvalue state
of all of the ~Bs

P, as desired.
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