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Adiabatic quantum computation (AQC) has been lauded for its inherent robustness to control

imperfections and relaxation effects. A considerable body of previous work, however, has shown AQC

to be acutely sensitive to noise that causes excitations from the adiabatically evolving ground state. In this

paper, we develop techniques to mitigate such noise, and then we point out and analyze some obstacles to

further progress. First, we examine two known techniques that leverage quantum error-detecting codes to

suppress noise and show that they are intimately related and may be analyzed within the same formalism.

Next, we analyze the effectiveness of such error-suppression techniques in AQC, identify critical

constraints on their performance, and conclude that large-scale, fault-tolerant AQC will require error

correction, not merely suppression. Finally, we study the consequences of encoding AQC in quantum

stabilizer codes and discover that generic AQC problem Hamiltonians rapidly convert physical errors into

uncorrectable logical errors. We present several techniques to remedy this problem, but all of them require

unphysical resources, suggesting that the adiabatic model of quantum computation may be fundamentally

incompatible with stabilizer quantum error correction.

DOI: 10.1103/PhysRevX.3.041013 Subject Areas: Quantum Physics, Quantum Information

I. INTRODUCTION

Adiabatic quantum computation (AQC) is expected to
be inherently robust against certain errors, such as dephas-
ing and energy relaxation [1,2]. This robustness suggests
the possibility of an easier route to scalable quantum
computation than the conventional gate-based ‘‘circuit’’
model, with less stringent requirements for fault tolerance
and fewer resources devoted to error suppression and
correction. However, AQC’s inherent robustness is not
sufficient for fault tolerance. For example, several studies
[2–6] show that single-qubit noise can drive undesirable
transitions out of the adiabatic ground state. In response,
error-suppression techniques have been developed that can
reduce the rate at which these transitions occur. However, it
is well understood that error suppression alone is insuffi-
cient for fault tolerance in the circuit model. Fault toler-
ance requires an additional mechanism to remove the
entropy generated by errors that do occur in the encoded
system—i.e., error correction. Since this thermodynamic
argument is independent of the computational model, we
reasonably expect that achieving fault-tolerant AQC will
also require some form of error correction.

In this paper, we address both error suppression and
error correction in AQC, and prove several facts about
them. We begin our discussion in Sec. II with an overview
of the failure mechanisms present in AQC. In Sec. III, we
discuss error-suppression techniques based on error-
detecting quantum stabilizer codes. Currently known sup-
pression strategies include energy-gap protection (EGP)
[7], in which the addition of the stabilizer generators to
the system Hamiltonian causes errors to incur large ener-
getic penalties; dynamical decoupling (DD)[8], whereby
stabilizer generators are applied periodically as unitary
operators, refocusing errors much like traditional spin
echos; and Zeno effect suppression [9], which prevents
errors from accumulating through frequent measurements
of the stabilizer generators. These three techniques appar-
ently operate by very different physical mechanisms.
However, Facchi et al. [10] have shown that both Zeno
suppression and DD may be viewed as limiting cases of a
more general mathematical framework. We extend this
unification by showing that DD and EGP may both be
understood using the same formalism, and that the two
methods are effectively equivalent in their error-
suppression power. Our result shows that all three error-
suppression techniques may be considered functionally
equivalent for AQC, with some important caveats related
to their physical implementation and their behavior in the
presence of a thermal bath.
With Sec. IV, we turn our attention to error correction,

where we discover two fundamental obstacles to the adap-
tation of stabilizer-code quantum error correction to
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AQC: (i) In the presence of the adiabatic Hamiltonian,
correctable errors rapidly become uncorrectable errors,
and (ii) the resources required by circuit-model error cor-
rection, such as stabilizer measurements and unitary gates,
are generally outside the scope of the adiabatic paradigm.
In Sec. V of the paper, we explore possible ways to over-
come these obstacles when adapting stabilizer-based error
correction to AQC. We identify alternative implementa-
tions of logical operators and continuous-time error cor-
rection by cooling as possible yet very challenging routes
forward. Section VI finishes with a discussion of our view
of the future of adiabatic fault tolerance.

The major results discussed in this manuscript are the
following.

(1) In the Hamiltonian formalism, the energy-gap pro-
tection and dynamical-decoupling methods for error
suppression based on stabilizer encodings may be
described by a unified mathematical formalism.

(2) AQC appears to be fundamentally incompatible
with stabilizer quantum error correction. Patching
this incompatibility requires unphysical resources.

A companion paper entitled Error Suppression and
Correction in Adiabatic Quantum Computation: Non-
equilibrium Dynamics [11] develops a dynamical model
for describing error suppression and correction in AQC,
and discusses most of the results in this paper from a
dynamical perspective.

II. THE QUANTUM ADIABATIC ALGORITHM
AND IMPORTANT FAILURE MODES

The quantum adiabatic algorithm [1] operates by slowly
changing an N-qubit system’s Hamiltonian from a simple
separable Hamiltonian Hinit, whose ground state is easily
prepared, to a final target Hamiltonian Hprob, whose highly

nontrivial ground state encodes the solution to a problem of
interest. The adiabatic theorem promises that if the
Hamiltonian is changed slowly enough, then the system
will remain in its (time-varying) ground state, and thus the
solution can be read out by measuring the final state. In the
simplest case, the closed-system dynamics may be de-
scribed by a time-dependent Hamiltonian

HAQCðtÞ ¼ ½1� sðtÞ�Hinit þ sðtÞHprob; (1)

where sð0Þ ¼ 0, sðTÞ ¼ 1, and T is the adiabatic interpola-
tion time. More complicated interpolation schemes, includ-
ing the addition of ancillary Hamiltonians, have been
considered elsewhere [12,13] but are unnecessary for our
discussions here. Importantly, the adiabatic model does not
require the ability to perform high-quality quantum gates or
measurements during the computation, which are key ele-
ments of fault-tolerant circuit-model quantum computation.

The adiabatic model is expected to be robust to some
errors that plague other computational models, such as the
cluster-state or circuit models. In particular, Ref. [2]
showed that AQC possesses an inherent robustness to

both control errors and some forms of decoherence. In
this section, we give a brief overview of what can go wrong
with adiabatic computations and discuss which failure
modes can be suppressed with current techniques.
Perhaps the best-known failure mode of AQC is diabatic

errors (also known as Landau-Zener transitions), in which
the Hamiltonian is varied too quickly and the state fails to
track the instantaneous ground state. The obvious solution
to this problem is to perform the interpolation more slowly,
although identifying diabatic errors and determining the
maximum allowable speed are nontrivial. For certain prob-
lems, the location of the minimum energy gap between the
ground and first excited states is well known (e.g., for an
adiabatic Grover search, it happens exactly in the middle
[12]). This knowledge permits efficiently varying the in-
terpolation speed so that it proceeds rapidly in regions
where the gap is large and slowly in regions where the
gap is small. Unfortunately, the location and magnitude of
the minimum gap are not known for most problems. The
blunt approach of slowing the entire interpolation is prob-
lematic because even simple problems may have exponen-
tially small minimum gaps, leading to exponentially long
interpolation times. This problem is not the focus of this
paper, but solving it will necessarily involve (or enable)
great leaps in our understanding of the computational
complexity of the adiabatic algorithm.
While the system can be quite susceptible to diabatic

transitions, AQC is known to possess some intrinsic robust-
ness to Hamiltonian control errors [2]. As long as the evolu-
tion remains adiabatic, small perturbations to the intermediate
Hamiltonians are likely to be unimportant. However, errors
in the final Hamiltonian can be fatal, since it is the final
Hamiltonian that encodes the problem to be solved. In par-
ticular, if the final Hamiltonian is close to a critical point,
small perturbations may drastically alter the character of the
ground state. This failure mode is addressed in Ref. [14].
Finally, because the success of an adiabatic interpolation

relies ultimately on the population in the final ground state, it
is robust to environmental couplings that cause decoherence
in the eigenbasis of HðsÞ (sometimes called dephasing).
However, most system-bath couplings will cause transitions
from the adiabatic ground state as well as Lamb shifts of the
system Hamiltonian. The resulting open-system dynamics
may be radically different from those of the ideal closed
system. This paper is largely concerned with these errors,
and we focus on techniques designed to suppress and correct
the influence of these system-bath couplings in a manner
consistent with the adiabatic paradigm. Specifically, we at-
tempt to avoid reliance on quantum gates and measurements
as much as possible.

III. SUPPRESSING ERRORS IN AQC

In this section, we introduce quantum stabilizer codes
and discuss their role in protecting adiabatic quantum
computations. A system undergoing adiabatic quantum
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evolution while coupled to an external environment or
bath is described in a tensor-product Hilbert space
H sys �H env by a Hamiltonian

HðtÞ ¼ HAQCðtÞ þ
Xne
j¼1

Ej � Bj þHB: (2)

Here, HAQC acts on the system and performs the adiabatic

evolution, and HB is the bath Hamiltonian. Bj is a bath

operator, and Ej is a single-qubit Pauli error operator. The

total number of system-bath-coupling operators is ne and is
generally proportional to the total number of qubits in the
system. Eigenstates of HAQCðtÞ may be labeled as jn; kit
according to their principal quantum number n and an index
k distinguishing any degeneracy; the subscript labeling the
time is necessary because the Hamiltonian is time dependent
(so jn; kit � jn; kit0). The system-bath-interaction terms in
theHamiltonian can cause the computation to fail by inducing
transitions out of the adiabatically evolving ground state.

A. Quantum stabilizer codes

All currently known techniques for suppressing the er-
rors induced by the system-bath-interaction terms rely
on encoding the system in an error-detecting stabilizer
code [15,16]. ‘‘Encoding’’ comprises

(1) introducing (many) extra physical qubits to the sys-
tem, and

(2) mapping the original computational qubits (on
which the computation is performed) into logical
qubits that are distributed across many physical
qubits, much as in a classical repetition code.

All the physical qubits together define a large system with

a Hilbert space �H sys. The logical qubits are a subsystem,

corresponding to a factor space L, so the entire Hilbert

space factors as �H sys ¼ L � S. The complementary sub-

system S is the syndrome subsystem. This factorization
into subsystems is carefully chosen so that physical errors
(on a small number of physical qubits) can be detected by
Pauli measurements on the syndrome. These measurement
operators, the stabilizer generators, are the quantum ana-
logue of parity checks in classical linear block codes. The
stabilizer generators generate an Abelian subgroup of the
Pauli group (the stabilizer group, comprising all possible
products of generators) and are used to compactly define
the code. Stabilizers can be measured without disturbing
the encoded quantum information because logical qubit
operators (by definition) commute with the stabilizers.

An encoded system is always initialized in a known
eigenstate of all the stabilizers. Subsequently, measuring
the stabilizers will reveal (detect) any error operation that
anticommutes with one or more stabilizer generators (since
such a detectable error necessarily flips the sign of some
stabilizer eigenvalues). These errors will be generated by
terms in the system-bath Hamiltonian, whose effect on the

system is to apply Ej operations [Eq. (2)] on the system.

Thus, we want to choose a code such that each Ej in the

system-bath interaction anticommutes with at least one of
the stabilizer generators. Utilizing a codewithNg stabilizer

generators adds Ng physical qubits, enlarging the system’s

Hilbert space by a factor of 2Ng . The encoding process
replaces the original problem Hamiltonian HAQC with an

encoded Hamiltonian, in which the Pauli operators �x, �y,

and �z (that acted on physical bits in the unencoded
Hamiltonian) are replaced by the code’s logical operators
�X, �Y, and �Z. In addition, a time-dependent system control
Hamiltonian HC, expressible in terms of the code’s stabil-
izer generators, is added to implement any desired error
suppression. The encoded Hamiltonian is then

�HðtÞ ¼ �HAQCðtÞ þHCðtÞ þ
XNe

j¼1

Ej � Bj þHB: (3)

We have assumed that the system-bath interaction remains
qualitatively the same after the encoding, but is extended to
Ne > ne terms to describe the extra qubits. Importantly, we
have assumed that any controls we apply act only on the
system and have no effect on system-bath couplings.
States of the encoded system may now be labeled by the

same two quantum numbers as before, but withNg additional

binary quantum numbers, collected into the vector �, indicat-
ing the eigenvalues of the stabilizer generators Sjjn; k;�it ¼
ð�1Þ�j jn; k;�it, where Sj 2 S is a generator of the stabilizer

group and �j ¼ f0; 1g is the jth element of the vector �. We

shall refer to the subspace on which all the stabilizer eigen-
values are þ1 (and therefore all �j ¼ 0) as the code space.

States in the code space will therefore be labeled as jn; k; 0it.
The projector onto the code space is time invariant and
expressible in terms of the stabilizer generators as

P0 ¼ 1

2Ng

YNg

k¼1

ð1þ SkÞ: (4)

Encoding will help to protect logical information (stored
initially in the code space) by permitting active suppression
of errors that cause transitions out of the code space. Errors
that mix states within the code space are necessarily high
weight [17] (and therefore, hopefully, unlikely). Encoding
also makes it possible, in principle, to correct errors, by using
the results of stabilizer measurements to detect and identify
errors, then inverting them. However, such correction opera-
tions traditionally require resources (measurements and
gates) that we have abjured.
In the following discussion, we will make extensive

use of the toggling frame, a rotating frame of reference
defined in terms of the control and bath Hamiltonians.
Transformations to and from this frame are effected by
the unitary operator

UCðt1; t2Þ ¼ exp

�
�i

Z t2

t1

½HCðsÞ þHB�ds
�
: (5)
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There is no need to time order the integral because
HCðsÞ may be written entirely in terms of the stabilizer
generators of the code, all of which are mutually commut-
ing, and HB acts on a different part of the Hilbert space.
The following notation is used for an operator A in the

toggling frame: ~AðtÞ � Uy
Cð0; tÞAUCð0; tÞ, while states in

the toggling frame are related to states in the Schrödinger

picture by j ~c it ¼ Uy
Cð0; tÞjc it. Evolution of states in this

frame is generated by the toggling-frame Hamiltonian
~HðtÞ � Uy

Cð0; tÞ½ �HðtÞ �HCðtÞ �HB�UCð0; tÞ.

B. Dynamical decoupling

Dynamical decoupling is a well-known quantum control
technique for suppressing errors produced by spurious
terms in a system’s Hamiltonian [18]. The methods were
first applied to AQC in Ref. [8], with higher-order strat-
egies shown to be particularly effective in Ref. [19]. In DD,
the stabilizer generators are applied as unitary operations
by manipulating the control Hamiltonian HC. The se-
quence in which they are applied is given by the vector
n, at times given by KðtÞ 2 Z, so that at time t, the last
operator applied to the system is SnKðtÞ . The unitary opera-

tor defining the toggling frame may then be written as

UDD
C ðtÞ ¼ QKðtÞ

j¼0 Snj
. The operator UCðtÞ is an element of

the full stabilizer group and therefore commutes with
�HAQCðtÞ. In the toggling frame, the Hamiltonian takes

the form

~HDDðtÞ ¼ �HAQCðtÞ þ
XNe

j¼1

~EDD
j ðtÞ � ~BjðtÞ:

Since Ej is a Pauli operator, it either commutes or anti-

commutes with each member of the stabilizer group, and
we may write

~EDD
j ðtÞ ¼ UDDy

C ðtÞEjUDD
C ðtÞ ¼ ð�1ÞpjðtÞEj; (6)

where pjðtÞ ¼ 0 if ½Ej;UDD
C ðtÞ� ¼ 0 and pjðtÞ ¼ 1 if

fEj;UDD
C ðtÞg ¼ 0. A well-chosen DD sequence will

cause pjðtÞ to rapidly alternate between 0 and 1, which

modulates the system-environment coupling (in the tog-
gling frame) by a rapidly oscillating function of t. The
unitary operator governing the evolution at time t is
Uðt; 0Þ ¼ expþf�i

R
t
0 ds

~HDDðsÞg, and if the DD sequence

is well chosen, the system-environment coupling averages
to zero on time scales longer than the DD interpulse period
[i.e., the integral vanishes thanks to the modulation factor

ð�1ÞpjðsÞ in the exponential].

C. Energy-gap protection

The EGP approach, introduced in Ref. [7], appears quite
different. It uses a constant-in-time control Hamiltonian,

given by a sum of the stabilizer generators HEGP
C ðtÞ ¼

��
PNg

m¼1 Sm, with �> 0. States in the code space are

then eigenstates of HC with eigenvalue ��Ng, but any

state outside the code space is subjected to an energy
penalty. Since HC is a function only of the stabilizer
generators, UEGP

C ðtÞ again commutes with the code’s logi-

cal operators that comprise �HAQCðtÞ, so we can write the

Hamiltonian in the toggling frame as

~H EGPðtÞ ¼ �HAQCðtÞ þ
XNe

j¼1

~EEGP
j ðtÞ � ~BjðtÞ:

Error operators in the EGP toggling frame can be shown to
take the form

~E EGP
j ðtÞ ¼ Eje

ð2i�t�fSm;Ej g¼0SmÞ ¼ e
ð�2i�t�fSm;Ejg¼0SmÞEj; (7)

where the sums are taken over all stabilizer generators Sm
that anticommute with the error operator Ej. To obtain this

expression, we have exploited the following: (i) The sta-
bilizer generators commute with each other (allowing easy
manipulation of the exponential operators), and (ii) each
generator either commutes or anticommutes with the noise
operators: SmEj ¼ �EjSm. Let wj be the number of

generators that anticommute with Ej. Then, the action

of this toggling-frame Hamiltonian on any state ~j�i ¼
~jc ci � ~j�i 2 H sys �H env with

~jc ci in the code space is

~H EGPðtÞ ~j�i ¼
�
�HAQCðtÞ þ

XNe

j¼1

Eje
2iwj�t � ~BjðtÞ

�
~j�i:

(8)

Thus, the coupling term Ej � ~BjðtÞ is modulated by a factor

of e2iwj�t. Just as in the case of DD (above), the error terms
are modulated by an oscillating function in the interaction
picture—which ensures that they average to zero on suffi-
ciently long time scales as long as the frequency of oscil-
lation is larger than the typical frequencies in ~BjðtÞ. In the

case of EGP, the oscillations are smooth and sinusoidal,
whereas for (impulsive) DD, the oscillations are square
waves in time. EGP can be made to mimic a decoupling
sequence by choosing � so that the EGP oscillations match
the frequency of a DD sequence. Numerical studies pro-
vide evidence that in such cases, EGP and DD suppress
errors equally well, as shown in Fig. 1.
In fact, there is no requirement that the weights � be

constant in time or equal across the stabilizer generators.
Many dynamical-decoupling schemes vary the time inter-
val between the pulses. For example, Uhrig’s dynamical-
decoupling scheme (UDD) [20] chooses the pulse arrival
times as tn ¼ T cos½n�=2ðN þ 1Þ�, where N is the total
number of pulses in the time interval �. To mimic this UDD
sequence, where the modulation frequency is not constant

in time, we choose a time-dependent weight term �ðtÞ ¼
NT=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðT � tÞp

. This approach was used, suitably regular-
ized and in the context of a single qubit, by the authors of
Ref. [21] to produce an effective UDD sequence using
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continuous controls. More generally, allowing � to vary in
time allows the strongest identification between the DD
and EGP approaches and a unified treatment of both as

quantum control protocols. For instance, choosing �jðtÞ ¼P
i��ðt� tji Þ=2 applies Sj at time tji as a unitary operator

(impulsive DD), but in the EGP formalism, and points to
how one might smoothly interpolate between the two
methods. In this approach, optimal control techniques
can be used to choose the �jðtÞ to optimally mitigate the

system-bath interaction.

D. A few important differences

The discussion above indicates that DD and EGP sup-
pression methods have very similar behavior with respect
to noise and are capable of providing approximately
equivalent error suppression. This relationship is further
examined in the context of filter functions in Appendix B
and in a dynamical framework in Ref. [11]. But, while

these error-suppression techniques are closely related, it is
important to be aware of some key differences, including
the relative ease of their physical implementation and their
effect on thermalization.
Many codes possess high-weight stabilizer generators.

These codes cannot reasonably be implemented by EGP,
since high-weight Hamiltonians are experimentally infea-
sible. They can be implemented by DD, however, by ex-
ploiting the fact that unitary operators may be generated by
many different Hamiltonians. A high-weight DD pulse can
be generated by single-body Hamiltonians, e.g.,

XXX ¼ e�ið�=2ÞXXX ¼ e�ið�=2ÞðXIIþIXIþIIXÞ: (9)

However, the single-body Hamiltonian implementing
the DD does not commute with the encoded AQC
Hamiltonian. If its implementation is not impulsive (i.e.,
the DD Hamiltonian is not significantly stronger than the
AQC Hamiltonian), then it will be imperfect. The error can
be computed fairly easily with the Baker-Campbell-
Hausdorff formula and vanishes in the impulsive limit.
Despite this complication, DD appears to be the only
option for implementing high-weight stabilizer generators.
In fact, there exist codes [22] that possess a large number of
two-body stabilizer generators and only a few high-weight
generators. These codes may benefit from a hybrid ap-
proach where low-weight generators are added as energy
penalties, while those of high weight are included as DD
pulses.
Another important difference between DD and EGP is

their behavior in thermal environments. Whereas EGP
establishes a real energy difference between the code space
and the various syndrome spaces, DD does not. If a system
with an EGP Hamiltonian is coupled to a cold thermal
reservoir, thermalization will lead to a Gibbs distribution
(� / e�	H), in which the syndrome spaces are thermally
populated according to their energy, and the code space is
preferentially populated (since it has the lowest energy). In
contrast, DD creates no real energy difference between
syndrome spaces, and the system’s steady-state population
will be uniformly distributed across all the syndrome
spaces. This distinction between EGP and DD will be
important in Sec. V.

IV. ERROR CORRECTION

The error-suppression mechanisms described above
reduce the rate at which errors appear in the system by
effectively renormalizing the system-bath coupling. (See
Ref. [11] for details.) But, the coupling cannot be elimi-
nated completely without using an infinite amount of en-
ergy (e.g., DD pulses applied at infinitely high frequency,
or an infinitely strong EGP Hamiltonian). Since our re-
sources are finite, physical errors will still accumulate over
long time scales and eventually cause logical errors.
Typical AQC problems (e.g., combinatoric optimization)
may have some intrinsic robustness to logical errors (e.g., a

FIG. 1. Logarithmic plot of the failure probabilities as a func-
tion of the total evolution time T for a two-logical-qubit AQC
defined by the Hamiltonian HðtÞ ¼ ð1� t=TÞðPiXiÞ þ ðt=TÞ�
ðZ1 þ Z2 þ Z1Z2Þ under the influence of Hamiltonian noise
H
ðtÞ ¼ P

i
iðtÞZi. In these numerical simulations, 
i is a

classical stochastic process of 1=f type with spectrum Sð!Þ ¼
10�3=!, and the success probabilities are averaged over 1000
instances of this noise process for each evolution time T. Four
simulations are performed: (i) the unencoded system (thick black
line), (ii) the system encoded into four physical qubits using the
[[4, 2, 2]] quantum code [15] (dashed red line), (iii) the encoded
system with EGP applied at strength � ¼ 1 (thin blue line), and
(iv) the encoded system with DD applied at frequency �=2�
(black crosses). The initial performance increase is due to reduc-
tion of diabatic errors, while later performance degradation is due
to the accumulation of errors. Both EGP and DD are capable of
suppressing this type of noise equally well, as shown by the
approximately equal success probabilities of cases (iii) and (iv).
Encodingwithout error suppression [case (ii)] performs especially
poorly because twice as many qubits are exposed to noise as in the
unencoded case and no measures are taken to suppress it.
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few bits flipped in the solution to a Boolean satisfiability
problem can be fixed efficiently with classical postprocess-
ing), but as they accumulate, they will cause the computa-
tion to fail. Using large systems for long computations thus
still requires some form of error correction.

Implementing error correction requires, to start, utilizing
a code that is error correcting (rather than just error detect-
ing). Not only must each error Ek anticommute with at
least one stabilizer generator, but the set of generators with
which it anticommutes (Ek’s syndrome) must uniquely
identify Ek’s effect on the encoded computation, and there-
fore how to correct it. For simplicity, we will consider
nondegenerate codes [23], in which each correctable er-
ror’s syndrome is unique [24]. Such codes can thus deter-
mine what error has occurred (instead of simply detecting
that some error occurred). Each correctable error can be
labeled by its syndrome, a binary vector � indicating which
stabilizer generators anticommute with the error:

SjE�SjE� ¼ ð�1Þ�j: (10)

For example, in a codewith four stabilizer generators, an error
labeled E0101 commutes with S1 and S3 but anticommutes
with S2 and S4. A code for which the number of correctable
errors is exactly equal to the total number of nontrivial
syndromes (i.e., 2Ng � 1) is called perfect [15,16].

A. A challenge for error correction

The simplest way to incorporate error correction into an
AQC is to just do the encoding, and nothing else. Perform
the encoded adiabatic interpolation, then measure both the
stabilizers and the logical Z operators on the final state. In
the absence of errors, the stabilizer measurements would
all yield þ1, and the logical Z measurements would yield
the answer to the computation. If one or more physical
errors do occur and accumulate to produce a correctable
error, then the correct answer can be decoded (classically)
from the final measurement outcomes. So, this naı̈ve im-
plementation of error correction offers at least one advan-
tage over pure error suppression.

However, it is unlikely to be sufficient. In the absence of
some correcting mechanism during the evolution, errors
will accumulate. With a probability that approaches 1 as
the computation grows (in size and time), a logical error
will occur, and the (decoded) final answer will be wrong.
Thus, we anticipate an additional need for some ongoing
entropy-extracting process.

First, however, we must address a different (yet arguably
more pernicious) problem, which arises even for very small
systems where bath-induced uncorrectable errors are rare:
The encoded problem Hamiltonian transforms correctable
errors to logical errors.

To illustrate this issue, we consider a simple case.
Suppose the system is encoded and initialized in the
ground state j0i of an initial Hamiltonian and evolves
unperturbed under the adiabatically changing

Hamiltonian until, at time �, a correctable Pauli error E�

occurs. Then, the system evolves unperturbed through the
end of the AQC, at which point we measure the code
stabilizers. Because the Hamiltonian always commutes
with the stabilizers and only a single correctable error
has occurred, one might think that the error can be detected
and identified by its syndrome �, enabling a restoration of
the system to the ground state (in the code space) by an
application of E�. Unfortunately, in the time span between
the error and its subsequent correction, things go horribly
awry.
The overall evolution according to our simplified error

model is

jc iT ¼ E�UAQCð�; TÞE�UAQCð0; �Þj0; 0i0; (11)

where the unitary evolution generated by the adiabatic
Hamiltonian is given by a time-ordered exponential

UAQCð�; TÞ ¼ expþ
�
�i

Z T

�

�HAQCðsÞds
�
: (12)

(We neglect the as-yet-unspecified error-suppressing con-
trol Hamiltonian, as its presence does not change the
result.) We assume that the only error that occurs is E�

and that there are not other deviations (such as Landau-
Zener transitions) from ideal adiabatic evolution, so
UAQCð0; �Þj0; 0i0 ¼ j0; 0i�. Now, the encoded AQC

Hamiltonian �HAQCðsÞ is a weighted sum of the code’s

logical X, Y, and Z operators. Each is a Pauli operator,
so it either commutes or anticommutes with the error
operator E�. The encoded AQC Hamiltonian (at any
normalized time s) splits into a commuting and an anti-
commuting term

�H AQCðsÞ ¼ �Hþ
� ðsÞ þ �H�

� ðsÞ; (13)

where ½ �Hþ
� ðsÞ; E�� ¼ f �H�

� ðsÞ; E�g ¼ 0. After some alge-
bra, Eq. (11) becomes

jc iT ¼ expþ
�
�i

Z T

�
½ �Hþ

� ðsÞ � �H�
� ðsÞ�ds

�
j0; 0i�: (14)

Between the time when the error happens (�) and when
it is corrected (T), the encoded system experiences a new,
effective Hamiltonian �H0

� ¼ �Hþ
� ðsÞ � �H�

� ðsÞ. Since the
state j0; 0i� is not generally an eigenstate of �H0

�, the system
will undergo unintended evolution within the code space,
moving it out of the ground state (a logical error).
The root problem here is that the encoded adiabatic

Hamiltonian acts differently on different syndrome spaces
(eigenspaces of the stabilizers). Correctable errors flip
various stabilizers’ eigenvalues, moving the system from
one syndrome space to another. Only on the code space
itself is �HAQC guaranteed to act like the original problem

Hamiltonian HAQC. In other words, the AQC Hamiltonian

itself rapidly turns correctable errors into logical errors.
Like nontransversal implementations of logic gates in the
circuit model, naı̈vely encoded AQC Hamiltonians cause
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errors to propagate, and decoding at the end of the compu-
tation is unlikely to be effective.

The problem persists even if errors are corrected during
the computation. Even the best error correction is not
instantaneous, so errors will survive for some time before
being corrected. In large computations, the equilibrium
between noise and correction occurs at a finite density
of errors, meaning that at every instant, the system will
be out of the code space. Thus, it is absolutely necessary to
modify the encoded Hamiltonian so that �HAQC is suffi-

ciently similar to HAQC, not just on the code space but on

every likely syndrome space.

B. Protected Hamiltonians

The promotion of physical errors to logical errors by the
adiabatic Hamiltonian poses a serious threat to error cor-
rection in AQC using stabilizer codes. In this section,
however, we demonstrate that this threat may be avoided
by carefully choosing the logical operators—but doing so
comes at a steep cost: These protected logical operators are
complicated sums of high-weight Pauli operators.

Physical errors become logical errors because �HAQC

does not act identically on all of the syndrome spaces. In
principle, it would be enough if any error mapped the
ground state(s) of �HAQC to another eigenstate of �HAQC

�HAQCðtÞE�j0; k; 0it ¼ �0;k;�ðtÞE�j0; k; 0it:
But, our error-correcting code is not allowed to ‘‘know’’
what the ground state is. This condition has to hold for any
encoded logical Hamiltonian built as a sum of logical
operators. So, whenever an AQC is encoded in a stabilizer
code, some logical Hamiltonians will rapidly transform
some physical errors into logical errors unless the follow-
ing stronger condition is satisfied: For any error E� and any
eigenstate jn; ki of the logical Hamiltonian, E�jn; k; 0i
must be an eigenstate of the encoded logical
Hamiltonian. In other words,

�HAQCðtÞE�jn; k; 0it ¼ �n;k;�ðtÞE�jn; k; 0it: (15)

If this condition holds, then at least adiabatic evolution is
still possible in the presence of errors (although errors
might reduce or eliminate the gap, or even cause an excited
state to become the ground state).

If we want Eq. (15) to hold, then the encoded
Hamiltonian (and therefore the encoded logical operators)
is constrained. The eigenstates specified in Eq. (15) form a
complete orthonormal basis, so the most general encoded
Hamiltonian that satisfies Eq. (15) is a sum of their pro-
jectors

�HAQCðtÞ ¼
X
n;k;�

�n;k;�ðtÞjn; k;�ithn; k;�j

¼ X
n;k;�

�n;k;�ðtÞE�jn; k; 0ithn; k; 0jEy
� : (16)

The projector jn; k; 0ithn; k; 0j may be written as a product
of the projector onto the code space (expressible entirely in
terms of the code’s stabilizers) and the logical projector
onto the encoded state jn; kit (expressible entirely in terms
of the code’s logical operators).
To construct an encoded Hamiltonian with these prop-

erties, we can exploit the freedom in defining logical
operators of a code. Multiplying a logical operator by a
stabilizer operator yields an equally valid representation of
the same logical operator. We can represent elements of the
stabilizer group by binary vectors j, of length Ng, in which

a 1 indicates the presence of the corresponding generator,

i.e., Sj ¼ Sj11 S
j2
2 � � � SjNgNg

. For example, if there are four

stabilizer generators, then S0110 � S2S3. In this notation,
the fact that (Pauli) errors either commute or anticommute
with each of the stabilizers can be written as

SjE� ¼ ð�1Þj��E�Sj: (17)

Then, if �Li is a particular encoded logical operator, each
stabilizer operator Sj defines an equivalent logical operator
�LiSj that acts identically on the code space. Linear combi-

nations, e.g.,
P

j	ij
�LiSj, are also valid logical operators.

Now, any problem Hamiltonian can be written as a sum
of logical operators

HAQCðtÞ ¼
X
i

�iðtÞLi:

When we encode it, we can choose any encoding Li !P
j	ijðtÞ �LiSj (where the j sum is taken over all binary

vectors of length Ng, and �Li is an arbitrary encoded repre-

sentation of Li) as long as
P

j	ijðtÞ ¼ 1. So, an equivalent

encoded problem Hamiltonian is

�HAQCðtÞ ¼
X
i

�iðtÞ �Li

X
j

	ijðtÞSj: (18)

Now, we impose the constraint that it must satisfy Eq. (15).
Inserting Eq. (18) into Eq. (15) and multiplying by E� on
the left, we obtain

X
i

�iðtÞ �Li

�X
j

	ijðtÞ��
ij

�
jn; k; 0it ¼ �n;k;�ðtÞjn; k; 0it;

where E�
�Li ¼ �i�

�LiE�, and ��
ij ¼ �i�ð�1Þj�� is 1 if E�

commutes with �LiSj and �1 otherwise. Direct computa-

tion then shows that ��
ij obeys the orthogonality condition

X
�

��
ij�

�
ik ¼ 2Ng�jk; 8 i: (19)

Recall that jn; k; 0it is defined to be an eigenstate ofP
i�iðtÞ �Li for any choice of �iðtÞ. Therefore, the sumP
j	ijðtÞ��

ij cannot depend on i, and we may substitute


�ðtÞ ¼
X
j

	ijðtÞ��
ij: (20)
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With this definition, we see that �n;k;�ðtÞ ¼ �n;k;0ðtÞ
�ðtÞ,
meaning that an encoded operator satisfying Eq. (15) acts
identically (up to a scale factor 
�) on each syndrome
subspace, including the code space. Correctable errors
map eigenstates of �HAQC in the code space to eigenstates

in the appropriate syndrome space. In particular, the
ground state maps either to the lowest-energy eigenstate
in the syndrome space (if 
� is positive) or the highest-
energy eigenstate (if 
� is negative). We refer to 
� as a
deformation factor in Ref. [11], since it represents the
deformation of the code-space energy structure when re-
produced within syndrome spaces.

The most general Hamiltonian satisfying condition
Eq. (15) can therefore be constructed by symmetrizing
over errors E�:

�H

AQCðtÞ ¼

X
�


�ðtÞE�
�HðtÞP0E�; (21)

where �HðtÞ is a Hamiltonian encoded using any logical
operators. We refer to such Hamiltonians as protected
Hamiltonians since adiabatic evolution under them does
not lead to propagation of errors in the correctable syn-
drome subspaces. Furthermore, we define the canonical
protected Hamiltonian by setting all 
� in Eq. (21) to 1

�Hp
AQCðtÞ ¼

X
�

E�
�HðtÞP0E�: (22)

The canonical protected Hamiltonian acts truly identically
on every syndrome space, with no scale factor at all.
Similar Hamiltonians were introduced in a slightly differ-
ent context in Ref. [25].

Unfortunately, implementing the canonical protected
logical operators seems infeasible. They generally contain
(many) terms of very high weight, up to the total number of
qubits in the system. However, if we allow a scale factor
(i.e., choose noncanonical but still protected logical
operators), then it is possible to reduce the maximum
weight by choosing the coefficients 
� to eliminate the
highest-weight logical operators from Eq. (21). Inverting
Eq. (20), we have

	ijðtÞ ¼
X
�

1

2Ng

�ðtÞ��

ij; (23)

which can be used to choose the 
�ðtÞ’s such that the
	ijðtÞ’s corresponding to high-weight operators vanish.

Note that we have explicitly included the time dependence
in 
�ðtÞ and 	ijðtÞ to maintain generality, but it may be

convenient to force them to be time independent, as in the
canonical protected Hamiltonian [where 
�ðtÞ ¼ 1]. The
time dependence may be useful for constructing more
sophisticated error-suppression schemes, such as increas-
ing the penalty if a particular error is otherwise more likely
at a certain time, but we do not consider such schemes here.

In Appendix A, we examine the [[5, 1, 3]] code [15] and
show that while the canonical protected logical operators

are weight five, we can construct protected logical opera-
tors with weight three. Any logical operator for a
distance-d code must have a weight of at least d, so it is
encouraging that protected operators of weight d exist in
this case. If such a construction is possible for any code
(an open question), it would remove one obstacle to
implementation.
However, a further challenge is the sheer number of

Pauli operator terms required to implement these pro-
tected logical operators; for example, the canonical pro-
tected logical operators for n-qubit codes are sums of
Oð2nÞ Pauli operators. The minimum-weight protected
logical operators that we construct in Appendix A are
simpler but still contain Oð2dÞ distinct Pauli operators.
Applying a single weight-d operator (for d � 1) as a
Hamiltonian is already challenging. (See the concluding
discussion.) Balancing many such terms seems fantasti-
cally difficult. We suspect it will be feasible only if there
exist protected logical operators in which the required
sum of Pauli operators can be factored or otherwise
decomposed into a sum of a few products. For example,
ðX þ ZÞ�n, expanded as a sum of Pauli operators, con-
tains 2n terms—but because it factors, it is no harder to
implement than X�n. We are not aware of any such
structure in protected logical operators, but further re-
search might reveal one.

V. ERROR CORRECTION BY LOCAL COOLING

Suppose that a way is found to prevent the adia-
batic Hamiltonian from converting physical errors to
logical errors (e.g., by implementing protected logical
Hamiltonians). AQC would then face ‘‘only’’ the same
problem that confronts circuit-model computation; errors
accumulate over time. These errors are the manifestation of
entropy injected into the system by coupling to the bath,
and unless we actively pump that entropy out, the compu-
tation is likely to fail within a relatively short time. Active
error correction, however, requires fast gates and high-
weight stabilizer measurements during the computa-
tion—both of which are outside the standard AQC toolset
(and infeasible in many of the physical systems on which
AQC might be implemented). Local cooling offers a po-
tential route around this difficulty.
In the local cooling model, each physical qubit is

coupled to a very low-temperature bath that serves as
the entropy sink for the system. The coupling is designed
such that, if the stabilizer generators are added to the
Hamiltonian, the bath is able to detect the increase in
energy associated with an error and then to absorb that
energy and reverse the error. The dynamics of error cor-
rection by cooling is worked out in detail in Ref. [11], and
we sketch the scheme here.
We will consider the Hamiltonian of Eq. (3) with an

additional local coupling of each error operator to a cold,
damped reservoir given by
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HS-R ¼ X
j

Ej �
X
k

gðjÞk ðbðjÞk þ byðjÞk Þ:

In addition to this interaction Hamiltonian, the reservoirs

have free Hamiltonians of independent oscillators: HR ¼P
j

P
k !

ðjÞ
k byðjÞk bðjÞk . We assume that each reservoir has a

broad frequency distribution and is well damped, so that it
is in its ground state at all times with high probability.
It is shown in Ref. [11] that for such a system-reservoir
coupling, a control Hamiltonian of the EGP type and a
protected Hamiltonian implementation of the logical
Hamiltonian are sufficient for an automated implementa-
tion of error correction where the excitations induced by
local Pauli perturbations from the bath are quenched by the
cold reservoir.

However, because the reservoir is coupled to the system
through low-weight Pauli operators (Ej), it can only cool

local excitations. Cooling away a high-weight error would
have to be accomplished through a sequence of single-
Pauli operations that reduce the error weight until the
system is returned to the code space. However, as shown
in Ref. [11], the cooling dynamics is a biased random walk
in syndrome space, and therefore, in order for such a
sequence of single-Pauli operations to successively cool
away several errors, the energy landscape of the system
must be such that the energy penalty associated with an
error increases with its weight. That is, the energy of states
in a correctable syndrome subspace must increase
monotonically with the weight of the error that takes the
code space to that syndrome space. The EGP control
Hamiltonians corresponding to most stabilizer codes do
not have this property. (We shall discuss exceptions in a
moment.) For example, for the Abelian toric code [26], a
state with two errors can have the same energy penalty
as a state with one error if the two errors are neighboring;
i.e., a string excitation does not have an excited-state energy
proportional to the string length, and a localmeasurement of
energy cannot distinguish between such degenerate errors.
Such models have no ‘‘string tension’’ [27].

EGP control Hamiltonians that provide a favorable land-
scape, where syndrome-subspace energies scale with error
weight, may be constructed explicitly as

HEGP
C ¼ X

k

X
E� s:t:

wðE� Þ¼k

�ðkÞE�P0E�; (24)

where �ðkÞ> 0 is the energy penalty associated with
weight-k errors �ðkÞ< �ðkþ 1Þ, and the second sum is
over all E� such that !ðE�Þ ¼ k. However, as in the case
of the protected Hamiltonian for logical evolution, such
constructions result in Hamiltonians that are very high
weight. In fact, recent work has shown that there are
significant obstacles to constructing systems with the
kind of energy landscape discussed above, known as a
self-correcting quantum memory, using local stabilizers
in two dimensions [28,29]. However, these results do not

rule out the construction of an energy landscape for which
low-weight operators are penalized according to their
weight but higher-weight operators are not. Such a code
would exhibit string tension that ‘‘snaps’’ after the string
length grows too long and would likely provide enhanced
protection over standard codes. It might be constructed
as in Eq. (24) by choosing the energy penalties so that
high-weight stabilizers cancel, as we did in Sec. IVB to
construct the protected logical operators. Furthermore,
although the restriction to two-dimensional (planar) codes
may be appealing from an engineering perspective, self-
correcting lattice codes in four (and perhaps three) spatial
dimensions do exist [30–34]. Embedding such higher-
dimensional codes into two dimensions requires nonplanar
connectivity, but this is not necessarily unrealistic;
superconducting qubit systems routinely construct
nonplanar interaction graphs by coupling distant qubits
with wires [35].

VI. DISCUSSION

This work arose from our attempts to answer the ques-
tion, ‘‘Can AQC be made fault tolerant?’’ We began with-
out a clear picture of what ‘‘fault tolerance’’ should mean
in the adiabatic context. Taking cues from the theory of
circuit-model fault tolerance, we believed that developing
a clear understanding of error suppression and error cor-
rection in AQC would be a necessary first step, whatever
the ultimate definition turned out to be. In this paper, we
have presented such a framework, investigating relation-
ships between error-suppression methods and describing a
serious challenge to adiabatic error correction. Through
the methods of protected Hamiltonians and local cooling,
we have even suggested techniques for avoiding these
obstacles and correcting errors without resorting to
circuit-model gates or syndrome measurements.
However, our analysis falls short of establishing a

threshold theorem for adiabatic fault tolerance. We can-
not prove fault tolerance because controlling the encoded
AQC (using slowly varying Hamiltonians rather than fast
gates) seems to require high-weight Hamiltonians. These
Hamiltonians are not available in any feasible technology,
to our knowledge. We are therefore unable to propose a
feasible control protocol and so have no credible model to
describe control errors. Without a plausible error model,
we cannot attempt to prove fault tolerance or calculate a
threshold. If in the future the implementation of protected
logical Hamiltonians is shown to be practical, then it
may become possible to construct fault-tolerant logical-
operation protocols and to prove the existence of a thresh-
old. But, absent such a breakthrough, logical Hamiltonians
on encoded qubits appear to require unphysical resources,
leaving us pessimistic that any form of fault tolerance will
ever be achieved in a purely adiabatic model of quantum
computation.
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This conclusion rests on several assumptions. We now
list these assumptions, and the limitations in our analysis,
in the hope that future work may find ways to circumvent
the obstacles identified here.

First, we have assumed that protecting AQC from noise
will require the use of high-distance stabilizer codes. This
assumption is motivated by fault tolerance in the circuit
model, which depends critically on the use of high-distance
quantum codes, because the computation must be robust to
a constant (albeit low) density of errors. In the adiabatic
setting, high-distance codes lead directly to two specific
problems: (i) The encoded logical Hamiltonian quickly
transforms correctable errors into uncorrectable logical
errors, and (ii) the logical operators that comprise the
encoded Hamiltonian necessarily have high weight. Our
work suggests a solution to problem (i), but problem (ii)
poses a greater challenge. In the circuit model, high-weight
logical operators are implemented by performing many
one- or two-qubit unitaries in parallel. Although such
sequences are more complicated than unencoded gate op-
erations, the (linear in N) increase in gate complexity is
far outweighed by enhanced (exponential in N) resilience
against noise. In the adiabatic model, however, logical
operations are implemented as Hamiltonians—not uni-
taries. And, whereas high-weight unitaries can be
implemented in Oð1Þ time using parallel gates, there is
no comparable way to apply high-weight Hamiltonians.
Solving this issue will likely require significant adva-
nces. Perturbative gadgets can approximate high-weight
Hamiltonians with only weight-two interactions but intro-
duce unprotected gauge qubits to the system. Furthermore,
the published analyses [36] of gadget perturbation theory
require couplings that scale exponentially with the operator
weight, although perhaps more sophisticated gadget per-
turbation theories can be developed that reduce this pen-
alty. Even more desirable (although correspondingly less
likely) would be the development of qubits whose domi-
nant interactions are naturally high weight [37]. Should
this obstacle be overcome, our construction of protected
logical operators (Sec. IVB) will be highly relevant.

Second, we have assumed that the only available error-
correction mechanism is local cooling. The local nature of
the cooling is clearly physically motivated, but local cool-
ing can only drive single qubits and act upon local infor-
mation [11]. It is possible that a more sophisticated cooling
mechanism that acts on multiple qubits in a neighborhood
(similar to a continuous-time error-decoding algorithm)
could be constructed. Such a mechanism might obviate
the need for a monotonic energy landscape, as stated in
Sec. V. However, we have no constructive ideas for im-
plementing such a cooling mechanism at this time.

Finally, an overriding assumption in this whole work is
that elements of the circuit model, like fast gates and
measurements, are not available. Of course, one could
begin incorporating more elements of the circuit model

in order to implement error correction. However, in that
case, the model of computation begins to look more and
more like the circuit model itself. If fault-tolerant AQC
demands development of all the resources required for
computation in the circuit model, why bother with AQC
at all?
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APPENDIX A: SUBSYSTEM STRUCTURE
OF PROTECTED HAMILTONIAN

The protected Hamiltonians defined in Eq. (21) naturally
induce tensor-product decomposition on the system Hilbert
space into a logical subsystem H log and a syndrome

subsystem H synd:

�H sys ¼ ðH log �H syndÞ 	H uncorr: (A1)

Correctable eigenstates of the system jn; k;�it may be
written in this context as jn; ki � j�it. If the Hamiltonian
is encoded as in Eq. (22), then its action on any correctable
state is

�H p
AQCðtÞjn; ki � j�it ¼ �n;kjn; ki � j�it: (A2)

Thus, the protected logical operators themselves inherit
this tensor-product structure when acting on correctable
states:

�L p ¼ X
�

E�
�LP0E� ! L � In�k; (A3)

where �L is any logical operator of the code, and In�k is the
identity operator on the 2n�k-dimensional syndrome space.
Assuming a perfect code, a set of operators may be con-
structed that acts as Pauli operators on the syndrome bits.
The stabilizer generators of the code may be interpreted as
the Pauli Z operators on the syndrome bits:

Sj ! I � Zj: (A4)

Pauli X operators flip stabilizer bits without introducing a
phase and so may be constructed asX

�

E�	jP0E� ! I � Xj: (A5)

And, the Pauli Y operators can be constructed using the
Pauli relation iXZ ¼ Y:
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i
X
�

E�	jP0E�Sj ! I � Yi: (A6)

These operators now allow us to represent any physical
Pauli operator in terms of its action on the logical and
syndrome degrees of freedom. Any logical operator of the
code L may be written as L ! L �O for some operator O
that acts entirely on the syndrome space. Because the
protected operators take the form L � I, we may determine
O by multiplication:

LpL ! ðL � IÞðL �OÞ ¼ I �O: (A7)

Using this decomposition, one may easily see why sums of
logical operators do not necessarily act on syndrome sub-
spaces in the same way as they do on the code space: Their
associated syndrome operator is different.

1. Example: [[5, 1, 3]] code

Consider the quantum [[5, 1, 3]] code, defined in terms
of the stabilizer generators

S1 ¼ IXZZX; (A8)

S2 ¼ XIXZZ; (A9)

S3 ¼ ZXIXZ; (A10)

S4 ¼ ZZXIX (A11)

and logical operators

�X ¼ XXXXX; (A12)

�Z ¼ ZZZZZ: (A13)

In the tensor-product basis defined above, these logical
operators take the form

�X ! X � 1
4ð�IIII þ IIIZþ IIZI þ IIZZþ IZII

� IZIZþ IZZI þ IZZZþ ZIII � ZIIZ� ZIZI

� ZIZZþ ZZII � ZZIZþ ZZZIþ ZZZZÞ;
�Z ! Z � 1

4ð�IIII þ IIIZþ IIZI � IIZZþ IZII þ IZIZ

� IZZI � IZZZþ ZIII þ ZIIZþ ZIZI

þ ZIZZ� ZZII þ ZZIZ� ZZZIþ ZZZZÞ:

The syndrome parts of these operators are different and
thus will behave differently on each syndrome subspace.
To correct this behavior, we introduce the protected opera-
tors, defined by Eq. (22), which in this case take the form

�Xp ¼ �IIZXZ� IXIYY � IYYIX � IZXZI � XIYYI

� XXXXX� XYZZY � XZIIZ� YIXIY

� YXYZZ� YYIXI � YZZYX � ZIIZX

� ZXZII� ZYXYZ� ZZYXY;

�Zp ¼ �IIYZY � IXXIZ� IYZYI � IZIXX � XIZIX

� XXIZI � XYYXZ� XZXYY � YIIYZ

� YXZXY � YYXZX � YZYII � ZIXXI

� ZXYYX � ZYIIY � ZZZZZ:

These operators in the tensor-product basis are simply
Xp ! X � I and Zp ! Z � I. These operators act consis-
tently but require the use of high-weight operators.
However, if we add up the minimum-weight versions of
each logical operator, we have

�X3 ¼ �IIZXZ� IXIYY � IYYIX � IZXZI � XIYYI

� XZIIZ� YIXIY � YYIXI � ZIIZX � ZXZII

! X � ð2P0 þ I4=2Þ;
�Z3 ¼ �IIZXZ� IXIYY � IYYIX � IZXZI � XIYYI

� XZIIZ� YIXIY � YYIXI � ZIIZX � ZXZII

! Z � ð2P0 þ I4=2Þ:
Because the syndrome part of these operators is the same,
these operators act consistently across subspaces, avoiding
the problems we described above. It remains an open
question whether such low-weight constructions exist for
higher-distance codes.

APPENDIX B. GENERALIZED FILTER
FUNCTIONS FOR THE SINGLE-QUBIT CASE

The relationship between DD and EGP is nicely illus-
trated by a single-qubit example. We shall consider a
single-qubit evolution in the presence of pure dephasing
noise. Note that for a single qubit, the error-detection code
allows us to stabilize a single state (jþi or j�i in the
example below) rather than a subspace. The Hamiltonian
describing noisy qubit evolution is

HðtÞ ¼ 1
2cðtÞ�x þ 1

2
ðtÞ�z: (B1)

Here, cðtÞ is the control field that could either implement
DD or EGP, and 
ðtÞ is the stochastic noise. Dynamical
decoupling proceeds by applying a sequence of X-type
pulses to perturbatively decouple the noise, while EGP
introduces a time-independent energy penalty for noise-
induced error transitions. We consider a classical approxi-
mation of the system-bath coupling and represent the bath
fluctuations as a classical stochastic process. Taking this
simplification is not strictly necessary for what follows, but
we do so for clarity. In the toggling frame, this Hamiltonian
takes the form
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~HðtÞ ¼ 1

2

ðtÞ�z exp

�
�2i

Z t

0
cðsÞds�x

�
: (B2)

Defining the fidelity as the probability of finding the state
in the jþi state after the evolution,

F ð�Þ ¼ hjhþjUð�Þjþij2i
;

where h�i
 indicates a classical stochastic average over

instances of the noise 
ðtÞ. To first order in the Magnus
expansion [38], the effective unitary operator is

UðtÞ ’ exp

��i

2

Z �

0
ds
ðtÞfcos½�ðsÞ��z þ sin½�ðsÞ��yg

�
;

where �ðtÞ ¼ R
t
0 cðsÞds. The fidelity is then

F ð�Þ ¼
�
1

2
cos2

�Z �

0
ds
ðtÞfcos½�ðsÞ��z

þ sin½�ðsÞ��yg
��




¼ 1

2
þ 1

2
exp

�
� 1

2

Z t

0
ds1

Z s1

0
ds2h
ðs1Þ
ðs2Þi


� cos½�ðs1Þ � �ðs2Þ�
�

¼ 1

2
þ 1

2
exp

�
�

Z 1

�1
d!Sð!ÞFð!Þ

�
;

where the filter function is defined as

Fð!; �Þ ¼ 1

!2

Z �

0
ds1

Z �

0
ds1 cos½�ðs1Þ � �ðs2Þ�

� cos½ðs1 � s2Þ!�:

For EGP, �ðtÞ ¼ !t, while for dynamical decoupling,
�ðtÞ ¼ nt�, where nt is the number of � pulses applied
up to time t. The resulting filter functions are shown in
Fig. 2. Note that for dynamical decoupling with hard
pulses, the effective Hamiltonian converges at first order
in the Magnus expansion. Higher-order terms will appear
for the continuous driving case but will be negligible for
weak noise and short time.

[1] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and
Michael Sipser, Quantum Computation by Adiabatic
Evolution, arXiv:quant-ph/0001106.

[2] A.M. Childs, E. Farhi, and J. Preskill, Robustness of
Adiabatic Quantum Computation, Phys. Rev. A 65,
012322 (2001).

[3] F. Gaitan, Simulation of Quantum Adiabatic Search in the
Presence of Noise, Int. J. Quantum. Inform. 04, 843
(2006).

[4] M. Tiersch and R. Schützhold, Non-Markovian
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