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Stromatolites can grow under the influence of microbial processes, but it is often unclear whether and

how the macroscopic morphology of these rocks records biological processes. Conical stromatolites,

which formed in the absence of sedimentation, provide a comparatively simple record of the interplay

between microbial growth and lithification. Here, we show that the dynamics shaping conical stromato-

lites result from diffusive gradients within the overlying microbial mat. These gradients cause minerals to

precipitate faster in regions of high curvature, resulting in measurable properties of the shapes of

stromatolite laminas. This model allows us to estimate the thickness of ancient stromatolite-forming

mats to be approximately 1 mm, consistent with modern systems. Proceeding from the assumption that

the ubiquitous process of diffusion is recorded in the translating form of a stromatolite, we derive the

shape of a diffusion-driven stromatolite. The conical morphology—a distinctive feature of stromatolites

growing in the absence of sedimentation—arises from these dynamics. This form is quantitatively

consistent with the shape of conical stromatolites that grew for more than 2:9� 109 yrs of Earth history.
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I. INTRODUCTION

Laminated, lithified sedimentary rocks called stromato-
lites are commonly regarded as Earth’s earliestmacroscopic
fossils [1–3]. The formation of petrified stromatolites in-
volves mineral precipitation and sedimentation that can be
influenced by microbial activity [4,5]. The resulting mor-
phology of a stromatolite is therefore a consequence of the
coupling between biotic processes such as mat growth and
abiotic processes such as mineralization [3]. Given this
interpretation of stromatolite growth, it is natural to ask
what, if any, biological information is recorded in the shape
of a stromatolite [6–8].

Much recent work has focused on understanding the
growth of a particularly simple class of stromatolites that
develops a conical morphology [8–11], examples of which

are shown in Fig. 1. Because conical stromatolites typically
grew in quiet, sediment-poor conditions, this morphology
is one of the dynamically simplest types of stromatolites
[5,12,13]. This form has persisted over approximately
three-fourths the age of Earth [1,6,10,11,14,15].
Shall we conclude from this startling uniformity of form

that the biological and environmental processes shaping
conical stromatolites have been similarly constant? In this
paper, we suggest an alternative possibility. The geometry
of a conical stromatolite does not reflect the influence of
any single biological or environmental factor but rather a
geometric feature of the dynamics common to a class of
processes. Here, we show that this class is defined by
diffusion through a thin film.
Understanding the growth dynamics of rocks that stopped

growing billions of years ago seems a daunting task.
Fortunately, the color and texture of the precipitated minerals
record stromatolite growth. The local physical and chemical
conditions and the biological makeup of the microbial mat
influence the color and the texture of the precipitating miner-
als [16–19]. Changes in chemistry or microstructure lead to
bands of mineral called laminas. Periodic (e.g., seasonal)
changes in chemistry and mat microstructure produce a
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periodic series of laminas. The shape of the resulting bands
thus records the position of the growing surface of the stro-
matolite. The spacing between laminas records the amount of
mineral precipitation. This record of stromatolite shape and
growth allows one to test growth models [7,20].

The conical form of many stromatolites suggests
that they were shaped by a common class of dynamics.
To investigate this possibility, we first identify a physical
process that may have shaped stromatolites and then
develop an idealization of a stromatolite shaped only by
this process that is amenable to mathematical analysis.
This mathematization has two great advantages. First, it
connects qualitative intuition of processes that may shape a
stromatolite to a quantitative prediction for the shape of a
stromatolite. By comparing this prediction to observations,
one can evaluate the utility of the hypothesis. Moreover,
and perhaps more importantly, by expressing this hypo-
thesis mathematically, this analysis identifies the set of
processes which produce indistinguishable stromatolites.

II. A HYPOTHESIS AND ITS TEST

We hypothesize that conical stromatolites are shaped by
the diffusive gradients forming within the overlying micro-
bial mat. Most conical stromatolites grew by the precipi-
tation of calcium carbonate within a microbial mat [3].
A priori, it is difficult to know which step in mineral
precipitation was rate limiting billions of years ago without
knowing the local pH and concentrations of Ca2þ and
inorganic carbon species. However, when mineral precipi-
tation requires the presence of a mat and occurs below the
surface of the actively growing biomass, it is reasonable to
suspect that the limiting step was the transport of mole-
cules through the mat. Because the relatively inefficient
process of molecular diffusion is the primary mechanism
of mass transport within a microbial mat [21,22], stromatolite
growth was likely limited by the diffusion of some molecule
through the microbial mat. This mundane observation has an
important implication: Diffusion through a microbial mat
couples the growth of precipitated stromatolites to the
geometry of the overlying mat.
To test this hypothesis, we reduce stromatolite growth to

an analogous physical problem that can be analyzed and
understood using techniques from continuum mechanics.
As illustrated in Fig. 2(a), in this idealization, a stromato-
lite grows at a rate proportional to the diffusive flux of a
chemical at the base of the mat.
Once idealized, the analysis of a growing stromatolite is

guided by a large literature on physical systems in which
an interface grows in response to its environment [23–27].
The principal observation that simplifies this analysis is

FIG. 1. Conical stromatolites from the Archean and Proterozoic,
as seen in the field and in thin sections. (a) A side view of a rock
formed by many small conical stromatolites from the Pongola
Supergroup [38]. The scale bar is 1 cm. (b) Thin section of a
stromatolite from (a). The scale bar is 0.5 cm. (c) Large conical
stromatolite from the Bakal Formation [39]. The hammer is ap-
proximately 30 cm long. (d) Thin section of a large cone from the
Bakal Formation showing thin bands called laminas. These changes
in color and texture record the shape and position of the stromatolite
surface at different points in time. The scale bar is 1 cm.

(a) (b)

FIG. 2. A schematic of a simplified stromatolite. (a) The stro-
matolite grows as chemicals diffuse through the microbial mat
and precipitate at the base of the mat. The thickness d of the mat
varies over the surface of the stromatolite. The shape of the
interface between the microbial mat and the stromatolite is
described by the local curvature H. At the tip of an axisymmetric
stromatolite, H�1 is the radius of curvature. (b) The transforma-
tion from Cartesian coordinates to the local coordinates of the
surface fðx; yÞ. The unit vectors ŝ1 and ŝ2 are tangent to the
surface. The vector n̂ is the local normal. The position of the red
circle on the stromatolite surface can be expressed in Cartesian
coordinates as ½x0; y0; fðx0; y0Þ� or in the local coordinates as
ðs1; s2; 0Þ, where s1 and s2 are measured along the stromatolite
surface from some known point. For the sake of illustration, we
have shown f as a paraboloid.
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that microbial mats are typically thin relative to the size
of a stromatolite. As a result, the largest diffusive gradients
in the microbial mat are normal to the surface of the
stromatolite. The rate at which a stromatolite grows is
therefore primarily influenced by processes on the scale
of the thickness of the mat.

This insight leads us to hypothesize that the steady-state
shape of a stromatolite primarily records the influence of
diffusion through a thin film. According to this ansatz, the
steady-state shape can be approximated by the translating
form predicted by diffusion alone, while the stability of
this form may depend on the particular chemical and
biological environment. The conical shape predicted by
this model is in good quantitative agreement with the shape
of precipitated stromatolites as old as 2:9� 109 yrs.

Moreover, we show that the shape of a stromatolite
records the thickness of the former overlying mat. The
estimated thickness of stromatolite-forming microbial
mats is consistent with modern systems. The agreement
between theory and observation leads us to conclude that
the conical form of many stromatolites arises from the
ubiquitous process of diffusion through a thin film. The
fluctuations from this general form may give insight into a
specific environmental and biological process shaping a
particular stromatolite.

III. TIME SCALES OF STROMATOLITE GROWTH

There are three time scales relevant to the growth of a
stromatolite. The first is the typical time for the diffusion of
small molecules through the mat �d. For a microbial mat of
thickness d0, the diffusive time scale is �d � d20=D, where

D is the diffusion coefficient of small molecules or ions in
the mat. Taking D� 10�6 cm2=s [22] and d0 � 10�1 cm
[28], the diffusive time scale is �d � 1 h. The second
important time scale is the time �g over which the micro-

bial mat grows. Although estimating the doubling time of
bacteria billions of years ago is far from trivial, a reason-
able guess is between tens of hours and weeks. The third
time scale is the rate at which the stromatolite grows by the
precipitation of minerals. This time scale is also difficult to
estimate in ancient samples, but the rate of mineral pre-
cipitation c0 can be assumed to be small, compared to the
growth of bacteria. In particular, the time scale �s over
which the stromatolite grows is �s � d0=c0 � �g. This

separation of time scales holds if c0 � 1 cm=yr. For
comparison, the typical accumulation rate of carbonate
platforms in the Phanerozoic is c0 � 0:01 cm=yr [29].

According to this scaling, stromatolites grow quasistati-
cally. Because �d � �g, on the time scale over which a

microbial mat grows, the concentration gradients of chemi-
cals in the mat are in the steady state. Similarly, because
�g � �s, on the time scale over which the stromatolite

grows, the shape of the microbial mat is constant in time.
The separation of time scales greatly simplifies the

problem of stromatolite growth by breaking growth into

three parts. In the next section, we explore how the steady-
state concentration of chemicals diffusing through a thin
microbial mat is influenced by the shape of the mat. Given
this result, we then deduce the rate of mineral precipitation.
Finally, we use the resulting growth equation to derive the
shape of a stromatolite.

IV. DIFFUSION THROUGH ATHIN
MICROBIAL MAT

We shall assume throughout this paper that the rate of
mineral precipitation is limited by the diffusion of some
chemical through the microbial mat. There are two candi-
date process that could lead to diffusion-limited growth.
First, stromatolite growth could be limited by the diffusive
flux of ions related to the precipitation of minerals.
Alternatively, the rate of mineral precipitation could be
limited by the rate at which the degradation of bacteria
provides nuclei for heterogeneous precipitation [30,31].
In this case, the rate of mineral precipitation scales with
the turnover time of bacteria living at the base of the
microbial mat. If the bacteria are limited by the diffusion
of some nutrient through the mat, the turnover time of the
population scales with the flux of this nutrient to the base of
the mat. In the Appendix, we show how a simple model of
mat growth results in increased rates of both growth and
degradation where the diffusive flux of nutrients is higher.
In both of these cases, the rate of mineral precipitation is
expected to scale with a diffusive flux at the base of the
mat. In this section, we use the diffusion equation to under-
stand how diffusive transport through a thin mat is affected
by the shape of the mat.
According to the diffusion equation, the concentration c

of a chemical changes in time t according to the equation

@c

@t
¼ Dr2c ; (1)

where D is the diffusion coefficient in the microbial mat.
As discussed in the previous section, because the time
scales over which both the microbial mat and the stromato-
lite grow are much longer than the diffusive time scale, the
concentration of c is always in the steady state. Thus, to
find the rate at which minerals precipitate, we must solve
the equation

r2c ¼ 0 (2)

in the geometry of a microbial mat.
To solve Eq. (2) around a stromatolite, we move to a

coordinate system in which the shape of the stromatolite is
simply expressed. The transformation to the local coordi-
nate system [32] of the stromatolite is illustrated in
Fig. 2(b). In this coordinate system, the basis vectors are
ŝ1, ŝ2, and n̂. The coordinates s1 and s2 are distances
measured along the surface of the stromatolite in the ŝ1
and ŝ2 directions, respectively. The third coordinate n is the
distance normal to the surface of the stromatolite. In this
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coordinate system, the surface of the stromatolite is n ¼ 0
and the surface of the mat is n ¼ dðs1; s2Þ, where dðs1; s2Þ
is the local thickness of the mat.

As an elegant and accessible discussion of the Laplacian
r2 and its representation in curved coordinate systems is
presented by Reilly [33], we will simply quote the final
result of this coordinate change. Close to the stromatolite
surface, Eq. (2) can be expressed as

@2c

@n2
þ 2H

@c

@n
þr2

sc ¼ 0; (3)

where H is the mean curvature [32,33] of the stromatolite
surface. If the shape of a surface near a particular point p is
described by the two radii of curvature R1 and R2, then the
mean curvature at p is H ¼ ðR�1

1 þ R�1
2 Þ=2. Where

H > 0, the surface of the stromatolite is curved outward
(e.g., at the apex of a conical stromatolite). Similarly,
regions where H < 0 are indentations. To make it clear
that H varies over the surface, we will simply refer to it as
the ‘‘curvature.’’ The surface Laplacian r2

sc describes the
flow of c parallel to the surface of the stromatolite [33].
For reference, the mean curvature of a sphere of radius
r is H ¼ 1=r. In this special case, Eq. (3) reduces to the
usual representation of the Laplace operator in spherical
coordinates.

Because the stromatolite grows in response to molecules
diffusing from the surface of the stromatolite to the surface
of the mat and vice versa, the largest gradients in concen-
tration are normal to the surface of the stromatolite. To
demonstrate this proposition, we rescale every quantity in
Eq. (3) by its typical value. Rescaling the concentration c
by the difference in concentration between the surface of
the mat, where c ¼ c 1, and the surface of the stromato-
lite, where c ¼ c 0, gives the dimensionless concentration

� ¼ c � c 0

c 1 � c 0

: (4)

By construction, � ¼ 0 at the surface of the stromatolite
and � ¼ 1 at the surface of the mat. Rescaling the curva-
ture H by the typical radius of curvature R0 gives the
dimensionless curvature

� ¼ R0H: (5)

Next, we rescale the coordinates s1, s2, and n by the
typical length scales over which c varies. Parallel to the
surface, the length scale over which c varies is the char-
acteristic size of the stromatolite. We therefore define the
dimensionless coordinates

�i ¼ si
R0

; (6)

where i ¼ 1; 2. Normal to the surface (i.e., along n̂), c
varies over the characteristic thickness of the microbial mat
d0. Defining the dimensionless normal coordinate �,

� ¼ n

d0
: (7)

Reexpressing Eq. (3) in terms of these dimensionless
quantities yields

@2�

@�2
þ 2

�
d0
R0

�
�
@�

@�
þ

�
d0
R0

�
2r2

s� ¼ 0: (8)

Thus, when the microbial mat is thin relative to the size of
the stromatolite (i.e., d0 � R0), the concentration � is a
solution to the one-dimensional equation

@2�

@�2
þ 2��

@�

@�
¼ 0; (9)

where � ¼ d0=R0 � 1.
Physically, Eq. (9) means that the dimensionless

concentration and flux of molecules diffusing through a
thin microbial mat are only weakly influenced by the
macroscopic shape of the mat (e.g., conical). The rate of
precipitation is primarily influenced by the local geometry
of the mat, as characterized by the dimensionless curvature
�. In the following sections, we will use this result to relate
the shape of a stromatolite and the overlying microbial mat
to the rate of mineral precipitation.

V. MICROBIAL-MAT THICKNESS

To test the central hypothesis of this paper, that stroma-
tolites are shaped by diffusive gradients in the overlying
microbial mat, one must relate the geometry of a microbial
mat to the shape of the underlying stromatolite.
The focus of this work is on what is common to pre-

cipitated stromatolites growing throughout Earth history.
Because these stromatolites occurred throughout the last
3:4� 109 yrs of Earth history—both before and after such
basic environmental changes as the rise of oxygen—it is
unlikely that any single model of mat growth is appropriate
for all precipitated stromatolites. The difficulties in deter-
mining an interface growth equation describing the evolu-
tion of stromatolites become particularly apparent when
one considers the different hydrodynamic environments in
which stromatolites grew. Assuming flow velocity of at
least several centimeters per second, meter-scale stroma-
tolites grew in turbulent environments. Centimeter-scale
stromatolites, by contrast, grew in laminar flows. Because
the environments of small and large stromatolites differ
qualitatively, it is likely that the dynamics by which an
initially flat mat grows small stromatolites differ qualita-
tively from the dynamics by which meter-scale cones form.
Consequently, we take an extremely general model of
microbial-mat growth in which to consider the ubiquitous
process of diffusion within the mat.
In this section, we assume that there is some nonsingular

relationship between the curvature of the mat and the
thickness it can grow. For illustrative purposes, an
example of how nutrient limitation can give rise to such
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a relationship is included in the Appendix. Although the
physical processes shaping a microbial mat depend on the
particular environment, it is likely that these processes can
be simply expressed. In general, the thickness of a micro-
bial mat is determined by many factors, including the flow
of water around the mat [34,35] and the flow of nutrients
into the mat [36]. Because these factors depend on the
curvature of the mat, it is sensible to suspect that the
thickness of a mat is a function of the dimensionless
curvature ��. Because � � 1, the dependence of mat
thickness dð��Þ on curvature can be approximated by a
Taylor series. Thus,

dð��Þ � dð0Þ þ @d

@�

���������¼0
��: (10)

For notational ease, this relation can be expressed as

d ¼ d0ð1þ ��d1Þ; (11)

where d0 is the thickness of the mat in the absence of
curvature and d1 ¼ ð@d=@�Þ=d0 is the correction to the
mat thickness due to curvature.

The generality of the relationship between curvature and
mat thickness comes with cost. The particular physical,
chemical, and biological processes shaping a microbial
mat growing in a particular environment doubtlessly influ-
ence the shape and scale of the resulting stromatolite. In
the current work, we shall not consider the processes
determining the scale of a stromatolite, how the shape of
a stromatolite grows from an initially flat mat, or the
stability of the resulting form to environmental perturba-
tions. The analysis of these aspects of stromatolite growth
requires a more specific experimental characterization of
microbial-mat growth that is not available at this point.

VI. GROWTH OF STROMATOLITES

The solution of the diffusion equation (9) in a microbial
mat requires two boundary conditions. Using the dimen-
sionless variables defined in Eqs. (4) and (7), the concen-
tration of the diffusing species reaches a constant value at
the base of the mat (i.e., � ¼ 0)

�ð0Þ ¼ 0 (12)

and at the surface of the mat (i.e., � ¼ 1þ ��d1)

�ð1þ ��d1Þ ¼ 1: (13)

Solving Eq. (9) subject to these boundary conditions, we
find

�ð�Þ ¼ �þ ��ð1� d1 � �Þ�þOð�2Þ: (14)

Because the rate of mineral precipitation is limited by
the rate at which � flows to the base of the microbial mat,
the flux of � at the surface of the stromatolite is propor-
tional to the rate at which minerals precipitate. Thus,
the dimensionless velocity c at which the surface of the
stromatolite grows outward is

c ¼ @�

@�

���������¼0
n̂ ¼ ½1þ ð1� d1Þ���n̂: (15)

The dimensionless speed c ¼ kck is measured relative to
the rate of mineral precipitation c0 in a flat mat. From
conservation of mass,

c0 ¼ D

�m

c 1 � c 0

d0
; (16)

where �m is the concentration of c in the precipitated
mineral, and, as before, D is the diffusion coefficient of
c in the microbial mat. Given a value of d1, Eq. (15)
describes the evolution of a stromatolite surface in time.
This derivation identifies two basic effects that shape

stromatolites. The first effect is related to how far chemi-
cals diffuse. Using dimensional variables, the diffusive flux
j at the surface of the stromatolite is j�Dðc 1 � c 0Þ=d.
Thus, where the overlying mat is thick, mineral precipita-
tion is slow. Consequently, when d1 > 0, the thickening of
the mat in regions of high curvature (i.e., �> 0) slows the
growth of the stromatolite. From Eq. (15), this effect
dominates when d1 > 1. The second effect is related to
the size of the interface through which chemicals diffuse.
In regions of positive curvature, chemicals flow to the
stromatolite through a larger mat surface than in regions
of negative curvature. This effect causes the stromatolite to
grow faster in regions of high curvature. According to
Eq. (15), when 0< d1 < 1, this effect dominates over the
first effect. When d1 < 0, both effects cause regions of
positive curvature to grow quickly. As the stromatolite
grows, perturbations to the shape of the flat mat vanish if
d1 > 1 and grow if d1 < 1. Thus, the stability of a precipi-
tated stromatolite shape depends on how the microbial mat
responds to the shape of the underlying surface. The
growth of a stromatolite from an initially flat mat, the
selection of a particular morphology, and the stability of
this form may be affected by lateral diffusion through the
mat surface, microbial migration toward favorable regions,
and flow of water around the stromatolite. Because these
phenomena are neglected in the current formulation
and are poorly constrained even in modern microbial
mats, model predictions may deviate systematically from
observations.

VII. COMPARISON TO ANCIENT
STROMATOLITES: LAMINATHICKNESS

In the previous section, we derived an equation
describing the time evolution of the shape of a stromatolite.
We now use the geometry of ancient stromatolites to test
this model.
Because the lamina records the position of the stromato-

lite surface through time, the shape and spacing of laminas
can be used to test models of stromatolite growth [7,20]. If
two nearby laminas represent the position of the stromato-
lite surface at 2 times separated by an amount of time �t,
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then the lamina thickness is ‘ ¼ c�t. Thus, variations in ‘
along a lamina record variations in c.

To test the growth model proposed in Eq. (15), we
measure the thickness and curvature of different points
along a lamina. From Eq. (15), the predicted width of a
stromatolite lamina is

‘ ¼ c0½1þ ð1� d1Þd0H��t: (17)

Thus, the lamina thickness is predicted to increase linearly
with lamina curvature. The ratio of the slope of this line to
the intercept is� ¼ ð1� d1Þd0. Assuming that ð1� d1Þ �
1, � gives an estimate of the thickness d0 of the ancient
microbial mat above the lithifying structure.

As shown in Fig. 3(b), lamina thickness is an increasing
function of curvature. Fitting these data to Eq. (17), we find
that the measured value of� ¼ 1:2� 0:6 mm is consistent
with the thickness d0 � 1 mm of many modern microbial
mats [28]. Two observations therefore support the hypothe-
sis of diffusion-limited growth. First, the observed func-
tional dependence of lamina width on curvature is at least
qualitatively consistent with the growth Eq. (15). Second,
the magnitude of one of the fit parameters � is consistent
with the thickness of modern microbial mats [28].

VIII. THE SHAPE OF A STROMATOLITE

Having found that stromatolite laminas grow faster in
regions of high curvature, we now ask how this process is

recorded in the shape of a stromatolite. In this section, we
determine the shape of a rotationally symmetric stromato-
lite growing at a constant speed ct in the ẑ direction under
the sole influence of diffusion. This derivation requires an
ansatz: The common translating form of a stromatolite
most strongly records the ubiquitous process of diffusion
through a thin film. While future work may understand the
dynamical basis for this assumption, we justify it through
comparison to observation.
When the stromatolite grows forward without changing

shape, the growth normal to the stromatolite surface bal-
ances the growth upward. An illustration of this mode of
growth is shown in Fig. 4. If 	 is the angle between the
normal vector and the growth direction, then c ¼ ct cos	.
Substituting this condition for translational growth into
Eq. (15) relates the orientation of a point on the stromato-
lite (i.e., 	) to the curvature at that point. In dimensional
form, this relation is expressed as

ct
c0

cos	 ¼ 1þ ð1� d1Þd0Hð	Þ; (18)

where Hð	Þ denotes the dependence of curvature on ori-
entation. This relationship can be reexpressed as a differ-
ential equation for the shape of the translating stromatolite.
To do so, we describe the surface of the stromatolite as a
surface of rotation fðrÞ, where r is the distance of a point
on the stromatolite surface from the central axis and fðrÞ is
the height of the stromatolite surface above some reference
point. Given these definitions, Eq. (18) becomes


�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f02

p ¼ 1��
rf00 þ f0ð1þ f02Þ
2rð1þ f02Þ3=2 ; (19)
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FIG. 3. The shape of stromatolite laminas records the stroma-
tolite’s evolution in time. (a) A 2:9� 109-yr-old conical stro-
matolite from the Pongola Supergroup in South Africa cut
vertically through the center. The transitions between light and
dark laminas record the shape of the stromatolite at different
points in time. The two solid blue curves represent the surface of
the stromatolite at different times. This curve was measured by
visually following the transition between a light lamina and a
dark lamina. (b) The width of a lamina increases (R2 ¼ 0:57,
p < 10�8) with curvature. Thus, the rate at which this stromato-
lite grew is an increasing function of curvature, consistent with
Eq. (15). The fit of the measured lamina width and curvature to a
straight line gives an estimate of the thickness of the overlying
microbial mat � ¼ 1:2� 0:6� 1 mm. Two additional laminas
from this sample are shown in the Supplemental Material.
Additional curvature-thickness plots are shown in Fig. 5 and
the Supplemental Material [41].

FIG. 4. A balance between curvature-driven growth and trans-
lational growth sets the shape of a conical stromatolite. (a) When
a curve fðrÞ (red parabola) evolves due to curvature-driven
growth, the normal velocity c is inversely proportional to the
mean of the two radii of curvature at that point. When a curve
translates forward, there is a geometric relationship between the
speed at which a point translates ct and the speed at which it
grows in the normal direction c. (b) The shape of the stromatolite
depends on two parameters. 
�1 is the dimensionless speed of
upward growth. The dimensional mat thickness � gives the
importance of curvature-driven growth. Values of � are given
relative to the thickness of the mat d0. The scale bar is 5d0.
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where primes represent a derivative with respect to r,
and 
 ¼ c0=ct is the dimensionless mineral precipitation
rate.

To determine the shape of a stromatolite growing under
the influence of diffusion, we solve Eq. (19) using the
Runge-Kutta method [37]. Because this equation is second
order, it requires two boundary conditions which specify
the height and slope at the apex. The first boundary con-
dition simply specifies the coordinate system; we take
fð0Þ ¼ 0. The second boundary condition specifies the
slope of the stromatolite near the apex. We consider only
smooth stromatolites (i.e., those without singularities in
curvature), which requires f0ð0Þ ¼ 0. This constraint is
motivated by observations of stromatolites, such as those
in Fig. 5, which show that many stromatolites evolved
toward a fixed point lacking singularities.

It is important to note that we have not shown that
Eq. (15) has a unique solution. Thus, a given stromatolite
could potentially grow into a number of distinct forms. It
follows from Eq. (19) that, when f0ð0Þ ¼ 0, f00ðrÞ is a
continuous function of f0ðrÞ and r, implying that a unique
solution for a rotationally symmetric steadily translating
exists. However, it is possible that a greater diversity of
steady-state solutions could exist if one relaxes the as-
sumption of a rotational symmetry of the final form. It is
possible that certain stromatolites could have grown with-
out ever reaching a translating, steady-state form or found a
nonaxisymmetric steady-state form or one with a finite
slope at the apex. Comparison of the solution of
Eq. (19) to ancient stromatolites—presented in the follow-
ing section—demonstrates that even if this analysis is
limited by assuming that the stromatolite is smooth and
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FIG. 5. Comparison of curvature-driven growth to the shapes of large and small conical stromatolites sectioned vertically through the
center. (a) Thin section through a 2:9� 109-yr-old conical stromatolite (photograph) [38]. Solid blue lines represent the upper and
lower boundaries of two laminas. The red points lay along a curve equidistant from the traced laminas. (b) Thin section of a 1:6� 109-
yr-old stromatolite from the Bakal Formation [39,40] with traced laminas. (c) The thickness of the upper laminas from (a) increases
with lamina curvature (R2 ¼ 0:81, p < 10�17, � ¼ 1:9� 0:7 mm), consistent with Eq. (15). (d) Similar agreement is found for the
lower lamina (R2 ¼ 0:64, p < 10�8, � ¼ 3:5� 1:7 mm) and in the (e) Proterozoic sample shown in (b) (R2 ¼ 0:88, p < 10�44,
� ¼ 9:7� 1:6 mm). (f),(g) Fitting two parameters, the measured shapes of the (f) upper and (g) lower laminas (points) are consistent
with the shape (solid curve) of a lamina growing by the curvature-driven growth equation (19). (f) Fit of the sample from (b) to
Eq. (19). All samples are cut through the central axis of the cone.
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axisymmetric, stromatolites consistent with this assump-
tion are represented in the rock record.

As shown in Fig. 4, the translating shape of a stromato-
lite growing by mineral precipitation is qualitatively simi-
lar to the shape of conical stromatolites. Two physical
processes influence the shape: mineral precipitation, as
characterized by 
, and diffusive gradients within the
microbial mat, as characterized by �. The conical shape
of a translating stromatolite represents a balance between
these two processes. An understanding of the shape follows
from two observations. First, where the surface is sharply
curved, diffusive gradients cause minerals to precipitate
quickly. Second, where the stromatolite is steeply sloped, a
little bit of mineral precipitation normal to the surface
causes a large amount of vertical growth. Thus, if a stro-
matolite is to retain its shape while growing vertically at a
constant speed, it must be relatively steep where it is less
curved. Because the stromatolite is smooth and symmetric,
at the center zone, f0 ¼ 0. Thus, near r ¼ 0, Eq. (19) can
be approximated as f00 ¼ 2ð
� 1Þ=�
 ¼ const. The apex
of a translating stromatolite is therefore a paraboloid, the
curvature of which is a decreasing function of �. All else
being equal, thinner mats should form more sharply curved
stromatolites. Far from the central axis, the curvature
becomes negligible. To compensate for the resulting de-
crease in the mineral precipitation rate, the side walls must
be steeper. Far from the central axis of the stromatolite,
Eq. (19) can be approximated as f02 ¼ ð1� 
2Þ=
2 ¼
const. Thus, far from the apex, the sides of the stromatolite
become straight lines. Combining the paraboloid apex with
the asymptotically straight side-wall limits, the translating
shape of a stromatolite has straight walls that curve to form
the apex. This balance gives the conical shape, where the
slope of the walls far from the apex records the rate of
mineral precipitation relative to the speed of upward
growth and the curvature at the apex records the thickness
of the microbial mat.

IX. COMPARISON TO ANCIENT
STROMATOLITES: LAMINA SHAPE

The predictions of Eq. (19) can be quantitatively
compared to the laminas of conical stromatolites. Here,
we use two examples: a small cone from the 2:9� 109-yr-
old Pongola Supergroup [38] and a considerably larger
cone from the approximately 1:5� 109-yr-old Bakal
Formation [39,40]. In either case, we characterize the
shape of a lamina by averaging the curves that mark the
upper and lower boundaries of the lamina, as described in
Sec. XI. As shown in Fig. 5, the lamina shape is in close
agreement with the two-parameter model described in
Eq. (19). The comparisons of theory and observation for
five additional samples [40] from these formations are
shown in the Supplemental Material [41].

As discussed in the previous section, the shape of the
overlying microbial mat affects the shape of the resulting

lamina. In particular, one of the fit parameters in Eq. (19) is
the estimated thickness of the ancient microbial mat �, the
same parameter estimated in Sec. VII. In Fig. 3, this
parameter is estimated from a comparison of thickness of
a lamina to the curvature. In this section, � is estimated
from the overall shape of the lamina (the red curve in
Fig. 5), without reference to the lamina thickness. To
distinguish between these estimates, �t is the thickness
of the mat estimated from the relation between lamina
thickness and curvature. In contrast, �s is the thickness
estimated from the shape of the curve, assuming that the
shape of the stromatolite is constant. Because these two
estimates rely on different measurements and assumptions,
the comparison of these estimates provides an important
self-consistency check of the curvature-driven growth
model.
As shown in Fig. 6, the estimates of mat thickness by

the two methods produce consistent results. Variations
between the estimates beyond the statistical uncertainty
reflect the influence of two types of error. First, because
the two estimates of mat thickness rely on different ap-
proximations, deviations from these approximations are
reflected in systematic errors in the estimated mat thick-
ness. In particular, the estimate of �s assumes that the
stromatolite translates forward at a constant rate without
changing form. In fact, the shape generally changes
slightly between neighboring laminas. This small change
gives corrections to the shape of the stromatolite which

FIG. 6. Two estimates of the thicknesses of ancient
stromatolite-forming microbial mats produce consistent values.
�t is estimated from the relation between the curvature of a
lamina and the distance to the neighboring laminas. �s is
estimated from the shape of a single lamina. The black line
shows equality. The measured slope is m ¼ 2:3� 1:6, consistent
with the predicted value m ¼ 1. The intercept b < 0 reflects that
�t is systematically larger than the estimate of �t. Solid blue
points represent stromatolites from the 2:9� 109-yr-old Pongola
Formation [38]. Open red points are from Proterozoic samples.
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influence the estimate of �s. The second source of error
arises from processes that may weakly influence the
growth of stromatolites such as the flow of water around
the mat and the migration of microbes along the mat.
Although these processes are not necessary to explain the
basic conical shape of the stromatolite, they may influence
the precise form. Ignoring these processes may introduce
small, but systematic, errors in the estimate of �.

We have found that the observed width and shape of
stromatolite laminas are consistent with curvature-driven
growth, and the two estimates of microbial-mat thickness
are broadly consistent. We conclude that the basic conical
form of many stromatolites records the influence of
diffusion.

X. DISCUSSION AND CONCLUSION

The central hypothesis of this paper is that the influence
of diffusion through a thin film is apparent in the shapes of
precipitated stromatolites. Diffusive gradients, extending
over the thickness of the microbial mat, cause mineral
precipitation to be faster in regions of high curvature.
Because the typical length scale of this effect is the thick-
ness of the mat, the shape of a precipitated stromatolite
records the thickness of the overlying microbial mat.
Comparing the thickness of a stromatolite lamina to the
curvature, we find that growth is faster in regions of high
curvature. Moreover, the shape of a stromatolite growing
upward under the influence of diffusion alone is consistent
with the observed shapes of conical stromatolites. Both of
these tests support the hypothesis that diffusion through a
thin film shaped stromatolites throughout Earth history.

Past studies of stromatolite morphogenesis have
considered two roles for diffusion [42]. In the first, lateral
diffusion of sediment [7,20] is included along with surface-
normal and vertical growth in the dynamics of stromatolite
growth. In the second, sediment grains are randomly ad-
vected by turbulent flows and become stuck when they
encounter a stromatolite [3,43]; the resulting growth is an
example of diffusion-limited aggregation [44]. In this
paper, we consider a new role for diffusion. We show
how diffusive gradients within a microbial mat shape the
resulting stromatolite.

Most models of stromatolite morphology begin by using
physical reasoning to motivate a particular growth model.
This model is then shown to reproduce observations. With
few exceptions [45], the parametrization of these models or
the comparison to data has made it difficult to compare
model parameters with modern systems. Consequently,
comparisons to observations are a much stronger test of
the functional form of the growth dynamics than of the
model interpretation. To gain a better interpretation of
fossils, we have adopted a slightly different approach.
We begin by showing how diffusive transport through a
microbial mat relates the shape of the underlying stromato-
lite to its growth and resulting form. By relating the shape

to a particular physical process, our results can be simply
compared to modern systems. In particular, the inferred
thickness of ancient stromatolite-forming microbial mats is
consistent with their modern counterparts.
The contribution of this paper is in understanding the

influence of diffusion alone upon the shape of stromato-
lites. Because diffusion through a thin film is common to
all precipitated stromatolites, its influence must be under-
stood before one infers the influence of biological and
environmental factors.
Although diffusion through a thin film is ubiquitous, it is

certainly not the only process that shapes stromatolites.
Indeed, curvature-driven growth alone is not sufficient to
understand the growth of an initially flat mat into a conical
stromatolite. Because this growth equation favors the
growth of all small, highly curved perturbations, these
dynamics cause an initially flat mat to grow into an
increasingly rough surface. In reality, lateral diffusion—
neglected in Eq. (8)—smoothes out bumps that form on the
scale of the microbial-mat thickness. Larger perturbations
are likely smoothed by the material properties of the
microbial mat and the behavior of microbes. For example,
because microbial mats cannot physically support arbi-
trarily steep features [45] and because phototaxis or growth
toward light causes bacteria to move out of shaded areas,
overhanging features may be selected against in photo-
synthetic mats. Because diffusion through a thin microbial
mat is common to many stromatolites, it is reasonable to
suspect that this process strongly influences the steady-
state shape of a stromatolite. We find that this suspicion is
supported by observation.
Our results lead us to conclude that the conical shape of

a precipitated stromatolite is a general feature of a class of
dynamics. While a record of evolutionary innovations
(e.g., photosynthesis) and environmental revolutions
(e.g., oxygenation of the atmosphere) may be found in
the precise variations in stromatolite form, the basic
conical shape is a poor indicator. Notably, this analysis
identifies a deep similarity between the growth of
stromatolites and the growth of stalactites [26] and icicles
[46]. In both of these systems, the interface grows in
response to diffusion through a thin film of water.
Despite the dramatically different environments, stromato-
lites, stalactites, and icicles all share a similar conical
shape. The shapes of stalactites and icicles are modified
from the form predicted by Eq. (15) by the flow of water
over the surface.
Although the basic conical form of stromatolites is con-

sistent with diffusion through a film, the comparison be-
tween any particular lamina and model predictions shows
substantial variability. The variability records the particu-
lar biological (e.g., phototaxis) and environmental (e.g.,
flow conditions) conditions that shaped ancient microbial
mats. Thus, the conditions shaping a particular stromatolite
may be most easily seen in their nonequilibrium growth
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and the deviations of the observed equilibrium shape from
the shape predicted by diffusion alone.

We now briefly review the characteristics of a microbial
mat that are recorded in the basic conical shape. We then
speculate on how certain biological and environmental
processes may be recognized in a more detailed analysis
of stromatolite form. Finally, we outline how a systematic
investigation of the shapes of stromatolites may reveal
additional biological and environmental processes that
shape stromatolites.

This study identifies two roles of the microbial mat in
shaping the stromatolite. First, the microbial mat prevents
water from flowing immediately around the precipitated
surface of the stromatolite, leading to the formation of the
diffusive gradients throughout the mat. The microbial mat
acts as a diffusive boundary layer around the stromatolite.
The typical thickness of this layer d0 � 1 mm. By way of
comparison, the thickness �� of the boundary layer in the

absence of a microbial mat is the length scale on which
viscosity balances inertia. If water flows around a stro-
matolite of height h at a speed u, then the thickness of the
boundary layer is determined by the scaling �u2=h�
�u=�2

�, where � is the density of water and � is the

viscosity. For a viscous boundary layer of thickness
�� � 1 mm around a stromatolite of height h ¼ 1 cm,

the flow must be u� 1 cm=s. Microbial mats may effec-
tively increase the thickness of the boundary layer.

Second, the microbial mat determines the time scale
over which the stromatolite grows. From Eq. (16), the
characteristic rate of mineralization is c0 / D=d0, where
the dimensionless proportionality coefficient depends
on the local chemistry and may be small. This observa-
tion informs the interpretation of lamina thickness.
Stromatolite laminas are thought to record the periodic
cycles of growth in a microbial mat and differences in
the arrangement of cells in the microbial mat [5,10].
Because the arrangement of cells in a mat may change
both D and d0, differences in lamina thickness record
differences in the parameters describing the microbial
mat. For example, if D is nearly constant in a microbial
mat, then the ratio of lamina thicknesses records the ratio
of mat thicknesses or cell densities. Future work would
benefit greatly from a detailed understanding of howD and
d0 change in response to ecological and physiological
variations in the mat.

We now briefly discuss how the shape of a stromatolite
may be modified by two phenomena. Our derivation as-
sumes that the water around the stromatolite is well mixed.
When stromatolites grow in still water [11], all of the basic
phenomena of curvature-driven growth remain; however,
they must be coupled to diffusion around the mat.
Similarly, interactions between distant parts of a microbial
mat can be mediated by an anisotropic flow. For example,
variations in the flow of water over the complex shape of a
biofilm can lead to systematic variations in the thickness of

the overlying diffusive boundary layer [47]. To take this
phenomenon into account, one must couple the diffusion
within the mat to advection and diffusion around the mat.
This effect is currently only considered for certain hetero-
trophic biofilms [48]. The coupling of mineral precipita-
tion to mat growth and the advection and diffusion of
chemicals in the surrounding water can also influence the
growth of the stromatolite in response to environmental
perturbations.
Another phenomenon that may have influenced the

shape of ancient conical stromatolites is the growth of
the microbial mat toward light [6,8]. To include this pro-
cess, one must understand how the average thickness of a
microbial mat is affected by photosynthesis and phototaxis.
One intuitive possibility is that a microbial mat is thicker
where the light intensity is higher. Thus, Eq. (11) may be
modified to include additional terms that depend on the
local slope of the stromatolite. Both of these corrections
may apply to some large stromatolites that grew in deeper,
subtidal settings, in the presence of weak currents [49].
To understand the diversity of stromatolite forms seen in

the fossil record, one must develop a quantitative descrip-
tion of processes other than diffusion that shaped stroma-
tolites. Two avenues of inquiry appear particularly
attractive. First, laboratory experiments can cast light on
the processes shaping modern microbial mats that form
precipitated stromatolites. In the simplest case, one might
measure how the shape of the mat surface changes as the
stromatolite grows. By combining these measurements
with models of nutrient flow, one may develop a quantita-
tive understanding of the relationship between the growth
of microbes and the growth of precipitated stromatolites in
different hydrodynamic environments. Second, the tran-
sient evolution of stromatolite morphology is recorded in
the shapes of preserved laminas. Growth in a randomly
fluctuating environment gives rise to small perturbations in
the shape of the stromatolite. The growth or decay of these
perturbations records the small-scale dynamics shaping the
stromatolite. It may be possible to extract the average
influence of fluid flow and the growth of the microbial
mat from the evolution of these perturbations.
By expressing the hypothesis that stromatolites are

shaped by diffusive gradients mathematically, this deriva-
tion identifies a class of biological, physical, and environ-
mental processes that produce indistinguishable forms.
Equation (15) was derived by considering the leading-
order influence of curvature on a diffusive flux, but its
functional form is more general. Whenever the rate of
mineral precipitation is coupled to diffusion through a
thin film, variations in the rate of mineral precipitation
can be expanded in powers of the small parameter d0H,
thus yielding Eq. (15). Practically, this observation means
that the conical shape of a stromatolite does not record any
single biological or environmental process but rather a
geometric feature common to a class of processes.
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In conclusion, we have found that diffusion-limited
growth connects mat form to stromatolite growth.
The comparison of the observed shape of laminas to the
predictions of curvature-driven growth validates this hy-
pothesis. The conical morphology of a stromatolite iden-
tifies it with a family of dynamical systems defined by
diffusion through a thin film. Because the conical mor-
phology is common to a class of biological and environ-
mental processes, one cannot infer from shape alone the
signature of any single biological or environmental
process. Future interpretations of conical stromatolites
should combine this result with additional textural and
sedimentological information to develop an understanding
of the processes shaping ancient systems. By recognizing
the shape of a conical stromatolite in a general, but
precise, mathematical form, this result identifies the dy-
namical basis for the ubiquity of conical stromatolites
throughout Earth history.

XI. MATERIALS: SELECTION OF LAMINAS

The lamina thickness and curvature are measured by
tracing the boundaries of a lamina. Laminas are traced
from thin sections of stromatolites that are cut vertically
through the central axis. Laminas are traced by eye from
the transition in color between a light band a dark band. In
practice, few laminas are sufficiently well preserved that
the transition between these bands can be traced for more
than a few millimeters. Moreover, because this analysis
requires both the curvature and thickness of a lamina, the
data are restricted to those laminas with clearly visible
upper and lower boundaries. Consequently, a single thin
section generally provides only a single usable lamina, and
no sample produced more than three laminas.

Because the estimate of curvature requires estimating
the second derivative of a curve, estimates of the curvature
are very sensitive to noise. To reduce the influence of
measurement noise, two laminas are averaged by finding
the curve passing exactly midway between the two traced
laminas. To do so, the distance of each point between the
two laminas from either lamina is measured. The average
lamina is then taken as the curve traced by the points that
are at a maximum distance from the boundaries. The
lamina thickness is measured normal to the averaged lam-
ina. For example, if the boundaries of two laminas are the
lines y ¼ �1, the point ðx0; y0Þ is a distance ‘m ¼ 1� jy0j
from the boundaries. Because ‘m reaches its maximum at
y0 ¼ 0, the shape of the average lamina is ya ¼ 0.

Recalling thatH is the curvature of the surface, its value
depends on the three-dimensional shape of the lamina.
To take into account the curvature of the lamina around
the apex, we approximate the stromatolite as rotationally
symmetric. Given this approximation, the curvature

H ¼ rf00 þ f0ð1þ f02Þ
2rð1þ f02Þ3=2 ; (20)

where r is the radial distance of a point on the lamina from
the central axis, and fðrÞ is the traced shape of the lamina.
The uncertainties in the estimates of lamina thickness and
curvature are estimated from the distribution of widths
measured for points with similar curvatures.
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APPENDIX: DYNAMICS OF BIOFILM GROWTH

This Appendix presents a derivation of the relationship
between the thickness of a nutrient-limited microbial mat
and the shape (Fig. 7). For the sake of simplicity, we
assume that the growth rate is

gðkÞ ¼ Aðk� k0Þ; (A1)

where k is the concentration of the limiting nutrient, k0 is
the minimum concentration needed for cell growth, and A
is a proportionality constant. At points in the mat where
k > k0, the mat grows. Where k < k0, there is degradation.
It is straightforward to adapt this derivation to incorporate
a more realistic growth equation. Because the results of this
derivation are not compared to observations, we use this
qualitatively correct model because it is analytically
tractable.
The equilibrium thickness of a mat is the thickness

at which degradation balances growth. This condition is
expressed mathematically by the integral condition

GðdÞ ¼
Z d

0
gðkÞdn ¼ 0: (A2)

Thus, to find the thickness of a microbial mat, we must first
solve for the nutrient profile through a mat.

FIG. 7. A toy model of mat growth. Nutrients (arrow) diffuse
through a microbial mat and are consumed. Near the nutrient-
rich mat surface, the mat grows. At the nutrient-poor mat
bottom, the mat decays. As described in Eq. (A15), mat thick-
ness is determined by the balance of growth and decay. The
equilibrium thickness varies with the curvature of the underlying
stromatolite.
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Nutrients flow through a microbial mat by diffusion
[21,22]. As a nutrient flows through the mat, it is consumed
by the constituent microbes. The balance between nutrient
diffusion and uptake in modern stromatolite-forming micro-
bial mats is accurately described by the equation

r2k ¼ k

�2
; (A3)

where � is the typical distance into the mat the nutrient
diffuses before being consumed [50]. This equation is solved
subject to two boundary conditions.At the surface of themat
(n ¼ d), the concentration reaches a constant value

kðdÞ ¼ k1: (A4)

At the base of the mat (n ¼ 0), there is no flow of limiting
nutrient into the underlying stromatolite

@k

@n

��������n¼0
¼ 0: (A5)

Given a solution of k through the mat, Eq. (A2) gives the net
growth rate of the mat.

To solve for the nutrient profile in the mat, we first
nondimensionalize the model. As in the derivation of
Eq. (9), the flow of nutrients simplifies considerably in a
thin film. Expanding Eq. (A3), we find

@2


@~�2
þ 2

�
�

R0

�
�
@


@~�
þ

�
�

R0

�
2r2

s
 ¼ 
; (A6)

where the dimensionless coordinate ~� ¼ n=�, and
the dimensionless nutrient concentration 
 ¼ k=k1.
Identifying the small parameter ~� ¼ �=R0, Eq. (A6)
becomes the one-dimensional equation

@2


@~�2
þ 2~��

@


@~�
¼ 
: (A7)

Solving for 
, subject to the boundary conditions (A4) and
(A5), we find


ð~�Þ ¼ cosh~�

cosh ~�
þ ~��

~� cosh~�þ sinh~�� ~� cosh~� tanh ~�

cosh ~�
;

(A8)

where the dimensionless mat thickness is ~� ¼ d=�.
Given this solution of the nutrient profile, we now calcu-

late the growth rate of the mat. Nondimensionalizing
Eq. (A2), the dimensionless growth rate of the mat is

�ð~�Þ ¼ G

k1�A
¼

Z ~�

0
½
ð~�Þ � 
0�d~�; (A9)

where 
0 ¼ k0=k1. Integrating, we find

�ð~�Þ¼�
0
~�þ tanh ~�þ ~��ð2�2sech ~�� tanh2 ~�Þ:

(A10)

From this equation, we find that when ~� � 1, � ¼
ð1� 
0Þ~� > 0. Physically, this result means that in a thin

mat, nutrients permeate the community, causing the mat to

grow. When ~� � 1, � ¼ �
0
~� < 0, causing the mat to

degrade and thus grow thinner. In this limit, nutrients only
penetrate into the surface of themat. Thus, in themajority of
the mat, 
 < 
0, causing the mat to degrade. There is,
therefore, an intermediate thickness of the mat at which
the growth rate of microbes at the surface exactly balances
the rate at which the mat is degraded. This intermediate
point gives the equilibrium thickness of a microbial mat. To
find the leading-order dependence of mat thickness on

curvature, we find the coefficients ~�0 and ~�1, such that

�ð~�0 þ ~��~�1Þ ¼ 0þOð~�2Þ: (A11)

Expanding Eq. (A10), we find that the characteristic thick-

ness of a microbial mat ~�0 is a solution of the equation


0 ¼ tanh ~�0

~�0

: (A12)

Moreover, the correction to the mat thickness due to curva-
ture is given by the coefficient

~� 1 ¼ 8 ~�0sinh
4ð~�0=2Þ

sinhð2 ~�0Þ � 2 ~�0

: (A13)

Equivalently, in dimensional form, the characteristic thick-
ness of the mat d0 is related to the minimal concentration of
nutrients necessary for growth through the equation

k0
k1

¼ � tanhðd0=�Þ
d0

: (A14)

Thus, the thickness of the mat is

d ¼ d0ð1þ �H ~d1Þ; (A15)

where, according to this model, the dimensionless
coefficient

~d 1 ¼ 8sinh4ðd0=2�Þ
sinhð2d0=�Þ � 2d0=�

: (A16)

Because d1 > 0, the mat grows thicker in regions of high
curvature. Because the thickness of the mat is constant, this
increase in growth rate must be balanced by increased
degradation deeper in the mat.
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