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Device-independent quantum key distribution (DIQKD) in its current design requires a violation of a

Bell’s inequality between two parties, Alice and Bob, who are connected by a quantum channel. However,

in reality, quantum channels are lossy and current DIQKD protocols are thus vulnerable to attacks

exploiting the detection loophole of the Bell test. Here, we propose a novel approach to DIQKD that

overcomes this limitation. In particular, we propose a protocol where the Bell test is performed entirely on

two casually independent devices situated in Alice’s laboratory. As a result, the detection loophole caused

by the losses in the channel is avoided.
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I. INTRODUCTION

The security of quantum key distribution (QKD) [1,2]
relies on the fact that two honest parties, Alice and Bob, can
devise tests—utilizing laws of quantum physics—to detect
any attack by an eavesdropper, Eve, that would compromise
the secrecy of the key strings they generate [3]. While the
theoretical principles of QKD are nowadays well under-
stood, it turns out that realizing QKDwith practical devices
is rather challenging. That is, the devices must conform to
very specific models; otherwise, the implementation may
contain loopholes that allow side-channel attacks [4].

In general, there are two broad approaches toward over-
coming such implementation flaws. The first is to include all
possible imperfections into the model used in the security
analysis. This approach, however, is quite cumbersome, and
it is unclear whether any specific model includes all practi-
cally relevant imperfections. In the second approach, which
is known as device-independent QKD (DIQKD) [5–9], the
security is based solely on the observation of nonlocal
statistical correlations; thus, it is no longer necessary to
provide any model for the devices (although a few assump-
tions are still required). In this respect, DIQKD appears
to be the ultimate solution to guarantee security against
inadvertently flawed devices and side-channel attacks.

DIQKD in its current design requires the two distant
parties, Alice and Bob, to perform a Bell test [10] [typi-
cally, the Clauser-Horne-Shimony-Holt (CHSH) test [11]],
which is applied to pairs of entangled quantum systems
shared between them. In practice, these quantum systems
are typically realized by photons, which are distributed via
an optical fiber. Hence, due to losses during the transmis-
sion, the individual measurements carried out on Alice and

Bob’s sites only succeed with bounded (and often small)
probability. In standard Bell experiments, one normally
accounts for these losses by introducing the fair-sampling
assumption, which asserts that the set of runs of the
experiment—in which both Alice and Bob’s measurements
succeed—is representative for the set of all runs.
In the context of DIQKD, however, the fair-sampling

assumption is not justified since Eve may have control
over the set of detected events. More concretely, she may
use her control to emulate quantum correlations based on a
local deterministic model; i.e., she instructs the detector to
click only if the measurement setting (chosen by the party,
e.g., Alice) is compatible with the prearranged values. This
problem is commonly known as the detection loophole [12].
In fact, for state-of-the-art DIQKD protocols, it has been
shown in Ref. [13] that the detection loophole is already
unavoidable when using optical fibers of about 5 km
length.
One possible solution to this problem is heralded qubit

amplifiers [14], which have been proposed recently. The
basic idea is to herald the arrival of an incoming quantum
system without destroying the quantum information it
carries. Then, only after receiving the confirmation, Alice
and Bob choose their measurement settings, which is
crucial for guaranteeing security. Unfortunately, realizing
an efficient heralded qubit amplifier that is applicable for
long-distance DIQKD is extremely challenging, although
there has been progress along this direction [15].
In this work, we take a different approach to circumvent

the detection loophole. We propose a protocol that com-
bines a self-testing scheme for the Bennett and Brassard
(BB84) states [1] with a protocol topology inspired by the
‘‘time-reversed’’ BB84 protocol [16–19]. Crucially, the
protocol only requires Bell tests carried out locally in
Alice’s laboratory, so that the detection probabilities are
not affected by the losses in the channel connecting Alice
and Bob. We show that the protocol provides device-
independent security under the assumption that certain
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devices are causally independent. (See below for a more
precise specification of the assumptions.)

In contrast to existing protocols for DIQKD, whose
security is inferred from the monogamy of nonlocal corre-
lations, the security of our protocol is proved using a recent
generalization of the entropic uncertainty relation that ac-
counts for quantum side information [20]. This is the key
ingredient that allows us to circumvent the need to bound
the nonlocality between particle pairs shared by Alice and
Bob. (Nonlocality over larger distances is hard to achieve,
as explained above.) Instead, the uncertainty relation solely
depends on the local properties of the states sent by Alice,
which, in turn, can be inferred from the local Bell test.

Technically, our security proof uses a relation between
the local CHSH test and a variant of the entropic uncer-
tainty relation for smooth entropies [21]. The analysis
applies to the (practically relevant) finite-size regime,
where the secret key is generated after a finite number of
channel uses. The resulting bounds on the achievable key
size are comparable to the almost tight finite-size result
[22] for the BB84 protocol. Furthermore, in the (commonly
studied) asymptotic limit where the number of channel
uses tends to infinity, and in the limiting case where the
CHSH inequality is maximally violated, the performance
of our protocol reaches the one of the BB84 protocol.

II. REQUIRED ASSUMPTIONS

As mentioned above, our goal is to impose only limited
and realistic assumptions on the devices used by Alice and
Bob. These are as follows.

First, it is assumed that Alice and Bob’s laboratories are
perfectly isolated; i.e., no information leaves a party’s
laboratory unless it is foreseen by the protocol.
Second, we assume that Alice and Bob can locally carry
out classical computations using trusted devices and that
they have trusted sources of randomness. Third, we assume
that Alice and Bob share an authenticated classical channel.
Finally, we require that the devices of Alice and Bob are
causally independent, that is, there is no correlation in their
behavior between different uses. This assumption, for in-
stance, is guaranteed if the devices have no internalmemory
or if their memory can be reliably erased after each use.

We remark that in very recent work [23–25], it has been
shown that this last assumption can be weakened further for
standard DIQKD protocols. More precisely, it is shown that
the assumption of causal independence can be dropped for
the repeated uses of a device within one execution of the
protocol. However, the assumption of causal independence
still needs to be made when the same devices are reused in a
subsequent execution of the protocol, as information about
previously generated keys may otherwise leak [26].

III. PROTOCOL TOPOLOGY

In this section, we describe the basic idea and the
main structure of the QKD scheme we propose. The

actual protocol will then be detailed in the next
section.
Our proposal is motivated by the time-reversed BB84

protocol [16–19]. This protocol involves a third party,
Charlie, whose task is to help Alice and Bob distribute
their key strings. Importantly, however, no trust in this third
party is required. While a deviation of Charlie from the
protocol may cause abortion of the key distribution proto-
col, it will not compromise the secrecy of a successfully
distributed key string. The time-reversed BB84 protocol
consists of the followings steps: First, Alice and Bob each
generate a pair of qubits in the maximally entangled state

j�þi ¼ ðj00i þ j11iÞ ffiffiffi
2

p
and send one of their qubits to

Charlie. Subsequently, Charlie performs a Bell-state mea-
surement (BSM) on the two received qubits and broadcasts
the outcome to Alice and Bob [27]. The two remaining
qubits held by Alice and Bob are now in a Bell state. Alice
then applies appropriate bit and phase flips on her qubit to
convert this joint state to j�þi. Finally, Alice and Bob
measure their qubits at random in one of the two BB84
bases. Note that Alice and Bob can alternatively measure
the qubits they have kept before Charlie performs the
BSM, and Alice flips the outcome of her measurement if
necessary once she has received the correction (i.e., the
outcome of the BSM) from Charlie.
The security of the time-reversed BB84 protocol, as

described above, depends on the correct preparation and
measurement of the states by Alice and Bob. In order to
turn this protocol into a device-independent one, we add a
CHSH test on Alice’s site. Security is then established by
virtue of a relation between the violation of this CHSH test
and the incompatibility of the two possible measurements
carried out by Alice’s device (which are supposed to be in
the two BB84 bases). More precisely, we bound the overlap
between the basis vectors of the two measurements that
Alice may choose. This overlap is all that is needed to
apply the entropic uncertainty relation [21] mentioned in
the Introduction, which allows us to infer security without
any further assumptions on Alice and Bob’s devices. We
note that our modification of the time-reversed BB84 pro-
tocol is reminiscent of the idea of self-testing of devices
introduced by Mayers and Yao [28]. (See Ref. [29] for the
CHSH version.) Our test, however, has a different purpose:
Its goal is to certify the incompatibility of Alice’s local
measurements, while the test of Mayers and Yao certifies
that Alice and Bob share a maximally entangled state.
In order to realize the CHSH test, we use a setup with

three different devices on Alice’s site: two measurement
devices Mkey and Mtest and a source device S (see Fig. 1).

The source device generates a pair of entangled qubits and
sends them to Mkey and Mtest. The device Mkey has two

settings fX;Zg [30] and produces a binary output after one
of the settings is chosen by Alice. The device Mtest has
three settings fU;V;Pg. The first two produce a binary
output (a measurement outcome), and the last one sends
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the qubit (from the device S) to the quantum channel that
connects to Charlie. Therefore, Alice has two modes of
operation, of which one (corresponding to the settings
U and V) is used to carry out the CHSH test and one
(corresponding to the setting P) is chosen to communicate
to Charlie. We refer to these operation modes as �CHSH and
�QKD, respectively.

Bob has two devices: a measurement device M0
key and a

sourcedeviceS0. The latter devicegenerates entangledqubits
and sends one of them to the quantumchannel and the other to
M0

key. The deviceM
0
key has two settings fX;Zg and produces a

binary output after one of the settings is chosen by Bob.

IV. PROTOCOL DESCRIPTION

The protocol is parametrized by the secret key length ‘,
the classical postprocessing block size mx, the sample size
of error-rate estimation mz, the local CHSH test sample
size mj, the tolerated CHSH value Stol, the tolerated chan-

nel error rate Qtol, the tolerated efficiency of Charlie’s
operation �tol, the error-correction leakage leakEC, and the
required correctness "cor.

In the following, the first three steps are repeated until
the conditions in the sifting step are satisfied.

(1) State preparation and distribution.—Alice selects
an operation mode hi 2 f�CHSH;�QKDg, where

�CHSH is selected with probability ps ¼ �tolmj=

½�tolmj þ ð ffiffiffiffiffiffi
mx

p þ ffiffiffiffiffiffi
mz

p Þ2� and �QKD is selected

with probability 1� ps [31]. In the following, we
describe �CHSH and �QKD formally for each of the

runs, which we label with indices i.

�CHSH: Alice measures both halves of the bipartite
state. More specifically, she chooses two bit values
ui and vi uniformly at random, where ui sets the
measurement on the first half to X or Z and vi sets
the measurement on the second half to U or V. The
outputs of each measurement are recorded in si and
ti, respectively.

�QKD: Alice selects a measurement setting ai 2
fX;Zg with probabilities px ¼ 1=½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmz=mxÞ

p �

and 1� px, respectively [31], measures one half
of the bipartite state with it, and stores the measure-
ment output in yi. The other half of the bipartite state
is sent to Charlie.
Similarly, Bob selects a measurement setting bi 2
fX;Zg with probabilities px and 1� px, respec-
tively, measures one half of the bipartite state with
it, and stores the measurement output in y0i. The
other half of the bipartite state is sent to Charlie.

(2) Charlie’s operation.—Charlie makes an entangling
measurement on the quantum states sent by Alice
and Bob, and if it is successful, he broadcasts
fi ¼ pass; otherwise, he broadcasts fi ¼ fail.
Furthermore, if fi ¼ pass, then Charlie communi-
cates gi 2 f0; 1g2 to Alice and Bob. Finally, Alice
uses gi to make correcting bit-flip operations.

(3) Sifting.—Alice and Bob announce their choices fhigi,
faigi, and fbigi over an authenticated classical
channel and identify the following sets: key genera-
tionX:¼fi:ðhi¼�QKDÞ^ðai¼bi¼XÞ^ðfi¼passÞg,
channel error-rate estimation Z :¼fi: ðhi¼�QKDÞ^
ðai¼bi¼ZÞ^ðfi¼passÞg, and Alice’s local CHSH
test set J :¼ fi: hi ¼ �CHSHg.

The protocol repeats steps 1–3 as long as jXj<
mx or jZj<mz or jJ j<mj, wheremx;mz;mj 2 N.

We refer to these as the sifting condition.

(4) Parameter estimation.—To compute theCHSHvalue
from J , Alice uses the following formula: Stest :¼
8
P

i2Jfðui;vi;si;tiÞ=jJ j�4, where fðui;vi;si;tiÞ¼1
if si�ti¼ui^vi; otherwise, fðui; vi; si; tiÞ ¼ 0.
Next, both Alice and Bob publicly announce the
corresponding bit strings fyigi2Z and fy0igi2Z and
compute the error rate Qtest :¼ P

i2Zyi � y0i=jZj.
Finally, they compute the efficiency of Charlie’s op-

eration � :¼ jXj=j ~Xj, where ~X :¼fi: ðhi¼�QKDÞ^
ðai¼bi¼XÞg. If Stest < Stol orQtol<Qtest or�<�tol,
they abort the protocol.

(5) One-way classical postprocessing.—Alice and Bob
choose a random subset of size mx of X for post-
processing. An error-correction protocol that leaks
at most leakEC bits of information is applied; then,
an error-verification protocol (which, e.g., can be
implemented with two-universal hashing) that leaks
dlog2ð1="corÞe bits of information is applied. If the
error verification fails, they abort the protocol.
Finally, Alice and Bob apply privacy amplification
[32] with two-universal hashing to their bit strings to
extract a secret key of length ‘ [33].

V. SECURITY DEFINITION

Let us briefly recall the criteria for a generic QKD
protocol to be secure. A QKD protocol either aborts or
provides Alice and Bob with a pair of key strings SA and
SB, respectively. If we denote by E the information that the

Alice Bob

Charlie

FIG. 1. Topology: The protocol is inspired by the idea of
the time-reversed BB84 protocol and involves an additional
(untrusted) party, Charlie. Charlie is supposed to make an
entangling measurement (ideally, a Bell-state measurement) on
quantum states sent by Alice and Bob. He outputs either a pass or
fail to indicate whether the measurement was successful. If
successful, he additionally outputs two bits to be used by
Alice to make correcting bit-flip operations.
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eavesdropper (Eve) gathers during the protocol execution,
then the joint state of SA and E can be described by a
classical-quantum state �SAE ¼ P

sjsihsj � �s
E, where

f�s
Egs are quantum systems (conditioned on SA taking

values s) held by Eve. The QKD protocol is called
"cor-correct if Pr½SA � SB� � "cor and "sec-secret if
ð1�pabortÞ12k�SAE�USA��Ek1�"sec, where pabort is the

probability that the protocol aborts and USA is the uniform

mixture of all possible values of the key string SA.
Accordingly, we say that the QKD protocol is ð"corþ"secÞ
secure if it is both "cor-correct and "sec-secret [22,33,34].
Note that this security definition guarantees that the QKD
protocol is universally composable [33,34]. That is, the pair
of key strings can be safely used in any application (e.g., for
encrypting messages) that requires a perfectly secure key.
(See Ref. [33] for more details.)

VI. SECURITYANALYSIS

In the following, we present the main result and a sketch
of its proof. For more details about the proof, we refer to
the Appendix.

The correctness of the protocol is guaranteed by the
error-verification protocol, which is parametrized by the
required correctness "cor.

Main result.— The protocol with parameters
ð‘;mx;mz; mj; Stol; Qtol; �tol; leakEC; "corÞ is "sec-secret if

‘ � mx

�
1� log2

�
1þ Ŝtol

4�tol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� Ŝ2tol

q
þ �

�tol

�
� hðQ̂tolÞ

�

� leakEC � log2
1

"cor"
4

(1)

for " ¼ "sec=9 and 2 � Ŝtol � 2
ffiffiffi
2

p
, where h denotes the

binary entropy function, Ŝtol :¼ Stol � �, and Q̂tol :¼
Qtol þ�, with the statistical deviations given by

� :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32

mj

log
1

"

s
;

� :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðmx þmj�Þðmj þ 1Þ

mxm
2
j

log
1

"

s
;

� :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmx þmzÞðmz þ 1Þ

mxm
2
z

log
1

"

s
:

Proof sketch: Conditioned on passing all the tests in the
step of parameter estimation, let XA be the random variable
of length mx that Alice gets from X, and let E0 denote
Eve’s information about XA at the end of the error-
correction and error-verification protocols.

We use the following result from Ref. [33]. By using
privacy amplification with two-universal hashing, a
�-secret key of length ‘ can be generated from XA with

� � 6"þ 2�ð1=2Þ½H3"
min

ðXAjE0Þ�‘��1

for any " > 0. Here, H3"
minðXAjE0Þ denotes the smooth min-

entropy [33]. It therefore suffices to bound this entropy in
terms of the tolerated values (Stol, Qtol, and �tol).
First, using chain rules for smooth entropies [33], we get

H3"
minðXAjE0Þ�H3"

minðXAjEÞ�leakEC�log2ð2="corÞ, where

E denotes Eve’s information after the step of parameter
estimation. Then, from the generalized entropic uncer-
tainty relation [35], we further get

H3"
minðXAjEÞ � log2

1

c�
�H"

maxðZAjZBÞ � log2
2

"2
;

where c� is the effective overlap of Alice’s measurements
(a function of themeasurements corresponding to settingsZ
andX and themarginal state). Here,ZA can be seen as the bit
stringAlicewould have obtained if she had chosen settingZ
instead. Likewise, ZB represents the bit string obtained by
Bob with setting Z. From Ref. [22], the smooth max-
entropy of the alternative measurement is bounded by the
error rate sampled on the set Z of size mz, H

"
maxðZAjZBÞ �

mxhðQtol þ�Þ, where � is the statistical deviation due to
random sampling theory; i.e., with high probability, the
error rate between ZA and ZB is smaller than Qtol þ�.
It remains to bound the effective overlap c� with Stol and

�tol. First, we note that ~X is independent of Charlie’s

outputs and X � ~X with equality only if Charlie always
outputs a pass. Furthermore,X is not necessarily a random

subset of ~X, as a malicious Charlie can control the content
of X. (This scenario is discussed later.) Assuming the
worst-case scenario, it can be shown that c� � 1=2þ
ð~c� � 1=2Þ=�, where � ¼ jXj=j ~Xj is the efficiency of

Charlie’s operation and ~c� is the effective overlap of ~X.
Next, by establishing a relation between the effective over-
lap and the local CHSH test [35] (for completeness, we
provide a more concise proof in Lemma 6 in the Appendix)
and using random sampling theory, we further obtain

~c� � 1

2

�
1þ ðStol � �Þ

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� ðStol � �Þ2

q
þ �

�
:

Here, � quantifies the statistical deviation between the
expected CHSH value and the observed CHSH value,
and � quantifies the statistical deviation between the effec-

tive overlaps of ~X and J , respectively.
Putting everything together, we obtain the secret key

length as stated by Eq. (1).
Asymptotic limit: In the following, we consider the

secret fraction defined as fsecr :¼ ‘=mx [3]. In the
asymptotic limit N ! 1 and using leakEC ! hðQtolÞ
(corresponding to the Shannon limit), it is easy to verify
that the secret fraction reaches

fsecr ¼ 1� log2

�
1þ Stol

4�tol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� S2tol

q �
� 2hðQtolÞ: (2)

The expression reveals the roles of the modes of operation
�CHSH and �QKD. The first expression provides a bound

on the quality of the devices (which is taken into account
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by the log2 term), and the latter expression, apart from
generating the actual key, is a measure for the quality of the
quantum channel.

VII. DISCUSSION

We have proposed a DIQKD protocol that provides
security even if the losses of the channel connecting
Alice and Bob would not allow for a detection-loophole-
free Bell test. Nevertheless, the security of the protocol still
depends on the losses, and the protocol therefore needs to
perform a check to ensure that Charlie does not output a
fail too often. This dependence from the failure probability
arises from the fact that a malicious Charlie may choose to
output a pass only when Alice and Bob’s devices behave
badly. Therefore, the CHSH value calculated from Alice’s
CHSH sample is not a reliable estimate for the overlap of
the sample used to generate the key string. However, with
the CHSH test, Alice can estimate how often her devices
behave badly and thus determine the minimum tolerated
efficiency (or the maximum tolerated failure probability)
of Charlie. This relation is illustrated in Fig. 2, where large
values of Stol are required to tolerate small values of �tol.

Taking the asymptotic limit and the maximal CHSH
value, we see that the secret fraction is independent of
�tol, which is not so surprising since the maximal CHSH
value implies that the devices of Alice are behaving ideally
all the time. Remarkably, we recover the asymptotic secret
fraction for the BB84 protocol [36].

From a practical point of view, the possibility to consider
very small values of �tol is certainly appealing, since it
suggests that the distance between Alice and Bob can
be made very large. A quick calculation using the best
experimental values [37] (i.e., �tol 	 t=2 and Stol 	 2:81,
where t is the channel transmission) shows that the
secret fraction is positive for t > 0:45. The estimate on

the channel transmission t translates to about a 17-km
optical fiber between Alice and Bob. Accordingly, to
achieve larger distances, we would need a local CHSH
test that generates violations larger than those achieved
by current experiments.

VIII. CONCLUSION

In summary, we provide an alternative approach toward
DIQKD, where the Bell test is not carried out between
Alice and Bob but rather in Alice’s laboratory. On a con-
ceptual level, our approach departs from the general belief
that the observation of a Bell violation between Alice and
Bob is necessary for DIQKD. On the practical side, it
offers the possibility to replace the extremely challenging
task of implementing a long-distance detection-loophole-
free Bell test with a less challenging task, i.e., implement-
ing a local detection-loophole-free Bell test. In fact,
recently, there has been very encouraging progress toward
the implementation of a local detection-loophole-free
CHSH test [38]. In view of that, we believe an experimen-
tal demonstration of DIQKD with local Bell tests is
plausible in the near future.
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APPENDIX: DETAILS OF SECURITYANALYSIS

We present the proof for the main result given in the
main text. First, we discuss the assumptions and then
introduce the necessary technical lemmas. Second, we
establish a relation between the local CHSH test and a
generalized version of the smooth entropic uncertainty
relation (Lemma 6). Third, we provide the required statis-
tical statements for estimating certain quantities of the bit
strings of Alice and Bob. Finally, we state our main result
(Theorem 1), which is slightly more general than the main
result presented above.

1. Notations

We assume that all Hilbert spaces denoted by H are
finite dimensional. For composite systems, we define the
tensor product of H A and H B as H AB :¼ H A �H B.
We denote P ðH Þ as the set of positive semidefinite op-
erators onH and SðH Þ as the set of normalized states on
H , i.e., SðH Þ ¼ f� 2 P ðH Þ: trð�Þ ¼ 1g. Furthermore,
for a composite state �AB 2 SðH ABÞ, the reduced states of

FIG. 2. Secret fraction ‘=mx as a function of the tolerated
efficiency of Charlie’s operation �tol (including channel losses):
We consider a depolarizing channel with a fixed error rateQtol ¼
1% and Stol ¼ V2

ffiffiffi
2

p
. The solid curves [asymptotic rates, Eq. (2)]

are obtained with V ¼ 0:999 and V ¼ 0:99 from left to right. The
right dashed curve [finite-key analysis, Eq. (1)] is obtained by
choosing Stol ¼ 2

ffiffiffi
2

p
, leakEC ¼ mx1:1hðQtol þ�Þ, "sec ¼ 10�8,

and "cor ¼ 10�12, where the classical postprocessing block size
mx is of the order of 10

8 bits.
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system A and system B are given by �A ¼ trBð�ABÞ and
�B ¼ trAð�ABÞ, respectively. A positive-operator valued
measure (POVM) is denoted by M :¼ fMxgx, whereP

xMx ¼ 1. For any POVM, we may view it as a projective
measurement by introducing an ancillary system; thus, for
any POVM with binary outcomes, we may write it as an
observable O ¼ P

x2f0;1gð�1ÞxMx, such that
P

x2f0;1gMx ¼
1. We also use �x :¼ ðx1; x2; . . . ; xnÞ to represent the
concatenations of elements and ½n� to denote
f1; 2; . . . ; ng. The binary entropy function is denoted by
hðxÞ :¼ �xlog2x� ð1� xÞlog2ð1� xÞ.

2. Basic assumptions on Alice and Bob’s abilities

Prior to stating the security proof, it is instructive to
elucidate the basic assumptions necessary for the security
proof. In particular, the assumptions are detailed in the
following.

(1) Trusted local sources of randomness.—Alice (also
Bob) has access to a trusted source that produces a
random and secure bit value upon each use.
Furthermore, we assume the source is unlimited,
that is, Alice can use it as much as she wants;
however, the protocol only requires an amount of
randomness linear in the number of quantum states
generated.

(2) An authenticated but otherwise insecure classical
channel.—Generally, this assumption is satisfied
if Alice and Bob share an initial short secret key
[39,40]. Note that the security analysis of such
authentication schemes was recently extended to
the universally composable framework [33,34]
in Ref [41], which allows one to compose the
error of the authentication scheme with the errors
of the protocol, giving an overall error on the
security.

(3) No information leaves the laboratories unless the
protocol allows it.—This assumption is paramount
to any cryptographic protocol. It states that infor-
mation generated by the legitimate users is appro-
priately controlled. More concretely, we assume the
following.

(a) Communication lines: The only two communi-
cation lines leaving the laboratory are the clas-
sical and quantum channels. Furthermore, the
classical channel is controlled; i.e., only the
information required by the protocol is sent.

(b) Communication between devices: There should
be no unauthorized communication between
any devices in the laboratory, in particular,
from the measurement devices to the source
device.

(4) Trusted classical operations.—Classical operations
such as authentication, error correction, error

verification, privacy amplification, etc., must be
trusted; i.e., we know that the operations have ideal
functionality and are independent of the adversary.

(5) Measurement and source devices are causally inde-
pendent.—A causally independent device means
that each use of the device is independent of the
previous uses. For example, for N uses of a source
device and a measurement that produces a bit string
�x :¼ ðx1; x2; . . . ; xnÞ, we have

�N ¼ ON
i¼1

�i ; M �x ¼
O
i

Mi
xi ;

where M �x is the POVM element corresponding to
the outcome �x.

3. Technical lemmas

Lemma 1 (Jordan’s lemma [5,42]).—Let O and O0 be
observables with eigenvalues 
1 on Hilbert space H .
Then, there exists a partition of the Hilbert space
H ¼ L

i H i, such that

O ¼ M
i

Oi and O0 ¼ M
i

O0
i ;

where H i satisfies dimðH iÞ � 2 for all i.
Lemma 2 (Chernoff-Hoeffding [43]).—Let X :¼ 1

n

P
iXi

be the average of n independent random variables
X1; X2; . . . ; Xn with values in [0, 1], and let � :¼ E½X� ¼
1
n

P
iE½Xi� denote the expected value of X. Then, for

any � > 0,

Pr½X�� � �� � expð�2�2nÞ:
Lemma 3 (Serfling [44]).—Let fx1; . . . ; xng be a list of

(not necessarily distinct) values in ½a; b� with average
� :¼ 1

n

P
ixi. Let the random variables X1; X2; . . . ; Xk be

obtained by sampling k random entries from this list with-
out replacement. Then, for any � > 0, the random variable
X :¼ 1

k

P
iXi satisfies

Pr½X �� � �� � exp

� �2�2kn

ðn� kþ 1Þðb� aÞ
�
:

Corollary 4.—Let X :¼ fx1; . . . ; xng be a list of (not
necessarily distinct) values in [0, 1] with the average
�X :¼ 1

n

P
i¼1xi. Let T of size k be a random subset of

T with the average �T :¼1
t

P
i2T xi. Then, for any " > 0,

the setK¼XnT with average�K¼ 1
n�t

P
i2Kxi satisfies

Pr

2
4�K ��T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðtþ 1Þ
2ðn� tÞt2 log

1

"

s 3
5 � ":

Proof: Since T is a random sample of X, from Lemma 3,
we have
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Pr½�K ��X � �� � exp

��2�2ðn� tÞn
ðtþ 1Þ

�
¼ ":

Using �X ¼ t
n �T þ n�t

n �K, we finish the proof. h

The main ingredient is a fine-grained entropic uncer-
tainty relation (see Ref. [45], Corollary 7.3, and Ref. [35]).

Lemma 5.—Let " > 0, �" � 0, and � 2 S�ðH ABCÞ.
Moreover, let M ¼ fMxg and N ¼ fNzg be POVMs on
H A, and K ¼ fPkg a projective measurement on H A

that commutes with bothM andN. Then, the postmeasure-
ment states �XB ¼ P

xjxihxj � trACð
ffiffiffiffiffiffiffi
Mx

p
�ABC

ffiffiffiffiffiffiffi
Mx

p Þ and

�ZC ¼ P
zjzihzj � trABð

ffiffiffiffiffiffi
Nz

p
�ABC

ffiffiffiffiffiffi
Nz

p Þ satisfy

H2"þ �"
min ðXjBÞ�þH"

maxðZjCÞ�� log2
1

c�ð�A;M;NÞ� log2
2

�"2
;

(A1)

where the effective overlap is defined as

c�ð�A;M;NÞ :¼ min
K

(X
k

trðPk�Þmax
x

�����Pk

X
z

NzMxNz

�����1
)
:

(A2)

Note that (A1) is a statement about the entropies of the
postmeasurement states �XB and �ZC; thus, it also holds for
any measurements that lead to the same postmeasurement
states. Accordingly, one may also consider the projective
purifications M0 and N0 of M and N, applied to �Aj�ih�j,
where j�i is a pure state of an ancillary system. Since both
measurement setups f�;M;Ng and f�A � j�ih�j;M0;N0g
give the same postmeasurement states, the right-hand side
of (A1) holds for both c�ð�A;M;NÞ and c�ð�A � j�i�
h�j;M0;N0Þ. We can thus restrict our considerations to
projective measurements.

In the protocol considered, Alice performs inde-
pendent binary measurements—Mi¼fMi

xgx2f0;1g and Ni¼
fNi

zgz2f0;1g—on each subsystem i. We can reduce (A2) to

operations on each subsystem, if we choose K ¼ fP �kg to
also be in product form, i.e., P �k ¼

N
i P

i
ki
, where �k is a

string of (not necessarily binary) letters ki 2 K. Then,
plugging this M �x ¼ N

i M
i
xi and N�z ¼ N

i N
i
zi in the norm

from (A2), we get

�����P �k

X
�z

N�zM �xN�z

�����1 ¼
����� X
z1;z2;...

O
i

PkiN
i
ziM

i
xiN

i
zi

�����1
¼ Y

i

�����Pki

X
zi

Ni
ziM

i
xiN

i
zi

�����1: (A3)

Putting the above expression in (A2) with � ¼ N
i �

i

and pi
k
:¼ trðPi

k�
iÞ, and dropping the subscript i when

possible, we obtain

c�ð�A;M;NÞ� X
k1;k2;...

Y
i

pi
ki
max
x

�����Pki

X
z

Ni
zM

i
xN

i
z

�����1
¼Y

i

X
k

pi
kmax

x

�����Pi
k

X
z

Ni
zM

i
xN

i
z

�����1¼:
Y
i

c�;i:

(A4)

In the following, we will refer to

cik :¼ max
x

�����Pi
k

X
z

Ni
zM

i
xN

i
z

�����1 (A5)

as the overlap of the measurements fMi
xgx and fNi

zgz.

4. An upper bound on the effective overlap
with the CHSH value

In this section, we first introduce the notion of the CHSH
operator [46] and then prove the relation between the
CHSH test and the effective overlap (A5).
In the CHSH test, two spacelike separated systems share

a bipartite state �, and each system has two measurements.
More specifically, system A has POVMs fM0

0;M
0
1g and

fM1
0;M

1
1g, and system T has POVMs fT0

0 ; T
0
1g and

fT1
0 ; T

1
1g. Since for any POVM there is a (unitary and)

projective measurement on a larger Hilbert space that has
the same statistics, we can restrict our considerations to
projective measurements. Then, we may write the POVMs
as observables with
1 outcomes; i.e., at the site of the first
system, the two observables are O0

A
:¼ P

1
s¼0ð�1ÞsM0

s and

O1
A
:¼ P

1
s¼0ð�1ÞsM1

s . Furthermore, the measurements are

chosen uniformly at random. As such, the CHSH value is
given by Sð�;�Þ :¼ Trð��Þ, where the CHSH operator is
defined as

�ðO0
A;O

1
A;O

0
T;O

1
TÞ :¼

X
u;v

ð�1Þu^vOu
A �Ov

T ; (A6)

where u, v and s, t are the inputs and outputs, respectively.
The maximization of Sð�;�Þ over the set of density op-
erators for a fixed � is defined by Smaxð�Þ. Moreover, the
CHSH operator can be decomposed into a direct sum of
two-qubit subspaces via Lemma 1. Mathematically, we
may writeO0

A ¼ P
kPkO

0
APk andO

1
A ¼ P

kPkO
1
APk, where

fPkgk is a set of projectors such that dimðPkÞ ¼ 2 8 k.
Note that in Lemma 1, one may select a partition of the
Hilbert space such that each block partition has dimension
two. Thus, Lemma 1 allows one to decompose the general
CHSH operator into direct sums of qubit CHSH operators.
Likewise, for the measurements of Bob,O0

B ¼ P
rQrO

0
TQr

andO1
B ¼ P

rQrO
1
TQr. For all k, PkO

0
APk and PkO

1
APk can

be written in terms of Pauli operators

PkO
0
APk ¼ ~mk � �k and PkO

1
TPk ¼ ~nk � �k ; (A7)

where ~mk and ~nk are unit vectors in R
3
k, and �k is the Pauli

vector. Combining (A6) and (A7) yields
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� ¼ M
k;r

�k;r; where �k;r 2 C2
k � C2

r ; (A8)

and it can be verified that

Sð�;�Þ ¼ X
k;r

	k;rSk;r ; (A9)

where

	k;r :¼ TrðPk �Qr�Þ; (A10)

Sk;r :¼ Trð�k;r�k;rÞ: (A11)

Whenever the context is clear, we write S ¼ Sð�;�Þ and
Smax ¼ Smaxð�Þ.

In the following analysis, we consider only one sub-
system, and the superscript i is omitted; i.e., we use
c� ¼ P

kpkck instead.
Lemma 6.—Let fOx

Agx2f0;1g and fOy
Tgy2f0;1g be observ-

ables with eigenvalues 
1 on H A and H T , respectively,
and let � ¼ P

x;yð�1Þx^yOx
A �Oy

T be the CHSH operator.

Then, for any � 2 SðH ATÞ, the effective overlap c� is
related to the CHSH value S ¼ Trð��Þ by

c� � 1

2
þ S

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� S2

p
: (A12)

Proof: Using (A7), let the relative angle between ~mk and ~nk
be
k2½0;�=2� for all k, i.e., ~mk � ~nk¼cosð
kÞ. Furthermore,
we can express ~mk � �k and ~nk � �k in terms of rank-one
projectors. Formally, we have j ~mkih ~mkj � j � ~mkih� ~mkj
and similarly for ~nk � �k. Plugging these into (A5),

ck ¼ max
i;j2f0;1g

jhð�1Þi ~mkjð�1Þj ~nkij2 ¼ 1þ cos
k
2

: (A13)

Next, we want to relate ck to the CHSH value. Using the
result of Seevinck and Uffink [47], for all r, (A11) satisfies

Sk;r � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sinð
kÞ sinð
rÞ

q
; (A14)

where sinð
kÞ and sinð
rÞ quantify the commutativity of
Alice’s kth and system T’s rth measurements, respectively.
From (A13) and (A14), we obtain for all r

ck � 1

2
þ Sk;r

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� S2k;r

q
;

where we use the fact that the right-hand side is a monotonic
decreasing function. Finally, we get

c� ¼X
k

pkck ¼
X
k;r

	k;rck � 1

2
þ S

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� S2

p
;

and the inequality is given by the Jensen’s inequality
and (A9). h

5. Statistics and efficiency of Charlie’s operation

We recall that in the protocol description, after the
sifting step, Alice and Bob identify sets X, Z, and J .

Also, they have ~X, where j ~Xj corresponds to the total

number of times Alice chooses subprotocol �QKD, and both

Alice and Bob choose setting X.
Part of the goal is to estimate the average overlap of setX

with the observed CHSH values (evaluated on sets J ) and

the efficiency of Charlie’s operation �. Note that � ¼
jXj=jX̂j. To do that, we need the following two lemmas:
The first (Lemma 7) gives a bound on the average effective

overlap ofX in terms of the average effective overlap of ~X
and the efficiency of Charlie’s operation �, and the second
(Lemma 8) gives a bound on the probability that the ob-
servedCHSHvalue is larger than the expectedCHSHvalue.
Lemma 7.—Let c�X and c�~X be the average effective over-

laps ofX and ~X, respectively, and let� :¼ jXj=j ~Xj. Then,

c�X � 1

2
þ 1

�

�
c�~X � 1

2

�
:

Proof: First, we note that X � ~X with equality only if
Charlie always outputs a pass (or has perfect efficiency).
Next, we consider fc�;igi2 ~X in decreasing order, that is,

c�;1 � c�;2 � � � � � c�;j ~Xj. Accordingly, the average over-
lap of ~X can be written as

c�~X ¼ jXj
j ~Xj

XjXj

i¼1

c�;i

jXj þ
Xj ~Xj

j¼jXjþ1

c�;i

j ~Xj �
jXj
j ~Xj

�
c�X � 1

2

�
þ 1

2
;

where we consider that X collects the large effective over-
laps, and the inequality is given by c�;i � 1=2. Finally, let

� ¼ jXj=j ~Xj. h
Lemma 8.—Let SJ be the average CHSH value on mj

independent systems and Stest the observed CHSH on these
systems. Then,

Pr

2
4Stest � SJ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32

mj

log
1

"

s 3
5 � ":

Proof: We define the random variable

Yi :¼
�
1 if si � ti ¼ ui ^ ui

0 otherwise;

where ui, vi, si, and ti are the inputs and outputs,
respectively, of the measurements on system i,
and YJ :¼ 1

mj

P
i2JYi. It is easy to see that Si¼8E½Yi��4,

SJ ¼8E½YJ ��4, and Stest¼YJ . The proof is then imme-
diate from Lemma 2. h

6. Secrecy analysis

With the relevant results in hand, we are ready to prove
our main result, which roughly follows the same line of
argument as Ref. [22]. The main differences are the use of
a more general smooth entropic uncertainty relation
(Lemma 5) to bound the error on the secrecy, and of the
CHSH test to bound the effective overlap of the measure-
ment operators and states used by the uncertainty relation
(Lemma 6). Since the players can only sample the CHSH
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violation, we use Lemma 7 to bound the distance between
this estimate and the expected effective overlap of the key
set. The correctness of the protocol is evaluated in exactly
the same way as in Ref. [22], so we refer to that work for
the corresponding bounds and theorems. We only prove the
secrecy of the protocol here.

Contrary to most QKD protocols, the protocol adopts a
tripartite model where Charlie is supposed to establish
entanglement between Alice and Bob. Thus, in our picture,
we can view Charlie as an accomplice of the adversary and
evaluate the secrecy on the overall state conditioned on the
events where Charlie outputs a pass.

We briefly recall the main parameters of the protocol,
which are detailed in the protocol definition given in this
paper. Conditioned on the successful operation of Charlie
(the events whereby Charlie outputs a pass), Alice and Bob
generate systems until at least mx of them have been
measured by both of them in the basis X, mz have been
measured in the basis Z, and j have been chosen for both
CHSH tests. The tolerated error rate and the CHSH value
are Qtol and Stol, respectively.

Furthermore, we take that our information-reconciliation
scheme leaks at most leakEC þ dlog2ð1="corÞe bits of infor-
mation, where an error-correction scheme that leaks at most
leakEC bits of information is applied [33]; then, an error-
verification scheme using two-universal hashing that leaks
dlog2ð1="corÞe bits of information is applied. If the error
verification fails, they abort the protocol.

Theorem 1.—The protocol is "sec-secret if for some "Q,
"UCR, "PA, "c� , "CHSH>0 such that 4"Q þ 2"UCR þ "PA þ
"c� þ "CHSH � "sec, the final secret key length ‘ satisfies

‘�mx

�
1� log2

�
1þ Ŝtol

4�tol

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� Ŝ2tol

q
þ�ð"c� Þ

�
�hðQ̂tolÞ

�

� leakEC� log2
1

"2UCR"
2
PA"cor

; (A15)

where Ŝtol :¼ Stol � �ð"CHSHÞ and Q̂tol :¼ Qtol þ�ð"QÞ,
with the statistical deviations given by

�ð"CHSHÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32

mj

log
1

"CHSH

s
;

�ð"c� Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðmx þmj�Þðmj þ 1Þ

mxm
2
j

log
1

"c�

vuut ;

�ð"QÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmx þmzÞðmz þ 1Þ

mxm
2
z

log
1

"Q

s
:

Proof: Let � be the event that Qtest � Qtol and Stest �
Stol and � � �tol. If � fails to occur, then the protocol
aborts, and the secrecy error is trivially zero. Conditioned
on passing these tests, let X be the random variable on
strings of length mx that Alice gets from the set X, and
let E denote the adversary’s information obtained by

eavesdropping on the quantum channel. After listening to
the error correction and hash value, Eve has a new system
E0. Using dlog2ð1="corÞe � log2ð2="corÞ (the number of bits
used for error correction and error verification) and using
chain rules for smooth entropies [33], we bound the min-
entropy of the X given E0:

H
2"þ"UCR
min ðXjE0Þ � H

2"þ"UCR
min ðXjEÞ � leakEC � log2

2

"cor
:

From the entropic uncertainty relation (Lemma 5), we
further get

H2"þ"UCR
min ðXjEÞ � log2

1

c�
�H"

maxðZjBÞ � log2
2

"2UCR
;

where Z can be seen as the outcome Alice would have
gotten if she had measured the same systems in the corre-
sponding basis Z, and B is Bob’s system in this case (before
measurement).
Here, "UCR is the error probability due to the uncer-

tainty relation. The max-entropy of the alternative
measurement is then bounded by the error rate sampled
on the mz systems Z [22]:

H"
maxðZjBÞ � mxh½Qtol þ�ð"QÞ�;

where " ¼ "Q=
ffiffiffiffiffiffiffi
p�

p
and p� :¼ Pr½��.

Next, we bound c� (evaluated onAlice’s devices fromX)
in terms of the observed CHSH value Stest. We first use the
arithmetic-geometric mean’s inequality, fromwhich we get

c� � Y
i2X

c�;i �
 X
i2X

c�;i

mx

!
mx

¼ ðc�XÞmx ;

where c�X is the average effective overlap on X. Using

Lemma 7, we get

c�X � 1

2
þ 1

�

�
c�~X � 1

2

�
:

Since ~X is randomly chosen by Alice and is independent of
Charlie, c�~X can be estimated from c�J ; i.e., we apply

Corollary 4 to further obtain Pr½c�~X � c�J � �ð"c� Þ=2� �
"c� , and hence

"0 :¼ Pr

�
c�~X � c�J � �ð"c� Þ

2

���������
�
� "c�

p�

:

Lemma 6 can now be used together with Jensen’s inequal-
ity, so with probability at least 1� "0,

c�~X � 1

2

�
1þ SJ

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8� S2J

q
þ �ð"c� Þ

�
:

We still need to take into account that we only have an
approximation for the CHSH value of the systems in J .
From Lemma 8, we get that

"00 :¼ Pr½SJ � Ŝtestj�� � "CHSH
p�

:
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Finally, the bound on the error of the privacy amplifica-
tion "PA by universal hashing [33] says that the error is less
than 4"þ 2"UCR þ "PA as long as

‘ � H
2"þ"UCR
min ðXjE0Þ � 2log2

1

2"PA
:

Putting all the above equations together, we get (A15),
with a total error conditioned on the event � of at most
4"þ2"UCRþ"PAþ"0þ"00. If we remove this condition-
ing, the error is then

p�ð4"þ 2"UCR þ "PA þ "0 þ "00Þ
� 4"Q þ 2"UCR þ "PA þ "c� þ "CHSH � "sec : h
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