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Despite much interest in engineering new topological surface (edge) states using structural defects, such

topological surface states have not been observed yet. We show that recently imaged tilt boundaries in

gated multilayer graphene should support topologically protected gapless edge states. We approach the

problem from two perspectives: the microscopic perspective of a tight-binding model and an ab initio

calculation on a bilayer, and the symmetry-protected topological (SPT) state perspective for a general

multilayer. Hence, we establish the tilt-boundary edge states as the first concrete example of the edge

states of symmetry-protected Z-type SPT, protected by no-valley mixing, electron-number conservation,

and time-reversal T symmetries. Further, we discuss possible phase transitions between distinct SPTs

upon symmetry changes. Combined with a recently imaged tilt-boundary network, our findings may

explain the long-standing puzzle of subgap conductance in gated bilayer graphene. This proposal can be

tested through future transport experiments on tilt boundaries. In particular, the tilt boundaries offer an

opportunity for the in situ imaging of topological edge transport.
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I. INTRODUCTION

Graphene has garnered interest from a broad spectrum of
communities, ranging from those aiming at atomic-scale
circuit devices to those searching for new topological
phases. Both communities sought ways to gap the massless
Dirac spectrum. The realization of a gate-induced band gap
in the Bernal-stacked bilayer graphene [1] following the
prediction in Ref. [2] brought the holy grail of the
graphene-based transistor one step closer to reality.
However, the subgap conductance measured by Oostinga
et al. [1] with weak temperature dependence well below
the optically measured gap as large as 250 meV [3] intro-
duced a new puzzle and obstacle: The gapped bilayer is not
as insulating as it should be. Li et al. [4] proposed the in-
gap transport through the physical edge of the sample.
However, such edge transport would disappear in the
Corbino geometry of a clean sample. On the other hand,
Yan and Fuhrer [5] observed two-dimensional variable-
range-hopping-type temperature dependence for both the
Corbino and the usual geometry. In this paper, we predict
the existence of a topological gapless channel of transport
along a recently imaged AB-BA tilt-boundary network
[6–8] that may solve the puzzle.

The predicted topological edge state holds the promise
of the first realization of a topological surface (edge) state
hosted by a structural topological defect. Although there
has been much theoretical interest in topological gapless

modes hosted by structural topological defects [9–11], no
such topological gapless mode has been observed so far.
The lattice dislocations in the three-dimensional crystals
that were previously discussed occur deep in the sample
that is not directly accessible. However, the tilt boundary of
interest has recently been observed [6–8]. The tilt bound-
ary is a structural topological line defect along which each
neighboring layer is displaced by one interatomic spacing.
Such a defect can occur because of the third dimension
added by the stacking of the graphene layers; it forms a
boundary between two inequivalent stacking structures
frequently referred to as AB and BA. Here, we show that
the tilt boundaries host gapless modes of topological origin
and form the first example of a naked structural defect
hosting topological electronic states.
Topological aspects of gapped multilayer graphene have

been previously discussed [12], and it was pointed out that
they should exhibit the quantum valley Hall (QVH) effect
with corresponding edge states. However, to this date, there
has been no experimental detection of the proposed edge
state [4,13]. Moreover, little is known about how the
topological aspects of gapped multilayer graphene relate
to topological insulators [14,15]. The idea of classifying
different topological-insulator (superconductor) candi-
dates based on symmetries [16] has played a key role in
the field of topological insulators. In particular, the obser-
vation that additional symmetries such as the crystalline
symmetries can enlarge the possibilities of topological
phases [17,18] has led to the discovery of three-
dimensional topological crystalline insulators [19]. We
propose feasible experiments to detect topological edge
states at naturally occurring tilt boundaries. At the same
time, we make the first concrete application of the
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symmetry-protected topological (SPT) approach [17] for a
two-dimensional (2D) system and study a large class of
gapped graphene systems, placing the quantum valley Hall
insulator in the larger context and predicting conditions for
topological superconductors (TSCs).

The rest of the paper is organized as follows. In Sec. II,
we show that an AB-BA tilt boundary in gated bilayer
graphene supports gapless edge states through explicit mi-
croscopic calculations. Specifically, we consider an abrupt
boundary in a tight-binding model and then investigate the
effect of strain using ab initio calculation. In Sec. III, we
show that these edge states are protected by no-valley
mixing, electron-number conservation, and time-reversal
(T) symmetries within the framework of SPT. Hence, we
identify chirally stacked, gated N-layer graphene layers as
time-reversal-symmetricZ-type SPT. In Sec. IV, we discuss
experimental implications. Finally, in Sec. V, we summa-
rize the results and comment on practical implications.

II. BILAYER TILT-BOUNDARY EDGE STATE

Figures 1 and 2(a) show the tilt boundaries of interest in
gapped Bernal-stacked bilayer graphene. In the case
sketched, strain is concentrated at the tilt boundary with
the top layer stretched by one interatomic spacing with
respect to the bottom layer. For a general orientation, tilt
boundaries can involve both strain and shear. As the tilt
boundaries in layered graphene form a type of topological
line defect in structure, they can be characterized using the

tangent vector ~t and the Burger’s vector ~b. The tangent
vector ~t points along the tilt boundary, which can point

along any direction with respect to the Burger’s vector ~b.
When the tilt boundary only involves strain, as in the case

depicted in Figs. 1 and 2(a), the ~b is perpendicular to ~t. In

the opposite extreme limit of ~b k ~t, shear is concentrated at

the boundary. Independent of the angle between ~b and ~t,
the Burger’s vector magnitude is the interatomic spacing,

i.e., j ~bj ¼ a for a bilayer system, as it is shown explicitly

for the strain tilt boundary in Fig. 2(a). Since j ~bj is a
fraction of the Bravis lattice primitive vector magnitude

ffiffiffi
3

p
a, the bilayer domain boundary is a partial dislocation

from the quasi-two-dimensional view. In a general multi-
layer, a vertical array of these partial dislocations forms a
tilt boundary. In typical samples, the domain wall separat-
ing the AB- and BA-stacked domains has substantial width,

spanning 5–20 nm, and the angle between ~b and ~t ranges
between 0� and 90� [6].

E = ∆z

FIG. 1. A typical AB-BA tilt boundary under strain. The blue
(red) filled circles mark the a (b) sublattice sites. �ij represent

hopping matrices for a tight-binding model.
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FIG. 2. A tight-binding study in the presence of abrupt AB-BA
tilt boundaries in gated bilayer graphene. (a) Schematic repre-
sentation of the domain wall under strain. The grey (black) lines
denote the upper (lower) layer, and solid blue (red) circles denote
the A (B) sublattice points. The tilt boundary along tangent

vector ~t k ŷ is shaded. The Burger’s vector ~b ¼ ax̂ (green arrow)
for interatomic spacing a accounts for the difference between the
solid green line and the dashed green line. (b) The resulting band
structure. The edge states are marked with magenta lines.
(c) Schematics of valley-momentum-locked edge states at a tilt
boundary.
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Figure 1 allows us to makes two important microscopic
observations about tilt boundaries. (1) As the boundary
requires a shift of one layer with respect to the other by
one interatomic spacing along the bond direction, there are
three natural directions for the tilt boundary to run for each

fixed angle between ~b and ~t. (2) The boundary is armchair-

shaped for ~b k ~t (pure shear), whereas it is zigzag for ~b ? ~t
(pure strain case, shown in Fig. 1). Based on observa-
tion (1), we expect a given type of tilt boundary to possibly
form a triangular network seen in experiments [6–8].
Observation (2), combined with earlier microscopic stud-
ies of boundary-condition effects on edge states in
Ref. [20], implies that the electronic spectrum at tilt

boundaries with ~b k ~t will be gapped though the gap mag-
nitude and will be small when the tilt boundary is spread
over a finite width.

In this section, we consider the electronic structure of tilt

boundaries with ~b ? ~t and return to more a general case in
Sec. IV. As it is shown schematically in Fig. 1, the bulk of
each domain is gapped in the presence of interlayer hop-
ping and the external electric field. The latter is important
for breaking the inversion symmetry between the layers
and gapping otherwise touching bands [1,2]. Below, we
present two separate microscopic calculations of the

AB-BA tilt-boundary electronic structure for ~b ? ~t, which
shows gapless edge states.

A. Tight-binding model

We consider a tight-binding Hamiltonian with
nearest-neighbor intra- and interlayer hopping. For the
AB-stacking region [see Fig. 2(a)],

HAB ¼ �t
X2
i¼1

X
m;n

aðiÞm;n
yðbðiÞm;n þ bðiÞm�1;n þ bðiÞm;n�1Þ

þ�
X2
i¼1

X
m;n

ð�1ÞiðaðiÞm;n
yaðiÞm;n þ bðiÞm;n

ybðiÞm;nÞ

� t?
X
m;n

að1Þm;n
ybð2Þm;n þ H:c:; (1)

where i ¼ 1; 2 is a layer index; t and t? are intralayer
and interlayer nearest-neighbor hoppings, respectively;
and � is the chemical potential difference between two
layers due to the gate voltage. ðm; nÞ labels the position of

the two-site unit cell, with aðiÞm;n and bðiÞm;n annihilating
electrons at the two sites of layer i. For the BA-stacked
region, the only change is in the interlayer term with

ð�t?
P

m;nb
ð1Þ
m;n

yað2Þm;n þ H:c:Þ replacing the interlayer term

in HAB. As we address the effect of strain through ab initio
simulation, we focus here on a sharp tilt boundary, as
shown in Fig. 2.

We plot the energy spectrum in Fig. 2(b) with the
model parameters set to be t ¼ 2:8 eV, t? ¼ 0:4 eV,
and � ¼ 0:5 eV. The size of the system was 200 unit cells

in each direction under the periodic boundary condition,
with each domain spanning a 100-unit-cell width separated
by two sharp tilt boundaries. From the spectra, it is clear
that K and K0 valleys each have two edge states per spin.
Further investigation of the wave function shows that right-
and left-moving edge states associated with the given
valley are spatially separated between the two edges: The
edges offer valley filtering [see Fig. 2(c)].

B. Ab initio simulation

The electronic structure in a realistic tilt boundary will be
affected by both the span over which the lattice structure
transitions from AB to BA stacking and the strain concen-
trated at the tilt boundary. To address these issues, we
further carry out first-principles calculation using density-
functional theory (DFT) within the local-density approxi-
mation (LDA) [21,22]. We construct a periodic supercell
with two tilt boundaries characterized by Burger’s vectors
identical to the ones considered within tight-binding calcu-
lation, but the domain wall is set to have finite width over
which the 1-unit-cell mismatch is spread. We have tried
several configurations with domains and tilt boundaries of
different widths to find qualitatively similar results. In the
rest of this paper, we focus on a representative examplewith
a 3.1-nm-wide domainwall between 1.5-nm-wide domains.
The choice of narrow width for the domains is due to the
limitation in the simulation capability. To this 2D system,
we then apply a slightly exaggerative perpendicular electric
field of 5 V=nm. By relaxing the domain boundaries until
the forces reach below 0:5 eV=nm, we take the effect of
both strain and width into account. We have tried several
configurations with domains and tilt boundaries of different
widths but otherwise similar settings to find qualitatively
similar results.
The DFT-LDA simulation results are presented in Fig. 3,

which confirms the existence of the gapless edge states
predicted by the tight-binding model. The electronic struc-
ture along the extended direction of the edge is shown in
Fig. 3(a), focusing on the region near the K point. In this
figure, two gapless 1D Dirac dispersions are clearly re-
solved from the gapped bulk spectra, with two distinct
Dirac points K1 and K2 in the vicinity of the K point. The
strain concentrated at the tilt boundary causes energy split-
ting of the K1 and K2 states; the energy of the 1D Dirac
points is increased by compressive strain and decreased by
tensile strain. This energy splitting will become negligibly
small in realistic tilt boundaries with much wider spans, as
the strain will become smaller. Figure 3(a) shows that the
existence of gapless edge states found in our tight-binding
calculation is robust against long-range perturbations such
as tilt-boundary width or subtle bond-length variation in-
side the domain wall, as well as the strain at the tilt
boundary.
We now turn to the spatial distribution of the gapless edge

states. For illustration, Fig. 3(b) shows the wave-function

TOPOLOGICAL EDGE STATES AT ATILT BOUNDARY IN . . . PHYS. REV. X 3, 021018 (2013)

021018-3



amplitude of the state slightly above the K1 point. The top
view shows the extended tilt boundary in which the mis-
match of one interatomic spacing is spread over a 3.1-nm
distance. The side view shows that the charge for the states
near K1 is highly localized on the layer subject to compres-
sive strain, regardless of the direction of the applied electric
field. The situation for the states in the vicinity of K2 is
similar, except that the charge prefers to be highly localized
on the layer under tensile strain. Hence, forming a layer-
selective contact to an isolated edge state could be a mecha-
nism for valley filtering [12,23].

Finally, we comment on the so-far ignored effect of
interaction. If the edge boundaries have substantial width,
the forward-scattering part of the Coulomb interaction will
be the dominant correlation effect to the edge states and
lead to Luttinger liquid behavior [24].

III. TILT-BOUNDARY EDGE STATES AND Z SPT

In order to address the robustness of the edge states, we
investigate topological aspects of the low-energy effective
theory in the continuum limit. We first show that the
AB-BA tilt boundary can be mapped to a gate-polarity
boundary of a uniform bilayer. Based on this mapping
and the results of Refs. [13,20] on the gate-polarity bound-
ary, we discuss the valley Chern number of the tilt-
boundary edge states. We then apply the notion of SPT
[17] and identify chirally stacked multilayer graphene as a
realization of Z-type SPT, protected by time reversal (T),
the absence of valley mixing, and charge-conservation

symmetries. This identification enables us to address the
robustness of tilt-boundary edge states as well as the effects
of symmetry changes: topological quantum phase transi-
tions. There are recent studies of such perturbations for
specific cases such as Rashba spin-orbit coupling [25] and
magnetic ordering [26]. Through our first application of the
SPT classification scheme by Wen [17] to a concrete
physical system of multilayer graphene, we obtain an
exhaustive systematic study of topological quantum
phase-transition possibilities.
The low-energy effective Hamiltonian near the K valley

for a uniformly AB- or BA-stacked bilayer is

HAB-BA
K ¼vFkxð�x��0ÞþvFkyð�y��0Þ

�ð�=2Þð�0��zÞþ t?
2
ð�x��xÞ� t?

2
ð�y��yÞ;

(2)

where a� orþ sign should be used for AB or BA stacking,
respectively. In Eq. (2), vF ¼ 3ta=2, �i’s are Pauli matri-
ces acting on the sublattice indices, and �i’s are Pauli
matrices acting on the layer indices. The effective
Hamiltonian near K0 is HK0 ðkx; kyÞ ¼ HKð�kx; kyÞ. Now,
it is straightforward to show that BA stacking is equivalent
to AB stacking, subject to the opposite gate polarity. At
zero field, the Hamiltonian of the AB-stacked bilayer can
be transformed to that of the BA stacking by interchanging
the two layers via the following unitary transformation:
H ! SyHS, with S ¼ �0 � �x. For a gated bilayer, how-
ever, the gate polarity has to flip, since

�0 � �xH
AB
K ð�Þ�0 � �x ¼ HBA

K ð��Þ: (3)

Hence, at the level of low-energy effective theory, the tilt
boundary between AB and BA stacking under a uniform
external field is equivalent to the gate-polarity domain wall
of the structurally uniform bilayer proposed by Martin
et al. [13]
The above equivalence, combined with earlier results on

the valley Chern number of a gated chirally stacked multi-
layer, offers the topological origin of the helical edge states
observed in the microscopic calculation of Sec. II. First for
bilayer and then for general N layers, it was shown that the
low-energy effective theory of a chirally stacked N layer
under a uniform vertical electric field � has a finite Chern
number per spin for each valley of equal magnitude and
opposite sign [13,20,27,28]:

CK ¼ �CK0 ¼ N

2
sgnðt?�Þ: (4)

The Chern numbers in Eq. (4) can be obtained by integrat-
ing the Berry curvature over momenta ðkx; kyÞ, continuing
the linearized dispersion to infinity. The combination of
this Chern number for chirally stacked graphene and the
equivalence relation of Eq. (3) means that the valley Chern
numbers change sign at the tilt boundary. Such a sign
change leads to �CK ¼ ��CK0 ¼ N sgnðt?�Þ across the

FIG. 3. (a) The energy bands of AB-BA bilayer graphene con-
nected to the two domain walls depicted in Fig. 2. The Fermi level
is indicated with the dashed blue line, and the bands with the
marked linear dispersion relation intersecting near the Fermi level
are outlined by the purple (light) curves. (b) Top and side views of
the charge distribution for a state near the K1 point of (a). The
yellow rectangles indicate the AB-BA domain-wall structure.
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tilt boundary and N branches of valley helical edge states
[20], as long as the two valleys K and K0 remain distinct.
Hence, the two valley helical edge states per spin observed
in Sec. II originate from the valley Chern number change
across the tilt boundary, as in the gate-polarity boundary
edge states [13,20]. Hence, our prediction is that the tilt
boundaries will be the first experimentally observed crys-
talline topological defects to host a topological gapless
mode because of a change in the Chern number.

We now apply the procedure for identifying the class of
SPT based on symmetries of the free fermion Hamiltonian
developed by Wen [17], which predicts the possible num-
ber of protected edge (surface) states. This procedure
allows us to consider additional symmetries in the multi-
layer graphene in addition to the C, T, and P taken into
account in the pioneering work by Schnyder et al. [16] and
by Kitaev [29]. Further, the resulting classification reveals
the fate of edge states upon symmetry changes.

Additional symmetries relevant for the SPT analysis of
tilt-boundary edge states are (1) an antiunitary discrete
symmetry operation combining time reversal and no-valley
mixing �, (2) the conservation of charge difference be-
tween two valleys Uð1Þv, and (3) the conservation of total
charge Uð1Þc. Applying the scheme of Ref. [17], we find
the chirally stacked graphene multilayer to be a Z-type
SPT (see the Appendix) showing QVH when all three
symmetries are present. As gapless edge states are guaran-
teed at the physical boundary between the two systems
with a different index Z such as AB and BA stacking, the
tilt-boundary edge states are protected as long as the three
symmetries are maintained.

On the other hand, a symmetry change can either yield a
trivial phase that does not support an edge state or a differ-
ent type of SPT with a different type of edge state. In all
cases, the bulk gap has to close and reopen upon the
transition between different phases. The SPTanalysis with-
out (Table I) and with (Table II) spin as a dynamic degree
of freedom given in the Appendix shows that ruining the
Uð1Þv symmetry through intervalley scattering is the only

way to arrive at a trivial phase without edge states.
However, such a large momentum transfer generally re-
quires fine-tuning unless the unit cell becomes enlarged
either for the entire system [30,31] or for short-range
disorder, such as a vacancy-breaking A-B sublattice sym-
metry [32]. As both rarely occur, we anticipate gapless
edge states at most tilt boundaries except for armchair
boundaries.
Among symmetry-change possibilities leading to an-

other SPT, the transition from QVH with spin degeneracy
to the layer antiferromagnet (LAF) phase where spin is a
dynamic degree of freedom is of particular interest, as LAF
is suspected to be the ground state of bilayer graphene near
the neutrality point [33]. Upon this phase transition, the
nature of the edge states changes from spin-degenerate
valley helical states (QVH) to spin-valley Hall edge states
(LAF). In such transitions, the bulk gap has to close and
reopen; this is indeed seen in the experiment of Velasco
et al. [33].

IV. CONNECTION TO EXPERIMENTS

In this section, we discuss the experimental implications
of our findings. Specifically, we propose that transport
through the network of tilt boundaries may resolve the
long-standing mystery of subgap transport [1,5]. Further,
we propose feasible experiments to test the proposal.
In order to discuss the topological transport through the

network of tilt boundaries observed in Refs. [6–8], we
should first discuss the effect of the arbitrary angle between

the Burger’s vector ~b and the tangent vector ~t. Microscopic

study of tilt boundaries at various angles between ~b and ~t
will be presented in the future [34]. However, it has been

TABLE I. Classification of the SPT on multilayer graphene by
considering the presence (✓) or absence (�) of the time-reversal

symmetry �̂ / i�y, valley-polarization conservation Uð1Þv, and
charge conservation Uð1Þc. Four upper rows classify topological
insulators, while four lower rows classify TSCs.

� Uð1Þv Uð1Þc Classification Examples

✓ ✓ ✓ Z QVH

� ✓ ✓ Z � Z Intravalley QAH

✓ � ✓ Trivial Trivial insulator

� � ✓ Z Intervalley QAH

✓ ✓ � Z TVSC

� ✓ � Z � Z Intravalley TSC

✓ � � Trivial Trivial superconductor

� � � Z Intervalley TSC

TABLE II. Classification of spinful SPT insulators on multi-
layer graphene. Three kinds of time-reversal operators are con-
sidered for classification because of the valley and spin

dynamical degrees of freedom: �̂1 / �x exchanges two valleys;

�̂2 / i�y, which acts on the spin indices, flips spin; and T̂ ¼
�̂1�̂2 does both.a The upper three rows show that the classifi-

cation reduces to that of a spinless fermion if �̂2 symmetry is
absent. The lower rows show new possibilities that emerge upon
taking spins into account.

�1 �2 T ¼ �1�2 Uð1Þv Classification Examples

✓ � � ✓ Z QVH

� � � ✓ Z � Z Intravalley QAH

� � � � Z Intervalley QAH

✓ ✓ ✓ ✓ Z2 LAF

� ✓ � ✓ Z2 � Z2 Intravalley topological

insulator

� ✓ � � Z2 Intervalley topological

insulator

� � ✓ ✓ Z Intravalley QSH

aThe classification for the superconductors is identical to that for
the insulators.

TOPOLOGICAL EDGE STATES AT ATILT BOUNDARY IN . . . PHYS. REV. X 3, 021018 (2013)

021018-5



known that a single-domain Bernal-stacked gapped bilayer
ribbon should support a gapless edge state for zigzag edges
but not for armchair edges [20,35]. The edge state gaps out
for armchair edges because the armchair edge enlarges the
unit cell along the direction parallel to the boundary and
makes the projection of the K and K0 valleys identical.
However, Jung et al. [20] showed that the polarity bound-
ary edge states only develop a barely visible gap that is
orders of magnitude less then the bulk gap, even for a sharp
boundary, and the gap decreases quickly when the polarity
boundary becomes smooth. These arguments apply to our
tilt boundary, and the edge state will develop a small gap

when ~b k ~t. However, given the large width of the observed
tilt boundaries, we expect that all straight tilt boundaries
will have nearly gapless edge states, except those with

small angles between ~b and ~t.
When the tilt boundary meanders and changes direc-

tions, there will likely be portions with small gaps seg-
menting the gapless regions, and the transport will occur
through hopping between the gapless regions. The ob-
served 2D network of such tilt boundaries would yield a
2D variable-range-hopping temperature dependence

RðTÞ / expðT0=TÞ1=3 [36,37] at low temperatures, gov-
erned by the 2D connectivity and the small characteristic

gaps of gapped regions. Such expðT0=TÞ1=3 dependence of
resistivity is consistent with the observed temperature T
dependence of resistance at low temperatures [1,5].

We propose the following experiments to test our pro-
posal. (1) Four terminal transport measurements with two
of the contacts, say, contacts 1 and 3, at two ends of a tilt
boundary. This experiment would yield highly anisotropic
transport, proving dominant transport along the tilt bound-
ary, i.e., R1;3 � R2;4. (2) Scanning-tunneling-spectroscopy

measurements of the local density of states. This experi-
ment should measure a gapless spectrum at the tilt bound-
ary but exhibit a gapped spectrum with the gap magnitude
of the optical gap away from the tilt boundary.
(3) Thermoelectric imaging. The midgap density of states
at tilt boundaries would appear in scanning thermopower
images. Unpublished thermopower-imaging data by Cho
et al. [38] indeed show a network with a local density of
states near Fermi energy that is reminiscent of the tilt-
boundary network. (4) Edge-current imaging using scan-
ning SQUID that can detect the magnetic field generated
by edge currents.

V. CONCLUSION

We showed that spin-degenerate tilt boundaries of gated
multilayer graphene support topological gapless edge
states protected by three symmetries: time (valley) rever-
sal, no-valley mixing, and electron-number conservation.
We demonstrated the existence of gapless edge states
through a tight-binding model calculation and a first-
principles calculation, where the latter calculation took

strain effects into account. We then addressed the symme-
try protection of the edge states and the consequences of
symmetry changes within the framework of the SPT [17].
The framework of the SPT allowed us to place the 2D

topological phase supporting the edge states, namely, QVH,
among various topological-insulator or superconductor
phases, alongside previously postulated quantum anoma-
lous Hall (QAH), LAF, and quantum spin Hall (QSH)
phases. While previous literature postulated QVH, QAH,
LAF, and QSH to be all supporting a number of edge states
growing with the number of layers N (i.e., Z type in the
language of classification), we found that the symmetry of
LAF only protects an odd number of edge modes for each
valley. Hence, LAF is a Z2 topological insulator, much like
a quantum spin Hall insulator [39]. Transitions between
these different SPTs require closing and reopening of the
bulk gap, as has already been observed in Ref. [33].
We predict the naturally occurring tilt boundary [6–8] to

be the first topological structural defect that hosts a topo-
logically protected gapless mode of transport. Most im-
portantly, our findings on tilt boundaries combined with the
recent observations [6–8] may explain the long-standing
mystery of subgap transport [1]. Our prediction of the
topological kink states at the tilt boundary can be tested
through proposed transport, scanning-tunneling spectros-
copy, thermopower-imaging experiments, and scanning
SQUID experiments. Experimental confirmation of the
tilt-boundary transport origin of the subgap transport will
open doors to control the subgap transport and enable the
device application of gated multilayer graphene systems.
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APPENDIX: CHIRAL MULTILAYER
GRAPHENE AS Z-TYPE SPT

The procedure consists of three steps. (1) Find a gapless
Dirac Hamiltonian (by keeping the kinetic term only) with
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the same symmetries. Then, we find all the symmetry-
preserving mass terms that can gap out the gapless part
and are amenable to classification using Clifford algebra.
This procedure is based on the assumption that the SPT
order is robust as long as the energy gap stays finite and the
symmetries remain the same, and hence any gapped
Hamiltonian can be adiabatically transformed into a
gapped Dirac Hamiltonian. (2) Express the Hamiltonian
and the conserved quantities associated with symmetries in
the Majorana basis. This step leads to the Clifford algebra
(i.e., real representation of the Dirac algebra) associated
with the gapless part of the Hamiltonian. (3) Find the space
of mass matrices that anticommutes with all the generators
of this Clifford algebra. The resulting space may have
disconnected pieces, the number of which gives the clas-
sification of the SPT. Two mass matrices are topologically
distinct if and only if they belong to two different pieces.
Applying this procedure to chiral multilayer graphene will
enable us to study phase transitions into different SPTs
upon symmetry changes.

For a chiral multilayer graphene system, we assume
time-reversal symmetry (T) and no-valley mixing, which
can be combined to form an antiunitary operator �. In
addition, we assume conservation of valley polarization
½Uð1Þv� and total charge ½Uð1Þc�. The relevant gapless
Dirac Hamiltonian is

H ¼ ivF

Z
d2x�yðxÞð�1@x þ �2@yÞ�ðxÞ; (A1)

where �T ¼ ðcA;K; cA;K0 ; cB;K; cB;K0 Þ, �1 ¼ �x � �z �
In�n, and �2 ¼ �y � �0 � In�n, in which n is given by

the number of layers. This Hamiltonian can be written in
the Majorana fermion basis using the following decompo-
sition:

c�;�ðxÞ ¼
�þ;�;�ðxÞ þ i��;�;�ðxÞ

2
; (A2)

where � denotes the Majorana fermion satisfying

�2
�;�;� ¼ 1; f�þ;�;�; ��;�;�g ¼ 0; (A3)

where � (�) denotes the A or B sublattice (K or K0 valley)
indices, and � denotes the flavor of the Majorana fermions
(þ or �). In the Majorana fermion basis, the Hamiltonian
is represented as follows:

H ¼ i
Z

d2x�ðxÞA�ðxÞ; (A4)

where A is a real antisymmetric matrix (differential op-
erator), and � is an eight-component vector whose com-
ponents are ��;�;�.

Now, we express the conserved quantities associated
with the symmetries of the Hamiltonian in the Majorana
fermion basis. First, no-valley mixing combined with total
electron-number-conservation symmetry leads to separate
conservation of the electron number at each valley NK and

NK0 . Hence, the total electron number Nc ¼ NK þ NK0 and
the valley polarization NV ¼ NK � NK0 are conserved. In
the Majorana fermion basis,

Nc;V ¼ i

4

Z
d2x�ðxÞQ̂c;V�ðxÞ; with

Q̂c ¼ i�y ��0 � �0 � I;

Q̂V ¼ i�y ��0 � �z � I;

(A5)

where �i (�i) Pauli matrices act on the Majorana flavors

(valley indices). So defined, Qc and QV satisfy Q̂2
c ¼

Q̂2
V ¼ �1.
Under time-reversal symmetry T, K and K0 valley in-

dices are exchanged; i.e., T̂: c�;K $ c�;K0 . Hence, T acts

like �x in the valley basis, with the matrix part of the time-

reversal operator satisfying T̂2 ¼ 1. On the other hand, no-
valley mixing implies that the Hamiltonian is invariant
under ðc�;K; c�;K0 Þ ! ðc�;K;�c�;K0 Þ transformation,

which acts like �z in the valley basis. Hence, in the pres-
ence of no-valley-mixing symmetry, we can define a new

time-reversal operator �̂: ðc�;K; c�;K0 Þ ! ðc�;K0 ;�c�;KÞ,
which acts like �zT̂ ¼ i�y. In terms of Majorana fermions,

�̂ ¼ �0 ��0 � ði�yÞ � I; �̂2 ¼ �1: (A6)

In order to find the relevant Clifford algebra, we need to
form anticommuting generators in terms ofA in Eq. (A4)

combined with symmetries Q̂c, Q̂V , and �̂. However,

the symmetries require ½A; Q̂c� ¼ ½A; Q̂V� ¼ 0 and

fA; �̂g ¼ 0. Moreover, symmetry operators satisfy

Q̂c�̂ ¼ �̂Q̂c, Q̂V�̂ ¼ ��̂Q̂V , and Q̂cQ̂V ¼ Q̂VQ̂c rela-
tions. Using these relations, we find the full set of gener-
ators of the relevant Clifford algebra as �1, �2, and

�3 ¼ �̂Q̂VQ̂c; �4 ¼ �̂; �5 ¼ �̂Q̂V; (A7)

as fA; �ig ¼ 0 for i ¼ 3; 4; 5. The resulting full set of
anticommutation relations is

f�i; �jg ¼ 2gi;j; gi;j ¼ diagð1; 1; 1;�1;�1Þ; (A8)

and it defines a Clifford algebra Cliff(3,2).
Now, we will find the space of mass matrices CM that

can gap out the Dirac Hamiltonian associated with this
Clifford algebra in order to obtain SPT classification.
The mass term with matrix representation HM ¼
i
4

P
I;JMI;J�I�J should satisfy the following algebra:

M�i ¼ ��iM; M2 ¼ �1; (A9)

where we have normalized M. Solving the above equation
yields the allowed space for the mass matrix CM. It has
been shown [17] that CM, which solves Eq. (A9) for the
case of Cliff(3,2), is

CM ¼ lim
n!1

[n
m¼0

OðnÞ
OðmÞ �Oðn�mÞ : (A10)
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The SPT classification is then given by the number of
disconnected pieces in the space of mass matrix CM, i.e.,
its zeroth homotopy group: 	0ðCMÞ. Using Eq. (A10), it
can be verified that 	0ðCMÞ ¼ Z [17]. Consequently, each
class of the time-reversal-invariant multilayer graphene in
the absence of intervalley scattering is indexed by a
Z-valued number, in this case, the valley Chern number.

Now, we are in a good position to consider symmetry
changes. It is important to note here that spontaneously
ordered phases can be considered alongside systems under
an external field, as once a system is deep inside the
ordered phase, it can be treated within mean-field theory.

We first consider the symmetry-reduction possibilities
while maintaining spin degeneracy (see Table I). If we only
break the time-reversal symmetry, the system is character-
ized by two independent topological indices ðCK; CK0 Þ;
hence, the classification is given by Z � Z. We refer to
these SPT phases as intravalley QAH states. Such phases
may be realized by placing trigonally strained graphene
[40,41] under an external magnetic field, as the sign of the
pseudomagnetic field caused by strain is opposite for the
two valleys. Further reducing the symmetry by introducing
intervalley scattering leads to an intervalley QAH state
indexed by a single integer Z: the total Chern number
[42]. Breaking electron-number conservation turns the
above insulators into superconductors. Following the pro-
cedure above, we obtain the same classification for the
TSCs in 2D, resulting in a topological valley superconduc-
tor (TVSC) and intra- or intervalley TSCs. Table I summa-
rizes all symmetry-reduction possibilities and their
classifications, starting from gated multilayer graphene.

Now, we consider extending our classification to take the
electron spin into account as a dynamical degree of free-
dom. This generalization will allow us to consider interac-
tion effects at the level of spin ordering. With both spin and
valley degrees of freedom, there are three symmetry op-

erators related to time reversal: �̂1 / �x exchanges two

valleys; �̂2 / i�y, which acts on the spin indices, flips

spin; and T̂ ¼ �̂1�̂2 does both. If both �̂2 and T̂ are
broken, the classification reduces to that of spinless elec-
trons (see the upper part of Table II). However, taking any
of these symmetry operators into account leads to new
classes (see the lower part of Table II).

When all �̂1, �̂2 (and as a result T̂), and no-valley-
mixing symmetries are imposed, the state corresponds to
the so-called LAF phase predicted in Refs. [28,43] and
possibly occurring as a ground state in bilayer graphene at
the neutrality point [33]. In this phase, the product of the
spin and valley of edge quasiparticles is locked to their
momentum. Therefore, one may index this state by its spin-
valley Chern number CSV [28]. In this phase, for each
valley, the edge states associated with two spins are coun-
terpropagating. As long as these two counterpropagating
modes do not couple, there can be any number of them per
valley, leading to 2CSVe

2=h spin-valley Hall conductivity

[12,28]. However, there is a form of symmetry-allowed
coupling between a pair of sets of counterpropagating
edges; this coupling can gap out the edge modes [39].
Therefore, the number of symmetry-protected edge modes
for each valley is CSV mod 2. Hence, we obtain a Z2

classification for this phase labeled by ð�1ÞCSV , as opposed
to Z classification, which would be implied by
Refs. [12,28].

Another interesting possibility is breaking �̂1 and �̂2

while respecting their product T̂ and no-valley-mixing
symmetry. This leads to the QSH phase, in which CK;" ¼
�CK0;# and CK0;" ¼ �CK;# because of T̂ symmetry, while

there is no constraint on the CK;" þ CK;#. Hence, unlike the
usual 2D QSH states [14,15], we obtain Z. This classifica-
tion is because of the multiple types of time-reversal
operators that can be defined [44] in the presence of no-
valley-mixing symmetry. This and other SPT possibilities
are summarized in Table II.
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