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We propose a stochastic model for the number of different words in a given database which incorporates

the dependence on the database size and historical changes. The main feature of our model is the existence

of two different classes of words: (i) a finite number of core words, which have higher frequency and do

not affect the probability of a new word to be used, and (ii) the remaining virtually infinite number of

noncore words, which have lower frequency and, once used, reduce the probability of a new word to be

used in the future. Our model relies on a careful analysis of the Google Ngram database of books

published in the last centuries, and its main consequence is the generalization of Zipf’s and Heaps’ law to

two-scaling regimes. We confirm that these generalizations yield the best simple description of the data

among generic descriptive models and that the two free parameters depend only on the language but not

on the database. From the point of view of our model, the main change on historical time scales is the

composition of the specific words included in the finite list of core words, which we observe to decay

exponentially in time with a rate of approximately 30 words per year for English.

DOI: 10.1103/PhysRevX.3.021006 Subject Areas: Complex Systems, Interdisciplinary Physics,

Statistical Physics

I. INTRODUCTION

Even in our time of big data [1–3], there is no indication
of a saturation of the vocabulary size (total number of
different words) with increasing database size. In order to
clarify whether it is meaningful to estimate a vocabulary
size in the limit of infinitely large databases, it is essential
to understand not only the birth and death of words [4–6],
but also the process governing the usage of new words and
its dependence on database size. The interest in this prob-
lem is motivated by fundamental linguistic studies [7,8] as
well as by applications in search engines, which require an
estimation of the number of different words in a given
database [9–11].

The scaling between the number of different words, N,
and the size of the database in words, M, as N �M�, is
known as Heaps’ law [12] and has been studied in different
linguistic [13–15] and nonlinguistic [16,17] contexts. The
universality and interest of this empirical scaling is sur-
passed only by Zipf’s law [18], which states that the
frequency FðrÞ of the rth most frequent word in a database
decays as FðrÞ � 1=r. The relation between Heaps’ law
and Zipf’s law has been the subject of great recent interest
[19–21]. Furthermore, it is well known that deviations of
the Heaps’ and Zipf’s laws are observed in the tails of
Heaps’ and Zipf’s plots (i.e., for large N and r, respec-
tively) [22–24]. Similar deviations of fat-tailed distribu-
tions appear in a variety of social and physical systems

[25,26] and are crucial when extrapolating to the limit of
large databases.
In this paper, we propose a stochastic growth model

whose predictions go beyond the simpler scalings of
Heaps’ and Zipf’s laws and are compatible with actual
observations in the tail of the corresponding distributions.
Our model is in the same spirit of, but differs from, the
simpler versions of Yule’s, Simon’s, Gibrat’s, and prefer-
ential attachment growth models [26–29] because it con-
tains two categories of words and leads to two scaling
regimes in the Heaps’ and Zipf’s plots. These findings
are supported by a statistical analysis of the Google
Ngram database, indicating that the only two free parame-
ters needed in the description of these scalings remain
unchanged over centuries and depend only on the lan-
guage, and that there is a slow change of words belonging
to each category. The latter adds to the recent interest in
language dynamics as a complex system [30,31].
The paper is organized as follows: In Sec. II, we present

a statistical analysis of the Google Ngram database in
terms of word frequencies, as well as the growth of the
vocabulary. This will then lead us to the formulation of our
stochastic model for the vocabulary growth in Sec. III. In
Sec. IV, we investigate dynamical aspects on historical
time scales within the framework of our model.

II. DATA ANALYSIS

A. Data

The main motivation for our model comes from empiri-
cal observations. As databases, we use the Google Ngram
corpus [1] for English, German, French, Spanish, and
Russian, which provides data of the word frequencies
(occurring in printed books), with a yearly resolution for

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 3, 021006 (2013)

2160-3308=13=3(2)=021006(10) 021006-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.3.021006
http://creativecommons.org/licenses/by/3.0/


a period of several hundred years (1520–2000). Our main
interest in this database stems from its large size (several
millions of books with >1011 words) and from the long
time span it covers (thus enabling us to trace historical
changes in the usage of language). We consider as words
only the 1-grams consisting uniquely of letters present in
the alphabet of the corresponding language. This prag-
matic definition reduces the effect of symbolic sequences,
foreign words, numbers, or scanning problems in our ob-
servations and should be taken into account when inter-
preting our findings about the vocabulary. For each
language, we use two different partitions of the database:
(i) yearly (y), in which case yðtÞ corresponds to the data-
base of the year t; and (ii) cumulative (Y), in which case
YðtÞ ¼ P

t
t0¼to yðt0Þ. We consider only words which appear

at least n ¼ 41 times in order to avoid biases due to the
filtering mechanism used in the Google Ngram database;
see Ref. [32], Sec. I, for further details. Here, we show
our detailed analysis for the largest database (English, t0 ¼
1520, t 2 ½1805; 2000�). For the other four languages, we
report the main findings and leave the details for Ref. [32].

B. Zipf’s analysis

Our first empirical analysis focuses on the distribution of
word frequencies. In his seminal work, Zipf proposed that
the frequency of the rth most frequent word in a given text
is given by FðrÞ ¼ Fð1Þ=r [18]. It is easy to see that this
scaling has to break for large r: Because of the divergence
of the harmonic series, for sufficiently large databases, one
arrives at

P
N
r¼1 FðrÞ> 1 (sum of frequencies larger than

text size). In English,Fð1Þ � 0:07 (the frequency of ‘‘the’’)
and

PN
r¼1 FðrÞ> 1 for N � 106, meaning that FðrÞ has

to decay faster than 1=r for r * 106. This well-known

expectation, which is clearly seen in our data shown in
Fig. 1(a), motivated numerous different generalizations of
Zipf’s proposal [33–35]. While many of these generaliza-
tions were shown to provide a better account of particular
databases, they remain, to a great extent, unsatisfactory
because they lack the simplicity and universality of Zipf’s
original proposal (e.g., the parameters vary depending on
the size, topic, or date of publication of the analyzed texts
[36,37]). Motivated by the new magnitude of our large
database, we apply rigorous statistical tests to determine
which of the previously proposed distributions provide a
better account of the data. We select seven of the most
popular previously proposed heavy-tailed distributions
with at most two free parameters [8,23,24]: power law,
two power laws, shifted power law, log normal, Weibull,
and power laws with exponential cutoffs (in the tail and
beginning, respectively). The parameters for each distribu-
tion were obtained numerically by means of maximum
likelihood (ML) estimation [38]. In addition, we
(i) calculate the probability that the data were generated
by that model (�2 p-value [39,40]) and (ii) compare which
model is more likely to describe the data (relative like-
lihood [41,42]) for each fit (for details see Ref. [32],
Sec. IIA).
The results show that it is extremely unlikely

(p < 10�15) that the data were drawn exactly from any
of the proposed distributions, a consequence of the large
databases which makes any small (true) deviation incom-
patible with these simple fits. On the other hand, the results
show unequivocally that for English the distribution with
two power laws is the best fit (1� p < 10�15) for all
databases with a size larger than 109 words. We confirm
that the double power law is also the best fit for the English
Wikipedia, a strong indication of the validity of this result

FIG. 1. The rank-frequency distribution shows double-scaling behavior (Zipf’s plot). (a) Rank-frequency distribution for the English
database Yð2000Þ (solid line) and a ML fit of Eq. (1) (dashed line). (b,c) parameters � and b obtained from ML fits of Eq. (1) to yearly
yðtÞ (x symbols) and accumulated YðtÞ (solid line) database. Arrows indicate the values of the parameters �� and b� obtained for the fit
in (a). Results are shown for the time range t 2 ½1805; 200� in which data are most reliable; accumulation starts in t0 ¼ 1520.
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in databases of different origin (see Ref. [32], Sec. IIB, for
the detailed analysis on both databases, which uses meth-
ods reported in Refs. [43]).

We now discuss in detail the best two-parameter model
that we identify from our data:

Fdpðr;�; bÞ ¼ C

�
r�1 r � b

b��1r�� r > b;
(1)

characterizing a double power law (dp), where b and � are
free parameters, and C ¼ Cð�; bÞ is the normalization
constant [44]. The effect of the threshold n applied to the
frequency of words is that, in practice, data of FðrÞ are
limited to FðrÞ � n=M (M is the observed number of
words). Zipf’s original law is recovered for high-frequency
words, and a critical rank r ¼ b determines a transition to a
power law with exponent �. Double power laws were
proposed as a generalization of Zipf’s law in Ref. [45]
and further investigated in Refs. [46,47]. These insightful
works used distributions with two power-law exponents,
�1, �2, and were motivated by the visual inspection of
double logarithmic plots. Our improved statistical analysis
confirms and extends these observations for the simpler
distribution, Eq. (1). Besides the likelihood analysis and
visual inspection given in Fig. 1, a third strong evidence in
favor of distribution (1) comes from the comparison of
the estimated parameters of different corpora shown in
Figs. 1(b) and 1(c). Very similar values, b 2 ½7� 103;
12� 103� and � 2 ½1:8; 2:5�, were obtained for nonover-
lapping databases (for the English Wikipedia, b ¼ 7830,
� ¼ 1:68), and the fluctuations become smaller for in-
creasing database size. These observations strongly sug-
gest that the same fixed parameters provide a good
description of all English texts [e.g., yð1900Þ and
yð2000Þ]. Therefore, hereafter we do not consider individ-
ual fits for each database and instead assume that Eq. (1) is
valid with b ¼ b� ¼ 7873 and � ¼ �� ¼ 1:77, values ob-
tained for our largest database Yð2000Þ.

Similar findings also apply to the other languages. In
Table I we summarize the parameters �� and b� obtained
from a ML fit of the largest database Yð2000Þ of the
respective language to Eq. (1). French and Spanish are
also best described by Eq. (1) for databases exceeding a
particular size, and they yield values for �� and b� similar

to English. For German and Russian, Eq. (1) constitutes
only the second-best model. However, we have strong
indications that Eq. (1) provides a better account of the
tails (r 	 b�), and, therefore, we expect that even larger
databases will reveal the double power law as the best fit
also in these languages (see Ref. [32], Sec. IIB, for details).
Apart from being the smallest databases among the inves-
tigated languages, another feature affecting the fitting in
German and, especially, in Russian is the higher degree of
inflection in the morphology of these languages. We recall
that no lemmatization was applied in our definition of
words, and, therefore, inflected words (obtained, e.g., by
adding a suffix) are counted as distinct words. This reason-
ing explains the higher measured values of b� (vocabulary
in the r�1 regime). From the fitting perspective, however,
the large values of b� in German and Russian require even
larger databases to characterize the deviations from the r�1

regime for r 	 b�.

C. Heaps’ analysis

We now turn to our second empirical analysis: the
dependence of the number of different words, N, on
the size of the database, i.e., total number of words, M.
The classical result for this relation is the empirical Heaps’
law [12], which states thatN �M� with � 2 ½0; 1� (A� B
indicates that A=B ¼ constant for large B). We start
searching for the implications of our finding of a general-
ized Zipf’s law to the Heaps’ analysis of vocabulary
growth. A simple and powerful approach is the so-called
Zipfian ensemble (ZE) [21], which can be traced [47] back
to Mandelbrot [48]. This approach assumes that the occur-
rence of every possible word is governed by a Poisson
process with an intensity proportional to its frequency
(see Ref. [32], Sec. IIIA). It was shown that, under this
or similar assumptions (e.g., stochastic processes with
fixed frequencies for words), Heaps’ law can be interpreted
as a direct consequence of a Zipfian rank-frequency distri-
bution FðrÞ � r�� [9,13,14,19,21] and vice versa
[20,49,50], where � ¼ 1=� [48]. Here, we want to draw
attention to the fact that these observations are not re-
stricted to Zipf’s and Heaps’ laws; i.e., assuming a sto-
chastic model, the relationship between FðrÞ andNðMÞ can
always be established. The expectation of the ZE of Eq. (1)
with a threshold n 	 1 is (see Ref. [32], Sec. IIIB)

NdpðM;�; bÞ ¼ Cn

�M M 
 Mb

M1�1=�
b M1=� M 	 Mb;

(2)

whereMb is the number of words such thatNðMbÞ ¼ b and
the scaling constant Cn ¼ C=n [C � Fð1Þ being the fre-
quency of the most common word, as can be seen from
Eq. (1)]. Thus, the effect of the threshold n applied to the
growth curve of the vocabulary simply amounts to rescal-
ing the constant C. While the expected (average) number
of distinct words over many realizations of the stochastic
process leads to a sharp transition between the two

TABLE I. Parameters b�, ��, and C� ¼ Cð��; b�Þ obtained
from the ML fit of Eq. (1) for the largest database Yð2000Þ for
all considered languages.

Language b� �� C� ¼ Cð��; b�Þ
English 7873 1.77 0.0922

French 8208 1.78 0.0920

Spanish 8757 1.78 0.0915

German 19 863 1.62 0.0828

Russian 62 238 1.94 0.0789
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regimes, the values of NdpðM � MbÞ might depend more

strongly on the particular realization.
In Fig. 2, we show that the data in the Google Ngram

database obey the scalings of Eq. (2). In Fig. 2(a), we
present the NðMÞ curve for English. While for the yearly
database yðtÞ we obtain a set of points for each t, the
cumulative database YðtÞ builds a curve of vocabulary
growth for increasing t. Despite the differences in these
databases, all the data lie in a relatively narrow region of
the plot which resembles a single curve compatible with
the double scaling of Eq. (2). This curve is well described
by the NðMÞ curve obtained from the combination of the
double power-law distribution Eq. (1) with fixed parame-
ters (��, b�) and the assumption of Poisson usage of words,
in the spirit of the ZE. Similar observations apply to all
considered languages, as shown in Fig. 2(b). On closer
inspection [see Fig. 2(c)], the fine details of theNðMÞ curve
are not compatible with the fluctuations expected from the
strongly simplifying assumptions of the ZE. Nevertheless,
it is remarkable that the agreement between the model and

data remains within 50% for different databases and over
9 orders of magnitude in size.
Here, it is worth revisiting the question about the finitude

of the vocabulary. Even after more than 106 different words,
the NðMÞ data in Fig. 2 do not seem to saturate. To further
investigate this point, we perform the ZE with the same
rank-frequency distribution from Eq. (1) (fixed b�, ��) but
varying the maximum possible number of different words
Nmax

ZE , e.g., 1, 2, 5, 10, and 100 times the observed number of
distinct words in our largest database Yð2000Þ. It can be
seen in Fig. 2(d) that the differences for the predicted
growth curves for such different hypothetical vocabulary
sizes are negligible compared to the fluctuations of the real
data. From this, we conclude that, given the data accessible
so far, the possible vocabulary can be regarded, for all
practical purposes, to be infinite (although bounded by
combinatorial arguments due to a finite alphabet and
word length). The fact that the same distribution, Eq. (1),
with fixed parameters accounts for the observation across
all years shows that the observation of different numbers of

FIG. 2. Vocabulary N as a function of database size M (Heaps’ plot). (a) Number of distinct words as a function of the number of
words for yearly yðtÞ (x symbols) database, cumulative YðtÞ (solid line) database, and the Zipfian ensemble (dashed line), assuming
n ¼ 41 and the rank-frequency distribution Eq. (1) with b� ¼ 7873 and �� ¼ 1:77. (b) Same curves as in (a) but for different
languages showing the same scaling behavior. In order to increase visibility, the curves for French, Spanish, and Russian were shifted,
respectively, by one, two, and three decades with respect to their x values. (c) Difference of the curves in (a): deviation of the data yðtÞ
and YðtÞ (Ndata) from the ZE growth curve (NZE). The dashed lines show the 95%-confidence interval of the ZE. (d) Deviation of a ZE
growth curve with a hypothetically finite vocabulary (Nfinite ZE) from the ZE growth curve with infinite vocabulary (NZE) assuming
rank-frequency distribution, Eq. (1). The possible size of the total vocabulary is given in units k of the number of observed distinct
words in Yð2000Þ, such that Nmax

ZE ¼ k� 4 263 717 with k ¼ 1, 2, 5, 10, 100. Note that, for M ! 1, NfiniteZEðMÞ ! Nmax
ZE , and

therefore the deviation for k ¼ 1 becomes visible.
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words is driven mainly by the different database size and
not by a change in vocabulary richness over time.

III. MODEL

In this section, we propose a simple generative model
which recovers and allows for an improved interpretation
of the double scalings in our empirical findings—Eqs. (1)
and (2).

Our approach is different from Zipf’s original explana-
tion based on a principle of least effort between speakers
and listeners [18,51] but, instead, is in line with the tradi-
tion of Yule-type stochastic growth models explaining fat-
tailed distributions [26–29]. The main novelty in our model
is that it contains two classes of word types: a core vo-
cabulary and a noncore vocabulary [46]. At each step, a
word (i.e., word token) is drawn (M � Mþ 1) and attrib-
uted to one of the distinct words (i.e., word type) depend-
ing on probabilities specified below; see Fig. 3 for a sketch
of the model. The total number of word types is given by
N ¼ Nc þ N �c, where (N �c) Nc is the number of (non)core
words. The new word token can either be a new word type
(N � N þ 1) with a probability pnew or an already exist-
ing word type (N � N) with a probability 1� pnew. In the
latter case, a (previously used) word type is attributed to
the word token at randomwith a probability proportional to
the number of times this word type has occurred before. In
the former case, the new word type can either originate
from a finite set of Nmax

c core words (Nc � Nc þ 1) with a
probability pc, or it can come from a potentially infinite set
of noncore words (N �c � N �c þ 1). In our simplest model,
we consider pc to be a constant, i.e., p0

c & 1, which
becomes zero only if all core words were drawn
(Nc ¼ Nmax

c ):

pcðNcÞ ¼
�
p0
c if Nc < Nmax

c

0 if Nc ¼ Nmax
c :

(3)

The final element of our model, which establishes the
distinguishing aspect of core words, is the dependence of
pnew on N. We choose pnew (and pc) to depend on N and
not onM because an increase in N necessarily reflects that
fewer undiscovered words exist, while an increase in M is
strongly affected by repetitions of frequently used words.
By definition, we think of core words as necessary in the
creation of any text, and, therefore, the usage of a new core
word in a particular text should be expected and thus not
affect the probability of using a new (noncore) word type in
the future, i.e., pnew ¼ pnewðN �cÞ. On the other hand, if a
noncore word is used for the first time (Nc � Nc þ 1), the
combination of this word and the previously used (core and
noncore) words leads to a combinatorial increase in possi-
bilities of expression of new ideas with the already used
vocabulary and thus to a decrease in the marginal need for
additional new words [47]. In our model, this argument
suggests that pnew should decrease with N �c. Taking these
factors into account, we propose as an update rule for pnew

after each occurrence of a new noncore word

pnew � pnew

�
1� �

Nc þ s

�
; (4)

with the decay rate �> 0 and the constant s 	 1, which is
introduced simply in order to damp the reduction of pnew

for small Nc (for simplicity, we use s ¼ Nmax
c ). The main

justification for the exact functional form in Eq. (4) is that
it allows us to recover the empirical observations reported
in Sec. II, as shown below. An alternative a posteriori
justification will be given at the end of this section, and it
shows that Eq. (4) can be interpreted as a direct conse-
quence of an unlimited noncore vocabulary.
We now show how this model recovers Eqs. (1) and (2).

We require that 1� p0
c 
 1, which simply means that it is

much more likely to draw core words than noncore words
initially. In this case, we can obtain approximately exact
solutions for NðMÞ in the two limiting cases considered in
Eq. (2). When N 
 Nmax

c , which implies Nc, N �c 
 Nmax
c ,

it follows from Eqs. (3) and (4) that pnew � const, and
therefore we trivially obtain that N �M1. This case re-
sembles the very beginning of the vocabulary growth,
when most new word types belong to the set of core words.
In the case N 	 Nmax

c , pc ¼ 0 and N � Nc, so Eq. (4)
becomes, in the continuum limit,

d

dN
pnewðNÞ ¼ ��

pnewðNÞ
N

; (5)

from which it follows that pnew � N��.
We now obtain the expected growth curve NðMÞ. Notice

that our model can be considered a biased random walk in
N, which, as an approximation, can be mapped onto a

FIG. 3. Illustration of our generative model for the usage of
new words.
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binomial random walk by the coordinate transformation
NðMÞ such that pnewðNÞ ¼ pnew½NðMÞ�. The resulting
Poisson-binomial process [52] can be treated analytically;
e.g., the transformation NðMÞ is then given by the average
of the vocabulary growth:

NðMÞ ¼
Z M

0
dM0pnewðM0Þ

¼
Z NðMÞ

Nð0Þ
dN0

��������
dM0

dN0

��������pnewðN0Þ: (6)

Using pnew � N��, this equation holds (self-consistently)
by assuming a sublinear growth for the vocabulary
N �M�, where the relation � ¼ ð1þ �Þ�1 is established
(for details see Ref. [32], Sec. IV). In accordance with
Eq. (2), we identify the following relation between the
parameters: Nmax

c ¼ b and � ¼ �� 1. The fitting parame-
ters of Eq. (1) can thus be interpreted as follows: b is the
size of the core vocabulary, and � controls the sensitivity of
the probability of using a new word to the number of
already-used words in Eq. (5).

Since the probability of usage for already-used word
types is assumed to be proportional to the number of times
it occurred before, we guarantee that Eq. (2) implies (1)
[20], meaning that the double scaling in the Zipf plot is also
recovered from our generative model. While the previous
arguments show that the correct scalings are obtained by
our model, in order to obtain an agreement with the data, it
is essential to (i) use the normalization constant C in order
to determine the initial probability of finding a new word in
Eq. (4), (ii) rescale the distribution using the threshold n as
M=n, and (iii) account for the disproportionally large
weight of the first word types (in the Zipf plot). Taking
these points into account, direct simulations of the model
in Fig. 3 with the traditional parameters b ¼ b� and
� ¼ �� lead to Zipf’s and Heaps’ curves, which resemble
the original fits. See Ref. [32], Sec. V, for all details.

It is worth comparing the generative model with the
model of random usage of words with fixed frequency,
the ZE model discussed in the previous section. While the
ZE model allowed us to obtain Heaps’ curves from Zipf’s
distributions (and vice versa), in the generative model, we
simultaneously obtain the double-scaling regime in both
cases. It is important to stress that individual texts or single
databases should not be considered as the output of single
realizations of our generative model. Instead, we consider
that not only texts but also all databases have a negligible
size when compared to the language as a whole and
therefore should be thought of as a small subsample
(Mdatabase 
 M) of the output of our generative model,
retrieved after the model achieved its stationary state
(M ! 1). In this case, changes in word frequencies be-
come negligible (at the scale of M) during the creation of
the database (at the scale of Mdatabase). Therefore, the
vocabulary growth of the created database is well approxi-
mated by the ZE model with FdpðrÞ.

Finally, we use our previous calculations and provide an
a posteriori justification of the key assumption of our
model, Eq. (4). Our starting point is the observation—see
Fig. 2(d)—that vocabulary is, for all practical purposes,
infinite. We therefore postulate that

NðMÞ ���!M!11; (7)

and, by following (in reverse order) the previous calcula-
tions, we naturally arrive at Eq. (4). From the first line of
Eq. (6), we see that in order to fulfill our postulate (7), pnew

has to decay at least as slow as pnewðMÞ �M��, with
� � 1 for M ! 1. In a minimal model, it is reasonable
to assume such a power-law decay, in which case the first
line of Eq. (6) implies that NðMÞ �M�, with � ¼ 1� �.
Making a transformation of variables from M to N, we
obtain

pnewðNÞ ¼ pnewðMðNÞÞ � N�1þð1=�Þ ¼ N��: (8)

In turn, this is equivalent to Eq. (5), from which we recover
Eq. (4) as a discretized version. Thus, we see that Eq. (4) is
a minimal assumption for an unbounded vocabulary.

IV. HISTORICAL CHANGES

The model described so far has been shown to give a
good account of all databases and all years with the same
two fixed parameters, Nmax

c ¼ b� ¼ 7; 873 and � ¼ �� �
1 ¼ 0:77 in the case of English. A natural question is,
therefore, what actually changes in historical time scales?
Considering two different databases (say, two different
years), our model does not consider any differences in
the actual composition of the core vocabulary. Even if
the value of Nmax

c remains constant, this does not mean
that the same words are observed for all years. From the
point of view of our model, the main change a word can
experience is to enter or to leave the group of core words.
For instance, comparing the decades 1891–1900 and 1991–
2000, the most frequent words that left the core vocabulary
were majesty, doubtless, furnished, monsieur, Napoleon,
and hitherto, while the ones that entered were cultural,
context, technology, programs, environmental, and com-
puter [53].
In order to quantify this effect, we investigate the re-

placement of words from the core vocabulary in the yearly
databases yðtÞ in the time t 2 ½1805; 2000� in Fig. 4. We
calculate the fraction fðt;�tÞ of core words (i.e., with rank
r < b� ¼ 7873, fixed for all t) from yðtÞ that remain in the
set of core words in yðtþ �tÞ. Figure 4(a) shows that all
curves can be qualitatively described by an exponential
decay

fðt;�tÞ ¼ f0e
��j�tj; (9)

independent of whether forward (�t > 0) or backward
time (�t < 0) was considered. This is further supported
in Figs. 4(b) and 4(c), where the parameters f0 and �
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obtained numerically from a least-square fit [38] of
Eq. (9) for all curves fðt;�tÞ with t 2 ½1805; 2000� are
presented. In order to avoid biases due to different number
of points in the fit, for each t we performed a fit with
the same number of points minf2000� t; t� 1805g for-
wards and backwards in time. On closer inspection, two
features connected to the interpretation of the parame-
ters f0 and � deserve a more careful discussion. The
parameter f0 < 1 represents the discontinuous change of
core words in two subsequent years. It strongly depends
on the different selection of books in the construction
of the respective databases and can be attributed to the
finite size of the database, which leads to a wrong
estimation of the ‘‘true’’ core words. Consistently with
this interpretation, Fig. 4(b) shows that f0 grows over
time, due to the fact that database size increases, lead-
ing to a better sampling of words. Nevertheless, a value
of f0 � 0:98 indicates that this is still far from being
negligible (e.g., for Nmax

c ¼ 7; 873, this means that
around 150 words of the set of core words will be
different because of finite sampling). In contrast, the
decay rate � describes the continuous replacement of
core words over time, with a rate of �Nmax

c � 30 words
per year. The most intriguing observation in Fig. 4(c)
is that this change experiences an acceleration over
time, as � grows by more than 50% from 1805 to
2000.

Finally, it is worth discussing the implications of these
findings on our generative model. The characteristic time
scale of the core-vocabulary replacement (� 1=�) is on the
order of centuries. This means that, on the scale of a few
decades, our generative model holds with the assumption
of a constant core vocabulary. On longer time scales, our
model has to be refined in order to include (i) a probability
of replacement of the words belonging to the core vocabu-

lary and (ii) a finite memory or a distinction between core
and noncore words in the preferential attachment part of
our model.

V. DISCUSSION

In summary, we have shown that the rank-frequency
distribution and the vocabulary growth of languages can
be best described by simple two-scaling functions. The
only two free parameters of the functions are related to
each other and remain almost unchanged over centuries, as
well as databases, and depend only on the considered
language. We have also shown that these empirical findings
can be interpreted as the result of a finite number of words
belonging to a core vocabulary, which have different prop-
erties from the remaining virtually unlimited number of
words, as summarized in Table II. This conclusion was
achieved based on a simple generative stochastic model for
the vocabulary growth. Finally, we found that in English,
the composition of the core vocabulary experiences an
exponential decay with a rate of 30 words per year, which
has been, remarkably, steadily accelerating in the past
decades.
It is worth comparing these findings in view of previous

results. As far as we are aware, our analysis provides the
first rigorous statistical confirmation of similar previous

FIG. 4. Historical change in the composition of core words in the English vocabulary. (a) Fraction fðt;�tÞ of core words in yðtÞ that
remain in the set of core words in yðtþ�tÞ for t 2 ½1805; 2000� (pale colors) and, in particular, for t ¼ 1905 (black dots) with the
corresponding exponential fit (red line). (b,c) Parameters f0 and � in the exponential decay Eq. (9) of the curves in (a) obtained through
least-square fits. Forward (backward) decay refers to �t > 0 (�t < 0).

TABLE II. Properties of core (c) and noncore ( �c) words in our
model.

Core words Noncore words

Number Finite: Nmax
c 2 ½103; 104� Infinite: N �c ! 1

Frequency Larger (r > b�) Smaller (r < b�)
Effect on pnew None Reduction
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proposals [45–47] of the double-scaling generalizations of
Zipf’s law—Eq. (1). The consequence of this on vocabu-
lary growth and Heaps’ law (see also [47]), which we drew
based on a Poisson usage of words [21], is that the rate of
introduction of new words decays but never vanishes with
increasing database size. This is in contrast to recent claims
that reported a convergence to a maximum vocabulary size
[14]. We note that this previous analysis was based on
single books, and therefore the database sizes were close
to our transition point Nmax

c , which we believe could have
been misinterpreted as a systematic decay. A generaliza-
tion of a Yule-type process to obtain double-scaling degree
distribution in a network of words was introduced in
Ref. [54]. Two crucial differences from our model are
that it yields fixed exponents and cannot be understood
as a generative model of texts (word by word).
Interestingly, in Ref. [6] an analysis of the network con-
structed from the thesaurus also showed the existence of a
set of core words of almost the same size as ours.

Our simple model and expression for the vocabulary
growth as a function of database size have important
practical consequences. Simply knowing the database
size (in number of words, M, or potentially in bits), and
using the language-dependent parameters (C, Nmax

c ¼ b�,
� ¼ �� � 1) reported above, from Eq. (2) one can imme-
diately estimate the expected number of different words,
N, appearing more than n times. This is crucial for search
engines and data-mining programs because it allows for an
estimation of the memory to be allocated prior to the
scanning of an unknown database, e.g., in the construction
of the inverted index [9–11]. Even the fluctuations around
this expectation can be easily computed through our gen-
erative model or through the Poisson assumption of word
usage. Of course, this strong assumption ignores correla-
tions and typically underestimates the expected fluctua-
tions, so our model should be considered as the simplest
null model. The existence of a transition between two
scalings (which is within reach of even single, large books)
shows that simple estimations based only on the traditional
Zipf’s law have to be generalized. For instance, a com-
monly used index of vocabulary richness of a text is
Herdan’s coefficient given by the ratio logN= logM [8].
In view of our results, the coefficient is highly dependent
on which of the two scaling regimes is reached with the
given size of the text.

We now compare our observations of change on histori-
cal time scales to other historical changes in language
usage. For the whole vocabulary, we obtain that the vo-
cabulary size is mainly driven by the available database
size. This is in contrast to previous conclusions based on
the same Google Ngram database that detected a growth of
vocabulary in time [1]. Here, it is important to note that
this previous analysis included a substantially different
filtering of the listed 1-grams to achieve valid words in
the vocabulary, including a frequency criterion and manual

classification. Still, our results show that, also in this case, a
more careful analysis of the role of the database size is
needed. For the core vocabulary, we observe a fairly con-
stant number of constituents over centuries. The number of
words common to core vocabularies of different databases
was found to decay exponentially with the time between
publication of the databases; e.g., for English, the decay
rate is approximately 30 words per year and the half-life of
the core vocabulary is approximately 200 years. It is worth
comparing these numbers with recent studies that reported
half-lifes for (i) the regularization of verbs (750 to
10 000 years) [5] and (ii) a fundamental vocabulary of
200 words (300 to 38 000 years) [4]. Perhaps our most
intriguing finding is the approximately linear increase of
the rate in time, which eventually confirms the overall
acceleration of language change and society in general,
as propagated in Ref. [1].
Our results can be extended in many directions and open

new possibilities of studies of vocabulary change. Directly
related to our observations and model, the specific value of
the parameter �� � 1:77 still needs to be explained, which
is intriguingly similar across different languages. Another
important point is to assess the limitations of our estima-
tions due to the role of correlations inside real texts and
databases, and to determine how this could be introduced
into our model. Furthermore, it remains to be shown
whether the transition between two scalings due to the
existence of a core vocabulary can be related to the phe-
nomenon of phase transitions in ranking stability of com-
plex systems recently reported in Ref. [55]. Finally, we
believe that our model provides the correct null model for
normalizations due to database sizes and that, therefore,
future investigations of historical effects on the vocabulary
should take this into account.
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