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Neurons in cerebral cortical circuits interact by sending and receiving electrical impulses called spikes.
The ongoing spiking activity of cortical circuits is fundamental to many cognitive functions including
sensory processing, working memory, and decision making. London et al. [Sensitivity to Perturbations In
Vivo Implies High Noise and Suggests Rate Coding in Cortex, Nature (London) 466, 123 (2010).] recently
argued that even a single additional spike can cause a cascade of extra spikes that rapidly decorrelate the
microstate of the network. Here, we show theoretically in a minimal model of cortical neuronal circuits
that single-spike perturbations trigger only a very weak rate response. Nevertheless, single-spike
perturbations are found to rapidly decorrelate the microstate of the network, although the dynamics is
stable with respect to small perturbations. The coexistence of stable and unstable dynamics results from a
system of exponentially separating dynamic flux tubes around stable trajectories in the network’s phase
space. The radius of these flux tubes appears to decrease algebraically with neuron number N and
connectivity K, which implies that the entropy of the circuit’s repertoire of state sequences scales as

N In(KN).
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L. INTRODUCTION

The dynamics of neuronal networks is fundamental to
the brain’s ability to perform cognitive functions such as
sensory processing, working memory, and decision
making. In the cerebral cortex—the part of the mammalian
brain that expanded the most during the evolution of
humans [1] and that is critically and specifically involved
in all of these functions [2]—dynamically generated activ-
ity patterns are, in general, irregular and spatiotemporally
complex [3-8]. The prevailing theoretical explanation for
this irregular activity is that its origin lies in strong fluctu-
ations in inputs that arise from the dynamical balance of
excitation and inhibition—known as the balanced state
[9-11]. It is a long standing theme of dynamic brain
theories that such complex activity patterns might serve
as a rich encoding and processing space for neural com-
putations [12—17]. In particular, if the precise timing of
every nerve impulse is used for information encoding, the
processing capacity of neuronal circuits might be amaz-
ingly rich.

At a fundamental level, brains are network dynamical
systems, evolved to process information. It has long been
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conjectured that dynamical systems optimally operate as
information processing devices near a transition between
order and chaos—the so-called edge of chaos. This edge-
of-chaos hypothesis was originally raised in studies of
cellular automata [18,19]. The dynamics at the edge of
chaos is expected to support a relatively rich set of distinct
state sequences and, at the same time, preserve information
about initial conditions over intermediate time scales, both
of which appear as important prerequisites for complex
computations. In contrast, deep in a chaotic regime, infor-
mation is rapidly destroyed by the dynamical entropy
production, while deep in a stable regime, state sequences
are often stereotyped and impoverished. Even in cellular
automata, however, the edge of chaos has been found
neither necessary nor sufficient for optimal performance
[20]. In the context of neuronal-circuit dynamics, the no-
tion of computations near the edge of chaos has been
emphasized in studies of so-called reservoir computing
[21-24]. In such applications, time-varying ‘“‘sensory’” in-
puts are represented by the instantaneous state of the entire
network that can be “‘read out” by subsequent processing
stages. Many such applications use models of spiking
neural networks [22,25-30]. The basic state-space features
and information capacity of such networks, however, have
been analyzed only for firing-rate models [31,32]. For
spiking neural networks, it has not been possible, so far,
to obtain the most elementary characteristics such as the
repertoire of state sequences or the way in which the size of
this repertoire depends on fundamental variables, such as
the neuron number or synaptic connectivity.
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With regard to biological neural networks, it is not
obvious that networks of spiking neurons can operate in
an edge-of-chaos regime. Recent studies, both experimen-
tal [33] and theoretical [34], suggest that chaos in typical
irregular firing states can be very intense. In particular,
London and co-workers have argued that, from the re-
sponses to artificially induced single spikes in the rodent
barrel cortex, even single additional spikes in a cortical
firing sequence can induce substantial decorrelation of the
network’s microstate [33]. Studies of the state-space struc-
ture and the dynamics of spiking neural networks have
uncovered a plethora of exotic behaviors that raise doubts
as to whether notions from the theory of smooth dynamical
systems, such as the edge of chaos, are generally appro-
priate to describe such behavior. For instance, it has been
found that networks of spiking neurons can robustly
exhibit unstable limit-cycle attractors [35], which are an
oxymoron in classical dynamical-systems theory. Other
exotic behaviors that arise from the basic structural
features of spiking neuron networks are time-varying
phase-space dimensionality [36], topological speed limits
[37], or topologically induced chaotic transients [38].
These and other recent observations indicate that under-
standing information processing by neuronal-circuit
dynamics requires a specific characterization of the collec-
tive dynamics of large neural networks.

Here, we analyze the state-space structure of spiking
neural networks, namely, sparse random networks of in-
hibitory leaky integrate-and-fire (LIF) neurons [39,40] in
the balanced state [11]. Although capable of generating
complex irregular spike sequences, we show that these
networks actually exhibit negative-definite Lyapunov
spectra. The spectra are invariant to the network size,
hence this stable dynamics is extensive and preserved in
the thermodynamic limit. These results confirm and extend
previous studies that described the occurrence of stable
chaos [41,42] in networks of LIF neurons [43—45]. We find
that various state perturbations are predicted to decay
extremely fast. In particular, in the limit of high connec-
tivity, small perturbations to the membrane potentials of
the neurons decay as quickly as in isolated cells. In
addition, single-spike perturbations induce only minute
responses in the population firing rates that decay on a
millisecond time scale. Surprisingly, however, single-spike
perturbations always lead to exponential state separation,
causing complete decorrelation of the networks’ micro-
states. This rapid decoherence is also established within
only a few milliseconds. By examining the dynamics for
arbitrary perturbation sizes, we explain this behavior by a
picture of tangled exponentially separating flux tubes com-
posing the networks’ phase space.

These dynamic flux tubes form reservoirs of stability
around stable trajectories with unique spike sequences and
determine the repertoire of state sequences. A perturbation
that leads the microstate of the network from one flux tube

to another induces a cascade of new spikes that replaces the
original spike sequence but obeys the same statistical and
dynamical properties. The flux-tube structure of the phase
space demonstrates that the fading-memory property (in-
formation about differences in the microstate decay over
time) and the separation property (distinguishable inputs
lead to significantly different states) can coexist in the
dynamics of spiking neuron networks. We numerically
measure the flux-tube radius and estimate the total flux-
tube length. Studying the scaling of the flux-tube radius
and length with the number of neurons N, synapses per
neuron K, and firing rate ¥ leads us to surmise that the
entropy of distinct multispike sequences grows faster
rather than more extensive: H ~ N In(~KN77,,).
Intriguingly, the flux-tube structure of the phase space
calls into question the applicability of notions of classical
dynamical systems even in the thermodynamic limit. The
decrease of the flux-tube radius with the system size leads
to an ambiguity in the characterization of the dynamics in
the thermodynamic limit. It can appear either as supra-
chaotic or as stable depending on the order in which the
weak-perturbation limit and the large-system limit are
taken. To optimize the phase-space structure for computa-
tional applications, network structures that increase the
flux-tube radius relative to random networks are needed.

II. MODEL AND METHOD

We studied large sparse networks of N LIF neurons
arranged on directed Erdos-Rényi random graphs of
mean indegree K. The neurons’ membrane potentials V; €
(—oo, V] with i = 1,..., N satisfy

w0y )+ 1,0 (1)
t

between spike events. When V; reaches the threshold
Vr = 1, neuron i emits a spike and V; is reset to Vp = 0.
The membrane time constant is denoted 7,,. The synaptic
input currents are

Ii(t)=ﬁlo—j—°f > SYot—-tNr,. @
JjEpre(i) s

They are composed of constant excitatory external currents
VKI, and inhibitory nondelayed & pulses of strength
—Jo/~/K, received at the spike times tgj ) of the presynaptic
neurons j € pre(i). The external currents I, are chosen
to obtain a target network-averaged firing rate v =
(1I/N)Xv;.

For numerical simulations, we used a phase representa-
tion of the network dynamics equivalent to the voltage
representation, Egs. (1) and (2). In the phase representa-
tion, each neuron’s state is described by a phase ¢; €
(=00, 1], defined by
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T vV — JKI,
$V) = ~ Tie hl(vR — \/?Io)’

with

free — VT — \/_IEIO
Tiee = — 7 In(—L—Y2"0)
VR - \/EIO

Between successive spikes in the network (z,_;, z,], all
phases evolve with the constant phase velocity 1/77ree,
When receiving a spike at ¢, a neuron’s phase is updated
with the phase-transition curve

Tm Tfrce 7
U(p) = — Tiree ln[exp(—¢ - ) + K?o]'

The phase-transition curve is related to the phase-response
curve by Z(¢) = U(¢p) — ¢. The resulting map of all
neurons’ phases reads

Gi(ts_y) + (t; — t,_y)/T™ee for i # i*
¢i(ts) = " . .
Ul (t,_y) + (¢, — t,_1)/T™] for i = i*,

3)

where i* € post(j*) denote the postsynaptic neurons of the
spiking neuron j* at spike time f,.

The exact map (3) was used for event-based simulations
[46-48] and to analytically calculate the single-spike
Jacobians describing the evolution of infinitesimal phase
perturbations. For the derivation of the single-spike

Jacobian D(¢,) = dd(s,)

we refer to the Supplemental

d(t, )’
Material [49] (see, also, Refs. [45-48,50-53] therein):
Ulgq(ty)]  fori=j=i"
D;i(t) =4 1-Ul¢q(t;,)] fori=i*j=j" (4
6 otherwise.

ij

The single-spike Jacobian is determined by the derivative
of the phase-transition (phase-response) curve
Uleq(;)] =1+ Z'[¢(t;)], evaluated at times 7; just
before the spike reception. They were used for numerically
exact calculations of all N Lyapunov exponents as de-
scribed in [51]. Positive Lyapunov exponents represent
the rate of exponential growth of perturbations, character-
istic of a chaotic dynamics. Negative Lyapunov exponents
represent the rate at which perturbations decay exponen-
tially. A stable dynamics is characterized by all Lyapunov
exponents being negative definite. The Lyapunov expo-
nents A; = --- = Ay thus comprehensively characterize
the network dynamics with respect to infinitesimal
perturbations [52].

In the asynchronous, irregular balanced state, neurons
are driven by strong input fluctuations that result from a
dynamical balance of excitatory and inhibitory inputs. The
existence of a balanced-state fixed point in exclusively

inhibitorily coupled networks, Egs. (1) and (2), is implied
by the equation for the average input current [11]. The
neurons receive exclusively inhibitory recurrent inputs
—Jo/ VK from K presynaptic neurons that fire on average
with firing rate ». These inputs counteract the constant
excitatory current \/?IO. Thus, the average input current
reads I =~ K(l, — Jop7,). It is easy to see that
(Iy — JovT,,) cannot exhibit a nonzero large K limit. On
the one hand, if limg_,.,(Iy — Jo#7,,) > 0 was true, then [
would diverge to oo and the neurons would fire at their
maximal rate. The resulting strong inhibition would break
the inequality, leading to a contradiction. If, on the other
hand, limg_,.(Iy — JoP7,,) <O was true, then I would
diverge to —oo and the neurons would be completely
silenced. The resulting lack of inhibition again breaks the
inequality. Thus, neither of these two possibilities for a
nonzero limit of (I, — JyvT,,) is self-consistent. Instead,
self-consistency requires the balance of excitation and
inhibition: limg_(Iy — JoP7,) = 0. From this, the
network-averaged firing rate in the balanced state can be
predicted as

Iy
JOTm '

Vipa =

&)

While the average input current vanishes in the balanced
state, the input-current fluctuations remain strong in the
large-K limit [11]. This can be calculated from the
input-current autocorrelation C(7) = [ 681(¢)81(t + 7)dk.
Assuming that inputs from different presynaptic neurons
are only weakly correlated, a received compound spike
train can be modeled by a Poisson process with average
rate Kp, yielding

e~k [ (j—%)za(z — 8+ 7 — ()i

~ J3v75,8(7). (6)

The input current thus resembles white noise of magnitude

g = J()w/ﬁTm.

III. RESULTS

As expected from the construction of the networks,
Egs. (1) and (2), the dynamics converged to a balanced
state. Figures 1(a) and 1(b) show a representative spike
pattern and voltage trace illustrating irregular and asynchro-
nous firing and strong membrane-potential fluctuations. A
second characteristic feature of balanced networks is a
substantial heterogeneity in the spike statistics across neu-
rons, which is indicated by broad distributions of firing rates
(v) and coefficients of variation (cv) in Fig. 1(c). The good
agreement of the predicted network-averaged firing rate in
the balanced state, Eq. (5), with the numerically obtained
firing rate ¥ confirms the dynamical balance of excitation
and inhibition in the networks [Fig. 1(d)].
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FIG. 1. The balanced state in inhibitory LIF networks:
(a) Asynchronous irregular spike pattern of 30 randomly chosen
neurons. (b) Fluctuating voltage trace of one neuron (voltage
increased to V =2 at spikes). (c) Broad distributions of
individual neurons’ firing rates v and coefficients of variation
cv. (d) Network-averaged firing rate 7 and synchrony measure y
versus predicted rate vy, = Iy/(Jy7,,). The dotted line is a guide

to the eye for ¥ = 7, synchrony measure: y = [SSTT%(M }] where

[-] denotes the population average and STD stands for standard
deviation. The parameters are N = 10000, K = 1000, » =
10 Hz, Jy =1, 7,, = 10 ms.

A. Stable chaos

Although the network state was temporally irregular, the
collective dynamics of the networks was formally stable.
The entire spectrum of Lyapunov exponents (disregarding
the zero exponent for perturbations tangential to the
trajectory) was negative [Fig. 2(a)]. This confirms the
occurrence of stable chaos in LIF networks [43-45].
Furthermore, the Lyapunov spectra were invariant to the
network size N, which demonstrates that this type of
dynamics is extensive and thus presumably preserved in
the thermodynamic limit.

For high connectivity, all Lyapunov exponents ap-
proached the inverse membrane time constant A; =
—1/7,,. This behavior can be understood analytically
from a random matrix approximation of the mean
Lyapunov exponent. The mean Lyapunov exponent is the
rate of phase-space volume compression and is given by

09 ()
N= 2000
e { — N=10000
-- N=50000
= — K= 100
-50 — K= 200
< — K= 500
L K'=1000
\\K:ZOOO
1T
T

K v (Hz)

FIG. 2. Stable dynamics with respect to infinitesimal perturba-
tions: (a) Spectrum of Lyapunov exponents {A;} of networks with
N = 10000 neurons and different connectivities K. (b) Largest
Lyapunov exponent A, = A, and mean Lyapunov exponent
Amean = % >V, A, versus connectivity K and average firing rate
v for N = 100000. Dashed lines indicate results from random
matrix theory (RMT) for A., [49]. The parameters are as in
Fig. 1. These are averages of ten initial conditions.

1 1 s
Amean = 3 lim . 1n(det]'[1 D(tp))

1
= —hm

7 Jim - Z In[detD(z,)].
Assuming the single-spike Jacobians to be ) independent
and identically distributed. random matrices of the form (4)
with matrix elements d(¢) = U'(¢p) =1+ Z'(p),
sampled according to the stationary phase distribution
P(¢), yields the random matrix approximation [49]:

Aean ~ KD f In[d()]P()d e

The asymptotic expansion of d(¢) =1 —
results in

Kz/z)

1 1

R ﬁ).

This and the numerical observation that the largest
Lyapunov exponent approaches the mean Lyapunov expo-
nent for large K indicate that in this limit infinitesimal
perturbations decay exponentially with the single-neuron
membrane time constant [Fig. 2(b)]. As will become clear
in the following, however, the assessment of stability
to general perturbations in such networks is quite subtle.

B. Single-spike perturbations

In practice, how would one realize a small state
perturbation to the dynamics of a cortical network?
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Experimentally realizable and well-controlled minimal
state perturbations to the dynamics of cortical networks
include the addition or suppression of individual spikes.
Pioneered by studies of Brecht and co-workers, experimen-
tal neuroscientists have, in fact, developed approaches to
perform single-neuron, single-spike perturbations in intact
cortical networks in vivo and even in awake behaving
animals [54-56]. Such minimalistic neurostimulations
can elicit complex animal behaviors [54-56] and can trig-
ger measurable firing-rate responses in the local circuit
[33]. We therefore examined theoretically how such
single-spike perturbations affect the collective dynamics
of networks in the balanced state. In the networks defined
by Eqgs. (1) and (2), the simplest single-spike perturbation
is the suppression of one spike. Figure 3(a) illustrates the
response of the network if one spike, occurring at a refer-
ence time defined as ¢ = 0, is skipped. The missing inhi-
bition immediately triggered additional spikes in the K
postsynaptic neurons such that the network-averaged firing
rate increased abruptly by v ~ K#/N [Fig. 3(b)]. Since
the induced extra spikes inhibited neurons in the network,
the overshoot in the firing rate quickly settled back to the
stationary state within a time of order 8¢ ~ 1/(K 7). The
overall number of additional spikes in the networks was
therefore S. ., = N6vdt = 1 [Fig. 3(c)]. That is, the one
skipped spike was immediately compensated by one extra
spike.

The compensation of the one skipped spike by one
additional spike in the network can be understood from a
mean-field approximation of the firing-rate response. In

104@ ;
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FIG. 3. Weak firing-rate response after single-spike failures:
(a) Sample spike pattern of 10 randomly chosen neurons
(gray, reference trajectory; black, single spike skipped at
t = 0). (b) Network-averaged firing rate » of the reference
trajectory and after skipped spike for different connectivities K
and network sizes N. (¢) Number of extra spikes S., in the
entire network versus time rescaled by input rate K#. The
parameters are as in Fig. 1. These are averages of 100 initial
conditions with 10000 perturbations each.

fluctuation-driven neurons, there are generally two distinct
input channels contributing to the change in the firing rate
Sv(r). This rate response results from changes in the mean
and in the variance of the input current, respectively
[50,57]. In the wake of a spike perturbation, the mean
input current deviates from the stationary value u =

\/E(IO - JOﬁTm) by
‘SIU“(t) = \/E<i-]0% - JOSV(t)Tm)

The first term reflects the average change due to one
skipped (extra) spike: an effectively positive (negative)
current to K postsynaptic neurons. The postsynaptic cur-
rent is assumed to have the form g(z), which is, in our case,
a delta pulse 8(z). The second term reflects the change in
the recurrent inhibition due to the deviating average firing
rate Sv(r) that develops within the network. This rate
response S () also implies that the magnitude of the input
fluctuations o (t) = Jyi/¥7,, + Sv(f)7,, is not stationary
and deviates from the stationary value o = Jy./v7,, for
Sv(t) < v by

Jo

——6v(t) + 0(8v(1)?).

Nooh (1) + 0(6v(2)°)

To be self-consistent, the rate response to one skipped
spike must equal the summed convolutions of & u(z) and
8o (1) with the response functions in linear response theory
[50,57,58] for the mean »{() and the variance »Y(r)
responses:

Sv(t) = vii(t) = Su(t) + v{(1) * So(1).

So(t) =

This equation can be solved for the rate response in the
frequency domain,

, (N

with

L1 W)
) = o @ 25 @)

As expected, the rate response, Eq. (7), vanishes in the
large-N limit. In the large-K limit, the rate response can be
gw)

approximated as §7(w) =~ * £, and after transforming

back into the time domain, it can be approximated as
Sv(t) = = %. The rate response hence follows the form
of a postsynaptic current g(¢). Thus, the average number of
additional (missed) spikes in the network becomes one:
Sexra = =N [ dv(1)dt = *1. Note that this derivation and
the result are in fact independent of the specific form of the
response functions »}" and v{, which depend on the neuron
model used. We thus generally expect that, in balanced
networks with exclusively inhibitory coupling, one skipped
(extra) spike induces just one additional (missed) spike and
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the network returns basically immediately to a statistically
stationary state.

These results show that the state of the networks,
Egs. (1) and (2), is not only stable to infinitesimal pertur-
bations. The firing-rate dynamics, in addition, is capable of
rapidly restoring the stationary firing rate in response to
finite single-spike perturbations. A radically different
picture emerges, however, when one considers the detailed
microstate. Figure 4(a) displays the average distance
Dy(1) = %ZJ‘ZH(I) — ¢;(t)| between a perturbed trajec-
tory, in which one spike is skipped at t =0, and the
reference trajectory. All perturbed trajectories separate
exponentially fast at a surprisingly high rate. Because
this exponential separation of nearby trajectories is remi-
niscent of deterministic chaos, we call its separation rate
the pseudo-Lyapunov-exponent A,. Varying the network
size N, connectivity K, and network-average firing rate 7,

0 tkv 15

FIG. 4. High sensitivity to single-spike failures: (a) Distance
Dy (1) = NZJ&[(’) — ¢;(t)| between trajectories after skipped
spike and reference to log-lin plots for different connectivities K
and average firing rates #. The small bars indicate the distances
Dy = J1¢ — o|lP(¢)P(p)ddpde of uncorrelated states ob-
tained from self-consistent mean-field solutions P(¢) [49,50].
(b) Pseudo-Lyapunov-exponent A, from exponential fits Dy ~
exp(A,1) before reaching saturation. (c) Collapse to character-
istic exponential state separation with a rate of A, ~ Kp.
(Distance has been rescaled with approximate perturbation
strength K 7’%; the time has been rescaled with input rate K.
Inset: Different network sizes N for K = 100.) The parameters

are as in Fig. 1 with N = 100000. These are averages of ten
initial conditions with 100 perturbations each.

we find that the pseudo-Lyapunov-exponent is invariant to
the network size and generally positive, which is distinctly
different from the classical Lyapunov exponent. With in-
creasing connectivity, it apparently diverges linearly as
A, ~ Kv [Fig. 4(b) and 4(c)]. The pseudo-Lyapunov-
exponent is thus expected to grow to infinity in the high-
connectivity limit, which is reminiscent of binary neuron
networks that exhibit an infinite Lyapunov exponent in this
limit [11].

C. Flux-tube structure of phase space

In the same network, we find stable dynamics in re-
sponse to infinitesimal perturbations, rapid restoration of
the network’s mean firing rate, but yet a highly unstable
dynamics for the microstate in response to single-spike
perturbations. To characterize the transition between these
completely opposite behaviors, we analyze the network
states under general finite perturbations. We apply pertur-
bations of variable size e perpendicular to the unperturbed
reference trajectories. Depending on the perturbation
strength & and direction & JS (with ¥,8¢? = 1), the per-
turbed trajectories either converge back to the reference
trajectory or diverge exponentially fast [Fig. 5(a)].

The probability that a perturbation of strength € induces
the exponential state separation is very well described by
the function P,(g) = 1 — exp(—&/epr), defining the char-
acteristic scale g [Fig. 5(b)]. For small perturbation sizes
& <X gpr, the perturbed trajectory almost always converges
back to the reference trajectory. Increasing the perturbation
size € increases the probability that the perturbed trajectory
starts to diverge exponentially and becomes decorrelated
from the reference trajectory. For large & > egt, this
decorrelation process starts almost immediately after the
perturbation is applied. The characteristic scale &g,
separating stable from unstable dynamics, scales as egr ~
1/(VKNw,) [Fig. 5()].

Intriguingly, the vanishing flux-tube radius for large N
implies that the dynamics in the thermodynamic limit
(N — ) would be unstable even to arbitrarily small
perturbations (g — 0). However, the analysis of the
Lyapunov spectra has shown that taking the limit € — 0
first and N — oo second yields stable dynamics. Thus, the
order of these limits is crucial for characterizing the dy-
namical nature of such balanced networks. The noncom-
mutativity of these limits might be the origin of the
contradicting previous predictions of stable [43-45] or
suprachaotic dynamics [11].

While single-spike failures always induce exponential
state separation, the probability for this to happen after
single-synaptic failures is relatively low. As expected from
the size of such perturbations &y, ~ 1 /KN compared to

the flux-tube radius epr ~ 1/(vVKN©7,,), the probability of
exponential state separation after synaptic failures is inde-
pendent of K and N and increases linearly with » [49].
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FIG. 5. Sensitivity to finite perturbations: (a) Distance D,
between perturbed and reference trajectories at spike times of
the reference trajectory (projecting out possible time shifts) for
perturbation strengths & = 1073, 1073, 107! in log-lin plots. The
gray lines indicate ten random directions perpendicular to the
trajectory; the color lines indicate averages of exponentially
separating or converging cases. (b) Probability P of the expo-
nential state separation versus perturbation strength ¢ in the lin-
log plot. The dotted line indicates characteristic perturbation size
epr separating stable from unstable dynamics; the shaded areas
indicate single-synapse, single-spike failures. (c) Characteristic
perturbation size egr versus network size N, connectivity K, and
average firing rate ¥ in log-log plots. The straight lines indicate
fits to epp ~ 1/(v/NK7P). (d) Symbolic picture of dynamic flux
tubes with radius epr, the boxes indicate the different spike
sequences assigned to different flux tubes. (Inside the flux tubes
are stable dynamics, but adjacent flux tubes separate exponen-
tially.) The parameters are as in Fig. 1 with N = 100 000. These
are averages of ten initial conditions with 100 calculations and
100 random directions each.

D. Exponential decorrelation by an event cascade

The exponential decorrelation process after a perturba-
tion is initiated and mediated by a different sequence
of spikes in the perturbed trajectory compared to the

reference trajectory. Taking a closer look at the individual
distance measurements with finite perturbation size, one
notices that every exponential separation of the trajectories
appears to be initiated by a peculiar step of size d
[Fig. 6(a)]. This is even more visible in the histogram of
all distance measurements. It reveals several of such steps
d, between adjacent peaks in the histogram [Fig. 6(b)].
Even for different perturbation sizes ¢, these steps are all
approximately of the same size d = 2J0\/E /N [Fig. 6(¢c)].
This indicates that at each step a spike in the reference
trajectory is replaced by a different spike in the perturbed
trajectory, because such a spike replacement results in a
displacement of approximately %01? in K postsynaptic neu-
rons of the failed spike in the reference trajectory and in the
K postsynaptic neurons of the new spike in the perturbed
trajectory. Thus, the distance jumps by d = 2J0\/f /N.
This expression is well fulfilled for a wide range of
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FIG. 6. Rapid decorrelation through a cascade of new spikes
replacing those in the original spike sequence. (a) Five examples
of typical distance measurements D ,(¢) for finite perturbations
e = 0.01. (b) Histogram of distances of all measurements.
(c) Step sizes d,, obtained from histograms as in panel (b) for
different . The dashed line indicates distance due to one
replaced spike d = 2]0\/1_( /N. (d) Step sizes d,, versus connec-
tivity K for finite perturbations (solid lines) and single-spike
perturbations (dotted lines). (e) Histograms of the individual rate
of exponential state separation A = In(n)/z, for all measure-
ments (dots) and fits to log-normal distributions (solid lines).
(f) Expectation values of fitted log-normal distributions A versus
connectivity K for finite perturbations (solid lines) and single-
spike perturbations (dotted lines). The A, (dashed lines) from
Fig. 4 is plotted for comparison. The parameters are as in Fig. 1
with N = 100000. These are averages of ten initial conditions
with 100 calculations and 1000 random directions each.
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connectivities K in measurements with finite perturbation
sizes and after single-spike failures [Fig. 6(d)]. The devia-
tions for large K and n can be explained by an increased
overlap of the sets of postsynaptic neurons; the steps d, are
therefore smaller than d. However, these results strongly
indicate that the decorrelation process is initiated and
mediated by steps of constant height due to the emergence
of a new spike sequence in the perturbed trajectory com-
pared to the reference trajectory.

The fact that the exponential decorrelation process is
mediated by discrete steps of constant height implies that
the rate of these steps must increase exponentially. The
single spike that initiates the rapid decorrelation thus trig-
gers a cascade of new spikes replacing the reference spike
sequence. This can be seen by assuming D () « exp(At)
for the exponential state separation. From the discrete
steps, we also know that D, (t,) = nd, where t, is the
time of the nth step relative to the initializing one, and we
obtain A = In(n)/t, for each measurement. The histogram
for all measurements is shown in Fig. 6(e). The observed
convergence with increasing n confirms the occurrence of
an exponentially increasing rate of steps. The mean value of
the fitted log-normal distributions (solid lines) provides an
independent measure of the average rate of exponential
separation A over all measurements [Fig. 6(f)]. It agrees
very well with the pseudo-Lyapunov-exponent A, (dashed
line) previously obtained from exponential fits to the aver-
aged distance after the single-spike failures depicted in
Fig. 4. These results show that a perturbation leading to
the change of one spike initiates a geometrically growing
cascade of new spikes leading to a completely new spike
sequence. Note that this high sensitivity was not visible in
the Lyapunov spectra (Fig. 2) nor in the rate response after
single-spike failures (Fig. 3). The perturbed trajectory
belongs to a different dynamic flux tube with a different
spike sequence but exhibits the same statistical properties
and local stability.

To visualize the exotic phase-space structure generated
by the dynamic flux tubes, we scanned a larger piece of
phase-space volume. The cross sections of the phase space
resemble stained glass [Fig. 7(a)]. For the axes, we chose
two random N-dimensional vectors orthonormal to the
direction of the trajectory (1, 1,...), spanning a two-
dimensional cross section in the N-dimensional phase
space. Each pixel in the picture represents a new initial
condition. If trajectories of adjacent initial conditions con-
verged to each other, the pixels were assigned identical
colors; otherwise they were colored differently. Areas of
one color can thus be thought of as the cross sections of the
basins of attraction of unique stable trajectories, corre-
sponding to individual cells in the stained-glass architec-
ture. When a trajectory hits a wall (threshold boundary) of
the phase space, a spike is emitted and the trajectory
continues at a different point in the phase space in a
different cell. The black lines visualize the boundaries of

adjacent cells and are expected to represent trajectories that
lead, at some point in time, to synchronous spikes in pairs
of neurons; they hit the edges of the phase space. A
symbolic concatenation of the stained-glass cells that are
visited by one trajectory yield the flux-tube picture we have
developed above. If a perturbation leads to a different flux
tube, then the new trajectory diverges exponentially fast
from the original one as described above.

The stained-glass cells composing the dynamic flux
tubes differ in shape and size. If they, in fact, represent
the flux tubes postulated before, their sizes should match
the epp derived from random perturbations. We thus, re-
peatedly, calculated different phase-space cross sections as
presented in Fig. 7(a) for different parameter sets and
determined the areas A of all cross sections that were
completely resolved. To obtain a characteristic scale for
the radius, we used r = yfA/r, which follows an exponen-
tial distribution [Fig. 7(b)]. Its average rpr confirms the
previously obtained scaling relation of the typical
flux-tube radius epp ~ 1/(VKNP) rather well [inset in
Fig. 7(b)]. For this comparison, we used epp(N =
100000, K = 1000, # = 10 Hz) = 8 X 1074, There is

N =200

—
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random vector 2
random vector 2

0.1 0 0.1
random vector 1
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FIG. 7. Visualization of the phase-space structure. (a) Phase-
space cross sections for N = 200 and N = 2000, spanned by two
random N-dimensional vectors perpendicular to the trajectory.
Flux-tube sections are drawn in one color and separated by solid
lines. (b) Exponential distribution of radii of flux-tube cross
sections for different parameter sets. The inset shows a
comparison of average radius rpp with epp ~ 1/(VKNP) ob-
tained in Fig. 5(c). Other parameters used are K = 100, v =
10 Hz, J, =1, 7,, = 10 ms.
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some mismatch for low K (open symbols). But this mis-
match is actually also visible in Fig. 5(c) for low K, and
using the measured value of egy for low K leads to a good
agreement of rpp and gy for all cases N, K, v (full sym-
bols). We can thus conclude that the typical flux-tube
radius scales essentially as 1/(vVKND).

This exotic phase-space structure embodies a good par-
tition through which to estimate the entropy of spike
sequences in the networks. Our results suggest that the
phase space is composed of dynamic flux tubes.
Trajectories within these flux tubes converge to a unique
stable trajectory while trajectories of adjacent flux tubes
separate exponentially fast. In the N-dimensional phase
space, the total flux-tube length is lgp =~ 1V/elN ! =
(vVKN#o7,)N"!. This in turn suggests that the entropy of
distinct network-state sequences is H = In(lpy) ~
NIn(~KN#7,), growing faster than in the extensive case
and increasing with a larger connectivity K and firing rate
v. Expressed in terms the time needed by the network to
display all possible sequences, this time would scale
as T = lgr/(N?) ~ (VKNw7, )V "'/(ND). Already for
N = 200 neurons [Fig. 7(a)], it would take the network
an astronomically large time, more than 10°% years, to
display all distinct network-state sequences.

IV. CONCLUSION

Our analysis reveals the coexistence of (i) dynamical
stability to infinitesimal as well as small finite state pertur-
bations, and (ii) a high sensitivity to single-spike and even
single-synapse perturbations in networks of inhibitory LIF
neurons in the balanced state. The networks exhibit
negative-definite and extensive Lyapunov spectra that, at
first sight, suggest a well-defined thermodynamic limit of
the network dynamics, characterized by stable chaos,
which has previously been proposed in Refs. [43-45]. In
confirming the picture developed by London ef al. [33], we
found that single-spike perturbations induce a cascade of
new spikes. Complementary to their proposition that this
leads to an excess of extra spikes, we argue that in inhibi-
tory networks, the new spike sequence replaces the original
spike sequence without a considerable trace in the network
statistics, e.g., the firing-rate response. The microstate of
the network nevertheless follows a completely different
dynamical path that diverges exponentially from the
unperturbed one. We call the rate of exponential state
separation in response to single-spike perturbations the
pseudo-Lyapunov-exponent. It scales as A, ~ Kv and
implies practically instantaneous decorrelation of network
microstates.

The seemingly paradoxical coexistence of local stability
and exponential state separation is reconciled by a unifying
picture of dynamic flux tubes in the network’s phase space.
States within a flux tube are attracted to a stable trajectory
with a unique spike sequence. Different flux tubes,

however, separate exponentially fast at a rate of A,. The
radius of the dynamic flux tubes scales as &gt ~
1/(vKNpr,,). This scaling can be used to estimate the
entropy of the network’s repertoire of distinct state sequen-
ces H~ NIn(~KN#7,). Thus, the computation of the
flux-tube radius presents a novel numerical approach to
estimating the entropy of a neural network. With this
approach, the entropy can be calculated with less effort
than, e.g., with an approach that identifies all multiple-
spike sequences numerically.

The coexistence of local stability and exponential state
separation leads to an ambiguous nature of the network
dynamics in the thermodynamic limit and shows that the
notion of an edge of chaos is not applicable to the networks
considered here. On the one hand, taking the large-system
limit first, one obtains vanishingly thin flux tubes. Thus, the
dynamics becomes unstable even for arbitrarily small per-
turbations. The resulting sensitivity to initial conditions is
described by the positive pseudo-Lyapunov-exponent
A, ~ K7, that showed no sign of saturation. On the other
hand, taking the small-perturbation limit first, one obtains a
stable dynamics even when then taking the large-system
limit. This dynamics is described by the negative Lyapunov
exponent A = —1/7,. These findings suggest that the
previously reported infinite Lyapunov exponent on the
one hand [11] and the negative Lyapunov exponent on
the other hand [43-45] resulted from the order in which
the weak-perturbation limit and the thermodynamic limit
were taken. Since there is no phase transition between
order and chaos in this case, an edge of chaos does not
exist in these networks.

We expect this form of state decorrelation to occur rather
generally in similar classes of neural networks as a result
of the noncommutativity of the spike order [59,60].
Trajectories in which at least two neurons would fire
synchronous spikes at some time instant form the bounda-
ries of the basins of attraction around stable trajectories
with unique spike sequences. Infinitesimal perturbations to
trajectories with such synchronous spikes lead to trajecto-
ries with different spike orders and the corresponding
microstates diverge exponentially. Such a strong sensitiv-
ity, despite local stability due to the noncommutativity of
o-like events, might be a general feature of dynamical
systems displaying stable chaos [42]. There is evidence
that stable chaos is not restricted to the idealized relatively
simple networks studied here. In particular, it was shown
that the local stability can be preserved when excitatory
neurons are included [43], and also when the J-pulse
coupling is replaced with temporally decaying postsynap-
tic currents [45]. We furthermore found that stable chaos
can be preserved when the instantaneous action-potential
generation of LIF neurons is replaced by a dynamic, yet
extremely rapid, action-potential generation [61].

An important topic for future studies is the question of
how the flux-tube structure of phase space is influenced by,
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e.g., the network topology or synaptic plasticity. That the
structure of network phase space is expected to strongly
impact on the performance of a reservoir-computing archi-
tecture was already pointed out in studies of stable hetero-
clinic channels [62]. The novel phase-space structure of
dynamic flux tubes, revealed here, may provide a basis for
efficient stimulus categorization and segregation. If a per-
turbation leads to a switch of flux tubes, this can easily be
distinguished by the completely different resulting spike
sequence. In the context of reservoir computing, networks
exhibiting flux tubes combine the fading memory and the
separation property without the existence of an edge of
chaos. The flux-tube radius can be thought of as the statis-
tical border between the fading memory and the separation
property. Applications of LIF neuron networks in reservoir
computing may thus strongly benefit if the flux-tube struc-
ture of the network’s phase space is taken into account.
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