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Topological insulators and superconductors support extended surface states protected against the
otherwise localizing effects of static disorder. Specifically, in the Wigner-Dyson insulators belonging to the
symmetry classes A, AI, and AII, a band of extended surface states is continuously connected to a likewise
extended set of bulk states forming a “bridge” between different surfaces via the mechanism of spectral
flow. In this work we show that this mechanism is absent in the majority of non-Wigner-Dyson topological
superconductors and chiral topological insulators. In these systems, there is precisely one point with
granted extended states, the center of the band, E ¼ 0. Away from it, states are spatially localized, or can be
made so by the addition of spatially local potentials. Considering the three-dimensional insulator in class
AIII and winding number ν ¼ 1 as a paradigmatic case study, we discuss the physical principles behind this
phenomenon, and its methodological and applied consequences. In particular, we show that low-energy
Dirac approximations in the description of surface states can be treacherous in that they tend to conceal the
localizability phenomenon. We also identify markers defined in terms of Berry curvature as measures for
the degree of state localization in lattice models, and back our analytical predictions by extensive numerical
simulations. A main conclusion of this work is that the surface phenomenology of non-Wigner-Dyson
topological insulators is a lot richer than that of their Wigner-Dyson siblings, extreme limits being
spectrumwide quantum critical delocalization of all states versus full localization except at the E ¼ 0

critical point. As part of our study we identify possible experimental signatures distinguishing between
these different alternatives in transport or tunnel spectroscopy.

DOI: 10.1103/PhysRevX.14.011057 Subject Areas: Condensed Matter Physics,
Mesoscopics, Topological Insulators

I. INTRODUCTION

Topological insulators are subject to a powerful bulk-
boundary principle according to which their insulating
(yet topologically nontrivial) bulk implies conducting
boundaries [1–4]. Examples include the chiral edge states
of the quantum-Hall (QH) effect, the helical edge states
of the quantum spin-Hall effect, or the single Dirac cones
in the surface spectrum of a three-dimensional topo-
logical insulator. In these three cases, the boundary states
extended along surfaces are continuously connected to a
band of likewise delocalized bulk states at high energies.

The presence of such “bulk bridges” between surface states
is behind numerous physical phenomenana that make
topological insulators stand out against conventional
insulators. Examples include anomalous transport, i.e.,
forces applied along one surface driving currents directed
toward another, as in the integer quantum-Hall effect, or
topological protection against Anderson localization, safe-
guarding intrasurface conduction at arbitrary values of the
chemical potential. These phenomena relate to the principle
of spectral flow, whereby adiabatic transport between
disconnected surfaces is enabled by a bulk bridge.
In this work we show that spectral flow is not as closely

tied to the physics of topological insulators as one might
think. On the contrary, we will demonstrate that for the
majority of three-dimensional topological insulators out-
side the three Wigner-Dyson classes A, AI, AII, the two
prerequisites for the spectral flow principle—a robustly
delocalized bulk state and an uninterruptible band of
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boundary states continuously connected to it—are absent.
(In the tenfold-way nomenclature, the quantum-Hall effect
is class A, whereas the three-dimensional topological
insulator resides in class AII. In practice, the non-
Wigner-Dyson classes refer to topological superconductors
[5–7].) The two opposing scenarios—with and without
spectral flow—are illustrated schematically in Fig. 1.
The fragility of the surface bands in the absence of a
spectral flow principle leaves room for a wider phe-
nomenology of surface physics than in the Wigner-
Dyson classes. It has profound consequences for the
Anderson localization of surface states and, hence, for
the observable transport characteristics of topological
matter in the presence of disorder.
The absence of a spectral flow principle can be seen

from both bulk and boundary perspectives. From the
bulk perspective, it is ruled out if the bulk is “Wannier
localizable,” i.e., if the bulk admits a complete basis of
exponentially localized quantum states. From the boundary
perspective, its absence means that boundary states can be
localized by disorder or that they may be gapped out by
a local boundary perturbation. In the topological non-
Wigner-Dyson classes, such “fragility” of the boundary
states exists away from the distinguished energy E ¼ 0
only. The existence of delocalized boundary states at E ¼ 0
is robustly protected so long as the bulk remains topologi-
cally nontrivial [8,9]. Conversely, a nonlocalizable phase
possesses at least some Anderson delocalized bulk states
above and below the Fermi energy, as well as an unin-
terruptible band of Anderson delocalized boundary states
that are continuously connected (in energy) to these bulk
states. The spectral flow principle exists in nonlocalizable
phases only.
The bulk and boundary perspectives are closely inter-

twined in topological matter. Examples of Wannier
localizable phases include topologically trivial band
insulators, but also all topological bands in one

dimension [10], including topological superconductors [11].
(In one dimension, a continuous band of boundary states
is trivially ruled out by phase-space considerations.) By
contrast, two-dimensional topological insulators are
nonlocalizable [1–4]. A case in point is the integer quan-
tum-Hall insulator, where the celebrated Laughlin gauge
argument [12] shows that a quantized-Hall conductance
necessitates the existence of delocalized bulk states at
energies below the Fermi energy, continuously connected
to the edge states. The bulk bridge states in this case
are critically Anderson delocalized in the presence of
disorder, and associated to the topological Hall plateau
transitions [13,14]. Similar arguments have been made for
the quantum spin-Hall effect and the three-dimensional
topological insulator [15].
In this article, we demonstrate that most topological

phases of non-Wigner-Dyson type are Wannier localizable
and, hence, do not possess a spectral flow principle. In three
dimensions, the only exception is the topological class-DIII
superconductor for odd values of its integer invariant.
In all other cases—classes AIII, CII, CI, and DIII for even
values—surface states in these phases are fragile in the
sense defined above.
Boundary fragility implies that the surface band can be

detached from the bulk band and that surface states at
E ≠ 0 can Anderson localize in the presence of weak
disorder, but not that this must happen. In fact, numerical
studies of surface states of three-dimensional topological
superconductor classes AIII, CI, and DIII revealed
surface states that remain delocalized in the presence
of disorder at all energies [16–19]. Delocalization
was observed as a robust feature of the effective two-
dimensional Dirac surface theories of class CI, AIII,
and DIII superconductors [16–19] and it was backed
up by numerical studies of a three-dimensional lattice
model for class AIII [17]. On the other hand, topological
arguments [8] and even rigorous mathematical proof [9]
for surface state delocalization exist for states at zero
energy only—consistent with the notion that boundary
states in these classes are fragile for E ≠ 0.
To answer the question of when fragile boundary states

localize in the presence of weak disorder and when they
do not, we have considered the case of a “minimal”
topological insulator in class AIII in detail, which has a
single surface Dirac cone at zero energy. Using a field-
theoretic analysis, we show that whether or not surface
states localize in the presence of disorder is intimately
tied to the presence of surface Berry curvature [20]: The
surface states localize for E ≠ 0 if the surface Berry
curvature is nonzero, but not if it is zero. The surface
Berry curvature must necessarily be nonzero if the surface
band is detached (in energy) from the bulk, in which case
the fragility of the surface states is manifest, but it can
vanish if there is a continuous connection between surface
and bulk bands.

k
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E
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FIG. 1. (a) A topological free-fermion phase with spectral flow
possesses a robust continuous attachment of anomalous boun-
dary states (red) to delocalized bulk states (black) residing in a
Wannier nonlocalizable bulk band (gray). (b) Without a spectral
flow principle, anomalous surface bands (red) may in principle
be detached from the bulk spectrum by a spectral gap. In this
case there is no obstruction to Wannier localization of all bulk
states (gray). The figure shows a schematic one-dimensional
boundary spectrum, assuming translation symmetry parallel to
the boundary.
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Without exception, models of class-AIII insulators
studied in the literature—not only Refs. [16–19], but also
earlier work on class AIII [7]—have vanishing surface
Berry curvature and a continuous connection between
surface and bulk bands. For these models, it takes
the addition of a particular “surface potential” to the
Hamiltonian to impose surface Berry curvature and, hence,
expose the fragility of the surface bands. We present
numerical evidence that, once such a potential is included,
all surface states away from zero energy are localized in the
presence of disorder, albeit with a localization length
diverging at zero energy.
Even if the surface band structure without disorder does

not possess Berry curvature, a sufficiently random disorder
potential itself contains terms that would induce it. A
spatially inhomogeneous potential will then parcel the sur-
face into domains of positive and negative Berry curvature.
Whereas states inside each domain may localize, domain
boundaries host one-dimensional chiral edge states, similar
to the chiral edge states between domains of different filling
fraction in the quantum-Hall effect. These edge states form a
percolating network if the spatial average of the Berry
curvature is zero, leading to critical delocalization of surface
states at all energies. This is precisely the “spectrumwide
quantum criticality” of quantum-Hall plateau-transition type
previously observed numerically in Refs. [16–19]. The
spectrumwide delocalization of Refs. [16–19] therefore
reflects a statistical symmetry of a model with zero average
surface Berry curvature, not a topological obstruction to
Anderson localization.
Physical properties of boundary states—such as their

spatial structure at a given energy and the resulting
conduction properties—are commonly addressed in terms
of effective low-energy approaches that zoom in on linear
crossing points in the boundary spectra. Employing such
Dirac, or “k · p” approximations, physically relevant parts
of the boundary spectrum are thus described by minimal
models of manageable complexity. Our findings show that
such Dirac descriptions can be a dangerously oversimpli-
fication if they are used to capture localization properties of
topological surface states in the non-Wigner-Dyson classes.
A case in point is the minimal Dirac theory with chiral
symmetry, which is the effective description of topological
surface states of an insulator in class AIII used in the
numerical studies of Refs. [16–19]. This effective two-
dimensional description is strictly without Berry curvature
and, therefore, unable to capture the geometric effects
responsible for surface-state localization of the full three-
dimensional insulator.

A. Outline

The remainder of this article is organized as follows. In
Sec. II we present a general argument showing that Wannier
localizability of the bulk implies the possibility to spec-
trally detach surface states from the bulk—thus underlining

the equivalence of the bulk and boundary perspectives on
the prerequisites for the spectral flow principle. We also
state the Wannier localizability status of all tenfold-way
symmetry classes in dimensions up to three. In Sec. III
we derive the same conclusion for the Wannier localizable
class AIII from the boundary perspective. In Sec. IV
we consider a canonical four-orbital topological-insulator
lattice model for the class-AIII insulator in three dimen-
sions [7], analogous to the model that was analyzed in
Ref. [17] to demonstrate spectrumwide delocalization. For
this model, we show that surface Berry curvature can be
induced and the surface bands can be detached from the
bulk bands at a high energy by the addition of a suitably
chosen potential.
Sections II, III, and IV consider topological insulators

without disorder. Yet, the implications of the findings of
these sections have profound consequences for the locali-
zation properties of surface states in the presence of
disorder. Disorder is considered in Sec. V, where we
present numerical evidence for Anderson localization of
the surface states of a 3D class-AIII insulator, if (and only
if) the average surface Berry curvature is nonzero. We
also discuss ramifications of our results for the three-
dimensional topological superconductors. The field-
theoretic analysis, which relates surface-state localization
in the presence of disorder to the presence of surface Berry
curvature, follows in Sec. VI. We conclude in Sec. VII.

II. SPECTRAL FLOW: BULK PERSPECTIVE

In the following, we show that Wannier localizability
of a topological phase necessarily implies absence of the
spectral flow principle. Furthermore, for class AIII in three
dimensions we demonstrate its Wannier localizabilty,
whereas for the remaining symmetry classes we only state
the final results. In the next section we will then discuss
gapability of surface states.

A. Wannier localizability implies absence
of spectral flow

A free-fermion insulator is described in terms of a set of
Bloch bands. It is defined to be Wannier localizable if the
subspaces defined by conduction and valence bands admit
bases of states jΨRαi exponentially localized around
centers R, where α is an additional index. Wannier local-
izability implies the absence of spectral flow, as the ground
state defined by the occupied bands can be represented
in terms of individually flux-insensitive states. Wannier
localizability also is in contradiction to the presence of
protected delocalized states. Finally, Wannier localizability
is a weaker condition than retractability to an “atomic limit”
[21–28]. The possibly small but finite exponential overlap
between neighboring unit cells remains essential to the
definition of ground state topology [29], and to the
stabilization of anomalously delocalized surface states.
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While the Wannier states jΨRαi are not, in general,
eigenstates of the parent Hamiltonian, it is straightforward
to show [30] that a symmetry and gap preserving defor-
mation can be employed to bring the latter into the form

H0 ¼
X
R;α

εRαjΨRαihΨRαj; ð1Þ

with parameters ϵRα assuming the role of state energies.
Now consider a system with surfaces, Wannier localiz-

able in directions transverse to them. (The existence of
states extended along the surfaces in topological insulators
excludes unconditional localizabilty.) Referring to the
above representation, we consider the decompostion [31],

H0 ¼ H∂ ⊕ Hbulk; ð2Þ

where the surface Hamiltonian H∂ is the contribution of
states to Eq. (1) with centers within a Wannier localization
radius of the surface, and Hbulk its complement. We now
have the option to rescale H∂ → λH∂ to shrink the surface
band defined by H∂ to a width narrower than the band gap
implied by Hbulk; see Fig. 2(b). This construction demon-
strates the topological equivalence of our system to one
with surface bands detached from the bulk bands by gaps of
adjustable width. Referring to Sec. IV for a microscopic
realization of this construction, we anticipate that detach-
able surface bands in the above sense are best suited to
address the surface phenomenology of insulators without
protected spectral flow.

B. Case study: AIII insulator in three dimensions

The arguments of Sec. II A suggest that a continuous
attachment of boundary states to the bulk spectrum and the
existence of bulk delocalized states are flip sides of the
same coin. The two-dimensional class-A insulator is case in
point for a situation where both exist. We now turn to the
opposite situation, as realized in the three-dimensional AIII
insulator, where spectral flow and delocalized bulk states
are generically absent.

A Hamiltonian in class AIII can be written as

H ¼
�

0 A

A† 0

�
; ð3Þ

where A is a complex square matrix acting on the subspaces
defined by the condition Γ ¼ �1, and Γ ¼ τz defines the
chiral symmetry S. For example, in a lattice system the
subspaces corresponding to Γ ¼ �1 may define two
bipartite sublattices. We assume that H and, hence, A
are local matrices: The matrix elements hRαjAjR0α0i
between atomic orbitals α and α0 at lattice sites R and
R0 decay exponentially with the distance jR −R0j.
For an insulator subject to periodic boundary conditions

the spectrum of H has a finite gap around zero energy.
Hence, following Ref. [7], we may deform the Hamiltonian
Eq. (3) by sending the positive (negative) eigenvalues of H
to 1 (−1). Such a flattening deformation does not change
the bulk topology and preserves the locality of the
Hamiltonian matrix. It defines the Hamiltonian

Hf ¼
�

0 U

U† 0

�
: ð4Þ

Locality of Hf implies that U is a local unitary operator.
(U is unitary because H2

f ¼ 1.) We may then easily
construct a basis of localized eigenstates at energy�1 [29],

jΨ�
Rαi ¼

1ffiffiffi
2

p
� jRαi
�U†jRαi

�
; ð5Þ

where α is an additional index. (Eigenstates jΨ�
Rαi are

localized near lattice site R because the unitary operator U
is local.) This simple construction proves the existence of a
basis of localized eigenstates of Hf , regardless of the
underlying topology [32]. Since the (many-body) ground
states of H and Hf are the same, Eq. (5) proves Wannier
localizability of this topological phase. The discussion of
the previous subsection then implies the corollary that
surface and bulk spectra can be separated from each other.
For later reference we mention that the Wannier func-

tions fjΨη
Rαig [η∈�, Eq. (5)] and, hence, the decom-

position of Hf into surface and bulk contributions as in
Eq. (2) is not unique: Each local unitary matrix V generates
another set of Wannier functions fjΨη;V

Rαig by multiplying
both elements of the two-component spinor in Eq. (5) by V.
In Sec. IV C, we demonstrate that the surface states
described by H∂ in Eq. (2) may have a nonzero Chern
number Ch. This number is constrained to have the same
parity as the winding number of the bulk Hamiltonians H
and Hf . However, for a given parity its (integer) value
depends on the choice of the localized basis for the bulk
states: basis changes jΨ�

Rαi → jΨ�;V
Rα i lead to a change [35]

δCh ¼ 2ν½V�; ð6Þ

FIG. 2. Schematic picture of surface (red) and bulk (black)
spectra of the topological insulator HamiltonianH0 ¼H∂⊕Hbulk,
see Eq. (2), before (a) and after (b) a rescalingH∂ → λH∂ to shrink
the surface band to a width narrower than the bulk gap.
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where, for a periodically extended definition of the local
transformation, ν½V�∈Z is the third winding number of V
over momentum space. (An analogous relation was found
for the surface response theory of a three-dimensional
topological insulator [36].)

C. Other tenfold-way classes

The discussion above shows that there are two different
classes of topological insulators: those with and without a
spectral flow principle. Given that this dichotomy presides
over the spectrumwide robustness of boundary states, it
seems necessary to tag each entry in the periodic table of
topological insulators and superconductors [5–7] according
to its Wannier localizability status. Referring for the full
classification program to the upcoming publication [37],
Table I summarizes the result for dimensions up to three. It
adds to the topological status of a given symmetry class and
dimensionality (Z;Z2, or 0) information on the local-
izability of its states: The absence of topology is denoted
by the entry “0,” topological classes with symmetry-
compatible exponentially Wannier localizable bulk states
are labeled by “×,” and those with nonlocalizable bulk
by “✓.”
The information provided by Table I confirms that the

three Wigner-Dyson classes A, AI, and AII are always
nonlocalizable, provided they are topological in the first
place. Indeed, since for the Wigner-Dyson classes one is
free to choose a reference energy inside the bulk gap, the
existence of a topologically protected boundary state at one
energy implies that such states must exist for all energies
inside the gap. On the other hand, in the non-Wigner-Dyson
classes, the presence of charge-conjugation symmetry C
and/or chiral symmetry S forces the spectrum to be mirror

symmetric around the distinguished energy E ¼ 0. The
equivalence of all energies inside the gap therefore no
longer holds, and the presence of a protected uninterrupt-
able band of boundary states must be reconsidered.
For the non-Wigner-Dyson classes, what determines

Wannier localizability is whether C or S are essential for
the topology, or whether they are “spectator symmetries”
and the topology of the bulk Hamiltonian remains non-
trivial if all constraints imposed by C and/or S are lifted. In
three dimensions, class AIII is an example of the former
category, which we refer to as “genuine” non-Wigner-
Dyson classes. Other examples of genuine non-Wigner-
Dyson classes are classes BDI and D in one dimension and
classes CI and CII in three dimensions. Examples of
nongenuine non-Wigner-Dyson classes are classes C and
D in two dimensions, which have chiral edge states [38,39],
and which remain topological if the particle-hole symmetry
is lifted. Class DIII in three dimensions, which describes
time-reversal-invariant superconductors with broken spin-
rotation symmetry, is a special case, as it is a localizable
genuine non-Wigner-Dyson class only if the topological
invariant is even.
The Wannier localizability of one-dimensional topologi-

cal insulators (second column in Table I) is well known in
the literature [10]. Examples are the Su-Schrieffer-Heeger
model (class AIII) [40–42] and the topological super-
conductor Kitaev chain (class D) [11], which in their
nontrivial phases have localized bases stretching across
adjacent unit cells. The possibility of Wannier localizable
topological superconductors in dimensions larger than
one was mentioned by Ono et al. [43] in the context of
topological superconductors with additional crystalline
symmetries (see also Ref. [44]). Furthermore, the existence
of exponentially localized Wannier basis for topological
phases with (possibly higher-order) winding number invari-
ant was discussed in Ref. [34].
In Sec. II A we have shown that Wannier localizability

of the insulating bulk implies that a gap in the surface
spectrum may be opened by a perturbation at the surface.
Similarly, away from the energy E ¼ 0, surface states of a
Wannier localizable insulator may undergo Anderson
localization in the presence of disorder. We refer to both
properties as the fragility of surface states. It is important
to point out that such fragility only signals a possibility of
a gap opening or of Anderson localization; it does not
imply that a gap in the surface state spectrum must open
or that surface states must localize in the presence of
disorder. The question of whether or not surface states of a
specific band structure will Anderson localize in the
presence of disorder remains to be answered. Either
way, fragility leaves room for a wider spectrum of surface
phenomenologies than in insulators with protected surfa-
ces. We will consider such phenomena in concrete detail
for the case of a “minimal” topological insulator in
class AIII in Secs. V and VI.

TABLE I. Wannier localizability of topological insulators and
superconductors. The absence of topological phases is denoted
by 0, entries where topological phases exist are labeled by “×” for
Wannier localizable and “✓” for nonlocalizable phases. For class
DIII in three dimensions, superconductors with even bulk
invariant are Wannier localizable, whereas superconductors with
odd bulk invariant are nonlocalizable. The spectral flow principle
only applies to nonlocalizable classes (denoted with ✓).

Class d ¼ 1 d ¼ 2 d ¼ 3

A 0 Z✓ 0
AIII Z× 0 Z×

AI 0 0 0
BDI Z× 0 0
D Z×

2 Z✓ 0
DIII Z×

2 Z✓
2 Z✓=×

AII 0 Z✓
2 Z✓

2

CII 2Z× 0 Z×
2

C 0 2Z✓ 0
CI 0 0 2Z×
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III. SPECTRAL FLOW: BOUNDARY
PERSPECTIVE

In the previous section, we considered the status of
surface states on the basis of a connection to bulk states via
the spectral flow correspondence. We here approach the
question from a complementary perspective, which focuses
entirely on the surfaces themselves.

A. General considerations

The vicinity of the Fermi crossing points at topological
insulator surfaces is often described in terms of effective
Dirac Hamiltonians, which in the two-dimensional case
assume the form

Hb ¼ k1Γ1 þ k2Γ2; ð7Þ

where ki are two momenta along the surface measured
relative to the crossing point k ¼ 0, and the two Gamma
matrices satisfy fΓ1;Γ2g ¼ δij. Additional Gamma matri-
ces may appear at higher order in k or as prefactors of a
random surface potential. At large momenta, the
Hamiltonian (7) is ultraviolet divergent. These divergences
cannot be cured by embedding Hb into the periodic
structure of a two-dimensional Brillouin zone, reflecting
that the surface theory does not define the low-energy limit
of a two-dimensional stand-alone lattice model.
In the context defined by Eq. (7), the spectral flow

principle translates to the statement of an anomaly:
Coupled to an external vector potential, Hb, supplemented
with an ultraviolet regularization, lacks gauge invariance.
The absence of gauge invariance indicates (quasi)particle
number nonconservation. Specifically, under adiabatic inser-
tion of a flux quantum through the bulk, high-lying boundary
states get pushed up in energy, leading to a drain out of the
window of momentum states below a fixed cutoff. If the
spectral flow principle applies, overall particle number
conservation is restored by conversion of boundary states
into bulk states and eventually to states at the opposite
surface. The observable consequence is adiabatic transport
from one boundary to the other, i.e., the quantized transverse
conductance characteristic of topological insulators.
In the previous section, we have argued that the spectral

flow principle does not apply to all symmetry classes. How
can this be reconciled with the intrinsic absence of an
ultraviolet closure of the Dirac surface theory? To resolve
the anomaly of the latter there must exist a “sink” of high-
lying states absorbing spectral weight being pushed up by
an anomalous gauge operation. If the spectral flow prin-
ciple applies, these are extended bulk states. If it does not
apply, implying that the boundary states can be detached
from the bulk, these states must be supported by the
boundaries themselves.
In the following we illustrate these complementary

scenarios on two case studies, class A in two and class

AIII in three dimensions. In either case, the focus will be
entirely on the boundaries, no explicit reference to bulk
states is made.

B. Case study: Class-A Chern insulator
in two dimensions

Two-dimensional class A is the paradigmatic example
of an insulator with spectral flow, as realized, e.g., in the
physics of the integer quantum-Hall effect. In this case, the
boundary theory (linearized around any Fermi energy) is
governed by the effective Hamiltonian,

Hb ¼ k; ð8Þ

describing a single branch of chiral fermions.
Assuming zero temperature, and the Fermi energy at

E ¼ 0 for convenience, states with k < 0 are occupied.
Coupling the system to a gauge potential representing
adiabatic magnetic flux insertion through the bulk,
k → kþ A, causes an upward shift of all levels. After
the insertion of one flux quantum, the full quantized single
particle spectrum is restored, but the occupations of the
states have changed, as shown schematically in Fig. 3(a).
Specifically, one occupied state previously at k < 0 now
occupies the lowest state at k > 0. By repeated insertion of
flux quanta, the range of occupied states will extend up to
arbitrarily high energies and, eventually, a state previously
sitting at the upper cutoff of the low-energy theory gets
pushed beyond it [see the arrows in Fig. 3(a)].
Topological features must be stable with respect to

arbitrary perturbations at the boundary. To see how this
robustness manifests itself in the anomaly of the boundary
Hamiltonian Eq. (8), consider adding a band of trivial
localized boundary states at energy εc > 0. Assuming weak

k

E

k

E

(a) (b)

FIG. 3. Schematic dispersions of the minimal edge Hamiltonian
Eq. (8) (a) and of the nonminimal model Eq. (9), which has an
additional band of localized states at the edge (b). Since it derives
from a lattice model, the asymptotically flat band from the
localized states must be continuously connected for k → ∞ and
k → −∞, to reflect the periodicity of the edge Brillouin zone.
Unbounded bands are continuously connected to the bulk
spectrum for k → ∞ and k → −∞. The arrows indicate how
the occupation of states is changed after insertion of a flux
quantum through the bulk.

ALEXANDER ALTLAND et al. PHYS. REV. X 14, 011057 (2024)

011057-6



coupling γ to the chiral band, the boundary Hamiltonian
generalizes to

H0
b ¼

�
k γ

γ� εc

�
: ð9Þ

The coupling matrix element γ now generates an avoided
crossing between the chiral and the flat band, see Fig. 3(b),
and a local gap close to the momentum k ∼ εc. However,
the global spectrum of the boundary Hamiltonian remains
gapless, the reason being that the band structure of the
localized states must be continuous throughout the boun-
dary Brillouin zone. For the same reason, the addition of
the localized band does not resolve the ultraviolet anomaly
of the boundary theory. Indeed, if flux quanta are inserted
repeatedly through the bulk, the occupied states will
eventually completely fill the flat band of localized boun-
dary states and continue to reach the upper cutoff [see
arrows in Fig. 3(b)].
We now turn to three-dimensional class AIII and discuss

how a construction similar to the one above leads to very
different conclusions.

C. Case study: Class-AIII insulator in three dimensions

The minimal surface theory of a class-AIII insulator with
winding number one is described by a two-dimensional
generalization of Eq. (8),

Hb ¼ kxτx þ kyτy; ð10Þ

where the chiral symmetry is realized asHb ¼ −ΓHbΓwith
Γ ¼ τz. Again, this Hamiltonian has no ultraviolet closure.
(To see why, note that the off-diagonal element kx − iky
defines a winding number around the origin in two-dimen-
sional k space. This is incompatible with the k-space
periodicity required by a genuine two-dimensional lattice
Hamiltonian.)
A continuous deformation of this two-band Hamiltonian

cannot open a gap at zero energy. The required perturbation
would have to be proportional to τz, in violation of the
chiral symmetry. The conduction and valence band then
connect the single touching point k ¼ 0 to the ultraviolet
divergences at large momentum; Within this two-band
representation, the dispersion is continuous without gap
openings at finite momenta. It is for this Hamiltonian,
augmented with a chiral symmetry respecting random
vector potential, that Refs. [16,17,19] established a spec-
trumwide resilience to Anderson localization.
As in our previous discussion of class A, we now

introduce a band of localized surface states at energies�εc.
As a two-dimensional surface Hamiltonian analogous to
Eq. (9), we consider

H0
b ¼

�
kxτx þ kyτy γτ−

γ�τþ εcτx

�
; ð11Þ

where τ� ¼ τx � iτy. As in class A, the band coupling γτ−
defines an avoided crossing between the localized and the
linearly dispersive bands; see Fig. 4(b). However, unlike in
class A, the continuous interpolation of the bands at the
boundaries of the Brillouin zone no longer presents an
obstruction to the opening of a global gap; see Fig. 4(b).
This option to disrupt the surface spectrum was to be
expected from the discussion of bulk Wannier localizability
in Sec. II, but here follows from inspection of the sur-
face alone.
We note that the Hamiltonian Eq. (11) still has, and

needs to have, an ultraviolet divergence. However, unlike
in class A the repeated insertion of bulk flux quanta no
longer leads to a spectral flow anomaly: the occupied states
get shifted as indicated by the arrows in Fig. 4(b), and
eventually fill the large-k part of band of localized
boundary states. However, no particles reach the upper
energy cutoff. This observation indicates that the ultraviolet
divergence of effective surface Hamiltonians—which
reflects their nonexistence without a supporting bulk—
does not necessarily imply spectral flow from the surface
into the bulk.
In the literature, topological properties that are robust

to the addition of trivial bands are called “stable.” The
sensitivity of the minimal model to the addition of bands,
i.e., the opening of gaps and the disruption of spectral
flow, should therefore be considered a manifestation of
“unstable” or “fragile” topology: the conclusion is that
minimal models are insufficient to fathom the full spectrum
of phenomenologies displayed by the surfaces of three-
dimensional AIII insulators.
Although the concrete worked-out example here is for an

AIII insulator with winding number ν ¼ 1, the general

k

E

k

E

(a) (b)

FIG. 4. Schematic dispersions of the minimal edge Hamiltonian
Eq. (10) (a) and the nonminimal model Eq. (11), which has two
additional bands of localized states at the edge (b). The
asymptotically flat band from the localized states must be
continuously connected for k → ∞ and k → −∞, to reflect the
periodicity of the edge Brillouin zone. The ultraviolet divergent
bands from the chiral edge states are continuously attached to the
bulk spectrum for k → ∞ and k → −∞. In the nonminimal
model, the high-energy band is detached from the low-energy
band containing the linear crossing at zero energy. The arrows
indicate how the occupation of states is changed after insertion of
a flux quantum through the bulk.
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conclusion about the fragility of the spectrumwide pro-
tection of the surface bands in a minimal effective 2 × 2
theory equally applies to higher winding numbers. A 2 × 2
surface theory with a winding number larger than one may
be realized as a nodal point involving higher powers of the
momentum k [16] or by having multiple nodal points at
different locations in reciprocal space. In either case, the
combination of chiral symmetry and the restriction to two-
component spinors precludes the interruption of the surface
states by a spectral or mobility gap.
Below Eq. (10), we linked the absence of intrinsic UV

regularization of effective surface theories to the presence
of a winding number. It is interesting to observe that the
isolation of a detached surface band introduces another
invariant, namely, a two-dimensional surface Chern num-
ber [35,45]. Describing the momentum space topology of
the band through the map k → jαki, where k runs through
the two-dimensional Brillouin zone and jαki are the
positive energy states of the finite band indicted in
Fig. 4(b), we define the Berry curvature,

Ωk ¼ ihdαkj ∧ dαki; ð12Þ

and from it the Chern number,

Ch≡ 2

2π

Z
BZ

Ωk: ð13Þ

This is the surface Chern number mentioned previously
in Sec. II B; the prefactor of 2 accounts for the identical
contributions of the positive- and negative-energy surface
bands, which are related by chiral symmetry. While
the numerical value of Ch may vary depending on the
realization of the coupling between the trivial and the chiral
bands, its parity is determined by that of the bulk winding
number. For further discussion of this point, we refer to
Sec. IV C.

IV. AIII INSULATOR IN THREE DIMENSIONS

In the previous two sections we discussed generic features
of topological insulator bulk states and of their asymptoti-
cally linearizable surface spectra. Wewill now turn to a more
concrete analysis and discuss the band structure of a
microscopic model in class AIII. In the next section we
then generalize to the presence of static disorder and discuss
localization properties of the model’s surface states.
We start our discussion with the definition of the model

in Sec. IVA. Following standard protocol, we then project
down to its low-energy Dirac approximation in Sec. IV B.
[Readers may just take note of the two principal definitions
Eq. (16) of the lattice model and Eq. (24) of its Dirac
approximation, and directly proceed to Sec. IV C.] On the
basis of these model definitions, we then discuss the
consequences of the absence of a spectral flow principle
in Secs. IV C–IV D.

A. Lattice model

We consider a cubic lattice model with four orbitals per
site defined by the Bloch Hamiltonian [7],

HðkÞ¼
�
M−

X
a¼x;y;z

coska

�
τyσ0þ

X
a¼x;y;z

τxσa sinka; ð14Þ

where we set the hopping strength, which is parametrically
of the same order as the total bandwidth, to unity for
convenience. The Pauli matrices σa and τa act on two
independent degrees of freedom of the 4 ¼ 2 × 2 orbitals in
the unit cell. An application of the standard mapping [7]
between chiral lattice Hamiltonians and three-dimensional
winding number invariants ν shows that

ν ¼ 1

ν ¼ −2
ν ¼ 0

9>>=
>>; for

1 < jMj < 3

jMj < 1

else

9>>=
>>;:

The Hamiltonian Eq. (14) is invariant under the symmetry
operations S and C, with C2 ¼ −1:

HðkÞ ¼ −MSHðkÞMS

¼ −MCHTð−kÞMC: ð15Þ

Here T denotes the matrix transpose, MS ¼ τz, and
MC ¼ τyσy. We note that the combination CS ¼ T of
charge conjugation and chiral symmetry satisfies T 2 ¼ −1,
putting our system into class DIII [46].
To define a class-AIII model, we break C, while

preserving S. For our purposes, it will be convenient to
realize this symmetry breaking by adding C-breaking
disorder. To this end, we turn to a real space representation
of the model Eq. (14), which reads

H ¼ H0 þ
X

a¼x;y;z

Ha; ð16Þ

with

H0 ¼ M
X
R

jRiτyσ0hRj;

Ha ¼
1

2

X
R

½taRjRþ eaiðτyσ0 − iτxσaÞhRj þ H:c:�; ð17Þ

where the R are lattice vectors on the cubic lattice, and
the ea, a ¼ x, y, z unit vectors in the lattice directions.
The amplitudes taR, constant in the clean case, are now
chosen as

taR → te−iϕ
a
R ; ð18Þ
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where a∈ fx; y; zg specifies the direction of the nearest-
neighbor bond, and the fϕa

xg are static random phase
variables with variance [50],

hϕa
Rϕ

a0
R0 i ¼ W2δRR0δaa0 : ð19Þ

The effects of this disorder on the (de)localization proper-
ties of the surface states will be discussed in Sec. V.

B. Surface Dirac approximation

A bulk winding number ν generically implies the
appearance of jνj species of gapless Dirac fermions at
the surface [7]. Specifically, we consider a ν ¼ 1 realization
of the model Eq. (14) with 1 < M < 3, a vacuum interface
at x ¼ 0 in the x direction, and infinite extension in y and
z directions. In this case, a Dirac surface state appears in the
surface Brillouin zone at ðky; kzÞ ¼ ð0; 0Þ.
Considering μ≡ 3 −M, with 0 < μ ≪ 1, a continuum

approximation near the bottom of the band leads to the
effective Hamiltonian,

H ≃H0 þHx; ð20Þ

with

H0 ¼
�
−
1

2

d2

dx2
− μ

�
τyσ0 þ τxσx

�
−i

d
dx

�
; ð21Þ

Hx ¼
�
k2y þ k2z

2

�
τyσ0 þ kyτxσy þ kzτxσz: ð22Þ

The zero modes of H0 are

j0; mi≡ jmziτjmxiσjψi; ð23Þ

where m∈ f↑;↓g denotes the polarization of the surface
state, jmziτ and jmxiσ are eigenspinors of τz and σx,
respectively, and jψi is an envelope function decaying
exponentially into the bulk in the x direction. The projec-
tion of the transverse part of the Hamiltonian Hx into the
space of zero modes gives

Hx →

�
0 kz − iky

kz þ iky 0

�
¼ k · Γ; ð24Þ

where k≡ fkz; kyg and Γ ¼ fΓx;Γyg are the standard
Pauli matrices acting in the space of zero modes.
Equation (24) defines the minimal two-component

massless Dirac approximation to the surface states of the
bulk model in Eq. (14) with winding number ν ¼ 1. As
discussed in Sec. III, the minimal Dirac surface theory has a
fragile obstruction to localization, which is lifted if addi-
tional degrees of freedom are added to the surface theory. In
Sec. III the additional degrees of freedom were added in the

form of a trivial band of localized states at the surface. In
the next subsections, we will show that the inclusion of the
quantum geometric structure of the high-lying states in the
full three-dimensional theory has the same effect.

C. Detaching and characterizing surface bands

The model Eq. (14) has a surface band that is contin-
uously connected to the bulk; see Fig. 5(a). We add a term

Uf ¼
X

R∈ surface

X
a¼x;y;z

uf;ajRiτyσahRj; ð25Þ

where the R summation runs over the outermost n surface
layers. (We set n ¼ 1 or n ¼ 3 in our numerical calcu-
lations.) The perturbation Uf breaks C and T ¼ CS sym-
metries, but preserves the chiral symmetry S. We refer to this
perturbation as the “fragmenting surface potential.” For
values juf;xj > ucf , we observe the opening of an indirect
global gap between the x surface band and bulk bands; see
Fig. 5(b). (Detaching surface and bulk bands for surfaces
perpendicular to the y and z directions would require
nonzero uf;y and uf;z, respectively.) The threshold parameter
ucf depends on how many surface layers are perturbed by the

(a)

(c)

(b)

FIG. 5. (a) Spectrum of the topological insulator Eq. (14) with
M ¼ 2 for open boundary conditions in the x direction. The bulk
(surface) spectrum is shown in black (red). There is a single low-
energy Dirac cone at ðky; kzÞ ¼ Γ ¼ ð0; 0Þ. Surface and bulk
bands merge at high energy. (b) The same as (a) but with the
additional perturbation Uf of Eq. (25) with uf;x ¼ 0.5 and n ¼ 3.
(c) A minimal value of the strength uf;x of the fragmenting
potential Eq. (25) required to detach surface and bulk bands, for a
perturbation with support on the outermost surface layer only
(n ¼ 1, solid line) and for a perturbation with support on the three
outermost surface layers (n ¼ 3, dashed line). The vertical axis
shows the minimal value of the indirect gap Δs between surface
and bulk bands.
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fragmenting surface potential; see Fig. 5(c). However,
regardless of its particular value, the present construction
demonstrates the absence of spectral flow.
The band geometry of the surface band is characterized

by its Berry curvature Ωk; see Eq. (12). If the surface band
is fully detached from the bulk, the integral of Ωk over the
Brillouin zone is well defined and gives the integer Chern
number Ch in Eq. (13). The parity of the Chern number
must be the same as that of the winding number ν [51], but
its (integer) numerical value depends on the sign of the
potential Eq. (25) used to separate the surface band from
the bulk,

Ch ¼ −sgnðuf;xÞ: ð26Þ

In the language of Sec. II B, the sign of uf;x thus
corresponds to two different bulk gauge choices for the
detachment of surface and bulk; see Eq. (6). Alternatively,
in the language of the phenomenological surface theory of
Sec. III C, different signs of uf;x represent different pertur-
bations coupling the dispersing surface band and the
degrees of freedom of the external band; see Eq. (11).
The parity constraint on the Chern number of the surface
band implies that for the minimal class-AIII insulator,
detaching the surface band is not possible without inducing
surface Berry curvature.
In Sec. VI we show that the question of whether or not

states in a surface band with winding number one (as is the
case for the model we investigate here) are localized at
energy E in the presence of weak disorder can be answered
by considering the integrated Berry curvature carried by the
states with energy εk between 0 and E. Hereto we define

θðEÞ ¼ π þ
Z
0≤εk≤E

Ωk: ð27Þ

The field theoretical analysis of such a system in the
presence of disorder, see Sec. VI, then shows that states are
delocalized at energy E if

θðEÞ ¼ π mod 2π: ð28Þ

Since θð0Þ ¼ π, this condition is consistent with the
topological surface states at E ¼ 0 being delocalized.
Figure 6(a) shows the angle θðEÞ as a function of E for

uf;x ¼ −0.3 and uf;x ¼ −1.0 and with the fragmenting
perturbation supported on the three outermost layers
(n ¼ 3). We note that the presence of Uf has little
effect on the surface Berry curvature for energies close
to E ¼ 0 [52]. This is consistent with the absence of Berry
curvature in the two-component Dirac approximation,
which in turn is a consequence of the chiral symmetry
(i.e., the absence of terms on the diagonal of the 2 × 2
matrix operator). However, we observe significant devia-
tions from θðEÞ ¼ π for energies approaching the edges of

the bulk bands. In the light of our discussion of Sec. III C,
these reflect the onset of effective hybdridization with
extraneous bands, whose role in the present context is
assumed by the bulk.
For comparison, in Fig. 6(b) we also show θðEÞ for the

two-dimensional band that was obtained by coupling a
surface Dirac cone to a localized surface band; see Eq. (11).
Analogous to the detached surface band of the full 3D
model shown in Fig. 6(a), the Berry curvature is concen-
trated mainly near the band edges.

D. Chiral-symmetric chiral modes:
Surface Hall conductance

We have seen that addition of the perturbation Eq. (25)
detaches the surface bands from the bulk and that the now
isolated surface band has a nonzero Chern number Ch,
which for the present ν ¼ 1model is given by Eq. (26). For
a surface perpendicular to the x direction, it is interesting to
ask what happens if uf;x changes sign, for example, along
an intrasurface domain wall. As we will see, the ensuing
phenomenology is key to the understanding of the disor-
dered system discussed in Secs. V and VI.
To explore this situation in the simplest possible setting,

we consider a flattened version of the model Eq. (14). The
latter is obtained from the Hamiltonian Eq. (14) by keeping
its Bloch states unchanged, while sending the energy
eigenvalues to �1. To describe an insulator with a surface,
we then switch to the position representation and impose
open (or vacuum) boundary conditions at two coordinates
in the x direction. More specifically, we consider an annular
cylinder geometry with two surfaces in the radial x
direction, periodic boundary conditions in circumferential
y direction, and the cylinder axis in z direction.

(a) (b)

FIG. 6. (a) Integrated Berry curvature θðEÞ of the surface band
of the model Eq. (14) versus energy E for the case of zero
fragmenting potential uf;x ¼ 0 (red line), uf;x ¼ −0.3 (black,
solid line), and uf;x ¼ −1 (black, dotted line). The fragmenting
potential is added on the three outermost layers adjacent to the x
surface, n ¼ 3, and the vertical red line marks the position of the
bulk gap. For juf;xj > ucf , surface and bulk bands are detached, so
that θðEÞ can be determined for the full surface band; for uf;x ¼ 0,
θðEÞ can be calculated only for energy E inside the bulk gap.
(b) The same as (a) but for the minimal surface theory Eq. (10)
(red line) and the nonminimal model Eq. (11) (black line) with
jγj=εc ¼ 0.05. According to the criterion of Ref. [20], surface
states at energy E are delocalized if θðEÞ ¼ π mod 2π.
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Figure 7 shows that for a constant fragmenting potential
uf;x, see Eq. (25), the flattened model shows a global gap
between surface (red) and flat bulk (black) bands. However,
the spectrum becomes more interesting, once we introduce
two surface domain walls parallel to the z direction where
uf;x switches sign. (Periodicity in y direction requires the
presence of two of these.) In this case, we observe the
formation of two counterpropagating chiral modes bound
to the respective domain walls. The spectrum of these
modes, indicated in green in Fig. 7(a), connects the surface
and the bulk spectrum.
In the clean model, these chiral modes are supported

only by states inside the high-lying band gap. Below it,
they hybridize with the extended surface states. In the
presence of disorder, the surface states at E ≠ 0 will
localize, but the chiral edge modes do not, so that, for
sufficiently strong disorder, the chiral modes will even-
tually extend their support over the entire surface spec-
trum, as shown in Fig. 7(b).
At energies E ≠ 0 the chiral symmetry is effectively

broken, so that we may think of each surface as a two-
dimensional system in class A. In this reading, the counter-
propagating chiral modes at the domain walls surrounding
a surface region with a different sign of the fragmenting
potential acquire a status equivalent to the edge modes of a
quantum-Hall insulator, and Laughlin’s gauge argument
applies. It requires that the branches of chiral modes must
eventually hybridize with extended states, at E ¼ 0 as well
as at high energies. The extended states at E ¼ 0 are the
topologically protected delocalized surface states of the

class-AIII insulator. At high energies, the chiral modes
must hybridize with delocalized bulk states or with ener-
getically high-lying delocalized surface states. Either way,
the presence of the domain wall modes prevents a full
localizability of all states at large energies.
In anticipation of our later in-depth discussion of

disorder, it will be rewarding to link the presence of chiral
edge modes to transport coefficients. To this end, consider a
surface geometry where a puddle of given value of uf;x is
surrounded by an outer region with uf;x of opposite sign.
The presence of a chiral edge mode at the puddle boundary
implies that a fictitious four-terminal measurement of
its Hall conductance would yield the result σðEÞ ¼
sgnðEÞsgnðuf;xÞ=2 for all energies inside the mobility
gap where the chiral mode exists. [The factor 1=2 reflects
the fact that the surface is governed by a single Dirac
fermion species, with its characteristic half-integral trans-
verse conductance. Chiral symmetry requires σðEÞ to be an
odd function of E [53]. At the band center, σð0Þ ¼ 0, again
by chiral symmetry.]
Now imagine a profile uf;xðy; zÞ (in the n outermost

layers) smoothly varying in such a way that the spatial
average of uf;x vanishes and puddles with fragmenting
potentials of opposite sign form with equal probability.
Since each puddle is surrounded by its own chiral mode, we
expect the formation of a network in which copropagating
and counterpropagating loops occur with equal likelihood.
This system is topologically equivalent to the Chalker-
Coddington network [54] of the integer quantum-Hall
effect at criticality. At this point, the network model
predicts the percolation of quantum states evading
Anderson localization in the presence of even strong
disorder. This simple picture—which is the mechanism
behind the “statistical topological insulator” [55]—is com-
patible with the observation of model realizations with a
spectrumwide existence of delocalized surface states [17].
(The same statistical mechanism underlies delocalization
of a topological-insulator surface in a random magnetic
field [56] and of the surface states of a weak topological
insulator [57–59].) On the other hand, we expect localiza-
tion of finite-energy surface states if a nonvanishing
average of the fragmenting potential causes an imbalance
between puddles with opposite signs of uf;x. Note that
these predictions are consistent with the expectation that it
is the presence or absence of Berry curvature, correspond-
ing to the presence or absence of an average surface
fragmenting potential, that decides over localization. In
the next section, we will back these hypotheses by a
quantitative analysis of disorder.

V. SURFACE LOCALIZATION PROPERTIES

Previous sections demonstrated that the surface states of
a class-AIII topological insulator can be detached from
the bulk. Concomitant with the opening of the spectral gap,

(a) (b)

FIG. 7. (a) Band structure for a slab geometry of the flattened
version of the model Eq. (14) with open boundary conditions
along x and two symmetrically placed domain walls and periodic
boundary conditions along y. The fragmenting potential is of the
form uf;xðx; yÞ, where uf;xðx; yÞ switches from 0.2 to −0.2 and
back at the two domain walls in the n ¼ 1 outermost surface
layers, and is zero otherwise. The bulk, surface, and domain-wall
part of the spectrum are indicated in black, red, and green,
respectively. Solid and dashed green curves are for the domain
wall for which uf;x goes from negative to positive and from
positive to negative upon increasing y, respectively. Note that the
addition of the fragmenting potential to the surface raises part of
the surface spectrum above the flattened bulk band. (b) In the
presence of disorder, only surface states at E ¼ 0 are delocalized.
In this case, the chiral domain-wall modes are expected to extend
from the bulk spectrum all the way down to zero energy.
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the 2D surface acquires a nonzero Chern number due to
induced surface Berry curvature, as explicated above in
Secs. III C and IV C.
Here and in the next section, we consider the implica-

tions of surface Berry curvature for the Anderson locali-
zation properties of the surface states in the presence of
symmetry-preserving disorder. Since the minimal two-
component surface Dirac theory is void of curvature, we
work with a slab of the 3D lattice model defined in Eq. (16).
Surface Berry curvature is induced along the slab boundary
via the fragmenting potential introduced in Eq. (25) above.
We demonstrate below (see Fig. 8) that in the presence of

a nonzero uniform fragmenting potential all surface states
are localized by weak disorder, except the zero-energy one,
which remains topologically protected from Anderson
localization. By contrast, spectrumwide criticality—i.e.,
critical delocalization linked to the plateau transition of
the quantum-Hall effect [17]—survives when either (a) the
surface fragmenting potential is set to zero or (b) the surface
fragmenting potential is randomly distributed with zero
mean. Scenario (b) explains the origin of spectrumwide
criticality as the percolation of chiral edge modes discussed
in the end of the previous section.
We discuss detectable ramifications of our results for

experiment in Sec. V B.

A. Surface Berry curvature and disorder: Numerics

We perform a numerical study of localization in a
disordered version of the model Eq. (14), with and
without a uniform fragmenting potential Uf ; see Eq. (25).
Disorder is implemented by random Peierls phases as
introduced in Eq. (18). We apply multifractal analysis to

decide whether the surface wave functions are localized
or delocalized [14,60].
It turns out that the spectral weight of surface wave

functions is dominantly (>75%) concentrated on the
outermost surface layer. We define the surface inverse
participation ratios (IPR) of these wave functions via the
moments,

PE
q ¼

P
y;z½

P
σjψE

σ ðy; zÞj2�q
½Pσ;y;zjψE

σ ðy; zÞj2�q
; ð29Þ

where ψE
σ ðy; zÞ≡ ψE

σ ðx ¼ 0; y; zÞ are 3D wave functions
of energy E evaluated at x ¼ 0. The IPRs are normalized
such that PE

1 ¼ 1. To improve statistics, we consider PE
q

averaged over disorder and a small window of energy. (For
system sizes from Ny ¼ Nz ¼ L ¼ 16 to L ¼ 128, the
number of wave functions over which the moments are
averaged ranges from 3 × 105 to 103.) Details concerning
the convergence of our data with the slab thickness and
the distribution functions of the IPR are provided in
Appendixes B 2 and B 3.
For surfaces of large linear extension L [61] the IPRs are

expected to asymptotically scale as

PE
q ∝ L−τEq ; ð30Þ

with an effective dimension τEq [14]. Multifractality man-
ifests itself in the appearance of a nontrivial anomalous
dimension,

ΔE
q ¼ τEq − dðq − 1Þ; ð31Þ

FIG. 8. The scaled exponent, Δq=qð1 − qÞ for q ¼ −0.5, 0.5, 0.75 (left to right), and system sizes Nx ¼ 8 and Ny ¼ Nz ¼ L ¼ 24 to
L ¼ 128 of the model Eq. (14). Black data, no fragmenting potential uf ¼ 0 [Eq. (25)] and disorder strength W ¼ 0.15; blue data, a
constant potential with uf ¼ 0.3 applied to the outermost surface layers, and disorder strengthW ¼ 0.2; green data, random fragmenting
potential with zero average and standard deviation uf ¼ 0.3 [Eq. (34)], and disorder strengthW ¼ 0.2. The horizontal dashed lines mark
the value 0.25 of quantum-Hall criticality, and the localization limit τq ¼ 0 corresponds to Δq=qð1 − qÞ → ∞; 4; 8=3 for q ¼ −0.5, 0.5,
0.75. (The value ∞ reflects the formal divergence of the IPR in the localized limit for negative q.)
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measuring deviations from the naive dimension dðq − 1Þ
expected for uniformly distributed states. The opposite
extreme is that of localized states, for which τq ¼ 0,
reflecting the absence of scaling in system size. Presently,
we are discussing a system with two distinct realizations of
critical points. The first is the mirror symmetric point,
E ¼ 0, marking the position of a topologically protected
critical state. In the vicinity of this point, the system is
expected to show multifractality with the anomalous
dimensions [14,62],

ΔAIII
q ¼ ΘAIIIqð1 − qÞ; ð32Þ

where ΘAIII is a nonuniversal coefficient depending on
the disorder strength. The second is the quantum
criticality otherwise realized by states sitting at the center
of Landau levels in quantum-Hall systems. For these states,
the spectrum of scaling dimensions is approximately
parabolic [13],

ΔQH
q ≃ ΘQHqð1 − qÞ; ð33Þ

with ΘQH ≃ 0.25 [14,63–65]. In either case, the spectrum is
expected to be approximately parabolic up to a threshold
jqj ≃ qc ¼

ffiffiffiffiffiffiffiffiffi
2=Θ

p
[14,48,62].

Figure 8 shows the anomalous multifractal exponent
Δq=qð1 − qÞ for q ¼ −0.5, 0.5, 0.75 (left to right) and
vanishing (dashed curve), constant (blue curve), and
random (green curve) fragmenting potential. The different
curves show data obtained for increasing system sizes
Ny ¼ Nz ¼ L ¼ 24–128 as a function of energy E.
Numerically, we calculate an effective L-dependent multi-
fractal exponent, with a finite logarithmic difference
between IPRs of increasing system size L. The details of
this procedure are delegated to Appendix B. At E ¼ 0 we
obtain ΘAIII ≈ 0.85� 0.2 (uf ¼ 0), 0.32� 0.05 (constant
uf ), and 0.18� 0.03 (random uf ). Here uf ≡ uf;x deter-
mines the fragmenting potential Uf ; see Eq. (25). The
approximate independence of these values on the value of q
and L indicates that we are observing the anomalous
dimension Eq. (32) of the E ¼ 0 quantum critical point.
Away from E ¼ 0, our results sensitively depend on the
chosen model for uf.
Zero fragmenting surface potential. For uf ¼ 0 the data

quickly drop to the value Eq. (33) expected at quantum-
Hall criticality. This value is maintained, including for large
energies inside the bulk gap. In this way we confirm the
observation of spectrumwide criticality of Ref. [17].
Constant fragmenting surface potential. Upon applica-

tion of a constant uf ¼ 0.3, we observe a clear tendency
away from criticality and toward localized behavior upon
increasing the system size. We note that the perturbation of
strength uf ¼ 0.3, presently applied to only one surface
layer, is by a factor of 2 below the threshold ucf ≃ 0.6
required to induce an indirect gap below surface and bulk

band; see Fig. 5(c). (We restrict our attention to juf j < ucf ,
because larger values require stronger disorder to observe
effects in finite size.) This finding is consistent with the
expectation that fragility of the surface-bulk connection—
and consequently eigenstate localization at large length
scales—will be induced by any constant nonvanishing uf .
Random fragmenting surface potential.Motivated by the

scenario laid out at the end of Sec. IV D, we consider a
spatially varying surface deformation ufðx; y; zÞ of unit
layer depth, vanishing average, and variance,

hufðx; y; zÞufðx; y0; z0Þiy;z ¼ u2f δy;y0δz;z0 ; ð34Þ

for x ¼ 0 and x ¼ Nx. The green data shown in Fig. 8
indicate that this perturbation leads to delocalized and
quantum-Hall critical behavior at finite energies, much as
that of the unperturbed model. However, the convergence
toward the quantum-Hall exponent is slower than in the
absence of a fragmenting potential. For further discussion
of this point, see Appendix B 2.
We conclude from the three sets of data (black, blue,

green) presented in Fig. 8 that an arbitrary perturbation
of the surfaces is not necessarily sufficient to localize
the finite-energy states. Instead, a deformation that
induces a nonzero average surface Berry curvature [e.g.,
hufðx; y; zÞiy;z ≠ 0] is needed. This conclusion is consistent
with the considerations of Sec. IV C, where it was argued
that a uniform perturbation of the form in Eq. (25) induces
surface Berry curvature.
As discussed in Sec. IV D, spatial fluctuations of the

fragmenting potential with zero average, on the other hand,
lead to a percolating network of chiral domain-wall modes.
This percolating network appears at all nonzero surface-
state energies as quantum-Hall criticality.
Localization was not observed in previous continuum

studies [16,17,19] that employed a 2D minimal Dirac
description, as this carries exactly zero Berry curvature
as long as chiral symmetry is preserved. The fragmenting
potential projects to zero in the minimal Dirac approxi-
mation. Although we consider a phase with only a single
surface Dirac cone (two surface bands), the Berry curvature
necessary to localize the surface states appears in the full
four-component description of the surface-state wave
functions, when the fragmenting potential is applied to
the lattice Hamiltonian in Eq. (16). Alternatively, locali-
zation should occur in the continuum Dirac description
when the latter is wedded to a trivial band in such a way so
as to induce surface Berry curvature; see Sec. III C. In both
cases, it is essential to retain additional degrees of freedom
beyond the minimal Dirac description in order to decide the
fate of the surface states in the presence of disorder.

B. Implications for experiment

Interpreted as a topological insulator with sublattice
symmetry, the model in Eqs. (14) and (16) is rather
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artificial. Although clean systems with approximate sub-
lattice chiral symmetry appear in nature (e.g., graphene),
simple on-site impurity potentials destroy the symmetry
and revert the system to a Wigner-Dyson class. For this
reason, topological phases in classes CI, AIII, and DIII
have received far less attention than the quantum-Hall and
quantum spin-Hall insulators.
However, the non-Wigner-Dyson classes admit natural

interpretations as 3D topological superconductors [5]. Then
a lattice model as in Eq. (16) can be viewed as the
Bogoliubov–de Gennes (BdG) quasiparticle Hamiltonian
in static mean-field theory [7,48]; indeed Eq. (16) can be
interpreted as a lattice regularization of the topological
superfluid 3He-B [46]. Although quantum fluctuations are
inevitable in a non-s-wave topological superconductor, the
notion of topology is expected to carry through to fully
interacting phases of matter [66].
Three-dimensional topological superconductors are pro-

tected by physical time-reversal symmetry [which trans-
mutes into the chiral S condition in Eq. (15) within the
Bogoliubov–de Gennes language [5] ] and varying degrees
of spin SU(2) symmetry. Class-CI, AIII, and DI super-
conductors, respectively, possess SU(2), U(1), and no spin
rotational symmetry. Beyond time-reversal and spin sym-
metries, no other restrictions are placed upon lattice
structure or disorder realizations; see Appendix C for the
explicit mapping in class AIII. This means that generic
nonmagnetic impurities do not alter the symmetry class for
these superconductors.
The surface fluid of a bulk topological superconductor

consists of unpaired fermion quasiparticles (“Dirac fer-
mions” for classes CI and AIII, “Majorana fermions” for
class DIII). This fluid can dominate certain observables at
low temperature T. In particular, a clean surface-Dirac cone
gives a power-law-in-T contribution to the Meissner effect,
due to the paramagnetic current of the surface [67]. The
surface quasiparticles also contribute to the longitudinal
thermal and (for classes CI and AIII) spin conductivities.
By contrast, the contribution of the fully gapped bulk is
exponentially suppressed for these quantities in the T ≪ Δ0

limit, where Δ0 is the bulk superconducting gap.
Disorder is inevitable in real materials, and particularly

at crystal boundaries. Then, the alternative scenarios of
spectrumwide criticality versus surface Anderson localiza-
tion produce very different phenomenologies. Localization
suppresses surface conduction, which can then be mediated
at finite temperature only through inelastic processes. This
should suppress the surface contribution to the Meissner
effect. Without inelastic scattering, the finite-T surface
thermal conductivity vanishes with surface localization in
the thermodynamic limit; this is because the single delo-
calized state at zero energy is a set of measure zero in the
surface spectrum. In reality, dephasing stabilizes a surface
contribution at finite T, analogous to the longitudinal
conductivity measured at the plateau transition of the

quantum-Hall effect [68]. By contrast, spectrumwide
quantum criticality should yield a universal surface thermal
conductivity determined (via the Wiedemann-Franz rela-
tion) by the average zero-temperature electrical conduc-
tivity of the quantum-Hall plateau transition [17].
Which scenario is expected to be realized experimen-

tally? A main message of this paper is that microscopics are
necessary to determine the presence or absence of average
surface Berry curvature; the latter is responsible for surface
localization with disorder. We note that for the cubic lattice
model in Eq. (14), the fragmenting surface potential in
Eq. (25) used to induce the localization in Fig. 8 breaks
the average cubic rotational symmetry. Equivalently, differ-
ent surface perturbations are needed to induce average
surface Berry curvature on different surfaces. This suggests
that point-group symmetry-breaking perturbations tailored
to particular crystal terminations may be necessary to
induce surface localization. Alternatively, as described in
Sec. III C, surface localization for E ≠ 0 can be induced by
coupling the surface of the AIII superconductor to a
nonmagnetic atomic-limit insulator. Hybridization between
the insulator states and the superconductor, which is most
effective if the band edge of the insulator is close to the
Fermi energy of the superconductor, then yields the
required Berry curvature. On the other hand, magnetic
impurities or a weak external field should be sufficient to
localize even the zero-energy surface state because they
break the (physical) time-reversal symmetry protecting the
class-AIII superconductor. This would exponentially
suppress the longitudinal surface thermal conductivity at
low temperatures.

VI. FIELD THEORY

In this section, we discuss how the physics discussed
above presents itself from the perspective of effective field
theory. The presentation is self-contained, and included to
provide an analytical justification for the criterion Eq. (28)
of state delocalization in the presence of weak disorder.
Readers willing to accept the empirical application of the
criterion as convincing enough may consider the section as
optional reading.
By “field theory,” we here mean theoretical frameworks

in which averaging over static disorder is performed at an
early stage to describe d-dimensional systems in a given
symmetry class in terms of (dþ 0)-dimensional [69] non-
linear σ models. Such theories have been in use for a long
time in the physics of conventional disordered metals (see
Ref. [70] for review) and were extended to the description
of various topological insulators [71–73] even before the
momentum space topologies of clean insulators became
understood. In parallel to that development, the approach
was upgraded to a full classification of disordered topo-
logical insulators [7] alternative to, say, the mathematical
framework of noncommutative geometry [74]. From an
applied perspective, its strength is that it can predict,
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e.g., the flow of transport coefficients [59,75,76] as a
function of disorder strength or system size. It is this latter
aspect that will be important in our discussion below.
We begin with a short review of the physics of the two-

dimensional class A and the three-dimensional AIII insu-
lator, extending the discussion of Sec. II B to the presence
of disorder. While these are known structures, included
here to provide perspective, our discussion of the AIII
surface in Sec. VI C, and specifically that of a connection
between field theoretical topological θ angles and momen-
tum space Berry curvature in Appendix A, is new material.

A. Two-dimensional Chern insulator

The starting point of field theoretical representations
of topological insulators is an intermediate action (see
Appendix A for a brief review of its derivation) of the form

S½X�≡ −tr ln ½E − ĤðkÞ þ iκX̂ðxÞ�; ð35Þ

where k and x are momentum and position, respectively,
ĤðkÞ is the clean Hamiltonian (throughout, we will omit
carets on operators in their eigenbasis representation), κ a
parameter measuring the effective disorder scattering rate,
and X̂ ¼ fXrr0

ss0 g a matrix valued slowly fluctuating field
carrying a replica index r ¼ 1;…; R (sometimes traded for
the mathematically more rigorous internal supersymmetry
structure [70]), and a second index s ¼ � ¼ �1 distin-
guishing between propagators of retarded and advanced
causality. Further details of the internal structure of X̂
depend on the symmetry class under consideration. For
example, in class A, X̂ ≡Q ¼ Tτ̂zT−1, where τ̂z will be a
Pauli matrix in s space throughout this section (not to be
confused with the earlier sublattice or chiral τz) or in AIII
just Q ¼ T.
The further processing of the action reflects a notion of

real and momentum space duality, according to which the
momentum space symmetries and topology encoded in
HðkÞ determine the real space symmetries and topology of
QðxÞ. To demonstrate the principle, consider the first step
toward a gradient expansion in class A and use the unitary
invariance of the trace to transform the action to

S½Q�≡ −tr lnfĜ−1ðE;kÞ − ½T−1ðxÞ; ĤðkÞ�TðxÞg: ð36Þ

Here, we encounter the impurity broadened Green function
of the system Ĝ−1ðkÞ≡ E − ĤðkÞ þ iκτ̂3 in conjunction
with a term in which the real- and momentum-space-
dependent terms of the action talk to each other. Assuming
smooth variation of its two constituents, a first-order
Wigner-Moyal expansion leads to ½T−1ðxÞ; ĤðkÞ�TðxÞ≈
FiðkÞΦiðxÞ, with Fi ¼ i∂iĤ and Φi ≡ ð∂iT−1ÞT, where
the derivatives are with respect to ki and xi, respectively.
The effective action describing the system at large distance
scales then is obtained by expansion of the tr ln up to

second order in the derivative terms Φi. Note that the real
space Φi always appear in conjunction with momentum
space Fi. Also note that to leading order in a derivative
expansion,

tr

�
ÂðxÞB̂ðkÞ

�
¼

Z
dxdk tr

�
ÂðxÞB̂ðkÞ

�
; ð37Þ

where dx ¼ ddx and dk ¼ ddk=ð2πÞd, and the trace on the
right-hand side is over the internal matrix structure of the
operators in question. In this way, terms appearing in
the action naturally assume the form of (momentum space
integrals) × (real space integrals), where in the case of
topological terms, the two partners encode “dual” aspects
of the topology of the system.
Specifically, for the case of the two-dimensional Chern

insulator, the result of the expansion to second order in
gradients is Pruisken’s nonlinear σ model, which first
appeared in the context of the integer quantum-Hall
effect [75],

S½Q� ¼ g
Z

d2x trð∂iQ∂iQÞ þ θϵij
16π

Z
d2x trðQ∂iQ∂jQÞ:

ð38Þ

Here, the first term describes the diffusion and eventually
Anderson localization of a two-dimensional electron gas in
the presence of disorder, where the bare value of the
coupling constant g ¼ σxx=8 is set by the system’s longi-
tudinal conductance. The second term is of topological
nature and counts the number of times the Q-matrix field
winds around its target manifold. In the classical reference
its weighing topological angle θ ¼ 2πσxy was identified
with the Hall conductance. Of more relevance to our
present discussion is its interpretation as a momentum
space dual of the real space term, namely, θ ¼ θðEÞ as
given in Eq. (27). (This expression is derived for general
two-dimensional systems in class A in Appendix A.)
As derived, the action Eq. (38) describes the system at

“bare length scales,” with a minimal distance cutoff set by
the scattering mean-free path. Upon integrating out short
distance fluctuations, and for generic values of E, the
coupling constant g renormalizes to zero (Anderson locali-
zation), while the effective angle θ renormalizes to a
multiple of 2π (Hall quantization). For these fixed point
values, the topological θ action reduces to a boundary
action 1

8
ϵij

R
d2x trðQ∂iQ∂jQÞ ¼ S1D½T�, where

S1D½T�≡ 1

2

I
dx trðT−1τ̂z∂xTÞ; ð39Þ

and x now is a one-dimensional boundary coordinate.
This single derivative action describes the dissipationless
chiral circulation of boundary currents against the protect-
ing background of a localized bulk. As with the chiral
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Hamiltonian of the clean system, it lacks gauge invariance,
signaling spectral flow through the delocalized states at the
energies Eþ or E−.
We next compare this physics to that in our reference

system without protected spectral flow.

B. Three-dimensional AIII insulator

As with its lower-dimensional cousin, the gradient
expansion of the prototypical action Eq. (35) leads to a
nonlinear σ model [77,78] enriched by a topological
term [7],

S3D½T� ¼
Z

d3x½g trð∂iT∂iT−1Þ þ Eν trðT þ T−1Þ�

þ ϑϵijk

24π2

Z
d3x trðT−1

∂iTT−1
∂jTT−1

∂kTÞ: ð40Þ

Compared to Eq. (38), the field manifold has changed
to group-valued matrix fields, T ∈Uð2RÞ. Otherwise, we
again have a job division between a gradient term describing
bulk conduction properties and a topological term now
measuring three-dimensional windings over the unitary
group. The second term describes the symmetry breaking
induced by departures away from E ¼ 0, where ν is
proportional to the three-dimensional density of states.
There are different physical limits that may be inves-

tigated on the basis of this representation: at the particle-
hole symmetric point E ¼ 0, we are sitting inside the
bulk spectral gap. The bare conduction parameter g may
nevertheless be finite, due to impurity states smearing the
band gap of the clean system. At large length scales, we
expect renormalization to an Anderson insulator, g ¼ 0,
where a value ϑ ¼ 2πn with n a nonvanishing integer will
signal topological nontriviality. In this limit, and in analogy
to the Pruisken action, the topological term becomes a
boundary term, Γ½T�=12π, with the physical interpretation
of a Wess-Zumino-Witten term [79] of an emerging
surface action. In the immediate vicinity of the surface,
the gradient term remains finite and now describes
intrasurface conduction. The net effect is the stabilization
of a surface Wess-Zumino action,

S2D½T� ¼ g
Z

d2x trð∂iT∂iT−1Þ þ 1

12π
Γ½T�; ð41Þ

through the localization of the bulk. This action is the
AIII analog of Eq. (39) for the A system. At large length
scales, this theory renormalizes [79,80] to the confor-
mally invariant action with g ¼ 1=8π representing a
single two-dimensional Dirac point at zero energy; this
is the field theoretical interpretation of zero-energy sur-
face delocalization in the AIII insulator.
However, we may also investigate what happens at finite

deviations E ≠ 0 away from chiral symmetry. In this case,
the (strongly renormalization-group relevant) “mass term”

in Eq. (40) only admits configurations T → Q ¼ Tτ̂zT−1

for which trðQþQ−1Þ is a constant vanishing in the replica
limit. These are the Q matrices of the model of lower
symmetry AIII → A. Substitution into the bulk action
annihilates the second and third term, while the gradient
term becomes the conventional action of a disordered three-
dimensional metal below the Anderson transition point:
away from zero energy, the AIII insulator behaves like a
conventional Anderson insulator. A more interesting limit
is the case of small but finite E ≠ 0 in the vicinity of the
surface. The symmetry breaking now collapses the Wess-
Zumino term Γ½Q� to the Pruisken term of a two-dimen-
sional class-A action, at topological angle θ ¼ ð2Zþ 1Þπ
[79]. We conclude that the naive extension of the zero-
energy Wess-Zumino-Witten action to finite energies
equals the action Eq. (38) of a two-dimensional Chern
insulator fine-tuned into criticality. This is a field theoreti-
cal indication of a tendency to extended surface quantum
criticality. The question is what happens for larger devia-
tions E away from zero. To answer it, we need to go beyond
the present level of high level reasoning and turn to a first
principle approach.

C. Surface of the three-dimensional AIII insulator

In order to understand the physics of the disordered
surface at arbitrary E, we again start from the prototypical
representation Eq. (35). For the slow field, we take
X̂ðxÞ ¼ ðTτ̂zT−1ÞðxÞ, where x is a two-dimensional sur-
face coordinate. (The justification behind this surface
projection is that states of finite extension into the bulk
have eigenenergies much larger than E, which we assume
to be way below the bulk gap.) For the surface Hamiltonian
ĤðkÞ, we assume a spectral decomposition,

ĤðkÞ≡X
α

jαkiϵαkhαkj; ð42Þ

where fjαkig are the system eigenstates at a given trans-
verse momentum.
This formal spectral decomposition actually is less

innocent than it looks: Naively, it should include all
eigenstates at a given k. However, this is not the case.
Going back to the tr ln Eq. (35), only eigenstates of ĤðkÞ
with a finite spatial overlap with the surface Hubbard-
Stratonovich field X̂ðxÞ contribute to the expansion. The
obvious candidates here are the two eigenstates forming the
chiral partners of the surface band. However, the internal
spinor representation space at a given k of the lattice model
is four dimensional, implying that two states are insuffi-
cient to span it. We must, therefore, assume a contribution
of bulk states (with finite surface amplitude), and an
associated state-dependent weight κ ¼ κα. As we do not
have full access to this information, we sidestep the
problem by considering Eq. (42) as a formal complete
sum. We also consider the surface band for the flattened
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model; i.e., we assume a finite spectral gap to higher-
lying bands.
In Appendix Awe show that under these conditions, the

surface action assumes the form of a two-dimensional
class-A action Eq. (38), with the topological angle given by
Eq. (27), or Eq. (A2) in a more explicit representation. As
discussed above, the added curvature integrals of the upper
and lower surface band computed in this way need not add
to zero. In view of the above discussion, this phenomenon
relates back to the embedding of the surface band into a
larger Hilbert space of bulk states. Unlike with intrinsic
two-dimensional lattice bands, whose Chern numbers
would have to add to zero, we are here considering a
single two-dimensional shadow of a three-dimensional
bulk (the other lives at the opposite surface) and the
cancellation principle does not apply.
To summarize, away from E ¼ 0 the surface of the AIII

insulator is described by the action otherwise describing the
physics of the integer quantum-Hall effect at distance scales
exceeding the mean-free scattering path. (Equivalently,
we may think of it as the continuum version of the network
structure discussed in the end of Sec. IV D.) Its two
coupling constants specify the localization properties of
the system in terms of the bare longitudinal conductance g
and the topological angle θ angle, respectively. The latter is
remarkable in that it links the real space long-range
localization properties of states at a fixed energy E to
momentum space short-distance structures at all other band
energies, via the integrated Berry curvature. Such extreme
forms of infrared-ultraviolet mixing are rare (and strictly
absent in generic free-fermions systems), but here enabled
by topology.

VII. DISCUSSION AND CONCLUSION

For topological insulators in the Wigner-Dyson classes
A, AI, and AII—the most prominent realizations being the
two-dimensional class-A integer quantum-Hall insulator
and class-AII quantum spin-Hall insulator, and the three-
dimensional class-AII topological insulator—boundary
states are continuously attached to delocalized bulk states,
without interruption by a spectral or mobility gap. In this
paper, we showed that for the complementary class of
genuinely non-Wigner-Dyson class topologlogical insula-
tors this key principle is broken. (The attribute “genuine”
indicates that the constraints imposed by charge conjuga-
tion symmetry C or chiral symmetry S that define the non-
Wigner-Dysnon classes and force the spectrum to be
symmetric around E ¼ 0 are essential for the protection
of the bulk topology. By contrast, nongenuine classes
remain topological after lifting constraints due to C and
S and behave effectively as Wigner-Dyson insulators.)
In the literature, nontrivial topology is often asso-

ciated with an obstruction to the construction of a
localized basis of conduction and valence bands, referred
to as “Wannierizability.” Our general results—see

Table I—show that, by contrast, all genuine non-Wigner-
Dyson class insulators enjoy this property, and can be
topologically nontrivial nonetheless. We arrived at these
conclusions both from a bulk perspective, showing that
Wannier localizability of the bulk implies that the con-
nection between surface and bulk bands becomes fragile,
and from an intrinsic boundary perspective, showing that
the effective surface theory admits a gap-opening pertur-
bation. A key conclusion following from this observation is
that the surface states of genuine non-Wigner-Dyson
topological insulators themselves are localizable, except
at the center E ¼ 0 where state delocalization is topologi-
cally protected.
The existence of gapless or conducting surfaces is the

key signature distinguishing topological from conven-
tional insulators. Our analysis shows that, in this regard,
the physics of genuine non-Wigner-Dyson topological
insulators is different from that of their Wigner-Dyson
siblings: Their surface states can be, but need not be,
delocalized away from one isolated energy, E ¼ 0. As a
concrete case study, we considered the three-dimensional
AIII insulator and showcased its rich boundary phenom-
enology: The surface states can be detached from the bulk,
and electrons residing in them can form different phases of
matter distinguished by their Chern number. Furthermore,
at the transition point between any of these surface phases
one observes spectrumwide quantum critical delocaliza-
tion of states.
Indeed, our study was motivated by recent work, which

reported a spectrumwide delocalization of the surface states
of a class-AIII insulator and other non-Wigner-Dyson
classes [16–19]. These observations were based on both
a numerical analysis of an effective Dirac surface theory
and a numerical study of a three-dimensional lattice model
of a class-AIII insulator. In this work we identified the
principles that led to this seemingly robust prediction. We
showed that the minimal 2 × 2 Dirac theory considered in
these references is intrinsically protected against localiza-
tion. However, this protection is topologically fragile in
that it is lifted if additional trivial surface bands are added
(which can be achieved, e.g., by coupling an extraneous
surface layer). The absence of localization in the full three-
dimensional lattice model considered in Ref. [17] results
from a statistical symmetry, similar to that realized in the
“statistical topological insulator” [55].
For the case of minimal topological winding number

ν ¼ 1, we identified a powerful indicator for the localiza-
tion properties of states at energy E, namely the integrated
Berry curvature of all states energetically below (or
equivalently above) that energy: An integer-quantized
integral implies delocalization, departures from these val-
ues, localization. While the energetic nonlocality of this
criterion may be unexpected for a model of noninteracting
particles, it reflects the importance of global momentum
space quantum geometry in a topologically nontrivial
context. In the two models mentioned above, that criterion
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signals global delocalization, if for different reasons: The
minimal surface Dirac theory is Berry flat; in the lattice
model, the disorder model considered in Ref. [17] leads
to a statistical cancellation of curvature in the integral.
However, both the embedding of the minimal 2 × 2 theory
into a four-component spinor theory (the minimal frame-
work to describe topological nontriviality in three-dimen-
sional AIII) and the lifting of the statistical symmetry in the
lattice model by addition of a “fragmenting surface
potential” of nonzero average lead to state localization in
a manner discussed in detail in Sec. V.
At the same time, our analysis indicates that for winding

numbers jνj > 1, the precise meaning of the term “minimal
model” and the identification of quantitative localization
measures must be reconsidered. In conclusion, the principle
that a localizable bulk implies a gappable surface spectrum
(and vice versa) applies to all genuine non-Wigner-Dyson
classes. Other observations, such as the precise ways in
which the minimal Dirac description is fragile, and the
relation of localizability and Berry curvature, need not
straightforwardly generalize beyond the ν ¼ 1 AIII context
and invite future work.
Most of the previous work on surface-state localization

in the AIII insulator considered a low-energy, continuum
two-dimensional Dirac description with two-component
Dirac spinors [48,81]. Our results imply that these
theories are fundamentally incomplete, because the sur-
face Berry curvature responsible for Anderson localiza-
tion is strictly ruled out. To readers who trust in the
predictive power of minimal models, it is a surprising and
possibly disturbing notion that such Lorentz-covariant
and renormalizable field theories cannot encode the most
basic characteristics (localized versus extended) of sur-
face-state wave functions. At the same time, it may be
reassuring that the origin of the problem does not lie in the
notorious and difficult-to-handle lack of ultraviolet clo-
sure of the Dirac theories, but that the problem can be
cured by the simple addition of trivial degrees of freedom.
Allowing for the addition of trivial bands is common
practice in topological classifications based on stable
equivalence, and our results show that it is equally
important when determining the existence of a topological
obstruction to Anderson localization.
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APPENDIX A: FIELD THEORY ANALYSIS

In this appendix we discuss the field theoretical analysis
of the disordered surface. To make the paper self-contained,
we start with a quick review of the derivation of the
intermediate representation Eq. (35), here formulated for
class A for concreteness. In a second step we then show that
the expansion of that action establishes a connection
between the θ term describing the real space surface
topology in the presence of disorder and the integrated
momentum space Berry curvature.

1. Replica field theory

We begin by adding disorder a potential V̂ðxÞ with
variance hV̂ðxÞV̂ðx0Þi ¼ ðγ0=2Þδðx − x0Þ to the clean
Hamiltonian Ĥ. Transport observables such as the
longitudinal or transverse conductance at characteristic
energy E may be computed from the R-fold replicated
partition sum [82],

ZR ¼
Z

Dψ expð−S½ψ �Þ;

S½ψ � ¼ −i
Z

dVψ̄ðEþ iδτ̂3 − Ĥ − V̂Þψ ;

where ψ ¼ fψ r
s;μðxÞg is a Grassmann field, the index

μ ¼ 1;…; 4 labels the components of the lattice spinor,
r ¼ 1;…; R is a replica index, s ¼ 1, 2 distinguishes
between advanced and retarded components, and τ̂3 is a
Pauli matrix in advanced or retarded space. We average the
partition sum over disorder to obtain a quartic interaction
potential between replicas,

S½ψ � ¼ S0½ψ � þ
γ0
2

Z
dVðψ̄ψÞ2; ðA1Þ

where S0 is the clean action. To decouple the quartic
term, we introduce a Hubbard-Stratonovich matrix field
BðxÞ ¼ fBrr0

ss0;ii0 ðxÞg. Integrating out the ψ fields yields

hZRi ¼
Z

DB exp
�
−

1

2γ0

Z
dVtrB2 þ tr ln Ĝ½B�

�
;

with Ĝ½B� ¼ ðEþ iδτ̂3 − Ĥ − BÞ−1. A variation of the
action in B leads to B̄ðxÞ ¼ γ0trĜ½B̄�ðx;xÞ, which has
the structure of a self-consistent Born equation. According
to it, the mean field B̄ pays the role of an impurity scattering
“self-energy” whose strength is determined by the impu-
rity-broadened local spectral density, Ĝ½B̄�ðx;xÞ. The
equation is solved by the diagonal ansatz B̄ ¼ −iκτ̂3,
where κ is an effective scattering rate determined by the
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bare strength γ0. For our purposes, we need not discuss the
self-consistent dependence κðγ0Þ in detail. However, what
does matter is that the stationarity equation affords a whole
manifold of solutions besides the matrix-diagonal one,
B¼−iκT τ̂3T−1¼−iκQ, where T∈Uð2RÞ=½UðRÞ×UðRÞ�,
and Q ¼ T τ̂3T−1. Physically, these are the Goldstone
modes associated to the “spontaneous symmetry breaking”
iδ → iκ reflected in the upgrade of the infinitesimal causal
parameter iδ to the finite damping iκ.
Substituting these modes into the action, and noting that

trðQ2Þ ¼ const is a constant (vanishing in the replica limit),
we arrive at the soft mode action Eq. (35) which will be our
starting point for all further considerations.

2. Gradient expansion

We now discuss the steps required to advance from
Eq. (35) and its equivalent representation Eq. (36) to a local
action containing of lowest nonvanishing order in gradient
operators. There are only two of these consistent with
the symmetries of the model, namely, trð∂iQ∂iQÞ and
ϵijtrðQ∂iQ∂jQÞ. The derivation of an action containing
the first via expansion of the tr ln is textbook material [70]
(see also Ref. [20] for the specific case of the

two-dimensional topological class-A insulator) and is not
of primary relevance to our present discussion. However,
the construction of a topological action containing the
second terms is concerned, we need to start afresh; previous
derivations of this action where specific to the quantum-
Hall effect [75], or other genuinely two-dimensional
materials [83]. By contrast, we here want to allow for
situations where the effective HðkÞ is given by a general
spectral decomposition as in Eq. (42). In this way, we will
address all class-A situations relevant to our discussion
(bulk two-dimensional insulators for the sake of compari-
son, and the AIII surface at finite energies) in one go.
The second-order expansion of the tr ln in the combi-

nations FiΦi defined after Eq. (36) leads to two terms,
S → Stop ¼ Sð1Þ þ Sð2Þ, where Sð1Þ ¼ −trðĜFiΦiÞ, and
Sð2Þ ¼ 1

2
trðĜFiΦiÞ2, and the subscript “top” indicates that

we wish to isolate the topological contribution to the action.
Naively, one might think that the first-order term drops out
by symmetry. However, this is not so because the trace over
a single Green function leads to ultraviolet divergent
expressions; i.e., we are facing a 0 ×∞ situation. The
way out, originally suggested by Pruisken, is to process the
first-order term as

Sð1Þ ¼ −
Z

∞

E
dϵtrðĜFiΦiĜÞ

≈ −
i
2

Z
dxdk

Z
∞

E
dϵtr½ð∂jĜÞFið∂jΦiÞĜ − ĜFið∂jΦiÞ∂jĜ�

¼ −
i
4

Z
∞

E
dϵ

Z
dk

X
s

strð½Ĝs; ∂jĜ
s�FiÞ

Z
dxtrðτ̂3∂jΦiÞ;

where in the first equality we used ĜðEÞ ¼ −
R
∞
E dϵĜ2ðϵÞ

to increase the number of Green functions, thereby miti-
gating the UV issues. To keep the notation slim, we omit the
energy arguments throughout. In the second equality we
applied another Moyal expansion [with ∂iĜ ¼ ∂kiĜðkÞ]
and used that only the imaginary part FðĜÞ → 1

2
½FðĜþÞ −

FðĜ−Þ�τ̂3 ¼ 1
2

P
s sFðĜsÞτ̂3 will contribute to a nonvanish-

ing trace. With the second of the two auxiliary identities,

−4ϵlm
X
s

trðsPsΦlP−sΦmÞ ¼ 4ϵlmtrðτ̂3∂lΦmÞ

¼ ϵijtrðQ∂iQ∂jQÞ≡ LtopðQÞ;

we reduce this expression to Sð1Þ ¼ I1
R
dxLtopðQÞ, with

the energy-momentum integral

I1 ¼
i
32

Z
∞

E
dϵ

Z
dk

X
s

sϵijtrð½Ĝs; ∂jĜ
s�FiÞ:

Turning to the second-order term and using the first of the
above auxiliary relations, it is straightforward to derive an
analogous expression, Sð2Þ ¼ I2

R
dxLtopðQÞ, where

I2 ¼ −
1

32
ϵij

Z
dk

X
s

strðĜsFiĜ
−sFjÞ;

and we again retain only contributions which combine
to a nonvanishing trace. It remains to make sense of the
momentum integrals, I1 and I2. To this end, we engage the
eigenfunction representation,

ĜðEÞ ¼
X
α

jαi 1

Eþ isκ − ϵα
hαj;

Fi ¼ −i∂iĤ ¼ −i
X
α

ϵα∂ijαihαj;

where we anticipate that momentum derivatives of energies
will not contribute to an expression of topological signifi-
cance (this can be checked by explicit computation).
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Substituting the first of these identities into I1, the energy-dependent denominators can all be pulled out and integrated over.
As a result, we obtain

I1 ¼
iπ
16

Z
dkϵij

X
αβ

1

ϵα − ϵβ

�
δðE − ϵαÞ þ δðE − EβÞ −

2

ϵα − ϵβ
½Θðϵα − EÞ − Θðϵβ − EÞ�

�
hαj∂jĤjβihβj∂iĤjαi;

where we assumed the disorder to be weak enough to justify
the approximation δðE − ϵαÞ ¼ −ð1=πÞImðEþ iκ − ϵαÞ−1.
In I2 no energy integral needs to be done, and the
substitution of the spectral decomposition leads to

I2 ¼ −
iπ
16

ϵij
X
αβ

Z
ðdkÞ 1

ϵα − ϵβ
½δðE − ϵαÞ þ δðE − ϵβÞ�

× hαj∂iĤjβihβj∂jĤjαi:

We observe that in the combination Stop¼ðI1þI2Þ×R
dxLtopðQÞ the on-Fermi-shell term I2 cancels against

the on-shell contributions of I1, a phenomenon which in
the context of the quantum-Hall effect is known as the
cancellation of the Streda I Fermi surface conductance
against a contribution to the Streda II conductance [75].
In a final step, we substitute the second of the above
spectral decompositions to compute the matrix elements
as hαj∂iĤjβi ¼ ϵβhαj∂iβi þ ϵαh∂iαjβi ¼ ðϵα − ϵβÞh∂iαjβi.
Substitution into I1 þ I2 leads to the final result,

Stop½Q� ¼ 1

16π

Z
d2kΩkΘðϵα − EÞ

Z
dxϵijtrðQ∂iQ∂jQÞ;

ðA2Þ

where Ωk ¼ ihdαj ∧ dαi ¼ iϵijh∂iαj∂jαi.

APPENDIX B: DETAILS OF NUMERICAL
CALCULATION OF THE MULTIFRACTAL

SPECTRA

1. Effective multifractal exponent

In practice, to analyze the convergence of the numerical
calculation in the linear surface dimension L we define an
effective L-dependent multifractal dimension:

τEq ðLÞ ¼ −
lnPE

q ðLÞ − lnPE
q ðL=2Þ

lnL − lnL=2
: ðB1Þ

For a critical point with multifractal scaling, this
quantity will converge to the true multifractal exponent
limL→∞ τEq ðLÞ → τEq according to Eq. (30) [14]. However,
away from a critical point, where wave functions localize
for sufficiently large system sizes L, its value will not
converge until L is larger than the localization length
and τEq → 0. In this way the effective exponent allows us to
distinguish between a localizing and critical behavior.

In the latter case, it also quantifies the convergence of
the multifractal spectrum.

2. Distribution functions of inverse participation ratios

In a numerical experiment, the moments Pq are ran-
domly distributed quantities, whose mean values are shown
in Fig. 8. The probability distribution of the moments P0.5
is shown in Fig. 9, again for the three cases constant, zero,
and random uf . For ideal quantum-Hall criticality, we
expect P0.5 ¼ cL−τ0.5 , with the exponent [cf. Eqs. (31)
and (33)] τ0.5 ≈ −1þ 1

16
. This implies that the variable

ln½P0.5 þ τ0.5 lnðLÞ� should be distributed around the non-
universal constant ln c [14,84]. The figure shows for uf ¼ 0
(center) this variable is indeed narrowly distributed around
a maximum, with data collapse for all values of L.
Qualitatively similar behavior is found for random uf
(right). While for the numerically accessible system sizes
the scaling limit is harder to reach in this case, the collapse
becomes more pronounced for our largest values of L,
shown in blue. However, for nonvanishing constant uf
(left) the data cannot be scaled to collapse, including for
different values of τ0.5. In this way, the absence of
criticality reveals itself.

FIG. 9. Distribution functions of Pq at q ¼ 0.5 for uf ¼ 0.3
(left), uf ¼ 0 (middle), and uf random (right) with rms uf ¼ 0.5.
(Here, the topological control parameter is M ¼ 2.0 and the
disorder strength is W ¼ 0.2.) The horizontal axis has been
rescaled as discussed in the text. Inset: the convergence of the
mean of the IPRs, scaled by the trivial scaling exponent of fully
extended states for constant (blue), zero (yellow), and random
(green) uf .
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In the inset we show the scaling of the mean of the
moments with system size, rescaled by the trivial extended
scaling behavior. Blue (yellow, green) data represents the
finite (vanishing, random) uf , where the latter two asymp-
tote toward the QH scaling indicated as a black dotted line.

3. Convergence in transverse direction

We here demonstrate that already small slab widths Lx
are sufficient to make quantitative statements about the
localization properties of the surface states. As an example,
Fig. 10 shows the distribution function of the moments P0.5
for uf ¼ 0 and a surface extension L ¼ 64 for different
values of Lx. The full distribution function, including mean
and tails, coincides, indicating that for all shown slab
widths the distribution functions are already converged.
The reason for the observed width independence is the

exponential transverse localization of surface states, with a
decay length of order one layer or less. Here, and in the
numerical calculations shown above, only surface states
with a surface weight of more than 75% are taken into
account to avoid artifacts due to low-lying bulk states.
(These are rare, but they exist due to disorder inside the
clean bulk gap.)

APPENDIX C: CLASS-AIII SUPERCONDUCTORS

In a superconductor with a spin rotational invariance
around a fixed axis, the Bogoliubov–de Gennes Hamiltonian
H ¼ diagðh↑; h↓Þ splits into two blocks, corresponding to
“spin-up” and “spin-down” sectors. (The BdG Hamiltonian
acts on four-component spinors with spin and particle-hole
degrees of freedom.) Particle-hole conjugation C and time-
reversal symmetry T map these two blocks onto each other,

h↑ ¼ −C−1h↓C ¼ T −1h↓T ; ðC1Þ

so that it is sufficient to consider the “spin-up” block h≡ h↑
only. The product S ¼ CT acts as an antisymmetry con-
straint on the Hamiltonian,

h ¼ −S−1hS: ðC2Þ

It follows that a superconductor with time-reversal sym-
metry and a remnant U(1) of spin SU(2) rotational
invariance resides in class AIII [5,85]. We now make
these arguments more explicit, using a formulation in
terms of fermion creation and annihilation operators, so
that particle-hole symmetry is automatically encoded in
the fermion anticommutation relations and need not be
implemented explicitly.
For a system of spin-1=2 electrons, we can form the spin-

triplet Cooper-pair annihilation operator in position space:

baðr; r0Þ≡ cσðrÞcσ0 ðr0Þðσ2σaÞσ;σ0
¼ cTðrÞσ2σacðr0Þ: ðC3Þ

Here the electron annihilation operator cσðrÞ carries spin
indices σ ∈ f↑;↓g, and the Pauli matrices σa act on this
space; repeated indices are summed. On the second line of
Eq. (C3), we suppress indices and T denotes the transpose,
viewing c (cT) as a column (row) spinor. The pair operator
is antisymmetric (“p wave”) under the exchange of r ↔ r0,
and transforms like a vector under spin SU(2) rotations
of the fermions. Under the physical T 2 ¼ −1 antiunitary
time-reversal transformation,

cðrÞ → iσ2cðrÞ; i → −i; ðC4Þ

the pair operator baðr; r0Þ is invariant. By contrast, the
ordinary magnetization density inverts under T .
In Bogoliubov–de Gennes static mean-field theory,

the Hamiltonian for a spin-triplet superconductor can be
expressed as

H ¼
Z

ddk
ð2πÞd ε̃ðkÞc

†ðkÞcðkÞ

þ 1

2

X
r;r0

½Δaðr − r0Þb†aðr; r0Þ þ H:c:�; ðC5Þ

where H.c. denotes the Hermitian conjugate. Here cðkÞ is
the Fourier transform of the position-space annihilation
spinor, and ε̃ðkÞ denotes the normal-state band structure,
incorporating the chemical potential. The vector-valued
function ΔaðrÞ ¼ −Δað−rÞ is the mean-field BCS order
parameter. With a particular gauge choice, Eq. (C5) is
invariant under the time-reversal transformation in Eq. (C4)
if the band structure is invariant and ΔaðrÞ ¼ Δ�

aðrÞ.
If we restrict to a real-valued ΔaðrÞ ¼ δa;3ΔðrÞ,

then Eq. (C5) describes a time-reversal-invariant super-
conductor with a remnant U(1) of spin SU(2) invariance,

FIG. 10. Distribution functions of Pq at E ¼ 0.1, uf ¼ 0,
W ¼ 0.15 and linear surface extension L ¼ 64 for different slab
widths Nx on a linear (main) and semilogarithmic scale (inset).
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corresponding to rotations about the z axis in spin space.
To see that this is class AIII, we reformulate in terms of the
Nambu spinor:

ηðrÞ≡
"
c↑ðrÞ
c†↓ðrÞ

#
; η†ðrÞ ¼

h
c†↑ðrÞ c↓ðrÞ

i
: ðC6Þ

In the Nambu language, a z-axis spin rotation becomes
the U(1) transformation η → eiϕ=2η, η† → η†e−iϕ=2. Time
reversal [Eq. (C4)] becomes

ηðrÞ →
"

c↓ðrÞ
−c†↑ðrÞ

#
¼ iτ2½η†ðrÞ�T: ðC7Þ

Here the Pauli matrix τ2 acts on the components of the
Nambu spinor, and ½η†�T is the column spinor correspond-
ing to the row η†. Equation (C7) implies that time reversal
acts like an antiunitary particle-hole transformation in the
Nambu language, because spin (unlike electric charge)
inverts under T . This is in fact chiral symmetry in second
quantization. To see this, we recast Eq. (C5) compactly as

H ¼ 1

2
η†hη; ðC8Þ

where h is the Hermitian BdG Hamiltonian that acts on
position and Nambu components. This form is manifestly
invariant under spin U(1) rotations. Imposing invariance
under T in Eq. (C7) leads to the chiral condition on h:

−τ2hτ2 ¼ h: ðC9Þ

Physical time-reversal symmetry is thus transmuted into a
chiral condition on the BdG Hamiltonian. Since there are
no other constraints on h, the superconductor resides in
class AIII.
The other topological superconductor classes in three

dimensions are CI and DIII; both require physical time-
reversal symmetry [5,7]. Class CI, in addition, possesses
a C2 ¼ −1 particle-hole symmetry. In the superconductor
interpretation, this encodes invariance under π rotations
along x and y axes in spin space, which is tantamount to full
SU(2) symmetry. Class DIII by contrast has no spin
symmetry, and is usually cast in terms of a real (Balian-
Werthammer [49]) spinor that encodes both spin and
particle-hole degrees of freedom. Physical time reversal
also appears as a chiral condition, while C2 ¼ þ1 particle-
hole symmetry is imposed on the BdG Hamiltonian by the
reality condition on the spinor.
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