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We develop a multiscale approach to estimate high-dimensional probability distributions. Our approach
applies to cases in which the energy function (or Hamiltonian) is not known from the start. Using data
acquired from experiments or simulations we can estimate the energy function. We obtain a representation
of the approximate probability distribution based on a multiscale cascade of conditional probabilities. This
representation allows for fast sampling of many-body systems in various domains, from statistical physics
to cosmology. Our method—the wavelet-conditional renormalization group (WCRG)—proceeds scale by
scale, estimating models for the conditional probabilities of “fast degrees of freedom” conditioned by
coarse-grained fields. These probability distributions are modeled by energy functions associated with
scale interactions, and are represented in an orthogonal wavelet basis. The WCRG decomposes the
microscopic energy function as a sum of interaction energies at all scales and can efficiently generate new
samples by going from coarse to fine scales. Near phase transitions, this representation of the approximate
probability distribution completely avoids the “critical slowing-down” of direct estimation and sampling
algorithms. This is explained theoretically by combining results from RG and wavelet theories, and verified
numerically for the Gaussian and ¢*-field theories. We show that multiscale WCRG energy-based models
are more general than local potential models and can capture the physics of complex many-body interacting
systems at all length scales. This is demonstrated for weak-gravitational-lensing fields reflecting dark-
matter distributions in cosmology, which include long-range interactions with long-tail probability
distributions. The WCRG has a large number of potential applications in nonequilibrium systems, where
the underlying distribution is not known a priori. Finally, we discuss the connection between the WCRG

and deep network architectures.
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I. INTRODUCTION

For a long time, physicists have worked in a setting in
which the energy function (or Hamiltonian) is known
from the start, and the challenge is to devise methods to
explain the resulting physical properties and develop
techniques to provide fast sampling of physical configu-
rations. Nowadays, we are witnessing a change of para-
digm. Thanks to a large amount of data available, it has
become possible to estimate the energy function sta-
tistically, i.e., by inferring it from a large dataset of
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observations from experiments or simulations in cases in
which the energy function is not known from the start. The
majority of physical systems are characterized by a
probability distribution. Whereas at equilibrium, this dis-
tribution has the Boltzmann-Gibbs form, there are no
general principles to identify an out-of-equilibrium distri-
bution. Devising approximate representations of such
probability distributions that can be estimated efficiently
and that enable fast sampling is now a major endeavor at the
center of intense research activity.

This paradigmatic shift has been fueled by the upsurge of
impressive results in machine learning (ML) combined
with the availability of a massive amount of data in many
field of physics, e.g., cosmology, condensed matter, stat-
istical physics, and also the interest in nonequilibrium
systems. For instance, generative models have been used in
cosmology to constrain the values of the cosmological
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constants [1], and in condensed matter theory and statistical
physics to characterize phase transitions [2]. Beyond
physics, estimating the probability distribution of a very
large number of variables from datasets of examples is in
fact also a major challenge, which is called “unsupervised
learning” in data sciences. It has considerable applications
in all sciences, including neuroscience [3] and protein
sequence data analysis [4]. In these cases (and others), not
only the probability distribution is of interest, but it is also
instrumental in estimating the effective energy function
governing the interactions between microscopic degrees of
freedom. In image processing, such estimation problems
were introduced in Ref. [5] to synthesize and discriminate
image textures with maximum entropy models [6,7]. In
recent years, generative models based on deep neural
networks have obtained impressive results for images
[8,9]. As exciting as it is, the theoretical understanding
of all these new methods remains a completely open
problem as those techniques are too complex to be
analyzed. The major questions are the following: How
faithful is their representation of the probability distribu-
tion? Why (and whether) can they be trained even in the
presence of long-range correlations? Why can they produce
new typical configurations very fast even in the presence of
long-range correlations, e.g., at critical points?

Our work addresses these issues from a complementary
angle compared to direct studies of standard ML algo-
rithms. We introduce the wavelet-condition renormalization
group (WCRG). As we explain below, this method is
different in scope from standard RG, but it relies on the
same key premise. For this method, and focusing on
configurations (samples) that come from physics, we
answer all previous questions by providing both a theo-
retical explanation and numerical confirmations. Our aim is
to obtain a generative model that can be fully analyzed and
that provides an estimation of the effective energy function.
Our method presents some of the features that make neural-
network-based generative models very useful, but it is the
advantage of being interpretable. Hence, it can provide
important new physical insights for physics, in particular,
for nonequilibrium systems. As we see, the trade-off
(which arguably is an advantage, too) is that it requires
physical insights.

The problem illustrated in Fig. 1 can be described in a
nutshell as follows. One has a dataset of microscopic many-
body configurations represented as spatial fields ¢, pro-
vided by either multiple experimental observations or
numerical simulations. One can think of ¢, as the mag-
netization field in a model of ferromagnetism, e.g., the ot
model [10], or as a density field in a fluid, or in a dark-
matter distribution in cosmology. Thus, ¢, can be either in
thermal equilibrium (e.g., the ¢* model) or inherently
nonequilibrium (e.g., dark matter). The underlying prob-
ability distribution py(¢y) = e~F0(%) /Z, is unknown a pri-
ori and must be estimated from the dataset to generate new

FIG. 1. A major challenge in physics and machine learning is to
estimate the probability distribution p, of a field ¢, and its
microscopic energy function Ej, from examples of fields or
configurations. New fields can then be generated by sampling this
probability distribution. The WCRG is a fast multiscale approach
which completely eliminates “critical slowing-down” phenomena
near phase transitions.

samples efficiently and determine the energy function
Eo(py) [we set = (kzgT)~' =1; i.e., we measure the
energy in units of kzT]. For nonequilibrium systems,
Ey(¢o) can be considered as an effective Hamiltonian that
allows us to represent the high-dimensional (and nontrivial)
probability distribution in a compact way. The tasks
mentioned above are usually very difficult for two reasons.
First, general high-dimensional distributions can be esti-
mated only if the number of examples in the dataset grows
exponentially with the system size [11]—an impossible
requirement in practice. This curse of dimensionality can be
avoided with prior information, which specifies suitable
families of models for the probability distribution. Second,
for systems that have fluctuations on a wide range of length
scales, particularly near critical points, the estimation of
model parameters is usually badly conditioned. It requires a
large number of iterations, which grows as a power law of
the system size and leads to large estimation errors.
Furthermore, estimating the parameters and generating
new samples requires performing Monte Carlo simulations
[12]. Close to or at a critical point, Monte Carlo compu-
tations are hampered by a critical slowing-down [13,14],
which produces a strong divergence of the mixing or
decorrelation timescales when the system size increases.

By addressing these two problems, we develop a new
and interdisciplinary approach to estimating an energy
function and generating new samples. It combines and
leverages ideas from the theory of RG, on the one hand, and
from the wavelet theories, on the other hand, to define new
energy-based models of probability distributions, which
ensure that the estimation is well conditioned.

The WCRG proceeds as standard RG by building
effective theories iteratively across many different scales
by separating “fast, short-wavelength degrees of freedom”
from “slow, long-wavelength degrees of freedom” at each
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scale. The key concept from the RG theoretical framework
[15] that is also central to our work is the property of the
fast, short-wavelength degrees of freedom of being non-
critical at each scale. From the mathematical point of view,
this means that their probability distribution conditioned on
the configuration at the coarser scale is nonsingular. Hence,
it can be approximated and estimated efficiently. We use
orthogonal wavelet theory to decompose a field in its
coarser and fast components. Representing the fast degrees
of freedom by wavelet fields provides localized represen-
tations of large classes of energy functions, which leads to
an efficient calculation of marginal integrations. From the
conditional probability at each scale and going progres-
sively from the coarsest to the finest scales, one can obtain a
novel multiscale representation of the probability distribu-
tion of ¢,. The WCRG is based on this RG representation
and estimates the probability distribution pg(¢,) by the
product of conditional probability models.

There are a few but essential differences from the
classical RG approach. The microscopic energy function
(or Hamiltonian) is not known from the start. Providing an
accurate estimate of that microscopic energy function is in
fact one of the main objectives of our approach. Classical
RG starts from an accurate knowledge of the microscopic
energy and progressively loses microscopic information by
coarse-graining. Instead, the WCRG progressively gains
new information at each scale from data by estimating the
probability distribution of the fast degrees of freedom. Our
iteration starts from the longest scale at which the original
data are obtained or available and progresses inversely from
coarse to fine until reaching to the shortest (microscopic)
scale of interest. Technically, our iterative procedure does
not take the form of typical RG flow equations because the
central entity in the iteration is the conditional probability
distribution.

The WCRG is based on models of conditional proba-
bilities across scales by introducing energy functions
associated with interactions across scales that we call
“scale interactions.” This leads to models with higher
expressibility than the ones based on estimating the energy
function directly at the microscopic scale. Remarkably, our
approach also guarantees that the method remains well
conditioned even at phase transitions. Thanks to this
property, it requires only a relatively small number of
data, and it can generate new samples very fast. For
instance, it allows generating new samples on times of
order one, even at the critical point of statistical physics
models. Our numerical applications to two-dimensional
Gaussian and ¢@*-field theories confirm that, indeed, the
WCRG circumvents the problem of critical slowing-
down completely. Its successful application to weak-
gravitational-lensing fields in cosmology shows that the
WCRG is a powerful approach to model complex many-
body interactions. This is a highly nontrivial case study
because the system is inherently out of equilibrium and is

characterized by long-range interactions due to gravity (see
Sec. VI.C).

The use of RG techniques and ideas in data sciences and
machine learning has attracted a lot of attention over the
years. All of these interesting applications have elements in
common with our approach but also differ in aims and
content. In particular, RG has been used recently as an
inspiring analogy to study image generative models with
deep neural networks in Refs. [16-19]. In Ref. [20], a
conditional probability representation associated with
wavelet transform similar to ours was studied within
the normalizing flow framework with neural networks.
However, the complexity of these architectures does not yet
allow any mathematical analysis of these models, and thus
do not provide explicit representations of the energy.
Several works [21,22] also demonstrated close relations
between deep convolutional network representations and
iterated wavelet transforms with nonlinearities. They cap-
ture scale interactions but without conditional probabilities.
As we discuss in the Conclusion, the WCRG provides a
framework to analyze convolutional neural networks by
modeling scale interactions through conditional probabil-
ities, contrary to simpler methods that are based on energy
models at a given scale.

The problem we address has also important connections
with the topic of sampling in scientific computing. In this
research field, many important techniques were developed
over the years [multiscale Markov chain Monte Carlo
(MCMC), multigrid, cluster methods, and umbrella sam-
pling]. Recently, there has also been a surge of activity in
relation to machine learning; see, e.g., Refs. [23,24]. Note,
however, that the setting is completely different from ours.
In this case, the energy function is known from the start,
one has no data available, and the aim is to develop a fast
method to obtain samples from the known probability
distribution associated with the energy function at hand.
Our case is quite the opposite: We have data at our disposal
but no knowledge of the energy function. The WCRG
approximate representation of the probability distribution
allows for fast sampling, but it needs to be estimated. Data
are the key ingredients that make this possible.

We close this introduction by suggesting potential
applications of the WCRG. We envision two main direc-
tions. First, it can be used for nonequilibrium systems, e.g.,
for active and driven out-of-equilibrium systems, to esti-
mate the relevant interactions between degrees of freedom
at each scale and assessing the out-of-equilibrium nature of
the problem at hand (for instance, testing if very long-range
effective interactions are generated). Second, it can be used
to perform directly RG from data, and hence estimating the
critical theory and critical exponents, thus providing an
alternative to standard RG methods. Its main advantage is
to be data driven and versatile in the choice of the energy
function, and hence directly applicable to challenging
nonequilibrium problems.
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A. A brief introduction to the WCRG

One of the key elements of RG is coarse-graining. From
an input field ¢, in d spatial dimensions, which may be an
image (d = 2), one computes coarse-grained versions ¢; at
each length scale 2/a, where a is the unit of length that is
set to 1. The coarse-grained fields ¢; are illustrated in
Fig. 2, together with wavelet fields @; corresponding to fast
degrees of freedom discussed below. The probability
distribution p;(¢g;) is defined at each scale 2/ by an energy
function E;(¢;). This energy is parametrized by a vector of
coupling parameters 6;, with E;(¢;) = 67U;(¢p;), where
U; is the basis functions (or “operators” in the quantum-
field-theory jargon). RG procedures specify the evolution
of p;(¢;) across scales through the RG flow of coupling
parameters 6;. In an RG step, one computes p;(¢;) and 6;
from the fmer scale p;_i(¢;_;) and 6,_;, by integrating
over the fast degrees of freedom of ¢; ; which are
eliminated in ¢;. These degrees of freedom represent the
short scale or highest wave-vector variations of ¢;_;. The
theories describing large-scale critical fluctuations at a
phase transition correspond to a nontrivial fixed point of

>
>

Coarse-grained fields Waelet fickds

Length scale 27
|
|

FIG. 2. Coarse-grained fields ¢; and wavelet fields @; at length
scales 2/ are iteratively computed from a field ¢;_, at a finer scale
2/-1 1t is implemented with orthogonal convolutional and
subsampling operators G and G. A wavelet field &; ; Tepresents
the “fast degrees of freedom” of ¢;_; which have disappeared in
@;. It contains three subfields in dimension d = 2 corresponding
to spatial fluctuations along different orientations. The inverse
wavelet transform reconstructs ¢;_; from ¢; and @; with the
adjoint operators G’ and G”. Near the phase transition, a coarse-
grained field ¢; has long-range spatial correlations, whereas ¢;
has short-range correlations.

the RG transformation. To compute this fixed point for the
@* model, Wilson originally represented the fast degrees of
freedom over a basis of functions that are well localized in
the Fourier basis [25]. He did so by defining what was later
called a Shannon wavelet basis [25]. A considerable body
of work has then been devoted to RG calculations in
Fourier bases [15], and also in wavelet bases [21,26,27],
particularly with perturbative methods in dimension
d = dy — e (where dy is the upper critical dimension,
which is equal to 4 for the ¢* model).

The wavelet-conditional renormalization group does not
focus on the probability distribution p;(¢;), or on E;(¢;) at
a given scale, or on ;. It is instead based on a different
representation of microscopic probability distributions. It
relies on conditional probabilities, which specify inter-
actions across scales. These are functions of the wavelet
fields @; representing the fast degrees of freedom or high-
wave-number fluctuations. The importance of scale inter-
actions is well known for multiscale physics phenomena
such as fluid turbulence, producing energy cascades across
scales [28-30]. Wavelet transform has been used to analyze
these interactions [31] and to introduce specific parametric
models such as multifractal random walks [32,33]. Low-
dimensional wavelet scale interaction models have been
shown to be sufficient to synthesize complex turbulent
fluids and mass density fields in astrophysics [34-36].
However, such approaches do not provide a general
numerical and theoretical framework that enables us to
recover the energy functions of probability distributions.
Energy functions are a very useful output of our method as,
besides their fundamental character, they provide a com-
pact and interpretable representation of high-dimensional
probability distributions.

Within the WCRG, the connection between scales is
studied as follows: At each scale 2/, a wavelet transform
decomposes a field ¢;_; into wavelet fields @;, which
capture its high-wave-vector variations, and a coarse-
grained field ¢; [37]. In spatial dimension d =2, ¢; has
three wavelet subfields corresponding to different spatial
orientations that we call channels. This is shown in Fig. 2
for the two-dimensional ¢*-field theory just above the
critical point. In spatial dimension d there are 29 — 1
channels. The WCRG focuses on the conditional proba-
bility p;(®;|¢;) of each wavelet field p; given the coarse-
grained field ¢;. The microscopic probability pg (o) is
factorized as a product of these conditional probabilities up
to a maximum scale which (without loss of generality) is
L=2":

J
Po(90) = ap,(o; H (@),

where «a is a Jacobian constant. Each conditional proba-
bility p;(®;|¢;) is represented by a Gibbs energy function
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_E j _which specifies scale interactions. The energy E =
070,
operators U ; weighted by conditional coupling parameters
6. The microscopic probability po(gy) is specified by the
WCRG coupling parameters of all p; and of the maximum

scale p;:

is represented as a linear combination of local

{0, 91}131'51-

Using this representation, the WCRG estimates from data
the probability distribution, the energy function, and
samples new configurations. Note that we introduce the
overbar notation to denote quantities which are across
scales, e.g., conditional probabilities, energies, and cou-
pling associated with scale interactions. The coupling
parameters {6;,6,},;c; are obtained from the training
dataset by maximum-likelihood estimation, which is equiv-
alent to minimize a Kullback-Leibler divergence. They are
used to generate new samples ¢, of the microscopic field
distribution p((¢g). The theories describing large-scale
fluctuations at critical points correspond to fixed points
0 ;= @‘,-_1. The WCRG parametrization remains stable even
at phase transitions because it relies on a parametrization é,-
of interaction energies E ; instead of a parametrization of
E;. Indeed, although each ¢; has long-range correlations
and a singular covariance matrix at phase transitions,
wavelet fields ?; still have short-range correlations, as
proved by the theorem in Sec. IV. This property is
illustrated by the decomposition of ¢* field near phase
transition in Fig. 2. As a result, the WCRG coupling
parameters do not suffer from any critical slowing-down,
for Gaussian fields, ¢* models, and simulated cosmological
data, as we show numerically.

To recover the microscopic energy function Ey(gg), we
regress a parametrized model of the free energy F;(¢;)
associated with each interaction energy E ;- It is the normali-
zation factor of the conditional probability p;(@;|¢;). The
microscopic energy is then obtained as a sum of all
interaction energies parametrized by 9]-, together with their
free energies. As opposed to microscopic energies E, with
local potentials, such multiscale models can also capture
long-range interactions.

The WCRG sampling proceeds from coarse to fine scales
by iteratively sampling p;(@;|¢;). It computes a new field
®; given @; from which we recover the finer scale field ¢;_,
with an inverse wavelet transform. It does not require us to
compute the free energies F;, which are normalization
factors. As opposed to inverse RG algorithms [38,39],
which also proceed from coarse to fine scales, it does not
sample directly the distributions p; to recover each @;.
Indeed, sampling fast degrees of freedom @; avoids critical
slowing-down phenomena, because they have a short-range
correlation.

In summary, the WCRG estimates and samples condi-
tional probability distributions of wavelet fields connecting
fluctuations across scales. It relies on the mathematics and
physics of RG, which focuses on interactions across scales
and fast degrees of freedom [15]. The manuscript is
organized as follows. Section II reviews the properties of
wavelet transforms and their connection with the RG
formalism. Section III introduces the wavelet-conditional
renormalization-group representation of probabilities and
energy functions. Section I'V presents maximum-likelihood
estimations of the WCRG coupling parameters. It shows
that the resulting algorithms are well conditioned and have
a fast convergence that is not affected by critical slowing-
down. Section V relates the WCRG coupling parameters to
microscopic energy functions through free-energy calcu-
lations, which are performed with thermodynamic integra-
tions. Section VI gives numerical applications of the
WCRG to two-dimensional systems, Gaussian theory,
¢"*-field theory, and weak-lensing cosmological data, dem-
onstrating the fast convergence of estimation and sampling
algorithms even at critical points. Section VII provides a
conclusion with a discussion and perspectives.

II. RENORMALIZATION GROUP
AND WAVELETS

The pioneering works on RG by Kadanoff et al. [40],
Wilson [25], Wilson and Fisher [41], and others [15,42]
rely on scale separation. They characterize the evolution of
the energy function from fine to coarse scales by pro-
gressively integrating out fast degrees of freedom. Critical
phenomena such as phase transitions are identified as fixed
points of the renormalization group. In the following, we
set up the formalism needed to perform the renormaliza-
tion-group transformation over orthogonal wavelet coor-
dinates. This provides the basic tools to then introduce a
conditional renormalization based on conditional proba-
bilities across scales.

A. RG in a wavelet orthogonal basis

We focus on d-dimensional scalar field theories, but our
framework can be straightforwardly extended to vector
fields. We consider theories that are translational invariant.
In order to provide a concrete example of our theory, we
focus on the ¢*-field theory, which is a central model in the
theory of second-order phase transitions. Henceforth, we
denote by ¢, a many-body configuration field. The site index
i in ¢y (i) belongs to a d-dimensional lattice of lattice spacing
a = 1, linear size L, and hence with L? sites, e.g., d = 1
(linear), d = 2 (square), or d = 3 (cube). The probability
distribution of ¢, is given by the Boltzmann law
po(@o) = Zy'e @) where E, is the (configurational)
energy function of the field ¢,. We set f = (kzT)~' = 1;
i.e., we measure the energy in units of k3 7'. The notation (-) »
is used to denote statistical averages over the probability
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distribution p. Throughout the paper, we consider the
microscopic scalar field ¢, which is normalized such that
{9o(i)),, = 0and (@ (i)|*) ,, = 1. Note also that we do not
use the field theory terminology “connected correlation
function” but the more standard one in probability theory,
“covariance.”

1. Coarse-graining and renormalization

Let us denote ¢; the coarse-grained version of ¢, at a
length scale 2/ defined over a coarser grid (lattice) with
intervals 2/ and hence (L27/) sites. In this coarse-graining
procedure, the lattice spacing is each time reduced by 2.
The coarser field ¢; is iteratively computed from ¢;_; by
applying a coarse-graining operator, which acts as a scaling
filter G eliminating high-wave-vector contributions and
subsamples the field [43]:

Zgoj 1

The site index i on the left-hand side runs on the coarser
lattice, whereas i’ on the finer one. More detailed properties
of G, together with a brief introduction to wavelet theory,
are described in Appendix A. In order to guarantee that the
fluctuations of ¢ j remain orderf one, a standard RG
procedure normalizes G with a factor y; which guarantees

that (lg;(i)]*),, = (@,(i));, = I

G(2i-1). (1)

G(p/ 1

pj= Y}lG%—l-

A different normalization condition will be chosen for the
WCRG later. The Kadanoff block-averaging scheme is a
particular example of the coarse-graining procedure in
Eq. (1). In the d =1 case, it sums pairs of consecutive
samples:

®i—1(2) + @ (2i-1)
\/§7j

In the renormalization-group procedure, one computes
scale by scale the energy function E; of the marginal
probability distribution restricted to the coarse-grained field
@j, as given by

(Pj(i) = (2)

— e~ Eile)

Z;

pj((pj) = with Ej(O) =0, (3)

where Z; = [ e Ei#)dgp;. RG proceeds from fine (micro-
scopic) to coarse (macroscopic) scales by calculating E;
from E;_;. The marginal probability distribution p;(¢;) is
computed by integrating p;_;(¢;_;) along the degrees of
freedom of ¢;_; that are not in ¢; [15]. These fast degrees
of freedom correspond to high-wave-vector fluctuations,

which can be computed by using Fourier or wavelet bases.
Wavelet bases provide localized representations of large
classes of energy functions, which leads to an efficient
calculation of marginal integrations, as we discuss below.

2. Fast wavelet transform

We now introduce the orthogonal decomposition, which
allows us to represent a microscopic field in terms of its
coarse-grained version and fast degrees-of-freedom con-
tributions. This is done with the fast wavelet transform
algorithm introduced in Ref. [43]. It computes an orthogo-
nal representation with a cascade of filtering and subsam-
pling illustrated in Fig. 2, which separates the field
fluctuations at different scales. For completeness we recall
below and in the Appendix A some properties of wavelet
theory.

The degrees of freedom of ¢;_; that are not in ¢; are
encoded in orthogonal wavelet field ;. The representation
(@, ;) is an orthogonal change of basis calculated from
@j-1- The coarse-grained field ¢; is calculated in Eq. (1)
with a low-pass scaling filter G and a subsampling. In
spatial dimension d, the wavelet field ¢; has 24 -1
subfields (or channels) computed with a convolution and
subsampling operator G. By including the normalization
factor y;, we get

@ =717'Gp;.y and @; =7;'Go;y. (4)

In spatial dimension d, we define a separable low-wave-
number filter G in Eq. (A7), which computes a coarse-
grained field ¢;(i) which has (L27/)4 sites. Instead, the
wavelet filter G computes 2 — 1 wavelet subfields @;(m, i)
indexed by 1 < m < 27 — 1, with separable high-pass filters
G,, specified in Eq. (A8):

m l) —VIIZ(PJ 1

For each m, ¢;(m, i) carries the fast fluctuations of ¢;_,
along a particular spatial orientation. Cascading Eq. (4) for
1 < j < J computes the decomposition of the microscopic
field ¢, into its orthogonal wavelet representation over J
scales denoted as

m(20=1).

{(PJ’@j}lgng' (5)

In d =1, there is a single wavelet field in @;. The
Kadanoff scheme is computed with a block-averaging filter
G in Eq. (2). The corresponding wavelet filter G in Eq. (A4)
computes the wavelet field with normalized increments:

€0j—1(2i— 1) - (= 1(21)
V2,

@(i) = (6)
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If d =2, then there are three channels, as illustrated in
Fig. 2.
The wavelet orthonormal filters G and G define a unitary
transformation, which satisfies
GG=GG=0 and G'G+G'G=1d, (7)
where Id is the identity. Appendix A | gives in Egs. (Al)
and (A3) a condition on the Fourier transform on G and on
G to build such filters. The filtering equations in Eq. (4)
can be inverted with the adjoint operators G' and G” as
given by

i1 =G o+ YjGT@j- (8)

The adjoint G” enlarges the field size ¢ ; by inserting a zero
between coefficients and filters the output as

(GTop))(i) = Z(/’j(i/)G(zi/ — ).

The adjoint G” performs the same operations over the
24 — 1 channels and adds them,

241
(G"9;)(i) = Z Z @;j(m.i")G,, (21 —i).

The fast inverse wavelet transform [43] reconstructs ¢
from its wavelet representation in Eq. (5) by progressively
recovering @;_; from ¢; and @; with Eq. (8), for j going
from J to 1.

The fast wavelet transform computes each @; from ¢, by
applying j — 1 times the convolutional operator G and then
applying G. This cascade of convolutional operators
defines a single convolutional operator with an equivalent
filter which is called a wavelet. When j increases, the
wavelet theory [44,45] reviewed in Appendix A 2 proves
that wavelet filters converges to wavelet functions of a
continuous spatial variable x€R?. Wavelet functions
belong to the space L2(R?) of square-integrable functions,
J|f(x)]*dx < co. Dilating and translating these 29 — 1
wavelet functions defines a wavelet orthonormal basis of
L2(R9). Wavelet fields ¢; can be rewritten in Eq. (A14) as
decomposition coefficients in this wavelet orthonormal
basis. The wavelet basis plays an important role in under-
standing the properties of wavelet fields, depending upon
the representation of operators involved in energy func-
tions. Actually, Wilson, in his seminal paper [25], computes
such a wavelet decomposition by using a specific wavelet
that is now called the Shannon wavelet. The Kadanoff RG
scheme instead can be interpreted as a decomposition in a
Haar wavelet basis. Figure 3 shows three representative
wavelets that we discuss in this paper, Haar [Figs. 3(a) and
3(b)], Shannon [Figs. 3(c) and 3(d)], and Daubechies

15 1.2

(a) Haar (b) Haar
1.0 1.0
0.5 0.8
E o0 X o6
e =
-0.5 0.4
-1.0 0.2
-15 0.0 |
—4 -2 0 2 4 -40 -20 0 20 40
x k
1.5 1.2
(c) Shannon (d) Shannon
1.0 1.0 - ’,
0.5 0.8
2 o0 =06

-0.5 0.4

-1.0 0.2

-5 Y 1) 3 y 00— o 20 40

xr k

(e) Daubechies

(f) Daubechies

2 4 -40 -20 0 20 40
k

zo

FIG. 3. The left graphs show one-dimensional wavelets y/(x) in
real space, and the right graphs give their Fourier-transform
amplitude |y (k)|. (a,)(b) Haar wavelet. (c),(d): Shannon wavelet.
(e),(f): Daubechies wavelet with ¢ = 4 vanishing moments [46].

[Figs. 3(e) and 3(f)]. We see that the results are improved
by using wavelets having a better localization both in the
spatial and Fourier domains, as a Daubechies wavelet [46]
in Figs. 3(e) and 3(f).

For later convenience, we define a projection operator
P = G"G and its complement P = GG, where P + P =
Id because of Eq. (7). P and P play a role in projecting a
field ¢;_, onto the low- and high-wave-vector components,
respectively,

Pgj1 =7,G"p; and Po; =7,G"§;.

3. Wavelet renormalization
The standard RG scheme begins from a microscopic
energy function Ej, and iteratively computes E; from
E;_;. To compute p;(¢;) = Z;'e 5'%) from p;_i (p;_1) =
Z]T_lle‘E/*I(’/’f*I), one can represent ¢;_; as orthogonal
wavelet coordinates (¢;,®;) by Eq. (8), and perform a
marginal integration along the wavelet field ¢; as
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Ei(p) = —log [ eFonidg ve(9)

where ¢; is a constant chosen such that E;(0) = 0, thus,

c;=log [ e~Ei1(Pi)dp;. Equation (9) plays the same
role as a momentum shell integration in the standard RG, in
which a similar marginal integration is calculated in a
Fourier basis.

Large classes of energy functions involve differential
operators such as Laplacians and gradients, which are
diagonal in a Fourier basis. However, they often also
involve local (pointwise) nonlinear operators as, e.g., in
the ¢* model, whose representations are delocalized on a
Fourier basis. For appropriate wavelets, which are well
localized in both real-space and Fourier domains, energy
functions E;_; (¢;_,) depend upon local interactions of the
wavelet fields @, for £ > j. This is very useful both for
numerical and analytical approaches, as it provides a
compact short-range representation of the theory both in
real and Fourier space. In his original calculation, Wilson
used such “diagonal” approximations in a Shannon wavelet
basis to analyze the properties of the ¢* model at the phase
transition [25]. Indeed, if E;_; can be approximated by a
sum over sites i of terms that are functions of the local value
of the wavelet field ¢;(m,i), then the multidimensional
marginal integral in Eq. (9) becomes a product of one-
dimensional integrals, and the RG flow can be easily
analyzed. Yet, the Shannon wavelet is not well adapted
to the * energy function because it has a slow spatial decay
in real space, as shown in Fig. 3(c).

We stress that there are several studies of RG in wavelet
bases [26,27], but they remain on a formal level or are
focused on d = d;; — € perturbation theory. Our interest is
instead developing a nonperturbative method both for
forward RG and estimation by the WCRG.

4. The @* model

This section introduces a discrete lattice version of the
@*-field theory as a specific model, which provides a
concrete example of energy functions. The ¢*-field theory
played a central role in the theory of critical phenomena
[10], because it captures the essential properties of standard
second-order phase transitions. Its microscopic energy on a
lattice reads

Eoloo) = =5 a00 + Y (040 - (1428)63(0). (10

where A is a discrete Laplacian,

—phApy =Y > %((ﬂo(i)—(ﬂo(i'))zv (11)

i eN()

where N (i) is a set of the nearest-neighbor sites of 7. It
contains 2d neighbor sites in the d-dimensional cubic
lattice. The first term in Eq. (10) disfavors spatial fluctua-
tions. The second term is an even local potential with a
double-well shape that favors two opposite values of the
field (corresponding to the two wells). The parameter /3
specifies the relative magnitude between the two terms. For
p < 1, fluctuations are entropically favored, and hence, the
system is in a disordered phase. For f# > 1, the two terms
compete and lead to a ferromagnetic phase. The ¢* model
in Eq. (10) undergoes a phase transition in the thermody-
namics limit for # = . ~ 0.68 [47]. For > f. the system
is in the ordered broken-symmetry phase, whereas for
p < p. the system is in a disordered phase.

When expressed on a Fourier basis, the Laplacian
operator in the energy function in Eq. (10) becomes
diagonal, but the ¢ (i) local potential term instead pro-
duces global interactions between all wave vectors in the
Fourier domain. On the other hand, appropriate wavelet
bases (see below) provide nearly diagonal representations
for the Laplacian operators [45] and the gog(i) term because
wavelets are well localized in both spatial and Fourier
domains. The nearly diagonal representations by such
wavelet bases are proven in Appendix A 3.

Kadanoff and Wilson’s RG approaches can be inter-
preted as different choices of wavelet basis to represent
high-wave-number fluctuations. The Shannon wavelet
shown in Figs. 3(c) and 3(d) is well localized in the
Fourier domain, but it has a slow spatial decay in real space.
It thus does not provide good local approximations of
pointwise polynomial nonlinearities in the @* model.
Instead, Kadanoff block averaging [40] is equivalent to
decomposition in a wavelet basis generated by a Haar
wavelet presented in Figs. 3(a) and 3(b). It has a narrow
compact support in real space, but it is discontinuous and
therefore extended in the Fourier space. As a consequence,
the Haar wavelet is unable to nearly diagonalize the
Laplacian term. The most important consequence is that
the Kadanoff block-averaging RG is not able to describe the
Gaussian fixed point (associated with pure Laplacian
energy), and hence, it is incorrect in high spatial dimen-
sions and unable to capture the existence of the upper
critical dimension. Appendix A 2 introduces Daubechies
wavelets [46] which have a compact support wider than the
Haar wavelet but are well localized in Fourier space. They
provide nearly diagonalized differential operators such as a
Laplacian as well as pointwise nonlinearities of local
potentials. Figures 3(e) and 3(f) show the Daubechies
wavelet used in our numerical calculations.

Besides RG, turbulence is another physical case in
which a multiscale representation using regular intervals
in logarithmic space (in Fourier) plays a very important
role. Shell models of turbulence, which allows to study
turbulent cascades, are based on this kind of representa-
tion [48,49].
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B. Energy Ansatz

The RG coarse-graining in Eq. (9) cannot be performed
exactly in general. A strategy developed both for real space
[40] and nonperturbative RG [15] is to approximate each E;
as a linear combination of a few terms, each one determined
by coupling parameters and basis functions (or operators)
of the field. We proceed in a similar way. In the following,
we review the energy Ansarz that we use as approximation
models. We write such an Ansatz in terms of coupling
parameters and basis functions, so that one can express the
wavelet RG flow equation as an evolution of the coupling
parameters.

1. Local potentials

The energy Anmsatz, i.e., the approximate form of the
energy function for E;(p;), is defined at each scale 2/ as the
sum of bilinear terms characterized by a two-point sym-
metric positive coupling matrix K; and a nonlinear local
potential composed of a vector of basis functions V and the
associated coupling parameters C;:

1
—%TK]‘%' + C]TVWj)v (12)

Ej(%‘) = 7

where V(g) is given by

Vig) = (Vi(e), Va(@), -,

which do not depend on j.

Local potentials are defined as the sum of independent
contributions from local field values. For each n
(1 £ n <s), they are given by

/) = Zvn((pj(i))’ (14)

Vi(9). (13)

where v,, is, by definition, the local potential for each site i,
which is described below. Thus, the nonlinear potential in

Eq. (12) is written by
ZZ j.n n(¢/

= Z inVn (pj
= ZC v(;(i) (15)

The microscopic energy E, of the ¢* model in Eq. (10)
has such a local potential, and thus it can be written as the
form in Eq. (12). The energy Ansatz for the ¢* model
assumes that the expression in Eq. (12) holds at all scales.
Numerical applications in this paper are based on local
potentials, but this is not a necessary condition for the
theory and algorithms that are introduced.

We may further impose that two-point interactions have
a finite range; i.e., they are defined over neighborhoods
N (i) of constant size s’, which does not depend upon the
scale 2/:

oI Kipi = > Ki(i.i)g;j(De;(i).

i 7eN()

The energy Ansatz in Eq. (12) can be rewritten as an inner
product

Ei(p;) =07 U;(0;) (16)

between a vector of coupling parameters

0; = GK/’ C/) (17)

of dimension s + ', and the vector of the basis functions

Usley) = (0,0 Vig)). (18)

where @;¢7 = {@;(1)p;(i')}isen is a band matrix of
width s’. For stationary fields, K ;
kernel whose support size is s’, and the matrix goj(pJT
can be replaced by a translation-invariant vector
{2 i0i(De;(i -

I")}i—#j<yjo- This is the case for all
applications in this paper, but we keep the notation ¢ j(pJT
for simplicity. Having an energy Ansatz whose functional
form is the same at all scales allows one to capture the self-
similarity emerging at phase transitions. One expects that
the critical point is described by a scale-invariant theory;
i.e., the coupling vectors €; do not depend upon the scale 2/
for 1 < j <« J. Henceforth, we call “local” an Ansatz such
as Eq. (18), as it is the sum over the sites i of functions of
the field evaluated in sites at a finite bounded (local)
distance from i.

We now describe the local potential v,,. In the theory of
phase transitions, v, are usually chosen to be polynomials,
e.g., quadratic and quartic terms, because it leads to easier
analytic computations. However, the fast growth of high-
degree polynomials may lead to numerical instabilities. As a
consequence, in the following, we employ a piecewise linear
approximation of C7 v(¢;(i)). This is done by considering a
basis of the “hat” functions v, (x) = h(x — na), which are
uniform translations of a linear box spline %(x), which is a
linear combination of three linear rectifiers:

is a convolution

h(x) = max{x + a,0} — 2 max{x, 0} + max{x — a,0},

where 2a is the width of the hat function. Figure 4 shows an
example of the piecewise linear approximation described
above with a = 1 for a quadratic function by hat functions.

We guarantee that our approximation of the probability
distribution at scale 2/ is normalizable by imposing that the
symmetric matrix K is strictly positive. The other coupling
vector C; does not affect this convergence because
CJTV((p ;) has at best a linear growth at infinity by

041038-9



MARCHAND, OZAWA, BIROLI, and MALLAT

PHYS. REV. X 13, 041038 (2023)

10
---- Original curve
VAN —— Approximation /
\ —— Hat functions /

B ] \\ l’
= 6
c
[]
o 4] N /)
[ W\ /,

2.

0

-3 -2 -1 0 1 2 3

T

FIG. 4. A quadratic function (original curve, dashed) is
represented by a piecewise linear approximation (red) given
by a linear combination of hat functions (black).

construction due to the linear growth of the hat function.
Note that we do not aim to reproduce the true growth of the
potential at infinity, as this is completely determined by rare
events and out of the scope of the present work. The choice
of having a linear growth of CV(g;) is dictated by the
requirement of having a stable algorithm in which nor-
malization of the probability distribution is guaranteed by
construction. For stationary processes, K is a translation-
invariant Toeplitz matrix that is diagonalized in the Fourier
basis. Normalizability amounts to imposing that its spec-
trum is strictly positive.

2. RG flow equation

The coupling parameters of energy functions at succes-
sive scales are related by an equation derived from the
marginal integration in Eq. (9). Inserting the Amnsatz in
Eq. (16) for j and j — 1 in the RG equation (9) gives

—log/ V@) g, 4 ¢; 2 07U (g;). (19)

In practice, this is not an equality since the marginal
integration produces extra terms with respect to the energy
Ansatz in Eq. (16). In order to establish an approximate RG
treatment, one has to define a procedure to obtain 6; from
the left-hand side of Eq. (19). Several ways have been
introduced in the literature: truncations such as in the
Migdal-Kadanoff real-space RG [40] and projections as
done in nonperturbative RG [15]. Another possibility, that
we use later in Sec. V B, is to linearly regress 6; over ¢;.
This also allows us to estimate the approximation error
as well.

Note that approximating the RG equation does not lead
to instabilities (or divergencies) at the critical point,
contrary to the case of perturbation theory directly done
on the microscopic scale. The reason is that the integration
in Eq. (19) is performed over @; which impacts only the
interaction terms between high and low wave vectors and

within high wave vectors. See Ref. [15] for a general
discussion of the stability of the RG procedure.

In this paper, the usual (forward) RG is introduced only
as a preamble to the wavelet-conditional (inverse) RG.
Since we do not need to develop an approximate wavelet
RG scheme for our purposes, this issue will be analyzed in
a future publication.

III. WAVELET-CONDITIONAL RG

A wavelet-conditional RG estimates an efficient repre-
sentation of the probability distribution of the microscopic
field from several examples measured in experiments or
obtained by simulations. The aim of the WCRG is to obtain
from the data (i) a model of the probability distribution that
allows us to generate new samples, (ii) a generative method
that is fast even in the presence of long-range correlations,
e.g., at criticality, and (iii) an estimate of the underlying
microscopic energy function E,.

A. Conditional probability representation

The conditional-wavelet RG defines a representation of
the microscopic energy E, into multiscale interaction
energies, which represent interactions between high and
low wave vectors at each scale. We introduce this new
representation below.

Since (¢;,@;) is an orthogonal representation of ¢;_;,
computing p;_;(¢;-;) from p;(¢;) amounts to computing

Pi—i(@j—1) = a;pj(@;le;)p;(@;). (20)

(L2

where a; =v; is the Jacobian factor resulting from

the normalization in Eq. (8). This procedure can be iterated
to express p;(¢;) as a telescopic product:

= ps(9;) H api(Pilgr)- (21)
15741

pi(@;)
At the microscopic scale (j = 0), we can express po(@g) as

J
Pol(90) = ap;(e; H (@5l0))- (22)

Thus, the probability distribution p, can be represented in
terms of all the conditional probabilities p; and the coarsest
probability p;. Each conditional probability distribution
can be exactly rewritten as

Pi(@jlp;) = %exp(—EJ‘(%—]) + Fj((/’j)) (23)

where Ej and F ; are the energy associated with scale
interactions between ?; and ®js and the free energy,
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respectively. More formally, the scale interaction
energy E;(p;_;) is constructed such that E;(Pgp; ;) =

E j(@j-1)l;,—o = 0 for all @;_;. Then the free energy F;
in Eq. (23) is defined as

Fi(p;) = —log/ e‘E/(‘/’f-')d(ZJj + ¢}, (24)

where ¢’; is a constant chosen such that F;(0) = 0. Hence,

¢ =log [ eEi(P ¢i)djp;. The normalization constant in
Eq. (23) is defined as

Zj:/e_Ej(pq)/_')d@j.

It results from Eq. (20) that

(25)

Using the representation in Eq. (22) of p,, and cascading
by Eq. (25), one finds

Eg=E;+) (Ej—F)). (26)

These results show that instead of working with p directly,
one can work with its alternative representation in Eq. (22).
Sampling a field ¢, can thus be achieved by successive
sampling of @; using the multiscale interaction energy
functions,

(ELED} o (27)

Those energy functions specify completely E,, since each
free energy F; is calculated from E; with Eq. (24). In
conclusion, the multiscale interaction energy representation
in Eq. (27) offers an alternative way to sample and to define
the microscopic probability distribution p,. It is a way to
represent probability distributions that describe fluctuations
progressively from coarse to fine scales.

We show above how to obtain all the energy functions E;
from the multiscale interaction energies {E;, E; }, <j<j- One
can also obtain the inverse relationship that constructs the
scale interaction energies and free energies from E;. By
subtracting Eq. (25) from its counterpart evaluated for
@; = 0, one obtains

Ej(fﬂj—l) = Ej—l((ﬂj—l) - Ej—l(Pfﬂj—1)~ (28)

Evaluating Eq. (25) for ¢; = 0 gives

Fi(@;) = Ei(9;) — E;—1(Poj_y). (29)

In a standard RG, the fields ¢; are normalized with a
multiplicative factor y; in Eq. (4), so that at second-order
phase transitions, the probability distribution is scale
invariant under RG transformations. It results that
Pj(®;]e;) is also scale invariant. In order to find a fixed
point, one has to impose a normalization condition for the
fields. In our case, we choose the normalization condition
such that

241

> l@j(m Py, =1. (30)

m=1

This normalization condition has an important role even
when the system is not at a critical point. It leads to
coupling parameters associated with scale interaction
energies of order one at all scales.

B. Conditional couplings parameters

We now introduce a model (or Ansatz) for conditional
probabilities p;(@;]p;) with associated coupling parame-
ters. This is at the core of our parametric representation of
the conditional probabilities. In the next section, we show
that the estimation of such conditional coupling parameters
remains stable at phase transitions, as opposed to coupling
parameters 6; of p;(¢;). Moreover, we see that it defines
richer multiscale models of the microscopic probability
distribution py(¢,). This is crucial for systems with long-
range interactions such as cosmological fields.

1. Scale interactions

For a Gaussian field, the conditional probability
P;(@jlp;) contains a quadratic interaction between @;
and ¢;. However, this is not the case for non-Gaussian
processes, which often have nonlinear dependences across
scales. To simplify notations, we write ¢; = @, . Since ¢;
is specified by its orthogonal wavelet coefficients
{®¢} j<¢<s1> one finds

Pi(@ilo;) = pi(@i{@s}j<r<ii1)-

Several studies have shown that such conditional depend-
ences can indeed be represented with low-dimensional
models taking advantage of the sparsity of wavelet fields
[6]. For instance, wavelet scattering and phase harmonic
models are conditioned by the correlation of the amplitude
and the phase of ¢; relative to ¢, for j < < J + 1. They
have been shown to approximate well the distribution of
complex physical fields such as fluid, gas turbulence, and
cosmological matter density [35,50-52].

2. WCRG conditional coupling model

We define a conditional probability model by approxi-
mating the scale interaction energy E; of p; with a
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conditional coupling vector 9j and a vector of basis
functions U; such that

Ej(¢j—1) = _JTUj<§0j—1) and Uj<P§0j—1) =0. (31)
The last requirement means that U i((ﬂj—1)|(7,.:0 =0 It
_ ; J
guaranties that E;(Pg;_;) = 0 and hence that the model
taken for E ; contains the interactions between the wavelet
field @; and the coarse-grained field ¢;, and not the
interactions of ¢; with itself.

These models of scale interaction energies E ; define
models of the microscopic energy E through Eq. (26). Free
energies are defined by

F(p;) = —log / e U dg, e (32)

where ¢ is chosen such that F;(0) = 0. According to
Eq. (26), we get

J
Eq=0TU,+Y (070, - F)), (33)
j=1

which proves that the microscopic energy function is
entirely specified by the WCRG conditional coupling
model given by

{0,.0;}h<j<- (34)

These models are more general than the energy models
discussed in Sec. II B, because they may include different
local potentials at all scales, as we describe in more
detail below.

3. From local to multiscale potential models

Equation (28) implies that a model for the energy
functions £ j translates into a model for the scale interaction
energies with

Ui(pj-1) = Uiy (@j-1) = U (Ppj—y) (35)

and

T
91’/

— T
=070,

:I

(36)

The conditional coupling parameter ; i uniquely defined
as the orthogonal projection of the coupling vector 6;_; of
E;_; over the space generated by the interaction potential
vector Uj;.

Let us consider models of E; with a single local potential
at the scale 2/ defined by U;(p;) = (9,0].V(e))).
Appendix B 1 shows that the corresponding scale interaction
energy model obtained from Eq. (35) can be written as

J+1
07U (pj1) = 3 ; P1K; cpr
=J
+C] (V((/’j—l) - V(P€0j_1)), (37)

with a scale interaction potential

Uj= <{¢f¢jr}j§f$]+l7 Vipj-1) - V(P(pf‘l)) (38)

and the associated coupling vector

_ 1 _ _
ej - (E {Kjf}jsfsul’ Cj)- (39)

Each K ;¢ 1s aconvolution operator and hence depends upon
the wave-number overlap between wavelets at length scales
2/ and 27. It is large for # = j, small for # = j + 1, and
negligible beyond if the wavelet is sufficiently well localized
in the Fourier domain. We typically estimate only I_(jf for
¢ = jand j + 1, and we set to zero all matrices forZ > j 4 1
(see below).

Local scalar energy models E, have a single local
potential at the finest scale 2°, as in the @*-field theory.
Section VA shows that their expansion in Eq. (33) corre-
sponds to particular cases where local potential parameters
C; cancel with the free-energy terms F’; at all scales 2/ but
the finest and coarsest ones, thus leading indeed to a single
local potential defined on the microscopic scale. However,
general scale interaction models in Eq. (37) may have
arbitrary conditional coupling parameters C ; which do not
disappear. The resulting microscopic energy E then has a
different local potential at each scale, which can capture
long-range interactions.

C. Coarse to fine WCRG sampling

We now discuss the first important outcome of the
WCRG: sampling independent fields or configurations in
an efficient way, which fully circumvents the problem of
critical slowing-down for second-order phase transitions
and numerical instabilities associated with metastable
states. In order to sample by the WCRG, one has to first
determine the model of scale interaction energy functions
by estimating the associated conditional coupling param-
eters in Eq. (31) from the training dataset. This can be done
efficiently (again, in a way that is not affected by critical
slowing-down in the presence of long-range correlations)
and is explained in the next section. Once the value of the
coupling parameters is learned, the WCRG representation
of the probability distribution is known as explained above.

Sampling is then performed as follows. At a coarsest
scale 27, which is of the order of the system size L, we draw
a sample ¢; of the probability distribution whose energy is
E; =6%U,. This is done with an MCMC Metropolis
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sampling algorithm and is fast because ¢; is reduced to a
single point if 2/ = L or a few grid points if 2/ is of the
order of L. The corresponding distribution is simple: It is a
Gaussian in the disordered phase of second-order phase
transition (if L is large enough). We then iteratively draw ¢;
given ¢; by sampling with an MCMC Metropolis algorithm
using the conditional probability distribution in Eq. (23).
Note that we do not need to compute the free energy F j
because it is a normalization factor and thus not needed in
the MCMC algorithm. As we explain and show in the next
sections, this sampling is also fast. Indeed, the MCMC
Metropolis algorithm used here has a decorrelation time
that does not increase near phase transitions. It does not
suffer from any critical slowing-down. In consequence, at
scale 2/, the number of operations needed to draw a sample
of @; is just of the order of the number of degrees of
freedom, i.e., (2¢ — 1)(L27/)?. We update only the highest
wave numbers through local interactions. Since 2/¢ = L,
by summing up all scales from J to 1, we find that the
number of MC steps to sample a new configuration is
proportional to Y27 (24— 1)(L27/)4 = L4(1 = 2777) =
O(L?). The unit of time of an MC step is L. The resulting
characteristic MCMC time to sample using the WCRG is
therefore independent of the system size L, namely
ve ~ O(1), where 7yc is an MCMC decorrelation (or
mixing) timescale. This result is an important improvement
relative to the state of the art. Indeed, standard MCMC
simulations for models with long-range correlations, such
as Ising or ¢* models at criticality, require an MCMC time
Tme ~ L*, where z is a dynamic critical exponent (z ~ 2 in
two dimensions). More efficient cluster algorithms such as
the Swendsen-Wang algorithm and the Wolff algorithm
have an exponent z ~0.2-0.3 [53,54]. The WCRG sam-
pling is thus faster. It is done in “one shot” because the
number of operations needed to draw a sample is of the
order of the number of degrees of freedom—the best
possible in terms of computational complexity since to
draw L? variables, one needs to do at least O(LY)
operations. It can be applied to generic systems, including
nonequilibrium fields, as long as the conditional probability
represents the underlying distribution well, whereas cluster
algorithms are used only for simple systems such as the
Ising model and its variants.

We note that various Monte Carlo algorithms and
techniques have been developed in order to achieve faster
sampling, such as the Hamilton Monte Carlo [55], the
multigrid Monte Carlo [56], umbrella sampling [57], and
parallel tempering [58] to name but a few. The Hamilton
Monte Carlo [55] uses proposal updates along the direction
of the gradient of the Hamiltonian of the system instead of
random updates used in the standard MCMC. Although it
leads to collective movements, which might be more
efficient than the standard MCMC in some cases, the
algorithm still remains within the paradigm of physical

dynamics, and hence does not lead to drastic improvements
in terms of efficiency. The multigrid Monte Carlo method
[56], which is a stochastic version of the multigrid method
in the field of numerical analysis, uses proposal updates
that are performed in a scale-by-scale manner. They are not
renormalization-group algorithms because they do not use
the conditional probability distribution at each scale, but
directly project the microscopic energy on coarse-grained
fields [56]. Although the multigrid Monte Carlo can
completely eliminate the critical slowing-down for the
Gaussian model, it still produces a finite dynamic critical
exponent for non-Gaussian systems. For example, the
multigrid MC method for the ¢*-field model shows the
same exponent as the standard MC (z ~ 2). As we stress in
the Introduction, all these methods work in a very different
setting from ours: they start from a complete knowledge of
the energy function but with no data. In our case instead,
the dataset allows us to estimate the representation in terms
of conditional probability. This is instrumental to obtain
fast sampling.

IV. PRECONDITIONED ESTIMATION
OF CONDITIONAL COUPLINGS AND THE
ABSENCE OF CRITICAL SLOWING-DOWN

This section discusses the determination of the coupling
parameters from the training dataset. When inferring
coupling vectors from data using the maximum-likelihood
estimation, there are two crucial difficulties that can make
the method unstable and unfeasible. First, a dramatic
slowing-down of the gradient decent because we must
use an extremely small step size in order to avoid
instabilities. Second, a large increase of the decorrelation
(or mixing) time 7y;c of the MCMC, which must be
computed at each gradient decent step. These two issues
are actually facets of the same phenomenon originating
from critical slowing-down.

Let us focus on the case of second-order phase tran-
sitions (the ¢*-field theory in particular) to explain intui-
tively what the problem is, which in this context is related
to the phenomenon called critical slowing-down. Let us
consider the setting in which the estimation is performed
directly on the microscopic lattice, i.e., on the finest scale.
We call it a direct coupling estimation method. For
instance, imagine estimating an energy function formed
by two terms corresponding to a local potential and a
discrete Laplacian, respectively, as in Eq. (12).

Close to a critical point, a very tiny change in the
coupling parameters induces a dramatic change in the
spatial correlations of the fields. In consequence, in order
to estimate an energy function that correctly reproduces the
training data, the method has to be extremely precise, and
hence a very small integration step in the gradient descent is
required. At the critical point, the susceptibility to changes
in the coupling parameters diverges, and hence the required
step size vanishes, thus making the gradient descent
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unfeasible. Moreover, for each gradient-descent step lead-
ing to the maximum likelihood, one has to perform an
MCMC to evaluate the gradient term. If the estimated
probability distribution is a faithful representation of the
original one, as it should be if the method works, then the
MCMC has a very long decorrelation time 7yc close to the
second-order phase transition and diverges as a power law
of L at the critical point, 7y;c ~ O(L?) with z > 0.

In summary, the long-range correlations that emerge near
the second-order phase transition make a direct coupling
estimation of the probability distribution problematic. In
the following, we first show in detail why standard
algorithms to infer the coupling vectors suffer from a
critical slowing-down near the critical point. We then
present the theory which shows that the WCRG circum-
vents this problem and provides preconditioning of the
maximum-likelihood gradient estimation and the MCMC,
leading to much faster convergence, overcoming the critical
slowing-down completely.

A. Direct coupling estimation by gradient descent
We estimate a model Po, = ijle_all' Ui of p ; by maxi-
mizing the likelihood (log p9j> p, [591. This is equivalent to

minimizing the Kullback-Leibler (KL) divergence,

Dx1(pjllpe,) = /Pj(éﬂj)lngj(fﬂj)dfﬂj— (log pg,) .-

which measures the information loss when approximating
pj by py, The gradient of (log pg./_>pj or —Dxy(p,llpo,)
relative to 0 is

Ve,- (log P9j>p‘, = _vejDKL(ijij) = <Uj>p9j - <Uj>p-’

J

where U; is obtained from Eq. (18):

Use) = (00 17'V(@))), (40)

where y; is a normalization factor that is determined below.
The optimal 0%, which satisfies (U = (Uj)p,» 1s

J > Py*
J
searched by a gradient descent with a step size (or learning
rate) e,

(1) _ gl _
o) -0 =e((Wyp, ~wp,). @

where ¢ represents discrete time step. Since Dgy.(p;l|py,) is
a convex function of ;, as it can be easily checked, the
gradient descent is guaranteed to converge if ¢ is smaller
than the inverse of the largest eigenvalue of the Hessian of
Dy (pll pgj) relative to 6;. The first right-hand-side term
(U j>p9(,) of Eq. (41) is computed from the energy QJT U; of

j

Py with an MCMC Metropolis algorithm. The second

J
term (U;),
U;(@;) over the training dataset. Note that this coupling
estimation by maximum likelihood or minimization of the
KL divergence is equivalent to an application of the
maximum entropy principle [7,60].

The above gradient-descent algorithm is simple but it
converges extremely slowly for multiscale processes or
near critical points. The convergence rate of the gradient
descent depends upon the condition number x of the
Hessian Hy of Dy (p,l|pe,) relative to ;. If the eigen-

~is estimated with an empirical average of
J

values of H g, are between A,;, and 4., then the gradient

descent converges for e < A}, with arate k™' = 10/ Amax-
The convergence is thus very slow if « is large. A direct
calculation shows that H 0, is equal to the covariance of U ;,

H9j = COV(UJ)P()j = <U./'UJT>PHI- - <Uf>Pej<Uj>;aj' (42)

When Pe, becomes close to p;, this Hessian becomes close
to Cov(U;), . which must be well conditioned to have a

fast convergence rate. At phase transitions, ¢q(i) is a
stationary field whose correlation length & grows to the
system size L. As we explain below, this is the key reason
for the bad conditioning of the Hessian. We determine the
normalization factor y; in Eq. (40) such that Cov(u;'V) b,

is order one. To do so, we fix p; by

S

w2 =TeCov(V), = > {(v3), = (V)3 ). (43)

n=1

The covariance of U;(¢;) = [@;¢] . 4;'V(¢;)] is an oper-
ator formed by different connected correlation functions
(covariances) of ¢ jq)JT, V(¢;) and between them. Since the
probability distribution of ¢ is invariant by translation (it is
stationary), all covariances are also be invariant by trans-
lation, and hence diagonal in Fourier. In order to understand
intuitively why long-range correlations lead to very large
maximum eigenvalues for these covariances, let us focus
first on the covariance of the continuous field ¢(x) itself
(this covariance does not appear in the Hessian, but it plays
an essential role). The connection between continuous and
discrete lattice fields ¢(x) and ¢;(i) is summarized in
Appendix A. Approaching the phase transition, this covari-
ance displays a power-law behavior in real space as [61]

1

|x _ x/|d—2+n

((x)p(x")) = (p(x)) (p(x)) ~

for 1 < |x—x'| <&, where ¢ is the correlation length.
Accordingly, the eigenvalue (Fourier transform) of the
covariance associated with the field ¢, 4,(k) has a

power-law decay in Fourier space as |k|=>~) with
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2 —n > 0 for 2z/¢ < |k|. Approaching critical points, the
correlation length & grows to the order of the system size L.
This leads to a very large ratio between the minimum and
maximum eigenvalue for the covariance of the field.

The Hessian does not only contain the covariance of the
field but also more complicated covariances between @@’
and V(¢). However, the same reasoning holds. The long-
range correlation of the field ¢(x) also induces a power-law
decay for | < |x — x'| < & for these covariances, although
with possibly different critical exponents [61]. As in the
previous case, this behavior in real space leads to a power-
law decay in Fourier space for 27/& < |k|. The blowup at
small k produces a very large ratio Kk = Ayac/Amin and a
small A;l,, and thus a bad conditioning. In the Gaussian
case, the computation can be done explicitly since the
covariance of U; is composed only of fourth-order
moments that can be computed using Wick’s theorem.
This gives an explicit confirmation of the general argument
explained above.

The emergence of long-range correlations also leads to a
very large decorrelation time for the MCMC. This effect
called critical slowing-down [13,14] is a consequence of
spatial long-range correlations. An MCMC performing
local updates has to break long-range correlated patterns
in order to show decorrelation and hence reach ergodicity.
This is further explained in Sec. IV C.

In summary, long-range correlations in fields make the
direct coupling estimation by gradient descent perform very
poorly. In many cases, the requirement of a very small
learning rate and very large decorrelation time is so
stringent to make estimation practically unfeasible.

B. Conditional coupling estimation

The conditional coupling estimation for the WCRG is
performed scale by scale, unlike what is done when
estimating the full-probability distribution directly in the
previous section (direct coupling estimation). One starts
from the coarsest scale 2/ of the order of the system size L,
i.e., 2’ ~ L. In this case, estimating the coupling parameters
0, of an energy model E; = 67U is easy and fast since ¢,
is reduced to a single or few values. It amounts to
performing a low-dimensional estimation from a large
training dataset. We then estimate all conditional proba-
bilities p;(®;|¢;) needed to recover the probability dis-
tribution with Eq. (22).

For each given scale, the procedure is done as follows.
First of all, the renormalization factor y; in Eq. (4) is
adjusted according to Eq. (30). In order to do this,
the variances of wavelet fields are estimated from R
examples @;, calculated from R examples ¢, of ¢, in
the dataset. The parameter y; is adjusted to normalize these
variances. As we discuss in the next section, this renorm-
alization has an important role in making the method well
conditioned.

We wish to estimate the conditional probability model

1 _grg 7
P, (@jlpy) =5 (44
J Zj
of p;(@;lp;). Given p;(¢;), this conditional probability
model defines the following parametrized model of
Pj—l(q’j—l):

Péj(fﬂj—l) = l_’éj(§_0j|(/’j)l7j(€0j)- (45)

This model is optimized by maximizing the log-likelihood
(log p;,j) p.,» Which is equivalent to minimizing the
Kullback-Leibler divergence Dy (p;-i1]|pp,). It is calcu-
lated with the same gradient-descent algorithm as in the
previous section, but we now estimate only high-wave-
vector conditional coupling parameters 6 ;. As we show
later, this procedure eliminates the ill-conditioning due to
low wave vectors. The gradient of the log-likelihood or the
KL divergence relative to ; is

Va, (log pg) ., ==V, Dxi(pj-1llPs,)
= <Uj>l7§j - <Uj>[’j—|'

Therefore, the KL divergence gradient descent iteratively
computes this gradient with a step size e:

I ] ]
gl — g\ — e((UﬁPm - <U,.>pj_l). (46)

0.
J

The second expected value (U;) p,, is estimated with an

empirical average of U,(p;_;) over examples of ¢;_;

calculated from the training dataset. For 9]- = 9@, since

P, (@j1) = Pa, (@l¢;)p;(¢;), we compute samples ¢; , of
p; by coarse-graining the samples @, of p, in the dataset.
For each ¢, ,, a sample ¢;_; of Pa, is calculated from a

sample @; of ﬁgj(¢j|(pj.,), with

@i =7v,G 9, +7,G" ;. (47)

Samples @; are calculated with an MCMC Metropolis
algorithm, which performs random local updates of @;
according to the interaction energy 67U; of o, (@jlo;.,)-
We estimate (U ) m, by averaging U;(¢,_;) over the ¢;_ in
Eq. (47), obtained along all the MCMC chains which
update ¢; for all ¢; ,. As itis shown in Sec. VIE on the ot
model, the MCMC on wavelet fields has a fast mixing time
(decorrelation) which is not affected by critical slowing-
down near phase transitions.

To accelerate computations, one can successively esti-
mate the couplings from coarse to fine scales and initialize
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@y) for + =0 with the final gradient-descent value 95?;
estimated at the previous scale 2/,

The gradient descent in Eq. (46) converges if the gradient
step e is smaller than the inverse of the largest eigenvalues
of the Hessians Hj_ of Dk (p;-1]|pg,) relative to 6;. Since
p@/_((pj_l) is factorized by Eq. (45) with the exponential

conditional probability distribution in Eq. (44), one can
verify that

H; = <cOv(Uj) 1.,9/_> , (48)

Pj
where Cov(U) s, is the covariance of U;(¢;_;) relative to
pgj((pjkoj), given ¢; from p;(¢;). The rate of convergence
of the gradient descent in Eq. (41) is equal to the inverse of
the condition number of Hj. As we show below, this

Hessian is well conditioned even at phase transitions,
so the gradient descent does not suffer from critical
slowing-down.

C. Preconditioning by renormalization

The estimation of coupling parameters and sampling a
microscopic energy function suffer from a critical slowing-
down near phase transitions. This section shows that there
is no such critical slowing-down with the WCRG. The
central result is a theorem for the Gaussian model which
proves that although the covariance of the microscopic field
@ 1s badly conditioned at phase transitions, the covariance
of wavelet fields @; remain uniformly well conditioned at
all scales. We then argue, based on this result, that the
WCRG is well conditioned and does not suffer from critical
slowing-down. In the next section on numerical applica-
tions, we verify that this conclusion indeed holds numeri-
cally for the two-dimensional Gaussian and ¢*-field
theories and cosmological data. Constructing a fully
rigorous proof is an open mathematical challenge that
we leave for future works.

1. Preconditioned gradient descent

As previously explained, the rate of convergence of the
log-likelihood gradient descent is defined by the condition
number of the Hessian in Eq. (48). It computes the
covariance of U ; relative to ¢; conditioned by ¢; according
to Py, (@;l@;). This covariance is then averaged over ¢,
according to p;. The scale interaction potential U ; that we
use is given by

Uj= ({éﬁf@f}jsz’s/‘ﬂ’”fl(V(%'—l) - V(P(pf‘l)))’ (49)

where v; is an additional normalization factor. The quad-
ratic interactions are reduced to neighboring scales because

they are otherwise negligible, which amounts to replacing
J+1by j+1in Eq. (38).

The Hessian in Eq. (48) includes the cross-covariance of
the matrices g‘af(zjr for £ = j, j + 1, the cross-covariance of
g'o,ggbjr and V(¢;_,), and the covariance of V(¢;_; ). One can
verify that the subtraction of V(Pg;_,) does not modify the
Hessian. We fix the normalization constant v; similarly to
Eq. (43) by setting

yngrcOv(V((p,_l)—V(P(p,_l)>p . (50)

j=1

As already discussed in the direct coupling estimation case,
since the probability distribution is translation invariant, the
covariances in Eq. (48) are translation invariant and hence
diagonal in Fourier space. To understand why they do not
have power-law decay, we first focus on the covariance of
®j. We show that they are uniformly well conditioned at all
scales 2/, which plays a key role.

To understand the covariance properties of the wavelet
fields @;(m, i), we relate wavelet fields defined over the
discrete grid i € Z¢ to fields defined over continuous space
x€RY, decomposed over orthogonal wavelet bases.
Appendix A2 explains that @; are the decomposition
coefficients of a field ¢(x) for x€R? in a wavelet
orthonormal basis of the space of finite-energy functions
of x € R%. The microscopic field ¢, (i) on a discrete lattice
is a projection of ¢(x) at a length scale 1 (or j = 0), which
amounts to setting to zero all wavelet coefficients at scales
2/ < 1, and hence eliminate the highest wave numbers to
sample the field at unit intervals. The microscopic scale
2/ = 1 plays the role of a cutoff scale. In order to analyze
the wavelet field covariance at all scales 2/, we consider the
asymptotic properties of the continuous field ¢(x) over R¢
(see Appendix A 2). The following theorem shows that the
covariance of the wavelet field @; has a behavior very
different from the one of ¢. It states on a rigorous basis
what it means for the wavelet field ¢; to be a fast degree of
freedom.

Theorem IV.1 Let ¢(x) be stationary field over x € R?,
whose covariance has eigenvalues A,(k) = c|k|™ for

keR? If G(k) = V2 + O(|k|?) for g > /2, then there
exists A > 0 and B such that for all j € Z and k € [-z, x]¢,

A <7, (k) < B. (51)

This theorem proves that the eigenvalues (i.e., the
Fourier transform) /1(;,], of the govariance of ¢; vary by a
bounded factor at all scales 2/, which means that in real
space, the wavelet field has local fluctuations of order one
with short-range correlation. There are two essential
ingredients for the theorem to hold. The first one is to
use wavelets which are sufficiently well localized in Fourier
space; more precisely, the wavelets have a sufficiently large
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number ¢ of vanishing moments relative to the exponent ¢
associated with the phase transition, with {=2—-75
using the standard notation of phase transition literature.
Appendix A 2 explains that for this to hold, it is sufficient to
impose that the wavelet filter G has a compact support and a

Fourier transform which satisfies G(k) = /2 + O(|k|9)
with ¢ > /2. The second important ingredient is that
wavelet fields are normalized at each scale, i.e., @; satisfies
Eq. (30). Conditional probabilities amount to slicing the
estimation over multi-wave-number bands over which the
scale interaction potentials have well-conditioned cova-
riances. The wavelet field normalization has the flavor of a
second-order method (Newton method), where the nor-
malization of the wavelet field plays a similar role to an
inverse Hessian to adjust each gradient step.

The theorem proof is in Appendix A 3. It is a particular
case of a more general class of results concerning the
representation of Calderén-Zygmund operators in wavelet
bases [45]. Such operators include differential and pseudo-
differential operators. This theorem considers a phase
transition where the covariance of ¢ is a singular operator
whose eigenvalues have a homogeneous and isotropic
blowup at low wave numbers, as it happens at the critical
point in second-order phase transitions [61]. For systems
close to the critical point in which there is a finite but very
large correlation length, a modification of the theorem
proof leads to the same result in Eq. (51) with constants that
do not depend upon &. This theorem result can be extended
to a wider class of covariances by imposing only that 4,,(k)
varies at most by a constant over any wave-number
annulus ¢,2” U+ < |k| < ¢,27/, where ¢, and ¢, are some
constants.

To ensure a fast convergence of the gradient descent in
Eq. (46), we must ensure the Hessian H, 9, in Eq. (48) is well
conditioned. We give a qualitative argument which justifies
this property, but not a formal proof. The Hessian is equal
to the covariance of the scale interaction potential in
Eq. (49). For a direct coupling estimation, the long-range
spatial correlations of ¢ lead to bad conditioning. The
Hessian associated with the WCRG depends upon cova-
riances relative to fluctuations of the wavelet fields @;,
conditioned and averaged over ¢;. Since the ¢; have a
short-range correlation (as in Theorem IV.1) and the scale
interaction energies U ; are local, the resulting covariances
are also short ranged. Moreover, all terms in U ; have
fluctuations of order one because we normalize the variance
of @; and of the potential term in U,. Local interactions of
terms whose fluctuations are of order one have covariance
matrices whose eigenvalues remain order one. They do not
blow up at small k£ and remain of order one for all k. The
resulting Hessian is therefore well conditioned. These are
the reasons why the WCRG is a well-conditioned method.

Turning these arguments into a rigorous proof is an open
mathematical challenge that we leave for future works.

The first difficulties are related to the nonlinear potential
functions, although this seems within reach when expressed
as polynomials because they transform local wavelets into
localized functions. Another difficulty is to prove that
averaging covariances conditioned by ¢; does not affect
their condition number. It requires us to further decompose
@; into normalized larger-scale wavelet fields ¢, for £ > j
and evaluate cross-correlations with the terms in @;.
The proof of the purely Gaussian models relies on the
fact that the homogeneous singular operators whose
Fourier eigenvalues A,(k) have a power-law decay like
(|k| + (27/£)¢)~" are fully preconditioned by diagonal
terms in a wavelet basis [45], not just scale per scale. In
other words, the symmetric covariance matrix of all
normalized wavelet fields {®;},;<;.i, even when taking
into accounts interactions across scales, has eigenvalues
that remain of order one. In this Gaussian case, the Hessian
Hy involves fourth-order moments which can be explicitly

related to this full covariance matrix. The log-likelihood
gradient descent has an exponential convergence with no
critical slowing-down.

2. Preconditioned MCMC and Langevin dynamics

In the previous section, we show that if the Hessian H 9,
is well conditioned, then the gradient descent converges on
times of order one. The condition on the Hessian requires
analyzing a specific set of correlation functions. The
requirements on correlation functions to guarantee a short
decorrelation time of the MCMC performed on ¢; con-
ditioned by ¢; are much more restrictive. As proven in
Ref. [62], a necessary and sufficient condition for the
decorrelation time of MCMC to be finite (not diverging
with the system size) is that the so-called point-to-set length
for the field @; conditioned by a typical ¢; is finite [62].
Physically, this requirement imposes that all possible
spatial connected correlation functions [for the measure
P, (@)lw;)] have a short spatial range (and not just a
specific set as for the Hessian). Only in this case, one can be
sure that @; conditioned by a typical ¢; is noncritical with
respect to any kind of ordering, and hence that the MCMC
decorrelates quickly.

Although a general proof for the WCRG is a challenge,
RG approaches to dynamical critical phenomena [63] show
that this result holds for the ¢* model, and more generally
at critical points. These techniques are well studied in
theoretical physics and considered to be fully under control,
but they are not rigorous. In fact, it is at the core of the
dynamical RG procedure that the short-scale degrees of
freedom (the wavelet field in our case) are short ranged and
relax quickly at each scale, hence the name fast degrees of
freedom as shown by perturbative methods (in dy —d,
where dy; is the upper critical dimensions) [63] and by
nonperturbative approximations [64]. As in the previous
case, the Gaussian field theory provides a framework where
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these results can be worked out in detail, even rigorously. In
this case, the field @; is short ranged if all eigenvalues /1(7,j of

its covariance is of order one. Theorem IV.1 proves that this
is true even for critical Gaussian fields such as the Ornstein-
Uhlenbeck process and fractional Brownian motion.
Therefore, even if the MCMC for the critical field has a
decorrelation time 7y;c that diverges as L® with z = £, the
MCMC for the field @; conditioned by a typical ¢;
converges on times of order one.

One can directly obtain this result by considering
Langevin dynamics for the field @;. It is known physically
and rigorously [65,66] that MCMC tends to Langevin
dynamics in the continuum time limit. Let us then focus on
the latter since the analysis is more straightforward. For
simplicity, we focus on d =1, where only one wavelet
channel exists. The Langevin dynamics associated with the
field ¢; is a multidimensional Ornstein-Uhlenbeck process:

T =3 2K3, (0=, + (0. (52

where &(i,t) are independent and identically distributed
Gaussian white noise of variance equals 2. The matrix K ;
[see Eq. (B3)]is diagonal in Fourier space. As a consequence,
the above set of Langevin equations decouple in Fourier
space. For each Fourier component k, we obtain an inde-
pendent Ornstein-Uhlenbeck process whose decorrelation
time is the inverse of the eigenvalues of K ;.j» Which are equal
to the eigenvalues /1,7,,_ of the covariance of ¢;, namely,

-

K j(k) = A5, (Where the hat denotes the Fourier transform).

Theorem IV.1 proves that all of these eigenvalues are of order
one and hence that the normalized Langevin process in
Eq. (52) converges to the equilibrium stationary measure on
times of order one.

In conclusion, the crucial condition that makes RG work
is that fast degrees of freedom’ are not critical, i.e., without
long-range correlations in space and time. It is the same key
requirement for the WCRG, thus strengthening the con-
nection between the standard RG framework and WCRG.

V. RECOVERING THE MICROSCOPIC ENERGY

In the previous sections, we show how to estimate the
multiscale representation of the probability distribution
Po(@o) in Eq. (22), allowing us to perform sampling and
obtain new data. In this section, we show how to recover
the microscopic energy function E(¢,) with a well-
conditioned method. This is a second important outcome
of the WCRG, which can be useful for obtaining essential
physical information, and which is out of reach of many
other generative models. It is done by computing a func-
tional representation of the scale interaction free energies at
each scale.

A. Scale interaction free-energy models

In order to compute the microscopic energy in Eq. (33),
we must construct a functional representation of scale
interaction free energy F;(p;) defined in Eq. (32).
Modeling F;(¢;) amounts to defining another basis func-

tion U ;(@;) and the associated coupling vector 0 ; such that
éjTU ; provides an accurate approximation of F (@) up to
an additive constant:

Fi(p;) = 07U (0)) + . (53)
We show that it defines multiscale potential models of the
microscopic energy function Ey(¢pg), which are more

general than local microscopic potential models.
Replacing each F'; by QJTUj +¢; in Eq. (33) gives

J
Eo=61U;+Y (ejfz‘/j - eijjj) teo (54)
=1

where ¢ is a constant. We consider the scale interaction
energy model in Eq. (37),

T ;(V((pj—l)_v(P(pj—l))- (55)

The normalization constant y; introduced in Eq. (49) is
absorbed into C‘ ; for simplicity. The term C]TV(P(pj_l) is
not modified by the free-energy integration in Eq. (32),
because it does not depend on ¢;. We thus define a model
of F;(¢;) which includes this term

1 .. - _

0,"U;(p;) = >

with éj = (% f(j,Cj). It results from the expansion in
Eq. (54) that E, can be written by

| J
Eo(¢o) = §€05K06Po +Y _CTV(g)), (57)
=0

where Cjy = C, C, =C;—Cy,and for 1 <j<J -1,
(58)

with

I i+l
P Kowo=0 K0, +Z <Z¢;Kj.f§_0f —(P,TKijj> - (59)
=1 N7
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The multiscale coupling parameters C} for 1 < j<J give
rise to long-range potential interactions. Local microscopic
energy models correspond to a particular case where K, is a
convolution operator with a small support, and C’; = 0 for
all 1<j<J, hence, C;=C;,y, and C; = C,. Such
models are sufficient to describe the ¢*-field theory.
Instead, for cosmological weak-lensing fields, we see that
C} #0 for all 0 <j<J. In this case, the microscopic

energy includes local potentials at all scales, producing
long-range interactions at the microscopic scale.

B. Free-energy regression
A coupling model 9}(7 ;j of the scale interaction free
energy F; is calculated by minimizing the mean-square
errof,

o) =((F-00)) . @
Pj
This section together with Appendix B 2 explains how to
estimate the coupling vector @ ; from R samples ¢ , of py,
with a thermodynamic integration [67]. The free-energy
model is validated by verifying that the regression error is
small: £(0;) < (F3),,-
The mean-square loss £(0;) is minimized for

U7, F;U;),,. (61)

(62)

To estimate the expected values, we compute R samples
@j of p; by coarse-graining R samples ¢, in the training
dataset. We then estimate (U jUJT> ,, With an empirical
J
average over all ¢; ,.
. . . . . _2 - g

The main difficulty is to estimate (F7;), and (F;U;), .
where F; = —log J e 0l dp; up to an additive constant.
We evaluate these moments with a thermodynamic inte-
gration [67]. This is done by introducing a family of models
GJT U ji» Which performs an interpolation between a
Gaussian model and the full-scale interaction energy

model. For this purpose, the nonlinear potential term in
Eq. (55) is multiplied by A€ 0, 1]:

9]TUj./1(€0j—1) =0,,(p;) + AC,TV(%'—l)’ (63)
with a first term which is quadratic in @; for fixed ¢;,
J+1

5; PIK; e = CTV(Pg;_y).  (64)
=J

Q(pj((pj) =

The thermodynamic integration interpolates linearly the
Gaussian measure (4 = 0) and the original one (4 = 1) by
estimating expected values with empirical averages.
Appendix B 2 shows that it involves MCMC calculations
on @; for fixed ¢;, which is fast and not affected by the
critical slowing-down. As explained in the previous sec-
tion, it mostly results from Theorem IV.1, which proves
that wavelet fields @; have covariances that are well
conditioned.

In summary, the free-energy estimation is made jointly
by thermodynamic integration and linear regression. This
method is numerically stable even close to critical points
because it requires sampling only the wavelet field, keeping
the coarse-grained field frozen. The numerical experiments
in Sec. VI over cosmological data show that small errors
introduced by the free-energy estimation induce small
errors on the microscopic energy E,. However, these small
microscopic energy errors may lead to large errors when
sampling the probability distribution model p, using E.
This is due to the instabilities of microscopic coupling
parametrizations of E;. For instance, it is inherent to the
phenomenon of phase transition that a small change in the
parameters of the energy (the coupling constants) can
change the physical behavior drastically. The WCRG
circumvents this problem by generating new samples using
the representation in Eq. (22), and it avoids the instabilities
by using the parametrization based on conditional coupling
parameters 6 ;. We discuss this issue further when applying
the WCRG to cosmological data.

Table I summarizes the different steps to compute the
microscopic energy function, with a direct approach or with
the WCRG. The WCRG estimates the coupling parameters
0 ; of pj, and the parameters 9]~ of the free energy F ;jatall
scales 2/.

VI. NUMERICAL APPLICATIONS OF WCRG:
SAMPLING, ESTIMATION OF ENERGY
FUNCTION, AND ABSENCE OF CRITICAL
SLOWING-DOWN

This section presents three different numerical applica-
tions of the WCRG on two-dimensional (d = 2) fields. For
each example, we first show the results of WCRG sampling
and then the recovery of microscopic energy functions.

We start with a Gaussian field theory associated with the
Ornstein-Uhlenbeck stochastic process. It provides a sim-
ple illustration and a validation test of our numerical
method over a system with long-range correlated fields.
As a second application, we focus on the ¢* model, which
is central in the theory of phase transitions and provides a
challenging estimation problem with nonlinear potential.
The third application concerns the characterization of
weak-gravitational-lensing maps in cosmology associated
with the distribution of dark matter. In this last example, the
field is inherently out of equilibrium, and there is no
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TABLE 1.

Summary of multiscale WCRG estimation. It decomposes the microscopic probability pg(@g) =

ap,(@;) H§:1 p;(@;lg;) and its energy function E(¢py) = 67U, (¢,) + Z;:l (éJTUj(wj—l) - é;f]j(q’j)) + co. The
coupling parameters 9j of p; are estimated by minimizing a KL divergence. The parameters 0 ; of F ; are computed

by linear regression.

Estimation method

Parametrized models

Inference

Direct estimation of po(¢)
Conditional estimation of p;(®;|¢;)

Estimation of free energies F;(¢;)

Pa,(#0) = Zg" exp [-05Uo (o))
Do, (@)le;) = Z7texp [-07U;(9j-1) + Fi(9))]

mg)lDKL(pOHPt%)
min Dy (pj-1[lpa, p;)
J
min((F; —0;0,)°)

J

070,(¢;) »;

explicit energy model to compare with. However, we show
that the resulting model reproduces visually and sta-
tistically nearly identical fields. This highly nontrivial
example shows the potentiality of our method. The algo-
rithmic aspects of our implementation of the WCRG are in
Appendix C.

A. Gaussian field theory

We consider a model in which the field ¢, is Gaussian at
the finest scale, and thus has an energy function

1
Ey(9o) = = @ Kogo

2
without a nonlinear potential energy term [i.e.,
Vo(@o) = 0]. In particular, K, is given by
Ky=oald—pA with >0, (65)

where A is a discretized approximation of the Laplacian, as
in Eq. (11). The corresponding Gibbs measure is the
equilibrium measure of the Ornstein-Uhlenbeck stochastic
process on the field ¢,. The convolutional matrix Ky, is the
inverse of the covariance of ¢, which is diagonal in Fourier
space with eigenvalues

1
 BUKP +a/B)”

where k is the Fourier wave vector. In consequence, the

ratio a/f defines a correlation length &= 2z(a/p)2,
which is the control parameter specifying the model. We
normalize the overall factor # such that (| (i)*),, = 1.
The field ¢, displays critical fluctuations for |k| > 27/¢,
and thus for length scale smaller than &.

We now present results obtained with WCRG models and
sampling of this Gaussian process. Figures 5(a) and 5(c)
show typical samples of the Ornstein-Uhlenbeck process in
Eq. (65) of size L = 32, for £ = 4 and £ = 32 (training data).
These are short-ranged and long-ranged correlated fields,
respectively. The values £ = L = 32 correspond to the
critical point of the system. Figures 5(b) and 5(d) show
two samples synthesized by the WCRG coarse-to-fine

Iy (k) = K5 (K) (66)

(ﬂo(

sampling, for the same values of £. These visual textures
cannot be discriminated from the ones in Figs. 5(a) and 5(c).
Appendix C 1 gives more details on these simulations.

For a Gaussian process, we evaluate the accuracy of the
WCRG model by computing the precision of the estimated
microscopic energy kernel K. Figure 6 compares the
(radially averaged) Fourier eigenvalues K,(k) of K for
the original and the estimated model by the WCRG, for
& =4 and & = 32. They perfectly superimpose because the
conditional probability models are exact at all scales, since
the energy functions remain Gaussian. Appendix C 1
explains the implementation. It demonstrates that WCRG
calculations have no critical slowing-down in the presence
of long-range correlations & = L.

B. The ¢*-field theory

The ¢*-field theory is the simplest model, which con-
tains all the key ingredients of standard second-order phase
transitions, such as large-scale collective behaviors, critical
properties, long-range correlations, and self-similarity at
the critical point. It has also played a central role in testing
new techniques and ideas [68]. Here, we follow the same

2.0 - 1y 2.0
™ . b)Synte5|s =1 , ils

1.0 = =

-1.0

-1.5

-2.0 -2.0

FIG. 5. (a),(c) Training samples of the Ornstein-Uhenbeck
process for £ =4 (a) and & = 32 (c). (b),(d) Synthesized fields
generated by WCRG sampling for £ =4 (b) and & = 32 (d).
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FIG. 6. Fourier eigenvalues K (k) of the Ornstein-Uhlenbeck
kernel K radially averaged over constant Fourier wave-vector
modulus k|, for £=4 in (a) and =32 in (b). Original
eigenvalues are shown with a solid curve and the estimated ones
with a dashed curve.

strategy and apply the WCRG method to the ¢*-field theory
in two dimensions.

The microscopic ¢* model on a discrete lattice has a
local potential introduced in Eq. (10),

1
Eo(o) = 505 Kopo, +CoV(90). (67)
The quadratic kernel is K, = —fA where f plays a role of
inverse temperature, and A is the Laplacian. The local
potential CI'V(py) = >, CTv(go(i)) has a double well

Covleo(i) = @i(i) = (1 +2B)w5(i).  (68)

Previous numerical work has shown the existence of a
second-order phase transition in the thermodynamics limit
at f.~0.67 [47]: For f < f. the system is disordered,
whereas for f > S, the system is in the ordered, or broken-
symmetry, phase.

We consider a two-dimensional system with L = 32
unless otherwise stated. We focus on four values of f:
p =0.5,0.6,0.67, and 0.76, which covers the three different
regimes of the model, the disordered (# = 0.5, 0.6), critical

(f =0.67 ~p,.), and ordered (f = 0.76) phases. For each
value of 5, we generate R = 10 000 samples of the field ¢,
which we use as a training dataset to perform the WCRG.
Typical configurations are shown in the left panels of Fig. 7.
See Appendix C 2 for more details and Appendix C 5 for a
larger system size L = 64.

The right panels of Fig. 7 display samples synthesized
with a coarse-to-fine WCRG, for # = 0.5, 0.67, and 0.76.
They visually cannot be discriminated from samples of the
original process in the left panels, even at  ~ .. Figure 8
superimposes the marginal histogram of field values ¢ (i)
obtained from the training dataset and the one generated by
coarse-to-fine WCRG sampling for  ~ f3.. We also observe
an excellent agreement and numerically confirm that the
WCRG sampling correctly captures the critical behavior
two point, as it reproduces well the spatial correlation
function characterizing the power-law decay associated
with critical phenomena (see Appendix C 4).

Figure 9(a) shows the nonlinear local potential CJTU
calculated at each scale 2/ for f < .. Recall that
CiV(p;) = 32 Cio(g;(i)) in Egs. (12) and (15). At large
scales, the potential has a single well centered at zero
because the disordered phase is nearly Gaussian at coarser
scales. During the WCRG flow from coarse to fine scales,

15

(a) Training data B < B.

(b) Synthesis B < B¢

T (a) Synthesis g~ 5. B,

=
|

: (e) Training data B > B¢ |

s | [ ™

-15 -15

FIG. 7. Original training samples of ¢* and synthesized fields
generated by the WCRG, for f =0.5 < ., f = 0.67 ~ ., and
p =0.76 > p,. from top to bottom: (a, b, c) training data, (d, e, f)
synthesis.
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FIG. 8. Superimposed histograms of field values computed

from ¢* training data (blue) and WCRG synthesized fields
(orange), for f~ f,.

C]Tv progressively acquires a double-well shape. This figure
illustrates the inverse RG flow induced by the WCRG. It
looks like a backward run of the forward nonperturbative
RG flows [68]. The analogous WCRG flow for f ~ . is
presented in Fig. 9(b). The potential C]Tv has a double-well
shape which remains stable for many intermediate scales.
This is more evidence that the WCRG correctly captures the
physical behavior associated with criticality. In fact, on the
basis of RG theory, one expects to find a scale-invariant
theory on intermediate scales. The stable local potential
found by the WCRG is a striking manifestation of this
phenomenon. Finally, Fig. 9(c) presents the result in the
ordered phase. We start from a broken-symmetry phase at a
large scale, where the data are all in the same positively
magnetized phase. Remarkably, the WCRG recovers the
symmetric potential at the finest scale. In theory, the non-
linear potential should have a slight asymmetry because an
infinitesimal positive field has to be applied to obtain the
positively magnetized phase at a large scale. Yet, this effect
is very small and not detected numerically. The ability of the
WCRG to recover the microscopic (broken) symmetry is
important in applications of this method to characterize
properties of microscopic energies.

The accuracy of the WCRG model of ¢* is evaluated by
comparing the values of K, and C,, which define the
microscopic energy function in Eq. (67). We focus on the
phase transition f ~ f3., which is the most challenging case.
Figure 10 shows that the estimated local potential at the
finest scale is nearly equal to the original one. Figure 11(a)
shows the convolution kernel of K, estimated by the
WCRG. Figure 11(b) superimposes the eigenvalues of
the original Laplacian K, with its WCRG estimation.
The excellent agreement demonstrates that the WCRG
provides a precise estimation of the ¢* microscopic energy.

Since the ¢* model is a priori known to be local, to
regress the free energies F ; we impose that C = C i for
all1 < j<J-1and C; = C, in Eq. (56). This is a usual
assumption in RG treatments of the @* model. In our case,
we can validate a posteriori this assumption by computing

B<p @

—j=4
— =3

1 —j=2

B@ —j=1
- -
S — /=0

20 15 -10 05 00 05 10 15 20
©;(i)

B> B
2 — =4
—j=3
—j=2
. —j=1
™ 04 — j=0 B

2
¢

FIG. 9. WCRG flow of nonlinear potentials C7v(p;(i))
across scales 2/, for = 0.5 in (a), f = 0.67 ~f, in (b), and
£ =0.76 in (c).

the resulting linear regression error of the free energy. It is
measured by the ratio between the mean-square regression
error 7 (éf) in Eq. (60) and the average squared free-energy
(F3())),, The relative error with this locality assumption
is of order 107> for all the /3 that we considered. It confirms
a posteriori that a local potential provides an accurate
model of ¢* training examples.

C. Cosmological data

This section applies the WCRG estimation and sampling
to model weak-lensing images in cosmology. Gravitational
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FIG. 10. Comparison for f# ~ . of the original nonlinear local
potential CIv(¢y(i)) at the microscopic scale (solid curve) and
its WCRG estimation (dashed curve).
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FIG. 11. (a) Estimated convolutional kernel K(i —i') in the
(d = 2)-dimensional space for ¢*. (b) Comparison for 8 ~ f3. of
the Fourier eigenvalues K (k) of K, of the original model (solid
curve) and the one estimated by the WCRG (dashed curve).

lensing deforms images of background objects such as
galaxies near a foreground mass [69,70]. Galaxy clusters
are the largest gravitationally bound structures in the
Universe, with approximately 80% of cluster content in
the form of dark matter. It can cause strong and weak
statistically coherent distortions of background sources on
the order of 10% (cluster weak lensing) [70]. A major
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scientific challenge is to study the weak-gravitational-
lensing signature of large-scale structures in the Universe
and to understand fundamental physics such as the nature
of dark energy and the total mass of neutrinos. In particular,
several groups have been trying to capture rich information
that is beyond the traditional two-point statistics using non-
Gaussian statistics through high-order moments [71-75].
More recently, iterated wavelet transforms called scattering
transform have been used to generate weak-lensing images
conditioned by scattering moments [36]. However, none of
these techniques are able to define the explicit microscopic
energy function which generates such fields.

In the following, we apply the WCRG to study the
statistics of weak-gravitational-lensing maps. We use a set
of simulated convergence maps computed by the Columbia
lensing group [76,77] as a training dataset. It can be
considered as test convergence maps for the next-
generation space telescope Euclid [78]. Details about the
data and numerical implementation can be found in
Appendix C3. The top row of Fig. 12 shows several
examples of the convergence maps used as the training
dataset. Compared to the ¢*-field theory images, one sees
rare high-amplitude local fluctuations (shown in yellow)
reflecting a higher concentration of dark matter. This
characterizes a more complex statistics typical of highly
non-Gaussian processes (with a long tail; see below).

On the bottom row of Fig. 12, we show the synthesized
images generated by WCRG sampling using the estimated
scale interaction energy functions introduced in Sec. III C.
The original (top row) and synthesized (bottom row) define
textured images which cannot be discriminated visually. It
shows that the WCRG model is able to capture the high-
amplitude non-Gaussian fluctuations. A more quantitative
analysis is performed by comparing the histograms of ¢ (i)
for the training dataset and the fields generated by sampling
the WCRG models. Figure 13 shows that both distributions
are nearly equal. In particular, the WCRG model repro-
duces the long tail involving rare events, which has been
hampering various approaches in statistical analysis.

Training data 5 i

5
s

i3
2
1
o
-

Training data Training data
o il : | I :
1

s s
Synthesis

. ] .

s s

2 2

y '

o o

FIG. 12. Weak-gravitational-lensing maps in cosmology. Top: training dataset from the Columbia lensing group [76,77]. Bottom:

synthesized fields generated by the WCRG sampling algorithm.
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FIG. 13.  Superposition of the normalized histogram of ¢, (i) for

the weak-lensing training data (blue) and samples of multiscale
WCRG models (orange).

It demonstrates that the WCRG is a powerful tool to tackle
highly nontrivial scientific problems, including cosmology.

We now turn to the recovery of the energy function at the
microscopic scale. For weak lensing, the energy function
has a different meaning from the ¢* model in thermal
equilibrium. Since cosmological data are obtained from an
inherently out-of-equilibrium process, the energy function
is not the Hamiltonian in the sense of a generator of the
dynamics. However, it provides a compact and explicitly
interpretable parametrization of the high-dimensional prob-
ability distribution. It can be regarded as an effective
Hamiltonian leading to a Boltzmann-like representation
of the probability distribution. Looking for an effective
Hamiltonian in a nonequilibrium problem is generally a
challenge. It has been possible to obtain it only in a few
cases [79,80], mostly in simple d =1 systems. The
estimation of the microscopic energy function of a cos-
mological system is particularly challenging because of the
existence of long-range interactions resulting due to
gravitation.

The WCRG multiscale microscopic energy model is
decomposed in Eq. (57) as a sum of local potential
interactions at all scales,

| J
Eo(po) = EfﬂgKo(Po +) _CTV(g;). (69)
7=0

We see that Cfy = C; and C}; = Cj,; — C; for j > 1, where
CTV is potential of the interaction energy Ej, and C7V is
the potential of the free energy F ;- For stationary fields, K,
is a convolution operator. Figure 14 displays the estimated
convolution kernel Ky(i — ') and its Fourier eigenvalues
K (k). It is the counterpart of Fig. 11 for ¢®. It appears to be
close to a discrete Laplacian, which was not expected. We
also find that the operators K ; computed at all scales 2/ > 1
remain close to a discrete Laplacian.

Figure 15(a) shows the evolution of the estimated inter-
action potential CTV(gp;_;) =>_; CTv(p;_(i)) across

(b)
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FIG. 14. (a) Estimated convolutional kernel K,(i —i') in the
(d = 2)-dimension space from the WCRG model of weak-

gravitational-lensing maps. (b) Fourier eigenvalues ko(k).

scales. As opposed to ¢, Fig. 15(b) shows that the multiscale
potential terms C); = C; | — C; are nonzero at all scales 2/
for 1 < j < J. They capture nonlocal interactions in the
microscopic-scale energy in Eq. (69). The multiscale poten-
tials CTv(g;(i)) in Fig. 15(b) favor large values of the
field at smaller scales, which increases the relevance of
the secondary metastable minimum of C7v(g;_(i)) in
Fig. 15(a). However, this effect diminishes at large scales,
thus avoiding the presence of large regions with high value of

30

Scale interaction potentials (a)

20

©j-1(1)

Multiscale potentials (b)

-60 4 _]=1

FIG. 15. (a) Scale interaction potential CTv((¢;_;(i)) across
scales 2/ estimated from weak-lensing maps. (b) Multiscale
potentials C;Tv((pj(i)) of the microscopic energy function E
for j > 1.
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the field. These nonlocal, long-range interactions that favor
high-amplitude values locally but not globally, induce the
long tail of the histogram in Fig. 13. This tail corresponds to
the bright yellow spots in the weak-lensing images of Fig. 12.
This interpretation echoes the aggregation of matters due to
long-range gravitational forces.

D. Stable and unstable representations
of probability distributions

Behind the fast convergence of WCRG parameter
estimation lies the fact that conditional probabilities of
wavelet fields provide stable parametrizations of large
classes of probability distributions, even close to phase
transitions. The WCRG decomposes a distribution p, into
Po=apy H,J':1 pj» and it approximates each conditional
probability p;(®;|¢;) with a model p@j(¢j|(pj). Small
errors on the conditional couplings 9j do not strongly
affect the properties of p,. Indeed, the conditional prob-
ability distribution p; is not singular, as the fast degrees of
freedom @; are well behaved with short-range correlations.
This is in stark contrast with standard energy-based models
which directly approximate p, by pg,. A small change of
the coupling parameters in 6, can lead to dramatic changes
on pg, near phase transitions.

This is vividly illustrated over weak-lensing maps. A
model pg of py is defined by the microscopic energy
model in Eq. (69) defined by 6, = (%KO, 0. Ch,....Ch),
with Cjy = Cy and C; = C;.; — C; for j > 1. Figure 16(b)
is a sample of py calculated with an MCMC algorithm
updating ¢, directly. It has very different statistical proper-
ties from original weak-lensing images as in Fig. 12, which
clearly appears in the tail of the superimposed histograms
in Fig. 16(d). The excess tail corresponds to high-amplitude
clusters of sites organized in real space in an ant colony
shape; see Fig. 16(b). Their typical width is 2 to 3 pixels,
which indicates that the multiscale potential parameter C’;
has an error at j = 1. Such statistical errors do not appear
with a coarse-to-fine wavelet sampling of the WCRG
model, as shown in Fig. 13. This model is parametrized
by the conditional coupling parameters ;» which include

the potential parameters C; of E;. The errors on C) =

Ci1— C ; in E, are thus produced by errors when
estimating the potential parameters C ; of the free energies
F ;- Yet, we show that these errors are small, and the large
statistical errors in Fig. 16(d) are due to instabilities of the
coupling parametrization 6.

To demonstrate this property, we modify 8, by changing
only the potential parameter C; for j = 1. We initialize C|
with the value obtained from the free-energy calculation. Its
value is updated with a gradient descent on the KL diver-
gence Dy (pol|pg,), with the algorithm of Sec. IVA.
Figure 16(a) shows that this optimization produces a very
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FIG. 16. (a): Multiscale potential CTv(¢,(i)) at a fine scale
j =1 used in the microscopic energy E,. The dashed curve
potential is calculated with a linear regression of the free energy
F,. The full curve is obtained with a direct KL-divergence
minimization. (b),(c) Synthesized images by sampling using the
energy E,. The images (b) and (c) correspond to the potentials
C'I'v shown in (a), computed from F, and by minimizing the KL
divergence, respectively. (d),(e) Superimposed histograms of
@o(i) of synthesized images (in orange) and original weak-
lensing images (in blue). The large errors in the tail of histogram
(d) correspond to high-amplitude patches in image (b), whereas
the histogram (e) of image (c) is well reproduced.

small modification of C{Tv. Yet, the images sampled from
this slightly modified microscopic energy E, have a totally
different result in Fig. 16(c), which now match the weak-
lensing maps. Indeed, their histogram in Fig. 16(e) is
superimposed over the histogram of weak-lensing images.
This numerical experiment shows that the coupling
parameter 6, of E, is estimated with a good accuracy
through free-energy regressions. However, this coupling
parametrization of E; is highly unstable. Such instabilities
also appear at phase transitions. WCRG conditional prob-
ability representation circumvents this problem by relying
only on the parameters é_,- of wavelet-conditional proba-
bilities, which are stable. It thus leads to more reliable
generative models of complex many-body problems.
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E. Absence of critical slowing-down for the WCRG

This section illustrates the numerical stability of WCRG
calculations over the ¢* model. In particular, we contrast
the WCRG with standard direct coupling estimation
approaches plagued by critical slowing-down close to
the critical point. As we discuss in Sec. IV, the critical
slowing-down appears both in the gradient-descent dynam-
ics and to estimate moments by MCMC. Numerical details
are given in Appendix C. For Gaussian models, the absence
of critical slowing-down of WCRG algorithms is demon-
strated in Appendix C 1.

For the ¢* model, we begin by studying the critical
slowing-down of the MCMC for direct coupling estimation
when S approaches f3., and when L is increased at ff ~ f3...
The MCMC simulations shown in Fig. 17 are performed at
the last gradient-descent step when the coupling parameters

have converged to an optimal value. Let us denote (p(()t) the
finest scale field at a Monte Carlo time step ¢, that is evolving
with the MCMC simulation. One MC time step corresponds
to L? trial MC updates over an image of L? pixels. The
magnetization is written by (1) = [L=2 3", ¢\ (i)|. Tts time
autocorrelation function Ag(7) is given by

%, (70)

time

Ap(t) =

where (- - -); denotes the time average under the stationary
state and 6@ (1) = ®(1) — (P)jme. Figure 17(a) plots Ag(7)
for a direct Monte Carlo update of ¢, for different values of 8
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FIG. 17. (a),(b) Autocorrelation functions for direct MC simu-

lations updating ¢, in (a), and for wavelet MC simulations
updating @ in (b). It is computed for different # approaching S,
for the ¢* model with L = 32. (c),(d) Decorrelation timescale
e for the direct and wavelet MC simulations. It is computed as
a function of f with L = 32 in (c), and as a function of L up to
L = 64 with f ~ f.. in (d). The dashed line in (d) corresponds to
e ~ L* with z ~2.

approaching f,... The decorrelation timescale 7y, defined by
Ao (tymc) = 1/ e increases in Fig. 17(c). The critical slowing-
down also appears when L increases at  ~ 3. As expected,
Fig. 17(d) shows that 7y;c diverges as 7yc ~ O(L?) with
z~72 at the critical point [10], whereas it remains finite
for f < ..

In the WCRG, the MCMC is performed at each scale on
the wavelet fields ¢;, while ¢; is fixed. We call it a wavelet
MC. Figure 17(b) shows the resulting autocorrelation
function Ag(t) of ®(t) given by

B0) = 3z o . (7D

m,i

It is displayed at the finest scale j = 1, but coarser scales
behave similarly and require fewer computations. The
results show that, remarkably, Ag(#) decays at the same
rate for all B, which is very different from a direct MC
updating of ¢,. The decorrelation timescale zy;c is defined
by Ag(tmc) = 1/e. Observe that it remains nearly constant
as a function of f in Fig. 17(c), and as a function of L in
Fig. 17(d). It means that the wavelet MC is not affected at
all by the critical slowing-down.

We now study the convergence of the gradient descent,
which estimates coupling parameters by minimizing a KL
divergence. It also involves a critical slowing-down near the
phase transition. The error is measured by the squared norm
of moments errors. It measures the amplitudes of the
parameter gradients in Egs. (41) and (46). For the direct
gradient-descent algorithm of Sec. IV A, the moment error is

Lo(t) =1Up, = (U, I (72)

where 7 is the gradient-descent time step. It is computed at
the finest scale j = 0. For the wavelet-conditional gradient
descent of Sec. IV B, the moment error is

Le(t) =K, =Ty 1P (73)

%

It is shown only at the finest scale j = 1, where its decay is
the slowest. Figure 18 compares the decay of Lp(z) and
L (1), near the phase transition f§ ~ f3.. For each method,
we compute numerically the maximum step size e such that
the gradient decent converges and leads to an accurate
microscopic energy function E,. Numerical results show
that € = 0.005 for the direct algorithm, whereas ¢ = 0.5 is
100 times larger for the conditional gradient descent. As a
result, £¢ in Fig. 18(a) has a much slower decay than L¢ in
Fig. 18(b). It confirms that the WCRG is also able to
precondition the gradient-descent Hessian in the ¢* case
and thus eliminate the critical slowing-down.

The remarkable performance of the WCRG comes from
the fact that RG can handle a singular theory close to a
critical point, contrary to perturbation theory, which treats
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FIG. 18. Moment errors as a function of the number of
gradient-descent steps f. (a) Error Lp in Eq. (72) for the direct
algorithm. (b) Error L in Eq. (73) for the wavelet-conditional
algorithm.

on the same footing all degrees of freedom. Close to a
critical point, where the susceptibility to changes in the
coupling parameters diverges, perturbation theory is bound
to fail. On the contrary, since RG always works on the fast
short-scale degrees of freedom, it is not affected by the
critical point, and one can perform approximation on the
RG flow safely [15]. In our context, the direct coupling
estimation plays the same role as a perturbation theory. It
fails when approaching the critical point because it works
directly on the degrees of freedom and coupling parameters
plagued by a singular behavior. Instead, the WCRG works
at each scale on the wavelet fields corresponding to the
shortest scales, which are noncritical and hence fast. This is
the essential physical ingredient that makes the WCRG
numerically stable and unaffected by the critical slow-
ing-down.

VII. CONCLUSIONS AND DISCUSSION

The WCRG provides a new representation of high-
dimensional probability distributions, as a product of
conditional probabilities. They are associated with scale
interaction energy functions, which can be estimated from
limited sets of data. It addresses a major open issue in
physics and machine learning. This approach is tightly
related to the renormalization-group theory developed for
second-order phase transitions. Fluctuations of the field, or
fast degrees of freedom, are represented at each scale in a
wavelet orthogonal basis.

The WCRG differs from a standard forward RG in
several aspects. It does not suppose that the microscopic
energy is known a priori, but it provides an estimation of
this energy from data. A standard RG computes the flow of
coupling parameters defined over the whole energy func-
tion. The WCRG rather computes the flow of conditional
coupling parameters, which specify conditional probabil-
ities of wavelet fields given coarse-grained fields. We show
that estimations of conditional coupling parameters by
maximum likelihood is well conditioned and avoids critical
slowing-down. The WCRG generates new fields by sam-
pling wavelet-conditional probability distributions, which
also circumvents the critical slowing-down at phase

transitions. Explicit expression of the microscopic energy
can be recovered from WCRG estimations, with the
thermodynamic integration and a linear regression that
are introduced. This is applied to Gaussian and ¢* models
in thermal equilibrium, and to weak-gravitational-lensing
maps in nonequilibrium. The study of the cosmological
data is particulary challenging since the underlying dis-
tribution is unknown a priori.

We introduce local potential models at each scale, which
can capture long-range interactions at the microscopic
scale. These multiscale Ansatzé open the possibility to
build models of complex physical fields including turbu-
lences. Such models have indeed been studied in
Refs. [34,35] by specifying dependences across scales
through correlations of phases and amplitudes of wave-
let coefficients. Applications of the WCRG to systems
with different kinds of discrete or continuous symmetries,
e.g., O(N) ferromagnetic models, are straightforward as
the basic building blocks (multiscale and conditional
probabilities) remain the same—only the multiscale
Ansatzé change. It would also be interesting to study
applications of the WCRG to disordered systems, for
which it could provide a new efficient sampling method
of low-temperature configurations.

Many publications have pointed out the similarities
between RG transformations and deep network architec-
tures [19,81-83] and flow-based modeling [18]. The
computational architecture of the WCRG bares some close
resemblance to deep generative networks. This paper
suggests that it may be a conditional RG which is
calculated in many deep neural networks. Similar to deep
networks, the WCRG decomposes the field at multiple
scales with a wavelet transform which cascades convolu-
tions and subsamplings. Local potentials are computed
with piecewise linear rectifiers which connect wavelet
coefficients at a given scale, stored in a network layer.
The normalization is achieved by a normalization of
variances, which corresponds to batch normalizations in
deep neural networks. Network parameters correspond to
coupling interactions in a wavelet-conditional RG, which
are learned with a stochastic gradient-descent algorithm.

Artificial neural networks are very expressive but lack
interpretability and need a lot of data. These are two major
concerns in their applications to physics problems. The
WCRG is physics based. It devises an approximate
representation of probability distributions for many-body
systems. Such a representation is based on the physical
properties of the system at hand, in particular, multiscale
representations of interaction energies. Its advantage com-
pared to neural-network-based generative models is that it
can be analyzed theoretically; i.e., one can explain why
sampling is fast and estimation efficient. Moreover, the
WCRG provides effective interaction energies governing
the physical processes at different scales, thus allowing for
physical interpretation and performing RG directly from
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the data. Therefore, the WCRG presents some of the
features that make neural-network-based generative models
very useful while also remaining interpretable. The trade-
off (which for us is an advantage, too) is that it requires
physical insights to devise suitable Ansatzé for the inter-
action energies. Fewer data are needed the more the Ansatz
is constrained by physical insights.

It has been verified that the integration of a WCRG
decomposition in a deep generative network architecture
provides a numerical stabilization and acceleration of
image generation with score diffusion [84]. Moreover,
it is shown in Ref. [85] that the WCRG can explain the
ability of deep neural networks to circumvent the curse
of dimensionality. Beyond the ¢* model and weak-
gravitational-lensing maps studied in this paper, local
interaction models on wavelet coefficients across scales
can indeed generate complex nonstationary complex
images such as faces [85]. Remarkably, the nonstationarity
of complex image fields, such as faces, is captured at the
lowest wave numbers as phase transitions in the ¢* model.
Given nonstationary low wave numbers, local stationary
conditional models of wavelet coefficients are used to
generate these nonstationary fields.

In deep network diffusion models, the parameter esti-
mation is performed by score matching [86] instead of
maximum-likelihood optimization, which avoids using
MCMC Metropolis sampling algorithms. Score matching
is computationally much faster, but it is not guaranteed to
reach an optimal solution if the log probability is not
strongly log-concave. Numerical results in Ref. [87] show
that the WCRG defines strongly log-concave conditional
probability distributions for ¢* and weak-lensing energy
functions, so that one can accelerate computations by
replacing maximum likelihood by score matching.
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APPENDIX A: WAVELET BASES AND
REPRESENTATION OF OPERATORS

The fast wavelet transform decomposes a field ¢, by
using orthogonal filters G and G. Appendix A 1 briefly
reviews the construction of such filters in any spatial
dimension d. A wavelet transform stabilizes renormaliza-
tion-group computations because wavelet bases nearly

diagonalize operators involved in the calculation of large
classes of energy functions. Appendix A 2 explains that the
wavelet fields ¢; computed by the fast wavelet transform of
Sec. I A are decomposition coefficients in a wavelet
orthonormal basis of L2(R¢). Theorem IV.1 is proved in
Appendix A3 by showing that a singular homogeneous
operator, such as a Laplacian in a Gaussian model, is
diagonally dominant in a wavelet orthonormal basis. We
use the PYWAVELETS software [88] to compute the fast
wavelet transform.

1. Wavelet filter design

We review the construction of wavelet filters G and G
which satisfy the orthogonality conditions in Eq. (7). We
begin in spatial dimension d =1 and then introduce a
separable extension of such filters in any dimension d.

a. One-dimensional filters
In dimension d = 1, the coarse-graining filter G() has a
Fourier transform concentrated at low wave numbers. The
superscript (1) denotes d = 1. The wavelet filter G(!)

instead computes high-wave-number variations. The ortho-
gonality conditions in Eq. (7) have been proved to be
satisfied [44] if the Fourier series G'V(k) of GU)(n)
satisfies for all k € [0, 27,

IGD(K) 246D (k+7x)P=2 and GV(0)=v2 (Al)

and

GY(k) >0 for ke[0,7/2]. (A2)
The Fourier series G\ (k) of the wavelet filter G()(n)
satisfies

A

GV (k) = e %GO (k + 7), (A3)

where i = +/—1 and * is the symbol for the complex
conjugate. This implies that

GD(n) = (-G - n). (A4)

The Haar filter is a simple solution of Eq. (A1) given by

GY(n) =272 ifn=0,1 and

GW(n) =0 otherwise. (A5)
It computes the one-dimensional Kadanoff block averaging
in Eq. (2). The corresponding wavelet filter is G(!)(0) =
27172, G(1) =272, and GV (n) =0 if n#0, 1. It
iteratively computes Haar wavelet fields with Eq. (6).
The Shannon filter is another simple solution of Eq. (A1)
whose Fourier transform is supported in k € [-7/2, 7/2],
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G(l)<k) = 21/21\k|§ﬂ/27 (A6)
where 1 is the characteristic function. The next section
shows that the Haar and Shannon filters lead to Haar and
Shannon wavelets, which are badly localized in the Fourier
and real-space domains, respectively. Therefore, we rather
use Daubechies filters defined in Ref. [46]. They define
wavelets which are well localized both in the real-space and
Fourier domains, which is important to efficiently represent
operators involved in the calculations of energy functions.

b. Separable multidimensional filters
In dimension d, wavelet filters which satisfy the ortho-
gonality conditions in Eq. (7) can be defined as separable
products of the one-dimensional filters G(") and G(V). The
d-dimensional low-pass filter G9) is constructed as

d

Ng) = H G(1>(”1)~

=1

G (ny,ny, ... (A7)

Let us write G/ = G( and G\" = G(V). In dimension d,
there are 29 — 1 wavelet channels with the associated
24 _ 1 filters G\? for 1 < m <29 — 1. These are obtained

with different separable products of Gf)l) and (—;51)‘ By using
a binary digit by, b,, ..., b, with b, €{0, 1}, we define

G\ (ny,na,...ong) = (_}(bl)(nf)

4

z&

(A8)
3

Forexample, in d = 2, there are three channels (m = 1,2, 3):

G (ny,ny) = GO ()G (ny),

Géz)("l,nz) = (_}(”(n])G“)(nz),
G (ny.ny) = GO ()G (ny).

One can verify that these filters satisfy the orthogonality
condition in Eq. (7) [37]. In this paper, the filter G¥ and the

vectorof 2¢ — 1 filters G\t are often denoted simply as G and
G, respectively.

2. Wavelets bases of L%(R?) from filters

A fast wavelet transform computes wavelet fields ¢; as a
cascade of filtering and subsamplings with the wavelet
filters G and G. We explain that these wavelet fields can be
rewritten as decomposition coefficients in a wavelet ortho-
normal basis of the Hilbert space L2(R?) of square-
integrable functions, [|f(x)|*dx < co. These wavelet
bases are obtained by dilations and translations of wavelet
functions, which result from the cascade of wavelet filters
G and G.

a. Wavelet bases
The fast wavelet transform computes ¢; and ¢; by
iterating j times on G and G from ¢, Discrete wavelets are
the equivalent filters which relate ¢; and ¢; to ¢,. We first
set all normalization factors y; = 1 for simplicity. Since
@; = Ggj_,, where G is a convolution and subsampling
operator, we get
0; = GV, (A9)
Since G is convolution and subsampling by 2, one can
verify that (G)’ computes the inner product with an
equivalent filter denoted by z/”/?, which is translated at
intervals 2/:

Z(ﬂo

(i" = 27i).

Similarly, since p; = Gg;_;, we get

p; = G(G) . (A10)
We thus verify that wavelet fields are computed as inner
products with 2¢ — 1 different wavelet filters @' translated

at intervals 2/,
Zwo (")

Note that the superscript m on ¥/} specifies the wavelet

channels, and it is not an exponent. The same convention is
used below.

The multiresolution theory in Ref. [44] proves that
274/29(277i) converges to a scaling function y°(x) with

(i" = 27i).

x € R4, whose Fourier transform is

°°62Pk
11

(A1)

Moreover, each discrete wavelet 274/ 217/;?1(2‘/ i) for 1<

m <29 —1 converges to a wavelet y™(x) with x &R,
whose Fourier transform is

Gu(27K)
V2

The function w°(x) is an averaging filter called a scaling
function which satisfies [y°(x)dx =1, whereas y™(x)
for 1 <m < 29 — 1 are called wavelet functions which
satisfy [y (x)dx = 0. Dilated and translated wavelets are
written by

g (k) =

027" k). (A12)
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W) =2y =) (AI3)
for 0<m<29—1. The main result proved in
Refs. [44,45] is that the family of wavelets

{ll/;',li(x)}lsmszd—l,jez,iezd (A14)

is an orthonormal basis of L2(R%).

In the renormalization-group decomposition, the wavelet
transform is normalized by y; in Eq. (4). One can prove [44]
that at any scale 2/, the family of scaling functions
{w?.i(x)}iezd is also orthonormal within L2(R?). For
any microscopic field ¢, on a discrete lattice, one can
verify that there exists ¢ € L?(R¢) such that for any j > 0
the coarse-graining approximations ¢; provide the renor-
malized decomposition coefficients of ¢ in these bases of
scaling functions:

o) =o' [ olowdax (a19

where a; = [T._, 7, is the renormalization factor. If ¢, is
stationary over Z¢ then ¢(x) can be defined as a stationary
process in RY. Similarly, for 1 < m <29 — 1, the wavelet
fields are normalized decomposition coefficients of ¢(x) in
the wavelet orthonormal basis:

pimi) =a' [ owpodx (a10
The coarse-grained fields ¢;(i) and wavelet fields @;(m, i)
computed by a fast wavelet transform thus correspond to
decomposition coefficients of a field ¢(x) over orthogonal
functions in L2(R?). This result is important to understand
the action of operators over such fields when computing
energy functions.

b. Choice of wavelet to represent energy functions

We now explain how to choose wavelet filters for a
WCRG. Energy functions involve differential operators
such as Laplacians or gradients, but they also include
pointwise nonlinearities as in the ¢* model. Differential
operators are diagonal on a Fourier basis, whereas poly-
nomial pointwise nonlinearities are local in the spatial
domain (real space) but produce global interactions
between Fourier coefficients. Both types of operators
induce local interactions over wavelet coefficients if the
wavelets y" (x) are sufficiently well localized in the spatial
domain, and if their Fourier transform ™ (k) is also well
localized along wave vectors.

The wavelets " (x) of a wavelet orthonormal basis are
entirely specified by the one-dimensional filter G(") which
satisfies Egs. (A1) and (A2). Indeed, we derive GV with
Eq. (A3), the separable d-dimensional filters G4 and G(@)

with Egs. (A7) and (A8), and each ™ with Egs. (A11) and
(A12). Therefore, the wavelet properties are adjusted with
an appropriate choice of filter G(1).

If GV is a one-dimensional filter having s + 1 nonzero
coefficients, then one can verify that each w™(x) has a
compact support of width s [46]. Moreover if its Fourier
transform satisfies GV (k) = v/2 + O(|k|?), then one can
verify that ¢ (k) for 1 <m <29 —1 satisfies [ (k)| =
O(|k|) at low wave vectors k. The integer ¢ is called the
number of vanishing moments of y” because this last
property implies that y™ is orthogonal to any polynomial
P(x) of degree strictly less than g: [y (x)P(x)dx = 0.
For a fixed ¢, a Daubechies filter [46] is a filter G\
satisfying Eqs. (A1) and (A2), having ¢ vanishing moments
and a support of minimum size s = 2g — 1.

Haar wavelets are defined by the Haar filter in Eq. (A5).
In dimension d = 1 (hence, m = 1 and we drop off the
superscript), one can verify that it defines a Haar wavelet
w(x) = 1p,1/2) = 1j1/2,1). It is discontinuous, with a com-
pact support of size s = 1 and ¢ = 1 vanishing moment.
The Kadanoff scheme corresponds to decomposition on a
Haar wavelet basis. Yet it is not sufficiently well localized
in the Fourier domain to accurately approximate singular
differential operators with a nearly diagonal matrix. Wilson
instead performed approximate RG calculations [25] using
Shannon wavelets obtained with the Shannon filter in
Eq. (A6). In dimension d = 1, the Fourier transform of
wis (k) = 1oz _z) + 1725 It is infinitely differentiable
and has an infinite number of vanishing moments. It is
therefore well localized in the Fourier domain and provides
a nearly diagonal approximation of differential operators.
However, these wavelets have infinite support with a slow
spatial decay in real space and are not absolutely integrable.
Pointwise polynomial nonlinearities thus produce long-
range interactions over Shannon wavelet coefficients, as in
the Fourier case.

Haar and Shannon wavelets can be interpreted as
Daubechies wavelets having, respectively, ¢ = 1 and g =
oo vanishing moments. To obtain accurate approximations
of differential operators and pointwise nonlinearities
requires us to choose 1 < g < co. In this paper, numerical
calculations are performed with a Daubechies wavelet
having g = 4 vanishing moments, which is called a db4
wavelet (or D8 wavelet). Figure 3 shows the graph of a
Haar, Shannon, and Daubechies wavelet having four
vanishing moments in d = 1 dimension.

3. Proof of Theorem IV.1

Theorem IV.1 considers a singular covariance operator
whose eigenvalues A, (k) have a power-law decay |k|~¢ and
shows that it is represented by nearly diagonal matrices in a
wavelet basis, for wavelets having ¢ > {/2 vanishing
moments. Because the wavelet fields are normalized, it
proves that the eigenvalues /1@/_ of the covariance of @; have
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alower bound A > 0 and an upper bound B < co which do
not depend upon ;.

We first compute A and then B. We write 4,  the
eigenvalues of the covariance of ¢;_; at the site n and n,

Ctﬂ,;l (n,n') = <(ﬂj—1(”)(ﬂj—1(’1')>pj_l.

Since @; = y;'Ggp;_; and G satisfies the unitary condition
in Eq. (7), we verify that the wavelet field ¢; is obtained
from @;_; with an orthogonal projection weighted by y;l.
As a result, the covariance of ¢; has eigenvalues between
the minimum and maximum eigenvalues of the covariance
of ;_; multiplied by y;* and hence,
inf{2; } > y;>inf{2,, }. (A17)

A lower bound of 4;, is thus obtained by computing a lower
bound of 4, . We see in Eq. (Al5) that

9;(i) = aj' Ad(p(X)y/?y,»(x)dx,

where a; = H'é,:l vs, and we get

-2

C,(nn)=

o) = 5 [ 4,008, 008, (b

Since 9, (x) = 2742y (27 x —n) and A,(k) = c|k|™,
we get

—2 2J¢
C,, (n.n') = / K[

By rewriting this integral by a sum of integrals over

(k)Peikn=m) gk, (A18)

[—7, )¢, this last integral can be rewritten as
1 .
ik(n—n")
S U

where its eigenvalues for k € [—z, 7] are

Ay, (k) = ca7?28 Ny " |k + 227~ [0 (k + 2£7) 2.

rez?

(A20)

By selecting the first term Z = 0 in the sum Eq. (A20), we
derive that for k € [-z, 7]%,

Ay, (k) > ca;?2Ta, (A21)

lﬂj(

where I’ (k)|>}. One can prove that

= infke [—lr.lr]d{wjo
I > 0, because (k) is continuous, and Eq. (A2) with
Eq. (All) guaranties that ¥°(k) does not vanish on

[—7, ]9

We derive a lower bound of ’147),- from Egs. (A17) and
(A21) by inserting a; = y;a;_;,

inf{4; } > ca;?2U-"Tz¢. (A22)

Let us now compute an upper bound of the eigenvalues
’147),- of the covariance of ¢;. The wavelet field @; has zero

average (@;(m,n)), =0 and its covariance is thus,

C@j(m,m’,n,n’) = (qu(m,n)@‘i(m’,n’))p_il.

J

Similar to Eq. (A19), we verify that C; (m,m’,n,n') =
Cy,(m,m',n—n') and hence that for ﬁxed m, m', it is
diagonalized in a Fourier basis. Let us write 4, (m,m' k)

the eigenvalue at a wave vector k € |-z, z]“. To compute
the eigenvalues of C % (m,m', n,n'), for each k we must also

diagonalize the matrix ;1(7;,- (m,m’, k) along m, m’. An upper

bound of these eigenvalues is obtained by computing the
trace of this matrix since all eigenvalues are positive

(A23)

sup{ly } < sup{z1 (m,m, k) }

Similar to Eq. (A20), we verify that for k € [, 7],

Ag,(m.m. k) = ca7?2< Y " [k + 267~ (k + 2¢7) |2,
tezd

(A24)

We then have an inequality,
T (m.m. ) < cap?2% (-1 0

SR AND DN

m(k + 2fn)|2> . (A25)
¢ ezi-{0}

The first term is uniformly bounded for all k € [-x, z]¢,
because the wavelets ™ have g > (/2 vanishing moments
and hence | (k)| = O(|k|?) for k in the neighborhood of 0.
To control the second term, observe that {y/" (x — i)}, ¢ ¢ is

an orthonormal family and hence,

/ W (x = Dy (x)dx = 6(i),

where 6(i) is the Kronecker delta. Computing the Fourier
transform along i of this equality gives for all k € [-x, ]9,
> ik +2¢m))? =

rez?

(A26)
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We derive from Eq. (A25) that there exists a finite I such
that for all k € |-z, z]9,
/L;,f(m, m, k) < caJTZZJCF'.

Inserting this inequality in Eq. (A23) proves that

(A27)

sup{4,} < (29 = 1)ca;?2T".

To finish the proof, we relate a; to 2/¢. The normalization
in Eq. (30) implies that

241 i_i
> (zi)d/[_md Jg, (m.m, k)dk = m2<|¢j(m,n)|2> ~ 1.
(A28)
The equality in Eq. (A24) gives
a2t = cp (A29)
with
241

= [, Wl

The constant p is finite and strictly positive because
of the vanishing moment condition which imposes that
[ (k)|> = O(|k|*?) with ¢ > {/2 and because each wave-
let is normalized and hence,

1
ml|2 _ ~m 2 —
[l _(2n)dAd [ (k)[*dk = 1.

Inserting this in Eq. (A27), we prove with Eq. (A23) that

sup{4z,} < (2= 1)p7'I" = B (A30)
which finishes the proof of the upper bound. Inserting
Eq. (A29) in the lower bound Eq. (A22) gives
'(2z)¢ =A>0,

inf{4; } > p! (A31)

which finishes the theorem proof.

APPENDIX B: SCALE
INTERACTION ENERGIES

1. Scale interaction potential
and coupling across scales

This appendix proves the expression Eq. (37) of the
interaction potential £; = 67U,

Equations (36) and (35) imply that

GJTUj(éﬂj—l) = gjr—lUj—l ((Pj—l) - 9?-1Uj—1(P§0j—1)7

where P = GTG and

1
(/’J 1K/ 19— 1+CJT_1V((/’J'—I)-

The result is that

070, (0y) = A+ CLy (Vigy) = V(Po,))  (BY)

with

1

A= —(P,T-lKj—l(ﬂj—l

1
3 —§¢?_1GTGKj_1GTG¢j_1.

With Egs. (4) and (8), we get

1 v;
A= E(PJT_1K]'—1(0‘,'—1 - ijP,TGKj—lGTij

)/.
=4 (2(,)/ GK,1G g, + p'GK,;_,G ¢J) (B2)

We note that ¢!GK; G'p; =
K;_ is symmetric, Kj_] = K;_,. By iterating on Eq. (8)

@I GK;_1G"¢; because
we can decompose ¢; into wavelet fields at all scales
P = Z aj1(GN) TG e+ ajiy ) (GT) 7y
£=j+1

with a;,, = H?,:jﬂyf/ and $;,; = @;. Inserting this

equation in Eq. (B2) gives

1
A= 3 1K cpr (B3)
’=j
with
I_{jj = }/?GKJ‘_IGT,
K1 = 2r5a;,1,GK;(GT)~/H, (B4)

and for j+1<7<J,
K, =2r3a;41,GK; (G")~G.

Inserting Eq. (B3) in Eq. (Bl) proves Eq. (37) with
C] — Cj—l
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2. Scale interaction free-energy calculation

This section computes a regression of the scale inter-
action free energy in Eq. (32) with a model QT U,(p;) witha
thermodynamic integration. We see in Eq (61) that the
mean-square error is minimized for

- S e
05 = (U, U])pj(FU>p/
which requires us to estimate (F}), and (F;U;),. We
estimate these two moments with an empirical average of
sz.((pj,,) and F;(¢;,)U;(p;,) over R samples ¢;, of p;
computed from R samples ¢, of py.

Each F,(p;,) is calculated with a thermodynamic
integration. As explained in Eq. (63), we introduce a
parametrized energy model which isolates a quadratic term

in @; from the potential term multiplied by 4 € [0, 1]:

éjTUj,/l((Pj—l) =0,,(®)) ‘f‘/lC,TV(fﬂj—l)v (BS)

so that for 4 = 0 we get a Gaussian energy and for 1 = 1 we
recover the full-scale interaction energy in Eq. (B1). It
results from Eq. (B2) that Qq,j can be written by

I\-)

Q(/)j((pj) 2 (2(10J KHL(pj +§0j KHij)
- CTV(Py;), (B6)
with
KM= GK;,G" and KT =GK; G

The scale interaction energy model in Eq. (B5) defines a
conditional probability parametrized by 4,

e 07 Uja(o1)

Zm((ﬂj)

Po,2(@jle;) = ;
where Z;;(¢;) is the normalization factor. The thermody-
namic integration method computes the free energy by
integrating a derivative in A, which yields the following
equation:

F ((p/) ji l((pj)

= Fj-0(0;) +A1<C}r‘/((ﬂj_l)>p dz,

Hj./.

(B7)

where the free energy for A =0 is

Fjiole)) = —log/e_Qq'/(‘/’i)dg—oj_

By inserting Eq. (B6), a Gaussian integral calculation
gives

- 1 T

Fj—o(p) = E(P,M @ = CIV(Pp;_y) +¢;  (BS)

with
My = PRI (R K

The constant ¢; is not calculated because we compute the
free energy up to an additive constant. As previously
explained, the calculation of F;(¢;) is stable because it
is performed over the wavelet field p; whose covariance is
not singular. As a result, we can approximate the integral
over A by a Riemann sum with few terms.

Numerically, for each known realization ¢; , of p;, we
compute F;(¢p;,) with Eq. (B7). We first evaluate
F is=0(@;,) with Eq. (B8). We then approximate the
integral over 4 in Eq. (B7) with a Riemann sum of
(C‘ITV((IIJ'_1)>1—,@/_.4 with about ten values of 4 in [0, 1]. For

each fixed A, each expected value is estimated by comput-
ing a chain of samples (py/)l of Py 1(@)l®;,), with wavelet
MC updates at each time t. We then define

)

qﬂjlrﬁ iy

viG i +v,G )

and for each ¢;, we perform an empirical average of all

CJTV((pyJIM) along the time variable ¢ of the MCMC
chain. Applying Eq. (B7) provides an estimation of
Fi(¢),) for each ¢; ., from which we derive (F3), and

(F;U;) p, With empirical averages along r.

APPENDIX C: METHODS FOR
NUMERICAL EXPERIMENTS

This appendix contains numerical details on the three
type of fields that are studied: Gaussians, ¢*, and weak-
gravitational-lensing maps. For each system, we explain the
numerical algorithms and give additional data supporting
our conclusions.

1. Gaussian field theory
a. Model

The Gaussian model is a particular case of a local energy
model. The potential and coupling parameters in Egs. (17)
and (18) are defined by setting the nonlinear potential to
zero: U; = (9] ,0) and 0; = (3K, 0). In this paper, we
consider the Ornstein-Uhlenbeck Gaussian stochastic proc-
ess introduced in Sec. VI A. We define the model in the
Fourier space on a lattice given by
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A

Ko(k) = (k> + (22/£)*). (C1)
where £ is the correlation length that uniquely characterizes
the process. The overall factor § is determined such that
(lpo(i)[*),, = 1. We study systems with the size L = 8, 16,

32, and 64, varying £ = 2, 4, 8, 16, 32, and 64.

b. Direct coupling estimation

The gradient decent dynamics of the direct coupling
estimation in Eq. (41) is given by

(t+1) (0 _
oy =6 =c(()),, - 0),). ()

For each time step f, Hy) = (% Kﬁ.’), 0) defines a Gaussian

field whose covariance is the inverse of KY),

_ — (!
Uy, =0}y, = (&) (©3)

We thus compute (U;), ., by inverting K ") instead of using
0,

J

J
an MCMC algorithm. For the initialization at t = 0, we set

KYZO) = ajTZId, where UJZ =1 is the normalized variance

of ¢;.

Figure 19(a) shows decay of a normalized error £(f) =
HKg) — Kolls/IKolls» where ||-||, is the spectral norm of a
matrix. For L =32, the decay becomes progressively

10° 10°

Direct (@) Conditional (b)
- —E=8
—t=8 -
—t=16 —&=16
Q10" fo3p ] SO — =32
——t=64
102 1072
0 1x10° mest 3x10° 4x10° 0 20 40 ' 60 80 100
108 108
4105/ @ Direct © 105/ ® Direct @)
e Conditional .1 @ Conditional
10 10
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£10° £10°
102 . o o o 102 . o o o
0] =u ° 10'
[
10° 100
100 101 102 10° 10" 102
¢ L
FIG. 19. (a),(b) Decay of the relative error £(¢) for the direct

coupling estimation with L = 32 in (a), and for the conditional
coupling estimation with L = 64 in (b), for several £ up to critical
point £ = L. The decay timescale zgp is defined by L(zgp) =
1013 (horizontal dashed line). (c),(d) Evolution of zgp from the
direct and conditional coupling estimations as a function of ¢ for
L fixed in (c), and at the critical point L = £ in (d). The solid
straight lines correspond to 7gp ~ &* in (c) and zgp ~ L* in (d).

slower when £ increases. The timescale 7gp of the gradient
decent dynamics is defined by L(zgp) = 1071 ~0.03.
Figure 19(c) plots zgp versus &. The decay rate is controlled
by the maximum step size €, of € in Eq. (C2), where €,
is the inverse of the maximum eigenvalue A, of the
Hessian matrix Hy, in Eq. (42). For a Gaussian model, Hy,
contains only the fourth-order moments of ¢, and they can
be written by the product of the second-order moments
(Wick’s theorem). It thus indicates that zgp varies like

. 2
TGp ~ €I_I1£X = /lmax ~ (Kol(k = 0)) ~ 54' (C4)

The numerical results in Fig. 19(c) follow this asymptotic
growth. The gradient-descent dynamics of the direct
coupling estimation has a critical slowing-down when
the spatial correlation increases. Figure 19(d) shows the
critical scaling by plotting z7gp as a function of L, at the
critical point £ = L. This scaling is worse than the mixing
timescale of a direct MC, namely, 7y;c ~ O(&°) when E~ L
with z = 2.

c¢. Conditional coupling estimation

The gradient-decent dynamics for the conditional cou-
pling parameters 6; is computed by Eq. (46),

o -8 =e((0),, - (0),.).  (©3)
J

where 0j:(¢j¢;a¢j+l¢;v0)' Since P@(/_')((pj—l):

p9§,>(¢j|(pj)pj((pj) is also Gaussian, the second-order

moments (U

i) Py can be also computed by the matrix

J
inversion without doing an MCMC simulation. In the
WCRG framework, the conditional coupling estimation
is performed scale per scale, from j = .J down to j = 1.
Figure 19(b) shows the gradient-descent dynamics at j = 1
with L = 64. It corresponds to the last scale of WCRG and
hence to the highest computational cost among all j. We

plot the relative error £(r) = ||K(<)t) — Koll,/1|Kolls as in
Fig. 19(a) in order to compare both results. For each time

step 1, KE)') is recovered with Eq. (59). As expected, £(¢)
has a much faster decay for the conditional coupling
estimation than for the direct one. Note that £(¢) saturates
at a small value when ¢ is large. This small error is
introduced by the elimination of terms for > j+ 1 in
Eq. (38). The decay timescale zgp is also defined by
L(zgp) = 10713, Figure 19(c) plots zgp versus & (with
L = 64), and Fig. 19(d) plots zgp versus L (with L = &).
As expected from Fig. 19(b), the decay timescale zgp of the
conditional coupling estimation is much smaller and
becomes nearly constant when & increases for a fixed L
and L increases at the critical point. It shows that the
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conditional coupling estimation is not affected by the
critical slowing-down.

d. Monte Carlo simulations

Although it is not needed, we sample Gaussian models
with MCMC simulation to test the evolution of the mixing
time. We have two MC simulation schemes. The first one is
a MC using a direct update of ¢; to estimate (U;), in the
direct coupling estimation in Eq. (C2). The second one is

the wavelet MC, which updates @; given ¢;. It is used to

estimate (U ) P in the conditional coupling estimation in
J

Eq. (C5) and to compute samples @; in the WCRG

sampling algorithm of Sec. III C.

For the direct MC simulation, we make the following
proposal for a site i chosen randomly: ¢;(i) — ¢;(i) +
&(r —1/2), where r is a random number uniformly distrib-
uted in (0, 1]. We set 6 = 6.0 to minimize the mixing time
Tyc (defined below) at the critical point. The proposed
update is accepted or rejected with the standard Metropolis-
Hastings rule. In order to estimate the decorrelation time-
scale at j = 0, we compute the time autocorrelation function
Ag(t) with Eq. (70). A unit MC time step for the direct MC
corresponds to L> MC trials (one per pixel on average). MC
simulations are computed up to 2 x 10® MC steps. The last
105 MC steps are used to compute the autocorrelation
function Ag(f) by discarding the first 105 MC steps. We
compute ten independent samples to measure Ag(f).
Figure 20(a) shows Ag(f) for several ¢ for L = 32.
The decay of Ag(2) becomes significantly slower when

12 1.2
(@) DirectMC " &=4 (b)  wavelet MC
1.0 o iz8 104
0.8 oo, 4 g=16 0.8 . z=4
= A * * £=32 = * =
S068 A, LI 1206 : =8
e A R * £=16
0.4 :-.. . 041 4 ¢ £=32
02{" ¢ a 02 &
T % 4o "‘
0.0 L e o o 0.0 [ 4 -
0 500 1000 1500 2000 2500 3000 0 5 10 15 20
t t
10 10
e Direct MC 2 () e Direct MC ¢ (d)
103/ 4 WaveletMC o~ 103/ 4 WaveletMC o~
o /./ &) ,'/
2., . o, .
210 s 210
10 10
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100 10°
10° 10 102 10° 10° 102
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FIG. 20. MCMC simulations at the stationary state for the
Gaussian model. (a),(b) Autocorrelation function for direct MC
simulations in (a) and for the wavelet MC simulations in (b),
for several & with L = 32. (c¢),(d) Timescale ¢ at which the
autocorrelation is equal to e~!. In (c), & varies, whereas L = 32.
In (d), 7yc is computed at the critical point £ = L for different L.
The dashed straight lines in (c) and (d) correspond to zy;c ~ &
and 7y ~ L?, respectively.

increasing £. To evaluate the decay rate, we define a decor-
relation (or mixing) timescale 7y at which Ag (1yic) = 1/e.
Figure 20(c) shows 7y versus & for L = 32, which verifies
that 7y ~ £2. Figure 20(d) shows a critical slowing-down
with 7y ~ L? when L = & increases. In both plots, we
find that 7y;c ~ & and 7yc ~ L* with z = 2. This is justi-
fied by an argument given in Sec. IV C2 for the Ornstein-
Uhlenbeck process, which shows that 7y ~ K (k=0) ~ &2,

e. Wavelet Monte Carlo

A wavelet MC updates only for the wavelet fields ¢;
given ¢; fixed. For each trial update, a channel m and a site
i are chosen randomly to propose @;(m,i) = @;(m, i) +
5(r—1/2). We apply the standard Metropolis-Hastings
rule by evaluating the scale interaction energy function £ B
We set 6 = 12.0 which minimizes the mixing time 7y
(defined below) at the critical point. We compute the
autocorrelation function Ag(f) with Eq. (71) to estimate
the decorrelation timescale. For the wavelet MC case,
3(L/27)*> MC trials correspond to one MC time step
(one per pixel on average). MC simulations are computed
over 2 x 10® MC steps. The last 103 MC steps are used to
compute Ag(7), and we average over ten independent
samples. The decorrelation timescale 7yc is also defined
by Ag(7mc) = 1/e. Figure 20(b) plots Ag (), which decays
much more quickly than with a direct MC in Fig. 20(a).
Figure 20(c) shows that 7);c nearly does not depend on &.
Figure 20(d) also shows that it does not depend on L at the
critical point. This is totally different from direct MC
simulations. These results confirm that the dynamics of the
wavelet fields do not suffer from any critical slowing-down.

2. Two-dimensional @*-field theory
a. Model

The second model we consider is a lattice version of the
@*-field theory introduced in Sec. Il A 4, which has been
studied widely [47,89-92]. We consider two-dimensional
systems of linear size L = 32. Let ® = L72| >, ¢y (i)].
Figure 21 shows that the mean magnetization (®),
increases with . The effective critical value of g for L =
32 is found to be f.~0.67 by finding the peak of the
susceptibility. Because of finite-size effects [93], the
magnetization has a smooth crossover around f3,.. We focus
on four values: f=0.5, =06, f=0.67~p. and
f = 0.76, which are shown by vertical dashed line in
Fig. 21. It covers disordered, critical, and ordered phases.
For each 3, we generate R = 10000 statistically indepen-
dent samples of the field ¢,, which we use as the training
dataset to compute the WCRG.

b. Monte Carlo simulations

Monte Carlo simulations for the ¢* model are calculated
as in the Gaussian model described above, except for the
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FIG. 21. Mean value of the magnetization of the ¢* model
computed over the training dataset. The four state points studied
in this paper are shown by dashed lines: # = 0.50, 0.60, 0.67,
and 0.76.

presence of a nonlinear potential term in E; and E ;- To
generate the training dataset, a direct MC is computed at the
finest scale j = 0 with periodic boundary conditions. It
updates ¢ (i) using MC trials with § = 3.0 [90,92]. For the
direct and conditional coupling estimations in Egs. (41) and
(46), we estimate moments with a direct MC and a wavelet
MC, respectively. The value of & evolves dynamically
during simulation so that the acceptance ratio remains
nearly 50%. To measure the autocorrelation functions
Ag(t) and Ag(#) in Fig. 17, we fix 6 =3.0 and 1.0,
respectively.

¢. Coupling parameter estimations

In a direct coupling estimation, the gradient-descent
dynamics minimizes the KL divergence with Eq. (41).
Prior information on symmetries reduces the number of
coupling parameters that needs to be estimated. Because of
the translational invariance, K; is defined by an L/2/ x
L/2/ periodic kernel. We impose that K ;j 1s symmetric to
transposition and reflection, which reduces the number of
matrix elements to estimate. The nonlinear potential is
defined by 36 hat functions when the system is in the
ordered broken-symmetry phase with = 0.76. When
p=0.5, 0.6, and 0.67, which correspond to disordered
symmetric and critical phases, we use 17 hat functions. For
the WCRG approach, the gradient-descent dynamics in
Eq. (41) is computed scale per scale, from the coarsest
scale, j =5 (L/2/) = 1), down to j = 1 (L/2/ = 16). It is
defined by 15 scale interaction matrices K j» and each
of them is a circulant matrix having transposition and
reflection symmetries. We further impose symmetries
between different scale interaction matrices originating
from rotational symmetries of two-dimensional wavelet
transform. For the nonlinear potential, we use the same set
of hat functions as the direct coupling estimation at all
scales 2/.

d. Thermodynamic integration and regression

To estimate the energy function E; at each scale, we
compute a thermodynamic integration and a linear regres-
sion described in Sec. B 2. The thermodynamic integration
[67] starts with the Gaussian model, where the integration
can be performed analytically. As we explain in Sec. B 2,
we multiply the second term in Eq. (37) by 4 and estimate
statistical averages of these non-Gaussian terms for each A.
We approximate the integral by a Riemann sum computed
over ten values of A, uniformly distributed in [0, 1].
Figures 10 and 11 compare the estimated energy function
Ey(¢o) and the original one for f ~ f,.

3. Cosmological data

We use a set of simulated convergence maps computed
by the Columbia lensing group [76,77]. These convergence
maps are calculated by ray-tracing N-body simulations.
The sample dataset is available from Ref. [94]. They
simulate convergence maps of the next-generation space
telescope Euclid. It is a mission of the European Space
Agency whose goal is to map the geometry of the Universe
and better understand dark matter and dark energy. The
cosmology is defined by the matter density parameter
Q. =0.26 and the root-mean-square matter fluctuation
og = 0.8. We subsample the 1024 x 1024 maps by a factor
of 4 with a local averaging, and we extract 32 x 32 patches
from the subsampled dataset. We also introduce a cutoff of
the maximum amplitude of peaks, as shown in Fig. 13. The
resulting dataset is then normalized to have a mean 0 and
variance 1. We use R = 78126 images of size 32 x 32 as a
training dataset to compute the WCRG, but R ~ 3000 is
enough to get nearly the same results.

The gradient descent of the WCRG is computed with the
same setting as the ¢* model for # = 0.76, which also has
an asymmetric distribution. Namely, we use the same size
of scale interaction matrices K ¢,j for the three wavelet
channels, and we decompose the nonlinear potential over
hat functions. The number of hat functions is 23. We also
include ReLU functions (f(x) = x for x > 0 and equal to
zero otherwise) at the edges, with coefficients set to —10
and 10 at the left and right edges, respectively. These ReLU
functions confine the field values over an appropriate
interval. This is needed for weak-lensing data, which have
a long-tail distribution that is nearly Laplacian.

4. Spatial correlation function

We consider the two-point spatial correlation function
¢(r), which is defined by

(6¢0(r)S¢p0(0))
([60(0)]7)
where d¢, is the fluctuation of the microscopic field, and

the bracket (-) denotes averaging over configurations from
either the training data or the WCRG sampling (the training

c(r) = (Co6)
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FIG. 22. Two-point spatial correlation function ¢(r) for the
training data (empty symbols) and synthesized ones by the
WCRG sampling (filled symbols). The inset shows a log-log
plot for g = 0.67 ~ 3,. The dashed line follows ¢(r) ~ r~(¢-2+1)
with n = 1/4 (and d = 2).

data are obtained as done in Sec. VL.B for the other tests
on the g@*-field theory). We present c(r) in Fig. 22
for f=050<p., p=067~p, and f=0.76>p,.
Whereas ¢(r) for f=0.50 and = 0.76 decay quickly,
the one for = 0.67 decays very slowly, which is con-
sistent with a power-law decay ¢(r) ~ r~'/* expected from
the Ising universality class in d = 2. We numerically
confirm that the WCRG sampling correctly reproduces
the two-point spatial correlation function from the original
training dataset, suggesting that the WCRG method can
characterize the important physical features in critical
phenomena.

5. Larger system sizes

In the main text, we mainly focus on the systems with the
linear size L = 32. This system size is large enough to
study essential features of critical slowing-down and
demonstrate the performance of the WCRG. Here, we
study a larger system, the ¢* model with L = 64 at f ~ f3,.,
in order to confirm the results of the main text and
consolidate our conclusions. Larger systems for the
weak-gravitational-lensing maps will be reported in a
future publication with a detailed physical discussion.
Figure 23 shows comparisons between the synthesized
fields by the WCRG sampling and the ones from the train-
ing dataset for L = 64 in terms of snapshots [Figs. 23(a)
and 23(b)] and histogram [Fig. 23(c)]. We confirm that the
WCRG sampling works well for the system with L = 64.
We then estimate the microscopic energy in Fig. 24.
Figures 24(a) and 24(b) show the estimated convolution
kernel of K, and its eigenvalues (compared with the
original one), respectively. Figure 24 shows that the
estimated local potential at the finest scale is nearly equal

12 (b) Synthesis B = . ks
10 ‘ri:'l'-;:_ e ‘_E “-r'. - 10

Training data
Synthesis

Histogram
3

._.
<
4

0
Poli)

FIG. 23. (a),(b) Original training samples of ¢* (a) and
synthesized fields generated by the WCRG (b) for L = 64 at
p =0.67=~p. (c) Superimposed histograms of field values
computed from ¢* training data (blue) and WCRG synthesized
fields (orange) for L = 64 at f ~ ..

(a) 3.0
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FIG. 24. (a) Estimated convolutional kernel K(i —i') in the

(d = 2)-dimensional space for the ¢* model. (b) Comparison for
p =~ f. of the Fourier eigenvalues K,(k) of K, of the original
model (solid curve) and the one estimated by the WCRG (dashed
curve). (¢) Comparison for f ~ f3. of the original nonlinear local
potential CZv(g(i)) at the microscopic scale (solid curve) and
its WCRG estimation (dashed curve). The results are obtained
from L = 64.
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to the original one. The finding that numerical slowing-
down is absent in the generation process for L = 64 is
reported in the main text. These numerical results demon-
strate that the WCRG provides a precise estimation of the
@* microscopic energy also at L = 64.
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