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An electronic current driven through a conductor can induce a current in another conductor through the
famous Coulomb drag effect. Similar phenomena have been reported at the interface between a moving
fluid and a conductor, but their interpretation has remained elusive. Here, we develop a quantum-
mechanical theory of the intertwined fluid and electronic flows, taking advantage of the nonequilibrium
Keldysh framework. We predict that a globally neutral liquid can generate an electronic current in the solid
wall along which it flows. This hydrodynamic Coulomb drag originates from both the Coulomb
interactions between the liquid’s charge fluctuations and the solid’s charge carriers and the liquid-electron
interaction mediated by the solid’s phonons. We derive explicitly the Coulomb drag current in terms of the
solid’s electronic and phononic properties, as well as the liquid’s dielectric response, a result which
quantitatively agrees with recent experiments at the liquid-graphene interface. Furthermore, we show that
the current generation counteracts momentum transfer from the liquid to the solid, leading to a reduction of
the hydrodynamic friction coefficient through a quantum feedback mechanism. Our results provide a
roadmap for controlling nanoscale liquid flows at the quantum level and suggest strategies for designing
materials with low hydrodynamic friction.
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I. INTRODUCTION

New functionalities in nanoscale fluid transport have
been achieved by exploiting analogies with condensed
matter phenomena. The analogy between surface charge
in a nanochannel and doping in a semiconductor [1] has led
to the development of nanofluidic diodes [2,3] and tran-
sistors [4]; the similarity between ionic and electronic
Coulomb interactions [5] allows for ionic Coulomb block-
ade [6–9]. More recently, it has been suggested that—
beyond mere analogies—nanofluidic transport can directly
couple to electronic effects within the channel wall, as
the solid-liquid interface can host fluctuation-induced
electromagnetic phenomena [10,11]: energy and momen-
tum transfer mediated by interfacial charge fluctuations.

For instance, it has been predicted that a quantum con-
tribution to hydrodynamic friction results from the inter-
action of charge fluctuations in the liquid with electronic
excitations in the solid [12].
A more straightforward example of such a liquid-

electron coupling is apparently provided by the numerous
observations of a liquid-flow-induced current (or voltage
drop) within a solid wall [13–19]. The mechanisms pro-
posed to explain the current generation include the buildup
of a streaming potential [14,20], charging or discharging of
a pseudo capacitance [16,17,21], or adsorbed or desorbed
ion hopping [22,23]. In all these cases, the liquid is in fact
simply acting on the solid as an average external potential.
Yet, some of the most recent experimental results [15,19]
cannot be explained by the above-mentioned mechanisms.
In Ref. [15], the generation of an open-circuit voltage
across a millimeter-sized graphene sample due to the flow
of various liquids was reported—external potential effects
could not account for these results as the liquids were ion-
free. In Ref. [19], we have carried out analogous experi-
ments with a thousand times smaller sample dimensions,
which exclude any mesoscale charge inhomogeneities. Our
observation of a liquid-flow-induced electronic current thus
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suggests to examine the possibility of “intrinsic” current
generation in the framework of fluctuation-induced
electromagnetic phenomena, which would be analogous
to the Coulomb drag effect in condensed matter physics
[Fig. 1(a)].
In Coulomb drag, an electric current driven through a

conductor induces a current in a nearby—yet electrically
insulated—conductor. This is due to charge fluctuations in
the driven conductor creating particle-hole excitations with
nonzero momentum in the passive conductor, which results
in a current, provided that the conductors are not particle-
hole symmetric [24]. A similar process could occur at the
interface between a solid and a flowing liquid: excitations
in the solid would then be generated through Coulomb
interactions with (collective) charge fluctuations in the
liquid, that we shall in the following call hydrons [Fig. 1(b)].
Pioneering attempts at describing such a mechanism have
been made by Volokitin and Persson. They applied the
general theory of momentum transfer between two media
through evanescent electromagnetic waves to determine the
transresistivity of two closely spaced solids [25]. Later, they
expressed the electric field induced in a solid by a flowing
ionic solution [26] and studied the effect of substrate optical
phonons on the electric current in a graphene sample [27].
Their approach, however, remains macroscopic, in the sense
that the interacting media are described at the level of their
dielectric functions. It is thus unable to reproduce the most
general theoretical result that has been established for solid-
solid Coulomb drag [24], and a more microscopic theory is
thus also required to rigorously describe the solid-liquid
analog.
An alternative Coulomb drag mechanism, where the

liquid-electron interaction is mediated by the solid’s
acoustic phonons [in short, phonon drag; see Fig. 1(c)],
was first proposed by Král and Shapiro, and formalized in a
Boltzmann equation framework [28]. Phonon drag has
been invoked, for instance, to account for the experimental
results of Ref. [15]. It has also been suggested as a

mechanism of momentum transfer between two fluids
separated by a solid wall [29].
In this paper, we develop a microscopic theory of

electronic current generation at a solid-liquid interface, that
includes both types of solid-liquid interactions. Accounting
for the physics at play required us to adopt a new theoretical
strategy, at odds with existing approaches to comparable
problems. In particular, a mesoscopic description of the solid
at the level of its dielectric function [25–27] was insufficient,
since it is imprecise with regard to the mechanisms by which
electrons relax their momentum. Conversely, descriptions
based on the Boltzmann equation for the electrons [24,28]
accurately capture the electron relaxation mechanisms, but
fail to systematically include electron-electron interactions,
thus missing the effect of the solid’s plasmon modes, which
can play a key role in solid-liquid systems [30].
To overcome these limitations, we made use of the

nonequilibrium Keldysh framework of many-body quantum
theory [12]. Our diagrammatic description allows for the
inclusion of all interactions in a systematic way, possibly in
the framework of numerical methods such as diagrammatic
Monte Carlo [31–33]. Proceeding with controlled approx-
imations, we derived an explicit expression for the electronic
current generated by liquid flow. Our description of electron
relaxation being fully microscopic, we could compare the
relative importance of phonon-mediated and direct Coulomb
solid-liquid interactions and unveil their interplay. Strikingly,
we found that the current generation triggers a quantum
feedback mechanism at the solid-liquid interface, that
reduces the total hydrodynamic friction. Our results account
qualitatively for the flow-induced voltage reported in
Ref. [15] and agree quantitativelywith our own flow-induced
current measurements [19].
The paper is organized as follows. In Sec. II, we present

our model and state the main results. In Sec. III, the formal
derivation is carried out. The reader interested only in the
physical outcomes may skip directly to Sec. IV, where we
evaluate explicitly the Coulomb drag current and compare

(a) (b) (c)

FIG. 1. Mechanisms of hydrodynamic Coulomb drag. (a) Schematic representation of the phenomenon under study: a liquid flow
induces an electronic current in a solid along which it flows. (b),(c) Schematic of the two limiting mechanisms of current generation. In
(b), electrons (full lines) are driven directly by Coulomb interactions (dashed line) with liquid charge fluctuations (hydrons, wavy line).
In (c), electrons are driven by phonons (wavy line) that are excited through hydrodynamic friction with the liquid.
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it to the experimental results of Ref. [19]. In Sec. V, we
derive the hydrodynamic friction renormalization resulting
from the current generation. Finally, Sec. VI establishes our
conclusions.
Units and conventions.—We set the Boltzmann constant

kB ¼ 1 (that is, we express the temperature in energy units),
but otherwise use SI units throughout the text. Matrices are
denoted with bold capital letters. We use the following
convention for the d-dimensional Fourier transform:

F̂ðq;ωÞ ¼
Z

ddrdtFðr; tÞe−iq·rþiωt;

Fðr; tÞ ¼
Z

ddqdω
ð2πÞdþ1

F̂ðq;ωÞeiq·r−iωt:

II. MODEL AND MAIN RESULTS

We consider a two-dimensional solid occupying the
plane z ¼ 0, in contact with a semi-infinite liquid occupy-
ing the half-space z > 0, and flowing along the x direction
with a velocity vl, as depicted in Fig. 1(a). The system is at
temperature T ¼ 300 K (or 26 meV). The flow field vl is
assumed uniform in the interfacial liquid layer [12]. The
liquid interacts with the solid through Coulomb forces. The
corresponding electron-hydron Hamiltonian is

Hh=eðtÞ ¼
Z

drdrenlðr − vlt; tÞVCðr − reÞneðre; tÞ; ð1Þ

where nl and ne are the liquid and solid charge density,
respectively, and VCðrÞ ¼ e2=ð4πϵ0rÞ is the Coulomb
potential. Following Ref. [12], we treat nl as a free
bosonic field, whose correlation functions are related to
the liquid’s dielectric response. An additional liquid-solid
interaction originates from short-range repulsion forces
which result in “classical” hydrodynamic friction [12,34].
We will assume that this hydrodynamic friction transfers
momentum to the solid’s acoustic phonons [28]: those
phonons then acquire a nonzero average momentum.
This effect can be modeled by adding a shift vph to the
phonon (sound) velocity. The electron-phonon interaction
Hamiltonian is then of the form

Hph=eðtÞ ¼
Z

drdreϕphðr − re − vphtÞneðre; tÞ: ð2Þ

Here, ϕph is proportional to the local lattice displacement;
its exact expression depends on the particular solid under
consideration. The “phonon wind” velocity vph is not
known a priori and it will be determined self-consistently
by establishing the system’s momentum balance (see
Sec. IV C).
The treatment of this model within nonequilibrium

perturbation theory allows us to obtain two key analytical
results. First, we obtain an explicit expression for the

electronic current density j induced in the solid by the
liquid flow for each electronic band:

hji ¼ eℏ
T

Z þ∞

−∞

dω
2π

Z þ∞

0

dq
2π

q2ð∇qξqÞveðqÞ
cosh2

h
ℏðωþξqÞ

2T

i τq
1þ τ2qω

2
: ð3Þ

Here, τq is the lifetime of the quasiparticle at energy
ℏξq ¼ uq − μ, where uq is the band dispersion and μ is
the chemical potential. ve is the electron “wind velocity,”
which is a linear combination of the phonon wind velocity
vph and the hydron wind velocity (or simply, liquid flow
velocity) vl:

veðqÞ ¼
τq

τph=eq

vph þ
τq

τh=eq

vl: ð4Þ

1=τph=eq and 1=τh=eq are the phonon and hydron contributions
to the total quasiparticle scattering rate 1=τq. This result is
valid under a few reasonable assumptions on the electronic
self-energy (see Sec. III), and as long as the electronic
structure has no band crossings close to the Fermi level.
Second, we predict a reduction of the hydrodynamic

friction λ coefficient due to the current generation. We
recall that the solid-liquid friction force is given by
F ¼ −λAvl, where A is the surface area. Accounting
for the current generation, λ is modified from its “bare”
value λ0 according to

λ ¼ λ0
1þ ðλh=ph þ τ

τph=e
λh=eÞ=λum

: ð5Þ

Here, λh=ph and λh=e are the phononic and electronic
contributions to the fluctuation-induced solid-liquid fric-
tion [12]; λum ¼ 3ζð3ÞT3=ð2πℏ2c4τumÞ has the dimension
of a friction coefficient, and is expressed in terms of the
sound velocity c in the solid, and the typical phonon
lifetime τum. We demonstrate that this friction reduction is a
quantum effect, that takes its roots in the solid’s electronic
excitations.
These results are derived in detail in the following sections.

In Sec. IV, we evaluate the flow-induced current for different
material systems and successfully compare our predictions
with experimental data [19]. In Sec. V, we show that the
correction to hydrodynamic friction in Eq. (5) can be non-
negligible and leads to significant hydrodynamic slippage in
systems where it would not typically be expected.

III. NONEQUILIBRIUM PERTURBATION
THEORY

A. Description in the Keldysh framework

We describe the system’s dynamics in terms of three
types of real-time Green’s functions: the retarded,
advanced, and Keldysh Green’s functions, defined, for
both bosons and fermions, according to
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GRðr; t; r0; t0Þ ¼ −iθðt − t0Þh½ψðr; tÞ;ψ†ðr0; t0Þ�si;
GAðr; t; r0; t0Þ ¼ iθðt0 − tÞh½ψðr; tÞ;ψ†ðr0; t0Þ�si;
GKðr; t; r0; t0Þ ¼ −ih½ψðr; tÞ;ψ†ðr0; t0Þ�−si; ð6Þ

where ψ† and ψ are the particles’ creation and annihilation
operators, and ½A;B�� ¼ AB� BA, s being þ for fermions
and − for bosons. The retarded and advanced Green’s
functions contain information on the system’s elementary
excitations. For noninteracting electronic quasiparticles in a
translationally invariant system at equilibrium, the Fourier-
transformed Green’s functions are

GR;A
0 ðq;ωÞ ¼ 1

ω − ξq � i0þ
; ð7Þ

where ℏξq ¼ uq − μ is the quasiparticle energy: uq is
the band dispersion and μ is the chemical potential.
The Keldysh Green’s function contains information on
the quasiparticle distribution. At equilibrium, it satisfies the
fluctuation-dissipation theorem:

GKðq;ωÞ ¼ 2i
fðωÞ Im½GRðq;ωÞ�; ð8Þ

where fðωÞ ¼ cotanhðℏω=2TÞ. Given its importance for
the subsequent discussion, we recall the derivation of
this result in Appendix A 1. For noninteracting electrons,
Eqs. (7) and (8) yield

GKðq;ωÞ ¼ ½2nFðωÞ − 1� × 2iπδðω − ξqÞ; ð9Þ

where we recover indeed the Fermi-Dirac distribution
nFðωÞ ¼ 1=ðeℏω=T þ 1Þ.
We use the letter D to denote bosonic Green’s functions.

For free bosons (such as phonons) with dispersion ωq at
equilibrium,

DR;A ¼ ωq

ðω� i0þÞ2 − ω2
q
: ð10Þ

The bosonic fluctuation-dissipation theorem reads (see
Appendix A 1)

DKðq;ωÞ ¼ 2ifðωÞIm½DRðq;ωÞ�; ð11Þ

so that, at equilibrium,

DK ¼ ½2nBðωÞ þ 1� × iπ½δðω − ωqÞ − δðωþ ωqÞ�; ð12Þ

where we recover the Bose-Einstein distribution nBðωÞ ¼
1=ðeℏω=T − 1Þ.
The Keldysh Green’s functions are therefore the analogs

of the occupation distribution functions in the approximate
Boltzmann formalism. They will be key in determining the

nonequilibrium state of the system. Indeed, as shown in
Appendix A 2, the current density (within one electronic
band) is given by

hji ¼ 2ie
Z

dqdω
ð2πÞ3 ð∇qξqÞGKðq;ωÞ: ð13Þ

In addition, the nonequilibrium density-density response
function, which will be required for obtaining the correc-
tion to the hydrodynamic friction coefficient, can be
computed starting from the nonequilibrium Green’s func-
tions (see Appendix C 1).

B. Dyson equation

Our task is now to compute the nonequilibrium Green’s
functions in the presence of the perturbations Hh=eðtÞ and
Hph=eðtÞ. In the Keldysh formalism, we consider the matrix
Green’s function:

G ¼
�
GR GK

0 GA

�
: ð14Þ

The perturbation series may be partially resummed by
introducing a (matrix) self-energy Σ. The Green’s function
then satisfies the nonequilibrium Dyson equation,

G ¼ G0 þG0 ⊗ Σ ⊗ G; ð15Þ
which is represented diagrammatically in Fig. 2(a). Here,⊗
represents convolution in space and time, as well as matrix
multiplication. We assume that the system is translationally
invariant parallel to the interface, and that it has reached a
steady state: we may then Fourier transform Eq. (15). With
the convolutions becoming products in Fourier space, and
using that GA

0 ðq;ωÞ¼GR
0 ðq;ωÞ� and ΣAðq;ωÞ¼ΣRðq;ωÞ�,

we obtain

GR;Aðq;ωÞ ¼ GR;A
0 − jGR

0 j2ΣA;R

j1 −GR
0ΣRj2 ; ð16Þ

GKðq;ωÞ ¼ GK
0 þ jGR

0 j2ΣK

j1 − GR
0ΣRj2 : ð17Þ

Using Eqs. (7) and (8) for the equilibrium Green’s
functions, we find that the first term in Eq. (17) vanishes
if the self-energy is nonzero. Then, recalling Eq. (13), we
obtain a first very general expression for the flow-induced
electric current (within a given electronic band):

hji ¼ 2ie
Z

dqdω
ð2πÞ3 ð∇qξqÞ

jGR
0 j2ΣK

j1 −GR
0ΣRj2 : ð18Þ

We note that this expression is valid far from equilibrium,
and that it allows for systematic inclusion of electron-
electron interactions.
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C. Nonequilibrium self-energy

In order to proceed, we need to evaluate the nonequili-
brium self-energy Σ. It contains contributions from both the
electron-phonon and electron-hydron interaction. We do
not consider here any contribution of electron-electron
interactions to the self-energy. We expect this to be
reasonable as long as electron-phonon and electron-hydron
scattering dominate electron-electron scattering, which is
typically the case at room temperature [35]. Neglecting
diagrams where the phonon and hydron propagators cross,
they may be computed separately: Σ ¼ Σh=e þ Σph=e.
Furthermore, the two contributions are in fact formally
identical, since both the phonons and the hydrons are free
bosons coupled to the electrons. Therefore, we only need to
compute a generic electron-boson self-energy, resulting
from a perturbation of the form given in Eq. (1).
We will consider a single diagram for this self-energy,

as shown in Fig. 2(b); we verify that higher order dia-
grams are indeed negligible under most conditions (see

Appendix B 5). We account for the electronic screening of
the bosonic propagator and boson-electron interaction ver-
tices within the random phase approximation [Figs. 2(c)
and 2(d)]. We will absorb the screened vertices into the
definition of the full bosonic propagator, that we denote
as D. The electric current, which is expressed in terms of
the Keldysh Green’s function evaluated at equal points in
space and time, can then be represented as a sum of “ice
cone” diagrams [Fig. 2(e)]. These diagrams are reminiscent
of the Aslamazov-Larkin diagrams [36] that typically
represent Coulomb drag in condensed matter systems
[37–39]. Their evaluation typically involves the computa-
tion of a nonlinear susceptibility (triangle diagram). In our
case, this complication can be avoided, as the nonequili-
brium self-energy can be readily evaluated.
Using the Keldysh formalism Feynman rules for the

boson-fermion interaction [40] (see Appendix B) we
obtain the components of the self-energy diagram in
Fig. 2(b) as

ΣR;Aðq;ωÞ ¼ −
Z

dq0dω0

ð2πÞ3 Mðq − q0;qÞ
�
fðω0 − q0 · vbÞ þ

1

fðξq−q0 Þ
�
Im½DRðq0;ω0 − q0 · vbÞ�
ω − ω0 − ξq−q0 � i0þ

; ð19Þ

ΣKðq;ωÞ ¼ 2iπ
Z

dq0

ð2πÞ3Mðq − q0;qÞ
�
1þ fðω − ξq−q0 − q0 · vbÞ

fðξq−q0 Þ
�
Im½DRðq0;ω − ξq−q0 − q0 · vbÞ�; ð20Þ

and using Im½1=ðϵþ i0þÞ� ¼ −πδðϵÞ yields

Im½ΣRðq;ωÞ� ¼ π

Z
dq0

ð2πÞ3 Mðq − q0;qÞ
�
fðω − ξq−q0 − q0 · vbÞ þ

1

fðξq−q0 Þ
�
Im½DRðq0;ω − ξq−q0 − q0 · vbÞ�: ð21Þ

Here, vb is the boson wind velocity and Mðq − q0;qÞ≡ jhq − q0je−iq0rjqij2 are matrix elements computed between the
electronic states jqi and jq − q0i. The fluctuation-dissipation theorem in Eq. (8) is therefore not satisfied for the
nonequilibrium self-energy. Nevertheless, we may always express the Keldysh component in the form

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Nonequilibrium diagrammatic expansion. (a) Dyson equation for the matrix Green’s functionG (thick line). The thin line is the
bare Green’s function G0. (b) First order self-energy diagram, which is computed for each of the electron-boson interactions. (c) Dyson
equation for the random phase approximation (RPA) screening of the boson propagator (dashed line). (d) Dyson equation for the boson-
electron vertex, within RPA. (e) Diagrammatic expansion for the electric current, which is related to the Keldysh Green’s function at
equal point in space and time. The square represents a gradient operator (multiplication by q in momentum space). (f) Notation for the
electron and boson Green’s functions. We have absorbed the RPA renormalization of the vertices into the definition of the bosonic
propagator.
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ΣKðq;ωÞ ¼ 2i
f½ω − q · veffðq;ωÞ�

Im½ΣRðq;ωÞ�; ð22Þ

which defines veff as a frequency- and momentum-
dependent effective wind velocity.
One can now evaluate explicitly the self-energy. The

calculations steps are detailed in Appendix B. In a few
words, we assume for simplicity that the liquid is water,
whose interfacial charge fluctuations are described in terms
of a surface response function. As demonstrated by the
extensive molecular dynamics simulations of Ref. [12], this
response function for water can be modeled as a sum of two
Debye peaks, so that

DR
wðq;ωÞ ¼ −

1

ℏ

VC
q

ϵðqÞ
X
k¼1;2

fk
1 − iϵðqÞω=ωD;k

; ð23Þ

where VC
q ¼e2=ð2ϵ0qÞ is the Fourier-transformed Coulomb

potential, ωD;1≈1.5 meV and ωD;2≈20 meV are the
Debye frequencies, f1;2 are the corresponding oscillator
strengths, and ϵðqÞ is the RPA dielectric function of the
electronic system, that accounts for the screening of the
interaction vertices. These results can be extended to any
other liquid using a relevant description of their response
function. The acoustic phonon propagator can be written
as [41]

DR
phðq;ωÞ ¼

1

ℏ
Vph=e
q

ω2
q

ðωþ i0þÞ2 − ω2
q
; ð24Þ

with ωq ¼ cq, c being the phonon velocity, and Vph=e
q is the

material-dependent screened electron-phonon interaction.

For the description of the electronic system, we consider
two different models: a two-dimensional electron gas
(2DEG) with an effective mass m, and graphene, treated
within the Dirac cone approximation, characterized by the
constant Fermi velocity vF. We refer to Appendix B for the
details on the associated electronic structure and dielectric
properties. Both models are assumed invariant by trans-
lation. The crystallographic structure of solid then appears
only in the electronic propagator. More realistic models of
solid may also be implemented in the theory, at the cost of
higher technicality in the calculations.
The results of these calculations are summarized in

Fig. 3. Figure 3(a) shows the imaginary part of the retarded
self-energy at the Fermi level, Im½ΣRðq¼ kF;ω¼ 0Þ�, com-
puted by numerical integration according to Eq. (21), where
we have separated the hydron and phonon contributions.
This quantity represents the scattering rate of the low-
energy electronic quasiparticles. The electron-hydron
interaction, as well as the electron-phonon interaction in
the 2DEG, are essentially screened Coulomb interactions
and they yield a similar order of magnitude for the
associated scattering rate. On the other hand, the elec-
tron-phonon interaction in graphene has a peculiar form
(see Appendix B 3), so that the corresponding scattering
rate is 2–3 orders of magnitudes lower. This will have an
importance for the global momentum balance discussed
in Sec. IV C.
For the purpose of computing the Coulomb drag current,

we need to determine how the electron-boson scattering
affects the electronic distribution function, that varies
typically over a scale T around the Fermi level. If the
boson energy is much smaller than T, we may approximate
it as 0: the electrons then see a random static impurity

FIG. 3. Nonequilibrium self-energy. (a) Imaginary part of the electron-boson self-energy (at the Fermi level) for the four electron-
boson couples discussed in the text, as a function of the charge carrier (electron or hole) density. Electron-phonon and electron-hydron
scattering occur at a similar rate in the 2DEG model, whereas in graphene electron-hydron scattering is much more efficient than
electron-phonon scattering. (b). Same as in (a), but plotted as a function of frequency: ω ¼ 0 corresponds to the Fermi level. The
relatively weak variations within the thermal window (gray rectangle) justify the use of the impurity approximation. (c) Deviation of the
effective electronic wind velocity (defined in the text) from the bosonic wind velocity, as a function of the latter’s magnitude.
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potential. Within this impurity approximation, we further
assume

Im½ΣRðq;ωÞ� ≈ Im½ΣRðq; ξqÞ�≡ −1=τq;

Re½ΣRðq;ωÞ� ≈ 0: ð25Þ

Then, as detailed in Appendix B 3, the electron-boson
scattering rate can be computed as

1

τq
¼ π

T
ℏ2

Z
dq0

ð2πÞ2 Vq−q0δðξq − ξq0 Þ; ð26Þ

where V is the electron-boson interaction. Figure 3(b)
shows the frequency dependence of the scattering rate
(imaginary part of the self-energy) at q ¼ kF, at a fixed
chemical potential μ¼ 100 meV for both 2DEG and
graphene. One observes that the variation of the self-energy
in a window of width 2T around zero frequency [gray
rectangle in Fig. 3(b)] is relatively weak, justifying the use
of the impurity approximation [dashed lines in Fig. 3(b)] in
the following computations.
If one neglects the angular dependence of the integrand

in Eq. (26), the scattering rate assumes an intuitive Fermi
golden rule form:

1

τq
≈ π

T
ℏ
VqNðuqÞ; ð27Þ

where NðuqÞ is the density of states at energy uq. Here, the
quantity ℏωbVq=A plays the role of the squared matrix
element, and T=ℏωb is the number of bosonic modes on
which the electrons can scatter,ℏωb being the typical bosonic
energy (see Appendix B 4 for a detailed derivation).
The simplified expression in Eq. (27) allows us to

understand the scalings observed in Figs. 3(a) and 3(b).
The frequency dependence of the self-energy [Fig. 3(b)] is
roughly consistent with it being proportional to the density
of states, which is independent of energy in the 2DEG
[NðuÞ ¼ θðuÞ ×m=ℏ2] and proportional to the energy in
graphene [NðuÞ ¼ θðuÞ × 2u=ðπℏÞ, for the upper Dirac
cone]. In a 2DEG with reasonable electronic density, the
screening length is much shorter than the Fermi wave-
length, so that for q ∼ kF, Vq ≈ 1=½2NðuqÞ�: we then obtain
a “Planckian” scattering time τq ≈ 2ℏ=πT [42]. This result
could be expected on dimensional grounds. Indeed, once
the boson energy has been neglected, the temperature is the
only energy scale in the problem. The electron-boson
scattering rate evaluated at the Fermi momentum is then
expected to be nearly independent of electronic density, as
observed in Fig. 3(a). The situation is different in graphene,
where the screened Coulomb potential scales like 1=q for
q ∼ kF and the density of states NðuqÞ ∝ q since
uq ¼ ℏvFq. Therefore, we expect again the self-energy
to weakly depend on the momentum (hence, the electronic

density) for the electron-hydron scattering. For the elec-
tron-phonon scattering, where the effective potential does
not depend on q, we expect τq ∝ 1=q, so that τkF ∝ n−1=2,
consistently with Fig. 3(a).
We now come back to the Keldysh component of the

self-energy, which we evaluate numerically according
to Eq. (20). We then compute the effective electronic
velocity veff defined in Eq. (22), at q ¼ kF and ω ¼ 0.
The deviation of veff from the boson wind velocity vb is
plotted in Fig. 3(c) as a function of vb, for the different
electron-boson couples. While the liquid flow velocity can
be as low as 1 μm=s, we will find that phonon wind
velocities can reach thousands of m/s. For this whole range
of boson velocities vb we find that veff remains within 5%
of vb, with a stronger deviation appearing only for vb in
excess of 1 km s−1. We may therefore safely assume
veff ≈ vb, and evaluate ΣK according to a quasiequilibrium
fluctuation-dissipation theorem:

ΣKðq;ωÞ ¼ 2i
fðω − q · vbÞ

Im½ΣRðq;ωÞ�; ð28Þ

which differs from the equilibrium version only by the
frequency shift q · vb. We note here the power of the
Keldysh framework, which allows us to control the appro-
ximation leading to Eq. (28), and potentially explore
conditions where it no longer holds.

D. Quasiequilibrium state

When Eq. (28) is satisfied for all electron-boson self-
energies Σj, we will say that the system is in a quasiequili-
brium state. Within the impurity approximation, we denote
Im½Σj� ¼ −1=τjq; then, τ−1q ¼ P

jðτjqÞ−1 is the total electron
scattering rate at the energy ξq. Equations (16) and (17) for
the nonequilibrium Green’s functions now become

GRðq;ωÞ ¼
P

jRe½Σj� þ iτ−1q
ðω − ξqÞ2 þ τ−2q

; ð29Þ

GKðq;ωÞ ¼ 2i
f½ω − q · veðqÞ�

τ−1q
ðω − ξqÞ2 þ τ−2q

; ð30Þ

where the electron wind velocity defined as

veðqÞ ¼
X
j

τq

τjq
vj ð31Þ

is a convex combination of the different boson wind
velocities vj; Eq. (30) is valid as long as these are small
compared to the Fermi velocity. We note that we may
include static impurities as an additional scatterer with zero
velocity. Physically, each bosonic wind blows on the
electrons through its electron-boson interaction. Each
bosonic velocity contributes to the total wind velocity with
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a weight that is given by the corresponding electron-boson
scattering rate.
We therefore find that the nonequilibrium Green’s

function satisfies the same quasiequilibrium fluctuation-
dissipation theorem as the individual self-energies:

GKðq;ωÞ ¼ 2i
f½ω − q · veðqÞ�

Im½GRðq;ωÞ�: ð32Þ

Equations (29) and (32) provide a complete picture of the
nonequilibrium electronic state. Because of the scattering
on the different bosons, the spectral function is broadened,
and acquires a width τ−1q . In addition, the occupation of
the broadened states undergoes a Doppler shift q · ve with
respect to the equilibrium Fermi-Dirac occupation. This
becomes apparent if one evaluates the actual electronic
density in energy-momentum space (see Appendix A 2):

neðq;ωÞ ¼
GKðq;ωÞ

2i
þ Im½GRðq;ωÞ�; ð33Þ

which reduces to

neðq;ωÞ ¼ nF½ω − q · veðqÞ�
2τ

1þ τ2ðω − ξqÞ2
; ð34Þ

where nFðωÞ ¼ 1=ðeℏω=T þ 1Þ is the Fermi-Dirac distribu-
tion. The electrons appear to acquire an average velocity
equal to the electron’s wind velocity, which corresponds
precisely to the electric current that we evaluate in the next
section.
We make one last remark concerning the electron

density-density response function. Starting from its expres-
sion in terms of the Green’s functions, we demonstrate
in Appendix C 1 that it satisfies a quasiequilibrium fluc-
tuation-dissipation theorem as long as the Green’s func-
tions satisfy one:

χKe ðq;ωÞ ¼ 2if½ω − q · veðqÞ�Im½χRe ðq;ωÞ�: ð35Þ

This result will be important for the evaluation of fluc-
tuation-induced friction forces in the next section.

IV. FLOW-INDUCED ELECTRIC CURRENT

A. General expression

Starting from the formal expression in Eq. (13), and
using the quasiequilibrium Green’s function in Eq. (30), we
immediately obtain, after angular integration and to first
order in the wind velocity, an explicit expression for the
flow-induced electronic current:

hji ¼ eℏ
T

Z þ∞

−∞

dω
2π

Z þ∞

0

dq
2π

q2ð∇qξqÞveðqÞ
cosh2½ℏðωþξqÞ

2T �
τq

1þ τ2qω
2
:

ð36Þ

The wind velocity veðqÞ is given by Eq. (31). In the
presence of electron-hydron, electron-phonon, and elec-
tron-impurity scattering, it explicitly writes

veðqÞ ¼
τq

τph=eq

vph þ
τq

τh=eq

vl; ð37Þ

where 1=τq ¼ 1=τph=eq þ 1=τh=eq þ 1=τimq , the last term being
the impurity scattering rate.
We thus obtain our first main result, as anticipated in

Sec. II: we predict current generation in the solid due to the
flow of a neutral liquid.

B. Comparison with literature results

To our knowledge, our result in Eq. (36) is not found in
the literature. Its closest analog is the general expression for
solid-solid Coulomb drag, Eq. (15) in Ref. [24], since it is
derived at the same level of theory. However, the solid-solid
result is not directly applicable to the solid-liquid case,
since it involves a nonlinear current-voltage response
function, which is not defined for a liquid that is assumed
insulating within our model. The result in Eq. (36) is in fact
simpler, because, as compared to the solid-solid case, one
of the interacting fermionic systems is replaced with a free
bosonic field. We note that, recently, a theory of Coulomb
drag has been developed for a system of two graphene
sheets where the electrons are in the hydrodynamic
regime [43]. However, the analogy with our system is
mostly semantic, as the fluctuations of an electron liquid
are very different from hydron modes, which are similar to
strongly damped optical phonons.
In the framework of fluctuation-induced electromagnetic

phenomena, Volokitin and Persson have proposed an
expression for the electric field E induced in a 2D electron
gas by a liquid flowing along its surface [26]. They
considered only the contribution of direct Coulomb inter-
actions, and did not include any phonon effects. Under the
assumption that this electric field equilibrates the solid-
liquid quantum friction force, they obtain neE ¼ λh=evl,
where n is the electron density in the 2DEG and λh=e is the
quantum friction coefficient (see Table I). In order to
convert this to a current density, one has to assume a
Drude-like conductivity for the 2DEG, σ ¼ ne2τ=m, where
τ is a momentum-independent relaxation time and m is the
effective mass. Then, using Ohm’s law j ¼ σE, one obtains

j ¼ eτ
m

λe=hvl: ð38Þ

Even under the assumption of momentum-independent
relaxation times and a parabolic band structure, we find that
the direct Coulomb contribution in Eq. (36) does not reduce
to Eq. (38). Indeed, if we further assume a quasiparticle
scattering rate that is small compared to the thermal energy
ℏ=τ ≪ T, the Coulomb contribution in Eq. (36) becomes
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hji ¼ eτ
m

×
Z

d2q
ð2πÞ2 ℏq

�
πq

cosh2½ℏξq
2T �

�
1

τe=h
vl ≡ eτ

m
λ�e=hvl:

ð39Þ

Comparing to Eq. (38), we may identify an effective
friction coefficient λ�e=h, whose expression differs from
the usual λe=h as obtained, for example, in Ref. [12] [see
also Eq. (53)]. In particular, the photon tunneling rate is
given by the liquid’s contribution to the electronic self-
energy, 1=τe=h ≡ ImΣh, rather than by the overlap of
surface excitation spectra; the two expressions would in
fact be equivalent only if the electrons were noninteracting.
We conclude that the microscopic Keldysh formalism

approach was instrumental in obtaining a rigorous descrip-
tion of electronic current generation by liquid flow. We
would like to stress the generality of the approach, since it
formally allows for any interactions to be taken into
account to any desired level of precision. Our most general
result is in fact given by Eq. (18), where the electric current
is expressed in terms of the electronic self-energy. This self-
energy may be computed within various numerical schemes
(in particular, diagrammatic Monte Carlo [31–33]), and
thus the solid-liquid Coulomb drag maybe studied within
regimes where our impurity or quasiequilibrium approx-
imations no longer hold.

C. Wind velocity: Global momentum balance

In order to evaluate the current in Eq. (36), we require
one last ingredient, which is the velocity vph of the phonon
wind. As mentioned in Sec. II, we evaluate it self-
consistently, by enforcing momentum conservation in the
solid-liquid system.
In the stationary state, the phonons accumulate a

momentum that we denote ΔPph. We model this momen-
tum accumulation by giving all the phonons an average
velocity vph: this means shifting the phonon distribution
according to

nphðq;ωÞ ¼ nBðω − q · vphÞ × 2πδðω − cqÞ; ð40Þ

where nBðωÞ ¼ 1=ðeℏω=T − 1Þ is the Bose-Einstein distri-
bution and c is the sound velocity. Then,

ΔPph

A
¼

Z
d2q
ð2πÞ2 ℏqnBðqc − q · vphÞ; ð41Þ

which becomes, to first order in vph,

ΔPph

A
¼ 3ζð3Þ

2π

T3

ℏ2c4
vph; ð42Þ

ζ being the Riemann function. The contributions to the
momentum flux in and out of the phonon system are
summarized in Fig. 4(a), and the associated notations
are detailed in Table I. The phonons receive momentum
from the flowing liquid through the classical, roughness-
induced contribution to the hydrodynamic friction force,
F0 ¼ λ0Avl, and through the phononic contribution Fh=ph

to fluctuation-induced friction [12]. In Appendix C 2, we
extend the framework of Ref. [12] to account for the
nonequilibrium state of the solid, and show that as long as
the quasiequilibrium fluctuation-dissipation theorem
[Eq. (35)] holds for the system’s density response func-
tions, the fluctuation-induced friction force is proportional
to the differential velocity:

Fh=ph ¼ λh=phAðvl − vphÞ: ð43Þ

We note that, conversely, F0—the classical, roughness-
induced friction—does not depend on the phonon velocity:
indeed, it originates largely in defects on the solid’s surface,
which do not move even if the phonons accumulate
momentum.
The phonons lose momentum mainly through umklapp

processes; we denote τum the corresponding relaxation time.
Formally, in an umklapp process, the interference ofmultiple
phonons converts their momentum into a global translation
of the crystal lattice. In practice, however, the 2D material
layer remains fixed, and the momentum is transferred to the
underlying substrate, which we do not describe explicitly.
The momentum lost by the phonons per unit time and unit
area through umklapp processes is therefore

TABLE I. Forces in the solid-liquid system. List of interactions that may transfer momentum between the different components of the
solid-liquid system, and notations for the associated forces, friction coefficients, and scattering times.

Interaction Momentum transfer Force Scattering time

Classical friction Liquid → Phonons F0 ¼ λ0Avl
Phonon-hydron interaction Liquid ↔ Phonons Fh=ph ¼ λh=phAðvl − vphÞ
Electron-hydron interaction Electrons ↔ Liquid Fh=e ¼ λh=eAðvl − veÞ τh=e
Electron-phonon interaction Phonons ↔ Electrons Fph=e ¼ λph=eAðve − vphÞ τph=e
Umklapp processes Phonons → Crystal Fum ¼ ΔPph=τum ¼ λumAvph τum
Impurities Electrons → Crystal Fim ¼ ΔPe=τim τim

Total friction Liquid → Phononsþ Electrons F ¼ λAvl ¼ ðλ0 þ δλÞAvl
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Fum

A
¼ ΔPph

τumA
¼ 3ζð3Þ

2π

T3

ℏ2c4τum
vph ≡ λumvph; ð44Þ

where we have defined the umklapp friction coefficient λum.
In graphene, τum≈10 ps [44] and c ≈ 2 × 104 m=s [45–47],
so that λum ≈ 2 N sm−3. In addition, the phonons lose
momentum through quantum friction with the conduction
electrons, which is analogous to the water-electron quantum
friction studied in Ref. [12], with the Coulomb interaction
being replaced by the electron-phonon interaction. This type
of friction is also known as a current-induced force in the
context of nanoscale electron transport [48]. The correspond-
ing momentum flux is Fph=e ¼ λph=eAðvph − veÞ. In a steady
state, the incoming and outgoing momentum fluxes (or
forces) must compensate:

F0 þ Fh=ph ¼ Fum þ Fph=e: ð45Þ

Using Eq. (37) for the electronic velocity ve, we then obtain
explicitly the phonon wind velocity as

vph ¼
λ0 þ λh=ph þ τ

τh=e
λph=e

λum þ λh=ph þ ð1 − τ
τph=e

Þλph=e
vl: ð46Þ

This formula is consistent with the roughness-induced
friction (with coefficient λ0) being a momentum source,
and the umklapp processes (with equivalent friction

coefficient λum) being a momentum sink. We do not have
a practical way of evaluating the acoustic phonon contribu-
tion λh=ph to the fluctuation-induced friction. Nevertheless,
guided by the qualitative ideas of Ref. [12], we expect it to be
very small, since it is associated with in-plane lattice
displacements at wavelengths much larger than the atomic
spacing, that have short-range contact interactions with
the liquid. Henceforth, we will assume it to be negligible
compared to λum and λ0. The electron-phonon friction
coefficient, on the other hand, is evaluated explicitly in
Sec. V, and we find that λph=e ≪ λ0 under all practical
conditions; it is, however, comparable to λum at large
electronic density. Therefore, in the absence of impurities,
the phonon wind velocity may be simplified, after some
rearrangements, to

vph ≈
λ0

λum þ λph=eτ=τh=e
vl: ð47Þ

Typically, on a molecularly rough surface, the roughness-
induced friction coefficient is of order λ0 ∼ 105–106 N sm−3
[1], so that vph ≫ vl: the phonon velocity is orders of
magnitude larger than the flow velocity. Figure 4(b) shows
the phonon and electron wind velocities (normalized by vl)
as a function of the electronic density. Under all practical
conditions the phonon wind is faster than the electron wind,
whosevelocity is reduced by the electron-hydron interaction.

FIG. 4. Momentum balance. (a) Diagram representing the momentum fluxes in the solid-liquid system, separated into four
subsystems, represented by the rectangular boxes. The liquid (flowing at velocity vl) is a momentum source, and the “crystal” is a
momentum sink. The momentum fluxes in and out of the phonon and electron subsystems need to be balanced in the steady state. The
phonons (electrons) accumulate a momentum ΔPph (ΔPe), corresponding to a Doppler shift ℏqvph (ℏqve) of their momentum
distribution. τum is the phonon umklapp scattering time and τim is the electron impurity scattering time. (b) Phonon and electron wind
velocities (normalized by the liquid velocity) as a function of the electronic density, for λum ≈ 2 Nsm−3 and λ0 ¼ 2 × 106 N sm−3.
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This results in the electron-hydron interaction actually
making a negative contribution to the Coulomb drag, as
explained in the next section.
One may draw an analogy between current generation by

hydrodynamic Coulomb drag and current generation
through the photoelectric effect. The former benefits from
strong electron-phonon interactions, as those help transfer
momentum from the liquid to the electrons. Conversely,
the latter is suppressed by electron-phonon scattering, as
phonon drag slows down the photogenerated charge
carriers: reducing phonon drag is a key challenge in the
engineering of Perovskite materials, which are the state of
the art for photoelectric panels [49–51]. Such a comple-
mentarity calls for further studies of the potential interplay
between these two phenomena.

D. Quantitative estimates: Coulomb drag
versus phonon drag

We are now in position to evaluate the electronic current
according to Eqs. (36) and (37). In order to make
quantitatives estimates, we will use λum ≈ 2 N sm−3 as
computed for graphene in the previous section, and

λ0 ¼ 2 × 106 N sm−3, which is reasonable for water
on a large area exhibiting some ripples and defects.
Furthermore, we make use of the values for λph=e computed
in Sec. V B. Then, at not too large electronic density,
vph ≈ ðλ0=λumÞvl ∼ 106vl. As in Sec. III, we will consider
two models for the electronic structure and electron-phonon
interaction: a two-dimensional electron gas with an effec-
tive mass m, and graphene, treated within the Dirac cone
approximation, characterized by the constant Fermi veloc-
ity vF. In addition, wewill consider a model of a direct band
gap semiconductor as the combination of an electron gas
and a hole gas. For the two-band systems we will evaluate
the total current as the sum of the currents in the two
bands, which amounts to neglecting interband scattering.
Figure 5 shows schematics of the three-band structures
under consideration.
We define the electrofluidic conductivity as

σef ≡ hji
vl

: ð48Þ

We plot in Figs. 5(a)–5(c) the electrofluidic conductivity as
a function of the chemical potential μ. One first notes the

FIG. 5. Coulomb drag current. Electrofluidic conductivity σel ¼ hji=vl as computed with Eq. (36), for different models of the solid’s
band structure. (a) Two-dimensional electron gas, with different values of the effective massm (expressed in units of electron mass me).
(b) Semiconductor with electron and hole massesm ¼ 0.1me, and band gap 2ug. (c) Graphene, with constant Fermi velocity in the Dirac
cone approximation. In (a)–(c) we assumed ðλ0=λumÞ ¼ 106. The dashed lines correspond to the prediction of Eq. (49), with no chemical
potential dependence of the electronic wind velocity.
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difference in scaling of σef with μ between the three model
systems. These scalings are most conveniently understood
in the limit of weak interactions and low temperature
ℏ=τkF ≪ T ≪ μ. The first inequality means that the broad-
ening of the electronic distribution due to electron-boson
scattering is negligible compared to the thermal broad-
ening. The second inequality means that the Fermi-Dirac
distribution is well approximated by a step function.
Equation (36) accordingly simplifies to

hji ≈ 2evFNðμÞ × ℏkFveðkFÞ; ð49Þ

where NðμÞ is the density of states at the Fermi level. The
effect of the temperature appears to cancel out, leaving us
with a transparent expression that is intuitive in a zero-
temperature picture of Coulomb drag. The current is the
electronic charge times the electronic velocity (which is the
Fermi velocity) times the charge carrier density contribut-
ing to the current. The latter is the density of states at the
Fermi level times the energy range around the Fermi level
in which the charge carriers can contribute to the current:
this is given by the “Doppler shift” ℏkFve.
In the 2DEG, the density of states NðμÞ ¼ m=ℏ2 is

independent of chemical potential, and vFkF ∝ μ: one
expects a linear scaling of σef with μ when μ ≫ T. A
correction to this scaling comes from the chemical potential
dependence of the electron-phonon friction coefficient:
λph=e ∝ μ (see Appendix C 3), which contributes to reduc-
ing the phonon wind velocity at high μ [see Fig. 4(b)]. As a
consequence, the current is expected to saturate at high
chemical potential. Our model for the semiconductor is a
combination of two-dimensional electron and hole gases;
therefore, a linear scaling of σef is obtained for both positive
and negative chemical potential [Fig. 5(b)]. The electro-
fluidic conductivity is suppressed when the chemical
potential is within the band gap because of the lack of
charge carriers, similarly to the 2DEG at negative chemical
potential. In graphene, NðμÞ ∝ μ, kF ∝ μ, and vF is
independent of μ: we thus expect σef ∝ μjμj (the sign of
σef reflects the nature—electron or hole—of the charge
carriers). Figure 5(c) shows a slight deviation from this
quadratic scaling, which is due to the dependence on
chemical potential of the electron-phonon scattering time
that contributes to the wind velocity ve [see Figs. 3(c)
and 4(b)]. We note that we consider here a simplified model
of graphene that neglects interband scattering, or any effect
of charge inhomogeneities that could cause a nonvanishing
Coulomb drag current at charge neutrality [52,53].
In the electron gas model, σef is tunable by the charge

carrier effective mass. As the effective mass increases, the
Fermi velocity is reduced, but the density of states and the
Fermi momentum increase: the latter dominate, and overall,
at low enough chemical potential (μ≲0.2 eV) σef ∝ m.
However, at larger chemical potential, the electron-phonon
friction coefficient, that scales as m2 (see Appendix C 3),

reduces the phonon wind velocity [see Fig. 4(b)], so that
σef ∝ 1=m. These scalings, illustrated in Fig. 5(b), suggest
that flatband materials are likely to exhibit a significant
hydrodynamic Coulomb drag effect.
At similar chemical potential, the electrofluidic conduc-

tivity is found to be about 2 orders of magnitude larger in
the 2DEG than in graphene. For instance, at μ ∼ 100 meV,
σef ≈ 20 nA s μm−2 for the 2DEG and σef ≈ 0.1 nA s μm−2
for graphene. This difference is mainly due to the wind
velocity ve, which is determined according to Eq. (37) from
the phonon wind velocity vph and the flow velocity vl, with
vph ≫ vl [see Fig. 4(b)]. In the 2DEG the electron-phonon
and electron-hydron scattering times are similar, so that
ve ≈ vph=2. In graphene, the electron-hydron scattering is
much faster than the electron-phonon scattering, so that
ve ∼ 10−2vph ≫ vl. Thus, despite the different orders of
magnitude, the phonon drag is the main driving force for
the electronic current in both model systems. However, this
does not imply that the electron-hydron interactions are
negligible: in fact, they reduce the “bare” phonon drag
current by a factor of 2 in the 2DEG and by a factor of 102

in graphene, by providing a supplementary momentum
relaxation pathway for the electrons. In other words, the
electron-hydron interaction makes a negative contribution
to the Coulomb drag. This effect is at the root of the
quantum feedback phenomenon discussed in Sec. V.

E. Comparison with experiment

Lastly, we compare the quantitative estimates obtained
from our model with the results of the companion exper-
imental paper (Ref. [19]). In Ref. [19], an atomic force
microscope is used to deposit a liquid droplet on the surface
of a strongly wrinkled multilayer graphene sample, con-
nected to two metallic electrodes. When the droplet is set in
horizontal motion (at a velocity vdrop), an electric current is
generated in the sample [see Fig. 6(a)]. The roughness-
induced friction force (per unit area) can be estimated as
Fdrop ¼ λ0vdrop, with λdrop ≈ 3 × 106 Nsm−3 ×W [19],
where W ≈ 10 is a dimensionless parameter (dubbed
wrinkling number) accounting for the wrinkle density.
We note that vdrop may be different from the interfacial
velocity vl used as an input parameter in our theory,
depending on the hydrodynamic flow profile within the
drop. However, we do not need to explicitly determine vl
since the wind velocity ve is dominated by the phonon wind
vph. Because of the strong wrinkling, we choose to model
the multilayer graphene sample as a zero-gap semiconductor
with effectivemassm� ¼ 0.1me,me being the electronmass.
Then, since the experimental electronic density remains
low, ve ≈ vph=2 ≈ Fdrop=ð2λumÞ. At a chemical potential
μ ¼ 20 meV, the experimentally measured electrofluidic
conductivities are in the range 2–8 nA s μm−2, which is
reproduced by our theoretical prediction [Eq. (36)], for the
wrinkling number W in the range 5–20 [see Fig. 6(b)].
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Experimentally, the chemical potential is set by the bias ΔV
applied between a grounded electrode and a working
electrode: μ ≈ ΔV=2. Thus, the zero-gap semiconductor
model accounts for the experimentally observed linear
scaling of σef with the dc bias voltage.
Overall, our theory is quantitatively consistent with the

experiments of Ref. [19] and is able to account for the
particularly strong Coulomb drag currents (in the 10 nA
range) that were generated by the motion of a micrometer-
sized droplet at a few μm=s. The key factor that is res-
ponsible for a strong current is the hydrodynamic friction
force, which is large in the experiments of Ref. [19] due to
the high viscosity of the liquids used and the wrinkling of
the sample surface: this results in an efficient transfer of a
significant amount of momentum to the sample’s phonon
modes. The crucial role of phonons is further supported by
the fact that the effect could be observed with a nonionic
silicon oil, where liquid-electron Coulomb interactions are
negligible.

V. QUANTUM FEEDBACK AND CURRENT-
INDUCED NEGATIVE FRICTION

A. Derivation

Our analysis in Sec. IV revealed that the hydrodynamic
Coulomb drag current is determined by a subtle combina-
tion of electron-phonon and electron-hydron interactions.
Indeed, the electron-hydron scattering provides a supple-
mentary momentum relaxation pathway for the electrons,
which prevents them from aligning to the phonon wind
velocity. This immediately implies that the electrons
actually transfer momentum to the flowing liquid: they
make a negative contribution to the hydrodynamic friction
force, as shown schematically in Fig. 7. In this section, we
explicitly evaluate this negative contribution and assess its
practical consequences.
The liquid interacts with the solid through the classical

roughness-induced friction force F0, and through the
phononic and electronic contributions to the fluctuation-
induced (quantum) friction Fh=ph and Fh=e, respectively.
The total hydrodynamic friction coefficient λ is then
defined according to

λAvl ¼ F0 þ Fh=ph þ Fh=e: ð50Þ

Introducing the individual friction coefficients as in
Sec. IV B (see Table I for notations),

λvl ¼ λ0vl þ λh=phðvl − vphÞ þ λh=eðvl − veÞ: ð51Þ

In the limit where λ0 dominates all other friction coef-
ficients, and using Eqs. (37) and (47) for the velocities ve
and vph, a rearrangement yields:

λ ¼ λ0 − δλ with δλ ¼ λ0

1þ λumþ τ
τim

λph=e
λh=phþ τ

τph=e
λh=e

; ð52Þ

where we have included the possibility for the electrons to
lose momentum through impurity scattering (at a rate τ−1im ).
This is our second key result, anticipated in Sec. II.
Strikingly, δλ represents a negative contribution to hydro-
dynamic friction. It is, however, always smaller than λ0, so
that the total friction coefficient remains positive, and
there is no violation of the laws of thermodynamics. But a
key observation is that it becomes equal to λ0 in the
absence of impurity or umklapp scattering. This amounts
to formally considering a solid that is unable to relax
momentum: then, even if the solid has a rough surface, all
the momentum the liquid loses through the classical
friction F0 is sent back by the solid’s electronic and
phononic fluctuations, so that the total friction vanishes.
In practice, however, there is always some amount
of momentum relaxation that keeps the friction from
vanishing. The net reduction in hydrodynamic friction

(a)

(b)

FIG. 6. Comparison with the experiment of Lizée et al. [19].
(a) Schematic of the experimental setup. Thanks to an atomic
force microscope (AFM), a liquid droplet is deposited onto the
surface of a multilayer graphene sample connected to two
metallic electrodes. Actuation of a piezoelectric scanner results
in motion of the drop on the carbon surface at a velocity vdrop.
(b) Quantitative comparison between the experimental data for
the electrofluidic conductivity σef from three different devices
and theoretical predictions, parametrized by the wrinkling num-
ber W that account for the wrinkle density on the sample surface.
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is ultimately obtained by balancing the relaxation proc-
esses (umklapp and impurity scattering) and the processes
that allow the solid to return momentum to the liquid: the
phonon-hydron and electron-hydron interactions, the
latter corresponding to quantum friction [12].
In order to go beyond a qualitative discussion, we

evaluate the electron-hydron and electron-phonon friction
coefficients in the framework of Ref. [12]. A general
electron-boson friction coefficient is given by

λb=e ¼
ℏ2

8π2T

Z
∞

0

dωdq

sinh2ðℏω
2TÞ

q3
Im½χRe �Im½DR�
j1 − χReDRj2 ; ð53Þ

where DR is the retarded bosonic propagator in which
the electron-boson interaction has been absorbed (see
Sec. III). We evaluate Eq. (53) by numerical integration
for both the graphene and 2DEG model systems, using
zero-temperature RPA expressions for the electronic sus-
ceptibility [54,55]. The results are plotted in Fig. 7(b) as a
function of the electronic density. The relative values of the
friction coefficients are consistent with the respective
scattering times: indeed, one roughly expects λb=e ∝ τ−1b=e
(see Appendix C 3). In particular, in the graphene case
λph=e ≪ λum ≈ 2 Nsm−3 for all reasonable electronic den-
sities, while in the 2DEG model this is true only for low
enough electronic densities.
In any case the term proportional to λph=e in Eq. (52) is

negligible in the limit of low impurity scattering:
1=τim → 0. If we further assume λh=ph ≪ ðτ=τph=eÞλh=e
following the argument of Sec. IV B, Eq. (52) simplifies to

λ ¼ λ0 − δλ with δλ ¼ λ0
1þ τph=e

τ
λum
λh=e

: ð54Þ

The resulting estimate for δλ is plotted in Fig. 7(c). In doped
graphene, with an electronic density 1014 cm−2, we find
that the negative quantum contribution reduces the hydro-
dynamic friction by about 12%. In a 2DEG with parabolic
dispersion, the quantum contribution to friction is stronger,
so that at the same electronic density (and taking thegraphene
value for λum) the friction reduction is nearly 80%.

B. Discussion

According to Eq. (54), the negative contribution to
friction represents a quantum feedback of the solid on
the liquid flow: it originates from electronic excitations
returning momentum that the liquid has lost due to the
surface roughness. It is significant if the quantum friction
coefficient λh=e is non-negligible compared to the umklapp
friction coefficient. This is not a very stringent requirement:
it is in fact satisfied for our two model systems, at least in
part of the considered electron density range.
The negative quantum friction effect is thus predicted to

be quantitatively important. It complements the picture of
quantum hydrodynamic friction developed in Ref. [12],
where the solid was assumed to remain in an equilibrium
state. This was justified in particular for a truly semi-
infinite solid, where the surface can quickly transmit
momentum to the bulk. In a 2D material that is weakly
coupled to the underlying substrate, we find that momen-
tum accumulation and the resulting Coulomb drag current

FIG. 7. Quantum feedback and current-induced negative friction. (a) Schematic representation of the quantum feedback phenomenon:
a fraction of the momentum transferred to the solid by classical friction is returned to the fluid by the solid’s internal excitations.
(b) Electron-boson friction coefficients as a function of the electron density for a 2DEG with m ¼ 0.1me and graphene, evaluated
according to Eq. (53). The calculations have been carried out using the electronic susceptibilities in the zero-temperature limit and in
the RPA approximation. (c) Hydrodynamic friction coefficient λ (in units of the classical contribution λ0) for a 2DEG with m ¼ 0.1me
and graphene.
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are non-negligible. As electrons receive momentum from
the liquid through the phonon-mediated interaction, they
begin to move faster than the liquid, thus helping it flow
along the surface and reducing the total hydrodynamic
friction force. In this way, quantum friction can play a
significant role even on non-atomically-flat surfaces.
Negative quantum friction may provide a clue as to

why the experimentally measured water friction on gra-
phene [56] appears to be much lower than what is predicted
by essentially all molecular simulations [57–60]. Even in
ab initio simulations at the Born-Oppenheimer level, it is
not possible to account for Coulomb drag or fluctuation-
induced quantum friction. Nevertheless, our quantitative
estimates cannot account for the full extent of the discrep-
ancy, and the specific case of water on pristine graphene
will be the subject of further investigation.
Ultimately, negative quantum friction provides a pre-

viously unexplored pathway for designing surfaces with
low hydrodynamic friction. Friction reduction is first
achieved by minimizing momentum relaxation in the solid:
the best-case scenario is a suspended 2D material, or a 2D
material weakly coupled to its substrate. Then, the water-
solid quantum friction coefficient needs to be maximized,
so as to allow for efficient momentum transfer back to the
liquid. Conditions for high quantum friction have been
detailed in Ref. [12]; typically, quantum friction benefits
from high electronic densities and large effective masses.
As outlined above, for the momentum transfer to be
efficient, the quantum friction coefficient needs to be
large compared to λum, which is several orders of magni-
tude smaller than a typical hydrodynamic friction coef-
ficient: many materials may satisfy this requirement.
Potential candidates include magic angle twisted bilayer
graphene [61] and metallic transition metal dichalcoge-
nides such as VS2 and TaS2 [62].

VI. CONCLUSION: THE IMPORTANCE
OF QUANTUM INTERFACIAL EFFECTS

In this work, we introduce a novel perspective on
hydrodynamics at solid-liquid interfaces. The usual
description of such interfaces relies on the continuum
Navier-Stokes equation, or—going down to the molecular
scale—on the interactions between fluid molecules and the
surface corrugation. This approach becomes insufficient to
account for more advanced quantum couplings that arise
between the liquid and the solid.
Specifically, we start here by addressing the question

of electronic current generation by interfacial liquid
flows. Using the nonequilibrium Keldysh framework, we
systematically investigate the mechanisms that couple fluid
motion to the electronic degrees of freedom within the solid
material, which include Coulomb and phonon-mediated
interactions. The theory provides quantitative estimates for
the electrofluidic conductivity—defined as the electronic

current response to the fluid motion—which are fully
corroborated by experimental reports.
Going further, our theoretical framework reveals a

quantum feedback mechanism, that provides a negative
contribution to hydrodynamic friction: in a very counter-
intuitive way, quantum effects may reduce hydrodynamic
friction at the solid-liquid interface. The Coulomb drag
current can in fact be “faster” than the liquid flow and
return momentum to the liquid through electron-hydron
scattering. The resulting negative quantum friction pro-
vides a unique opportunity to tune hydrodynamic friction
by choosing specific electronic properties of the confining
wall. This broadens the scope of solid-liquid quantum
friction beyond the water-carbon interfaces discussed in
Ref. [12], as we find that it can play a role even for
materials with non-negligible surface roughness.
More generally, our results provide a new way of

thinking about the interaction of liquids with solids, and
in particular water-solid interfaces. By bridging fluid
dynamics and condensed matter theory, we picture the
interface dynamics in terms of the collective excitations of
both the liquid and the solid, instead of real-space molecu-
lar interactions. Water charge fluctuations—which we dub
hydrons—couple to the quantum excitations inside the
confining solid as first proposed in Ref. [12]. Here, this
approach bears fruit by accounting for existing experimen-
tal results and predicting a novel quantum feedback effect.
It opens the way to quantum engineering of fluid transport:
quantum effects can become valuable assets for future
water technologies.
The emerging interface between hydrodynamics, electro-

dynamics, condensed matter physics, and quantummechan-
ics is an uncharted territory that begs for further exploration.
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APPENDIX A: USEFUL RESULTS
IN THE KELDYSH FORMALISM

For an extensive description of the formalism, see
Refs. [40,48,63].

1. Fluctuation-dissipation theorem

We consider particles (bosons or fermions) with creation
and annihilation operators ψ†ðr; tÞ and ψðr; tÞ, respectively.
We define the real-time Green’s functions:

QUANTUM FEEDBACK AT THE SOLID-LIQUID INTERFACE: … PHYS. REV. X 13, 011019 (2023)

011019-15



G<ðr; t; r0; t0Þ ¼ ∓ihψ†ðr0; t0Þψðr; tÞi;
G>ðr; t; r0; t0Þ ¼ −ihψðr; tÞψ†ðr0; t0Þi; ðA1Þ

where the upper sign is for the bosons. At equilibrium, the
mean value of an operator A is defined according to

hAi ¼ 1

Trðe−H=TÞTrðe
−H=TAÞ; ðA2Þ

where H is the total Hamiltonian.
Using the cyclicity of the trace we deduce that at

equilibrium,

G<

�
r; tþ iℏ

T
; r0; t0

�
¼ �G>ðr; t; r0; t0Þ: ðA3Þ

Upon Fourier transformation,

G<ðq;ωÞ ¼ �e−ℏω=TG>ðq;ωÞ: ðA4Þ

In terms of the R, A, K components used throughout the
main text,

GR −GA ¼ G> −G<;

GK ¼ G> þG<: ðA5Þ
From Eqs. (A4) and (A5) we deduce the fluctuation-
dissipation theorem:

GKðq;ωÞ ¼ 2i
1� e−ℏω=T

1∓ e−ℏω=T
Im½GRðq;ωÞ�: ðA6Þ

This proves Eqs. (8) and (11) of the main text.

2. Density and current

The particle density is given by nðr;tÞ¼hψ†ðr;tÞψðr;tÞi;
that is,nðr; tÞ ¼ �iG<ðr; t; r; tÞ. UsingEq. (A5), the density
can be expressed as

n ¼ � i
2
ðGK −GR þGAÞ; ðA7Þ

which yields Eq. (33). Let us note that in real space and
at equal times, GRðr; t; r0; tÞ −GAðr; t; r0; tÞ reduces to a
constant.
Let us now derive an expression for the average

electric current, forgetting for simplicity the spin degree
of freedom. In the Heisenberg picture, the one-particle
Hamiltonian is of the form

HðtÞ ¼
Z

drψ†ðr; tÞHrψðr; tÞ; ðA8Þ

where Hr is a differential operator acting in real space.
Going to momentum space, this operator becomes a

function of the quasimomentum q of the electron.
Within a given band,

HðtÞ ¼
Z

dqψ†
qðtÞℏξqψqðtÞ: ðA9Þ

The Hamiltonian determines the dynamics of the density
operator:

∂tneðr; tÞ ¼
1

iℏ
½ψ†ðr; tÞψðr; tÞ;HðtÞ� ðA10Þ

¼ 1

2ℏ
ðHr −Hr0 ÞGKðr; t; r0; tÞjr¼r0 : ðA11Þ

On the other hand, the electronic density satisfies the
conservation equation,

e∂tneðr; tÞ þ∇ · hjðr; tÞi ¼ 0; ðA12Þ

from which we deduce

hjðr; tÞi ¼ e
2ℏ

ð½Hr; r� − ½Hr0 ; r0�ÞGKðr; t; r0; tÞjr¼r0 : ðA13Þ

Going to Fourier space and assuming translational invari-
ance in time and space, we obtain

hji ¼ ie
Z

dqdω
ð2πÞ3 ð∇qξqÞGKðq;ωÞ: ðA14Þ

Multiplying by 2 to account for the spin degeneracy we
recover Eq. (13) of the main text. An additional factor can
be included to account for a valley degeneracy.

APPENDIX B: EVALUATION
OF THE SELF-ENERGY

1. General expression

In this section, we evaluate the electron-boson self-
energy diagram in Fig. 2(b). We compute the self-energy in
a given electronic band with dispersion ξq and eigenstates
jqi, and we neglect interband electron scattering: this is
reasonable as long as the boson energy is small compared
to the Fermi level. Applying the Keldysh formalism
Feynman rules in real space, we find [40]

ΣR;A ¼ i
2
ðDR;AGK

0 þDKGR;A
0 Þ;

ΣK ¼ i
2
ðGR

0 −GA
0 ÞðDR −DAÞ þ i

2
DKGK

0 : ðB1Þ

Starting with the retarded component, the products become
convolutions in Fourier space:

COQUINOT, BOCQUET, and KAVOKINE PHYS. REV. X 13, 011019 (2023)

011019-16



ΣRðq;ωÞ ¼ i
2

Z
dq0dω0

ð2πÞ3 Mðq − q0;qÞ½DRðq0;ω0 − q0 · vbÞGK
0 ðq − q0;ω − ω0Þ þDKðq0;ω0 − q0 · vbÞGR

0 ðq − q0;ω − ω0Þ�;

ðB2Þ
where Mðq − q0;qÞ≡ jhq − q0je−iq0rjqij2. Using Eqs. (7) and (8) for the equilibrium Green’s functions, as well as the
bosonic fluctuation-dissipation theorem in Eq. (11), we obtain

ΣRðq;ωÞ ¼ i
2

Z
dq0

ð2πÞ3Mðq− q0;qÞ
�Z

dω02ifðω0 − q0 · vbÞ
Im½DRðq0;ω0 − q0 · vbÞ�
ω−ω0 − ξq−q0 þ i0þ

−
2iπ

fðξq−q0 Þ
DRðq0;ω− ξq−q0 − q0 · vbÞ

�
:

ðB3Þ
Introducing the Lehmann representation for the bosonic propagator,

DRðq;ωÞ ¼ −
1

π

Z þ∞

−∞
dω0 Im½DRðq;ω0Þ�

ω − ω0 þ i0þ
; ðB4Þ

Eq. (B3) becomes

ΣRðq;ωÞ ¼ −
1

ℏ

Z
dq0dω0

ð2πÞ3 Mðq − q0;qÞ Im½DRðq0;ω0 − q0 · vbÞ�
ω − ω0 − ξq−q0 þ i0þ

�
fðω0 − q0 · vbÞ þ

1

fðξq−q0 Þ
�
; ðB5Þ

which is Eq. (19) of the main text. Following these exact same steps, we may check that ΣAðq;ωÞ ¼ ΣRðq;ωÞ�. Making use
again of fluctuation-dissipation relations, we find for the Keldysh component of the self-energy,

ΣKðq;ωÞ ¼ −2i
Z

dq0dω0

ð2πÞ3 Mðq − q0;qÞ
�
1þ fðω0 − q0 · vbÞ

fðω − ω0Þ
�
Im½DRðq0;ω0 − q0vÞ�Im½GRðq − q0;ω − ω0Þ�: ðB6Þ

Using that Im½GRðq;ωÞ� ¼ −πδðω − ξqÞ, we obtain

ΣKðq;ωÞ ¼ i
Z

dq0

ð2πÞ2 Mðq − q0;qÞ
�
1þ fðω − ξq−q0 − q0 · vbÞ

fðξq−q0 Þ
�
Im½DRðq0;ω − ξq−q0 − q0 · vbÞ�; ðB7Þ

which is Eq. (20) of the main text.

2. Bosonic propagators

The expressions for the boson (hydron and phonon)
propagators that are relevant for our model systems are
given in the main text [Eqs. (23) and (24)]. Here, we
provide a few additional details, in particular, concerning
the derivation of the hydron propagator. Starting from the
electron-hydron Hamiltonian in Eq. (1), the bare hydron
propagator is defined as

DR
w;0ðq; tÞ ¼ −iθðtÞðVC

q Þ2h½nsðq; tÞ; nsð−q; 0Þ�i; ðB8Þ

with

nsðq; tÞ ¼
Z

dρ
Z þ∞

0

dze−iqρe−qznlðr; tÞ: ðB9Þ

We have isolated here the component of the position r that
is perpendicular to the interface: r ¼ ρþ zez. Identifying
the water density-density response function χRwðq; z; z0;ωÞ,
we obtain

DR
w;0ðq;ωÞ ¼ ðVC

q Þ2
Z þ∞

0

dzdz0eqðzþz0ÞχRwðq; z; z0;ωÞ

≡ −VC
qgRwðq;ωÞ; ðB10Þ

recovering the water surface response function gRwðq;ωÞ
that was studied extensively in Ref. [12]. It was found to be
well described by the sum of two Debye peaks:

gRwðq;ωÞ ¼
X
k¼1;2

fk
1 − iω=ωD;k

; ðB11Þ

with ωD;1∼1 meV and ωD;2∼100 meV, and f1 ≈ f2 ∼ 0.5.
Accounting for the RPA screening as per the diagrams in
Figs. 2(c) and 2(d), the full hydron propagator becomes

DR
wðq;ωÞ ¼

DR
w;0ðq;ωÞ½1þ VC

qχ
R
e ðq;ωÞ�2

1 −DR
w;0ðq;ωÞχRe ðq;ωÞ

; ðB12Þ

where χRe is the electronic density-density response func-
tion. Using the definition of the dielectric function
ϵðq;ωÞ ¼ 1=½1 − VC

qχ
R
e ðq;ωÞ�, and neglecting its fre-

quency dependence on the scale of the Debye frequencies,
we recover Eq. (23) of the main text.
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For acoustic phonons in the framework of a jellium
model, the fully screened propagator is [41]

DR
phðq;ωÞ ¼

1

ℏ

VC
q

ϵðqÞ
ω2
q

ðωþ i0þÞ2 − ω2
q
; ðB13Þ

with ωq ¼ cq, c being the sound velocity. The electron-
phonon interaction is essentially a screened Coulomb
interaction. Conversely, in graphene, the electron-phonon
interaction has a peculiar form [46], so that

DR
phðq;ωÞ ¼

1

ℏ
Vph=e ω2

q

ðωþ i0þÞ2 − ω2
q
; ðB14Þ

with Vph=e ¼ g2=ð2ρc2Þ; here, g ≈ 3 eV, is the electron-
phonon coupling and ρ ≈ 7.6 × 10−7 kg=m2 is the mass per
unit area.
In the 2DEG, the matrix elements M are unity. We use

the Thomas-Fermi approximation for the dielectric func-
tion: ϵðqÞ ¼ 1þ qTF=q. Since the density of states is
independent of energy, the Thomas-Fermi wave vector
qTF does not depend on the Fermi level: qTF ¼ 2=a0, with
a0 ¼ 4πϵ0ℏ2=ðme2Þ the Bohr radius at the effective mass.
In graphene, Mðq − q0;qÞ ¼ 1

2
ð1þ cos θq−q0;qÞ, where

θq−q0;q is the angle between q − q0 and q [64]. For the
RPA dielectric function, a full analytical expression can be
found in the literature [54,64].

3. Impurity approximation

The self-energies can be simplified within the impurity
approximation, which amounts to taking the limit of
vanishing bosonic frequency. This is expected to be
reasonable as long as the bosonic frequencies are much
lower than T=ℏ. For the hydron propagator, as ωD;1;2 → 0,

fðωÞIm½DR
wðq;ωÞ� → −2π

T
ℏ2

VC
q

ϵðqÞ δðωÞ: ðB15Þ

For the acoustic phonons, as ωq → 0,

fðωÞIm½DR
phðq;ωÞ� → −2π

T
ℏ2

Vph=e
q

ϵðqÞ δðωÞ: ðB16Þ

Thus, within the impurity approximation, the hydron and
phonon propagators become formally identical.
As the bosonic frequencies are taken to 0, the terms that

are not proportional to fðωÞ in Eq. (B5) become negligible.
We then obtain

ΣRðq;ωÞ ¼ T
ℏ2

Z
dq0

ð2πÞ2
Mðq0;qÞVq−q0

ω − ðq − q0Þ · vb − ξq0 þ i0þ
;

ðB17Þ

with V ¼ VC
q=ϵðqÞ or Vph=e. In the usual treatment of

impurity scattering [41], one further neglects the real part of
the self-energy and the frequency dependence of the
imaginary part: Im½ΣRðq;ωÞ� ≈ −1=τq ≡ Im½ΣRðq; ξqÞ�.
The quasiparticle scattering rate at wave vector q is
given by

1

τq
¼ π

T
ℏ2

Z
dq0

ð2πÞ2Mðq;q0ÞVq−q0δðξq − ξq0 Þ; ðB18Þ

which is Eq. (26) of the main text. An explicit esti-
mate can be obtained under the assumption Vq−q0 ≈ Vq

[and Mðq;q0Þ ¼ 1]. Then, by changing variables dq0 ¼
ð2πÞ2NðuÞdu, where NðuÞ is the density of states at energy
u, we deduce

1

τq
≈ π

T
ℏ
VqNðuqÞ; ðB19Þ

which is Eq. (27) of the main text.

4. Fermi’s golden rule

Equation (B19) can be obtained by writing down a
simplified Fermi golden rule for an electron-phonon
interaction of the form

Hph=eðtÞ ¼ gA2

Z
dqdk
ð2πÞ4 ψ

†
qðtÞb†kðtÞψqþkðtÞ þ H:c:;

ðB20Þ

where g is the coupling constant and b† the creation
operator of the phonon (H.c. stands for Hermitian
conjugate). Fermi’s golden rule predicts

1=τq ≈
2π

ℏ
g2ANðuqÞnBðωqÞ: ðB21Þ

Here, the Bose distribution nB counts the number of modes
on which the electrons can scatter. Assuming ℏωq ≪ T,

1=τq ≈
2π

ℏ
g2ANðuqÞT=ℏωq: ðB22Þ

With our usual notations the coupling constant g is
absorbed inside the effective potential Vq, according to
Vq ¼ g2A=ϵðqÞωq. Therefore, we recover the estimate pro-
vided in Eqs. (27) and (B19) from Fermi’s golden rule.
For the electron-hydron interaction the computation is

more involved since we would in principle have to consider
the superposition of many hydron modes. Qualitatively,
reproducing the above reasoning for each of the modes
yields exactly the same result.
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5. Higher order diagrams: Extension
of the Migdal theorem

Up to now, we have only considered the first order
diagram for the self-energy. Here, we provide an esti-
mate for higher order diagrams and show that they can
reasonably be neglected. The nth order self-energy diagram
contains n bosonic propagators and 2n − 1 electronic
propagators. Such a diagram includes n loops; therefore,
there are n momentum integrals and n frequency integrals.
The first few self-energy diagrams are displayed in Fig. 8(a).
In the impurity approximation, the bosonic propagators

take the form

Im½DRðq;ωÞ� ≈ −π
ω

ℏ
VqδðωÞ ¼ 0;

DKðq;ωÞ ≈ −4iπ
T
ℏ2

VqδðωÞ: ðB23Þ

Therefore, in the expression of the self-energy the
only nonvanishing terms are those that only include
the Keldysh component of the bosonic propagator. In the
Keldysh diagrammatic rules each vertex must be summed
over the dynamic indices. However, when restricting to
the Keldysh propagator for the bosons, the dynamic index
of the electronic Green function is preserved at each
vertex [40]. We shall focus on the retarded component
of the self-energy. When imposing these external dynamic
indices, the electronic propagators can only be retarded or
advanced Green functions thanks to the trigonal structure.
To obtain an estimate of the self-energy we will neglect the
real part of the retarded or advanced electronic Green
function, which then reduces to its imaginary part:

GR;Aðq;ωÞ ≈∓iπδðω − ξqÞ: ðB24Þ

Putting everything together, we have n integrations over
internal 2D momenta, n integrations over internal frequen-
cies, n bosonic Keldysh Green functions, each of them
introducing a Dirac distribution that fixes a frequency, and
2n − 1 electronic propagators, each of them introducing a
Dirac distribution that fixes a momentum, and a factor
1=ð∇qξqÞ. After integration of all the Dirac distributions
there only remains an angular integration. The structure of
the diagram determines the numerical factor coming from

the angular integration, and the momentum at which the n
interactions Vq and the 2n − 1 velocities ∇qξq are evalu-
ated. To provide an order of magnitude, we evaluate them at
the Fermi wave vector and take the angular factor equal to
1. We then obtain the following order of magnitude for the
nth order self-energy diagram:

ΣðnÞ ∼
�
TVkF

ℏ2

�
n kF
v2n−1F

: ðB25Þ

For n ¼ 1 we recover the estimate for the first order self-
energy calculated above [Eq. (B19)]. Comparing the nth
and first order self-energies,

ΣðnÞ

Σð1Þ ∼
�
TVkF

ℏ2v2F

�
n−1 ≡ αn−1: ðB26Þ

Let us estimate the coefficient α for the different models.
For the 2DEG, VkF is the screened Coulomb potential.

For reasonable electronic densities (kF ≪ 1=a0), the dielec-
tric constant is ϵðkFÞ ≈ ð2=a0kFÞ, where a0 is the Bohr
radius computed at the effective mass. Thus, VkF ≈ ℏ2=m
and α ∼ T=μ. Therefore, neglecting higher order diagrams
is valid as long as the chemical potential is large compared
to the temperature.
For graphene, ϵðkFÞ ≈ ðe2=ϵ0ℏvFÞ ∼ 1. For the electron-

hydron interaction, we obtain again α ∼ T=μ. For the
electron-phonon interaction, we find α ∼ ðTVeff=ℏv2FÞ∼
10−4: higher order self-energy diagrams can always be
neglected.

APPENDIX C: FLUCTUATION-INDUCED
FRICTION FORCES

1. Susceptibility renormalization

In this section, we compute the nonequilibrium elec-
tronic susceptibility (density-density response function) χe
starting from the electronic Green function, according to
the diagrammatic definition given in Fig. 8(b). We neglect,
in particular, vertex corrections due to the electron-boson
interaction. This diagram is formally equivalent to the
diagram for the first order self-energy [63]. Thus, the
calculation is similar, if one replaces the bosonic propa-
gator D by the backward electronic Green’s function

FIG. 8. Diagrammatic expansions. (a) First and second order diagrams for the electron-boson self-energy. (b) Diagrammatic
representation of the electronic susceptibility in terms of the renormalized Green’s functions (thick lines).
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Gij
Bðr1; t1; r2; t2Þ ¼ Gjiðr2; t2; r1; t1Þ, where i, j are the

Keldysh dynamical indices. For convenience we denote
in the following F̌ðxÞ ¼ Fð−xÞ. Using that in real space
ǦR;A ¼ ðGA;RÞ� and ǦK ¼ −ðGKÞ� by construction, the
backward propagators become in the Keldysh trigonal
representation and in Fourier space:

GR;A
B ðq;ωÞ ¼ ðGA;RÞ�ð−q;−ωÞ;
GK

Bðq;ωÞ ¼ −ðGKÞ�ð−q;−ωÞ: ðC1Þ

Let us note that the backward electronic Green function
satisfies the same fluctuation-dissipation theorem as the
forward electronic Green function G. Using Eq. (B1) and
the fluctuation-dissipation theorem in Eq. (32), we obtain

χRe ¼ −
�
GR

B � Im½GR�
f

þ Im½GR
B�

f
� GR

�
;

χKe ¼ −2i
�
Im½GR

B� � Im½GR� þ Im½GR
B�

f
� Im½GR�

f

�
; ðC2Þ

where at frequency ω and momentum q, f stands for
f½ω − q · veðqÞ�.As long asq · veðqÞ ≪ ω,wemay compare
these formulas point by point, and using the trigonometric
identities f−1ω0 þ f−1ω−ω0 ¼ f−1ω (1 − f−1ω0 =ð1 − f−1ω f−1ω0 Þ) and
1þ f−1ω0 f−1ω−ω0 ¼ (1 − f−1ω0 =ð1 − f−1ω f−1ω0 Þ), we deduce a the
quasiequilibrium fluctuation-dissipation theorem for the
susceptibility:

χKe ðq;ωÞ ¼ 2if½ω − q · veðqÞ�Im½χRe ðq;ωÞ�; ðC3Þ

which is Eq. (35) of the main text.

2. Electron-boson friction force

We now generalize the result of Ref. [12] for fluctuation-
induced quantum friction to account for the nonequilibrium
state of the solid. The electron-boson force per unit surface
can be expressed as [12]

hFb=ei
A

¼ ℏ
4π

Z
dωdq
ð2πÞ3 qχ

K
b=eðq;ωÞ; ðC4Þ

where the Keldysh cross-correlation χKb=e is given by

χKeb ¼ −
χAeDK þ χKe DR

j1 − χReDRj2 ; ðC5Þ

with all the correlation function being computed in the
nonequilibrium state. We now use the quasiequilibrium
fluctuation-dissipation theorems in Eqs. (11) and (C3) to
obtain

χKeb ¼ −2iΔf
Im½χRe �Im½DR�
j1 − χReDRj2 ; ðC6Þ

where Δf ¼ fðω − q · veÞ − fðω − q · vbÞ. Therefore, we
find that as long as the quasiequilibrium condition holds,
the electron-boson friction coefficient is computed as if the
electrons were at equilibrium:

λb=e ¼
ℏ2

8π2T

Z
∞

0

dωdq

sinh2ðℏω
2TÞ

q3
Im½χRe �Im½DR�
j1 − χReDRj2 ; ðC7Þ

which is Eq. (53) of the main text. However, the friction
force is now proportional to the differential veloc-
ity: hFb=ei=A ¼ λb=eðvb − veÞ.

3. Scaling of the electron-boson friction coefficient

In this section, we provide a qualitative approach to
electron-boson friction, that is able to predict the scaling of
the friction coefficient with electronic density and effective
mass. In the reference frame where the bosons do not move,
the electrons are subject to a wind velocity ve − vb. They
relax by scattering on the bosons at a rate τ−1b=e. The force (or
momentum flux) per unit surface is then given by

−
Fb=e

A
∼
ℏkF × NðμÞℏkFðve − vbÞ

τb=e
: ðC8Þ

This is the momentum of an electron (at the Fermi level)
times the number of electrons that are able to scatter (in a
zero-temperature picture) times the scattering rate. The
scaling of the friction force with the inverse of the electron-
boson scattering time is consistent with the relation
between resistivity and electronic friction coefficient pro-
posed by Persson [65,66].
Therefore, using Eq. (B19), we find that the electron-

boson friction coefficient scales as

λb=e ∼ πℏk2FNðμÞ2TVkF : ðC9Þ

Let us note that in this approximation the electron-boson
friction coefficient does not depend on the dynamics of
the bosons but only on the electronic structure and the
interaction potential: this is in fact the analog of the
impurity approximation for the friction coefficient. For a
2DEG with reasonable electronic density, the screened
Coulomb potential is roughly independent of the Fermi
level and the effective mass. Since the density of states
NðμÞ ¼ m=ℏ2 is constant and kF ∼ ffiffiffiffiffiffiffi

mμ
p

, we expect
λb=e ∝ m2μ ∝ mn, where n is the charge carriers density,
for both the electron-phonon and electron-hydron inter-
actions. In graphene, the screened Coulomb potential scales
as 1=kF ∝ 1=μ, the density of states NðμÞ ¼ 2μ=ðπℏ2v2FÞ
scales as μ, and kF ¼ μ=vF. Therefore, we expect λb=e ∝
μ3 ∝ n3=2 for the electron-hydron interaction. On the other
hand, using that the effective potential Vq does not depend
on q for the electron-phonon interaction in graphene, we
expect λb=e ∝ μ4 ∝ n2. We thus recover the scalings of the
full numerical results displayed in Fig. 7(b).
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