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We combine the swap Monte Carlo algorithm to long multi-CPU molecular dynamics simulations to
analyze the equilibrium relaxation dynamics of model supercooled liquids over a time window covering
10 orders of magnitude for temperatures down to the experimental glass transition temperature Tg. The
analysis of several time correlation functions coupled to spatiotemporal resolution of particle motion allow
us to elucidate the nature of the equilibrium dynamics in deeply supercooled liquids. We find that structural
relaxation starts at early times in rare localized regions characterized by a waiting-time distribution that
develops a power law near Tg. At longer times, relaxation events accumulate with increasing probability in
these regions as Tg is approached. This accumulation leads to a power-law growth of the linear extension of
relaxed domains with time with a large, temperature-dependent dynamic exponent. Past the average
relaxation time, unrelaxed domains slowly shrink with time due to relaxation events happening at their
boundaries. Our results provide a complete microscopic description of the particle motion responsible for
key experimental signatures of glassy dynamics, from the shape and temperature evolution of relaxation
spectra to the core features of dynamic heterogeneity. They also provide a microscopic basis to understand
the emergence of dynamic facilitation in deeply supercooled liquids and allow us to critically reassess
theoretical descriptions of the glass transition.
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I. INTRODUCTION

There exists a large corpus of experimental studies
analyzing the physical properties of supercooled liquids
undergoing a glass transition [1–3]. Glassy systems exhibit
well-established signatures characterizing their thermody-
namic, rheological, and dynamic properties. An important
goal of this experimental quest is to develop a sufficiently
precise understanding of the physical behavior of liquids
undergoing a glass transition to guide and constrain
theoretical developments. A successful theoretical frame-
work should explain the observed behaviors with precise
assumptions that can be directly tested by experiments
[4,5]. This program is not yet complete, and different
theoretical explanations remain able to account for exper-
imental results using hypotheses that can be difficult to
validate experimentally [6–10].

Computer simulations have an important role to play in
this endeavor, as they offer by construction a complete
spatiotemporal resolution of glassy dynamics and the
possibility to measure observables which are difficult or
impossible to access experimentally [11,12]. For a long
time, a major obstacle was the inability to study realistic
models of glassy liquids in the temperature regime relevant
to experiments. The situation changed radically five years
ago when the swap Monte Carlo algorithm [13] was
optimized and novel glass models were developed [14–16].
The swap Monte Carlo algorithm employs unphysical
particle moves to accelerate the equilibration of super-
cooled liquids and can reach equilibrium states down to the
experimental glass transition temperature Tg or even below.
This algorithmic development allowed progress regarding
the analysis of structural and thermodynamic properties of
liquid states [17–21], as well as characterization of the glass
below Tg [22–28]. However, because it employs unphysical
particle motion, the swap Monte Carlo algorithm cannot be
used to directly analyze the dynamics of supercooled
liquids near Tg. To date, simulations of the dynamics were
mostly performed in a relatively high-temperature regime
corresponding, at best, to an average relaxation time up to
1 μs when converted into experimental units [29–31]. This
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corresponds to a temperature scale near the mode-coupling
temperature crossover TMCT > Tg. Fortuitously, experi-
ments performed with colloidal particles cover a similar
dynamic range [32,33]. As a result, a detailed microscopic
characterization of the dynamics in the mode-coupling
regime T ≥ TMCT is available [34,35]. There exists ample
evidence that physics in the regime T < TMCT may be of a
different nature [36–40], but a thorough numerical explo-
ration of glassy dynamics deep in this temperature regime is
currently lacking.
Here we show that month-long multi-CPU molecular

dynamics simulations, started from configurations that are
first equilibrated using the swap Monte Carlo algorithm,
open a novel window to analyze the equilibrium dynamics
of deeply supercooled liquids in the regime Tg < T <
TMCT. In practice, we follow the equilibrium dynamics over
ten decades in time with particle-scale resolution at temper-
atures down to Tg. Converted to experimental units, this
approach allows us to follow the entire structural relaxation
at temperatures well below the mode-coupling crossover
T < TMCT, up to relaxation times of τα ≈ 10 ms. For even
lower temperatures T ≈ Tg, we study the first ten decades
of the structural relaxation up to a maximal timescale of
about 30 ms for our longest simulations.
We explore the relaxation dynamics of model super-

cooled liquids in a regime that was too difficult or
impossible to access before. This important numerical
effort has led to a previous work [41], where we concen-
trated on the emergence of excess wings in dynamic spectra
obtained at low temperatures. Our ambition and focus here
are very different as we provide a complete view of all
relaxation processes from microscopic times up to time-
scales several times longer than the relaxation time.
Our philosophy in this article is to first report our

numerical observations and quantify them with as little
interference from theoretical models as possible. We pay
special attention to the regime below TMCT that has not
been accessed before and contrast our findings with earlier
work at higher temperatures. In the final part of the
manuscript only, we critically compare our results to
existing theoretical frameworks. For the two models
studied, a clear physical picture of the structural relaxation
emerges at low temperatures, which stems from early
relaxation events that are broadly distributed followed by
increasingly correlated motions in space and time. These
observations account for the emergence of dynamic facili-
tation in the dynamics of deeply supercooled states.
Our manuscript is organized as follows. In Sec. II, we

define our computer models and numerical strategy. In
Sec. III, we present results concerning ensemble-averaged
time correlation functions. In Sec. IV, we offer visualization
of the relaxation dynamics over a broad range of time-
scales, length scales, and temperatures. In Sec. V, we
analyze in more detail the early times of the relaxation.
In Sec. VI, we explain how the structural relaxation unfolds

from early to large times. In Sec. VII, we provide a
discussion of our results, comparing them with earlier
numerical work and theoretical views.

II. COMPUTER MODELS AND METHODS

A. Glass-forming models

We study size-polydisperse mixtures of soft repulsive
spheres in two and three spatial dimensions d ¼ 2, 3. These
two models have been shown to be representative computa-
tional glass formers [17,18] and extensively studied before
[23,26,27,42]. The particle diameters fσig are drawn from
the probability distribution PðσÞ ¼ A=σ3 with A a nor-
malization constant with bounds σmin ≤ σi ≤ σmax. Two
particles i and j at positions ri and rj and separated by a
distance rij ¼ jrijj ¼ jri − rjj interact within a cutoff
rij=σij < xc ¼ 1.25 with a repulsive interaction potential:

vðrijÞ ¼ ϵ

�
σij
rij

�
12

þ c0 þ c2

�
rij
σij

�
2

þ c4

�
rij
σij

�
4

; ð1Þ

where the constants c0 ¼ −28ϵ=x12c , c2 ¼ 48ϵ=x14c , and
c4 ¼ −21ϵ=x16c ensure continuity of the potential and of its
first two derivatives at the cutoff xc. We employ a non-
additive mixing rule σij ¼ 0.5ðσi þ σjÞð1 − ηjσi − σjjÞ to
avoid fractionation and crystallization at low temperatures
[14]. All particles have an equal mass m. We use the
average diameter σ̄ as unit length, ϵ as unit energy with
the Boltzmann constant set to unity, and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ̄2=ϵ

p
as unit

time. In these units, we choose σmin ¼ 0.73, σmax ¼ 1.62,
and η ¼ 0.2.
We simulate N particles at number density ρ¼N=Ld ¼ 1

in a cubic or square box of linear size L with periodic
boundary conditions. The results reported for the 3D
model are obtained for systems of N ¼ 1200 particles.
We perform simulations of a larger system with N ¼ 104

particles to check for finite-size effects in the dynamics and
for visualization purposes. Measurements in the 2D model
are reported for N ¼ 2000 particles. Some 2D simulations
are performed with N ¼ 104 particles as well, in particular
to generate snapshots.

B. Monte Carlo and molecular dynamics simulations

We use a hybrid scheme combining Monte Carlo (MC)
particle-swap moves and molecular dynamics (MD) in
order to generate equilibrium configurations [15]. The
algorithm alternates between ordinary MD simulation
sequences during which the particle positions and velo-
cities evolve with a fixed particle diameter, and
Monte Carlo sequences during which particle diameters
are swapped at fixed positions and velocities. The MD
sequences last tMD and take place at constant temperature T
imposed by a Nosé-Hoover thermostat. To perform MC
sequences, the positions and velocities are frozen and
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nswapN swap moves are attempted. During a swap move,
two particles are randomly selected and an exchange of
their diameters is proposed. After computing the change
in potential energy, the move is accepted following the
Metropolis acceptance rule at temperature T, which
ensures equilibrium sampling. Following Ref. [15], we
optimize tMD and nswap for maximal efficiency. Using this
hybrid algorithm, we prepare a large number of sta-
tistically independent configurations N ∈ ½100; 500� for
temperatures ranging from the onset of glassy dynamics
To down to the experimental glass transition temperature
Tg. These characteristic temperature scales are defined
and numerically determined below.
We take these equilibrium configurations as initial

conditions for standard MD simulations without swap
MC moves. We perform microcanonical NVE simulations
in 3D and canonical NVT simulations with a Nosé-Hoover
thermostat in 2D, using in both cases a time step dt ¼ 0.01
for the numerical integration of the equations of motion.
These different choices are made for convenience only, as
the statistical ensemble does not influence the local
dynamics. The duration of most simulations is 107,
corresponding to 109 MD steps and a simulation time of
about one week. Ensemble-averaged observables are com-
puted by averaging over N independent trajectories. For
selected state points in 2D, we increase the simulation time
to 8.2 × 108 for N ¼ 104 particles, which was reached by
using a parallel code running over 24 processors (CPUs) for
two and a half months.

C. Why 30 ms?

The temperatures and timescales over which equilibrium
dynamics can be probed with MD simulations are limited,
as recently reviewed in Ref. [30]. Molecular dynamics
simulations last at most 1010 MD steps for a simple pair
potential simulated over several weeks and a reasonable
system size (N ∼ 103–104). This translates into a maximum
simulation time tmax ∼ 108, considering a typical discreti-
zation time step of order 10−2. Without the swap
Monte Carlo algorithm, the simulated time is necessarily
split between equilibration and production runs. To achieve
both a proper equilibration and a significant exploration of
the configuration space in equilibrium conditions, the MD
equilibration run must last at least about 100 times the
averaged relaxation time τα. This sets an upper limit
τα ≤ 106 on the accessible relaxation times even using
extensive simulations and an efficient implementation of
the MD. Most numerical studies have therefore investigated
the dynamics of supercooled liquids with τα ≤ 105.
Our numerical strategy completely circumvents the

need for time-consuming equilibration runs by exploit-
ing the huge equilibration speedup afforded by the
swap Monte Carlo algorithm. This idea is in its infancy
[31,41,43]. In this approach, preparingmultiple equilibrated

configurations down to Tg is a simple task, and we can thus
ensure both equilibration and statistical accuracy of the
results. This implies that the computational time can be
entirely spent on the production runs to simulate the
dynamics of low-temperature states over a time window
limited to tmax ≈ 108. Crucially [31], this time window is
available even at temperatures where τα ≫ tmax, which were
inaccessible in equilibrium conditions in previous work.
Following earlier works [14,31,42], we translate simu-

lation timescales into experimental ones using the structural
relaxation time τo at the onset temperature To as a reference
timescale. For a broad range of molecular liquids [44], one
measures τo ≈ 10−10 s. For the computer models studied
here, one finds τo ≈ 3 in simulation units. The production
runs over which ensemble-averaged quantities are mea-
sured last 107 ≈ 3 × 106τo in simulation units, which
translates into 3 × 106τo ≈ 0.3 ms in experimental units.
Below, we also present the results of very long simulations
which last tmax ¼ 8.2 × 108. In experimental units, this
corresponds to observing the relaxation dynamics of a
supercooled liquid over about 30 ms, as announced.

III. EQUILIBRIUM RELAXATION DYNAMICS
DOWN TO THE EXPERIMENTAL GLASS

TRANSITION

A. Time correlation functions

We first characterize the equilibrium dynamics using
ensemble-averaged time correlation functions. In 3D, we
use the self-intermediate scattering function

FsðtÞ ¼
�
1

N

XN
i¼1

cos ½q · δriðtÞ�
�
; ð2Þ

where δriðtÞ ¼ riðtÞ − rið0Þ, and the brackets indicate
an average over the N independent runs at temperature
T. We also perform an angular average over wave vectors
with jqj ¼ 6.9 corresponding to the first peak in the total
structure factor SðqÞ. We define the α-relaxation time ταðTÞ
as FsðταÞ ¼ e−1.
In Fig. 1(a), we present equilibrium results for FsðtÞ in

3D at several temperatures. We concentrate on data in the
unexplored low-temperature regime where τα > 104. The
highest temperature shown, T ¼ 0.095, roughly corre-
sponds to the lowest temperature explored in the majority
of earlier studies, while the lowest temperature shown is
close to the experimental glass transition temperature Tg.
This broad temperature range concretely demonstrates how
our numerical strategy opens a novel temperature window
to study the dynamical slowdown in supercooled liquids.
All correlation functions display a fast decay at very

short time t ≈ 1 due to thermal motion within the arrested
amorphous structure. At very low temperature, elasticity
and inertial dynamics give rise to a weak oscillatory decay
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toward the plateau. After an extended plateau regime which
becomes more extended at lower temperature, full decor-
relation is eventually observed taking the form of a
stretched exponential. As the temperature decreases, struc-
tural relaxation shifts to longer times, and it is no longer
observed for temperatures T ≲ 0.075. At the lowest temper-
ature T ≲ 0.059, we observe an extended plateau covering
about seven decades in time. More careful inspection
reveals that the plateau is not strictly constant but decays
extremely weakly with time, as we illustrate more clearly
below. Recall that despite the absence of decorrelation in
the numerical time window, all correlation functions are
representative of equilibrium dynamics.
In 2D, collective long-ranged fluctuations give rise

to particle displacements which affect the behavior of
FsðtÞ in an unwanted way [45,46]. We measure the
bond-orientational correlation function CΨðtÞ which is
sensitive to changes in the local environment of particles
[47,48]. We define the sixfold order parameter of particle i,

ΨiðtÞ ¼
1

niðtÞ
XniðtÞ
j¼1

ei6θijðtÞ; ð3Þ

where niðtÞ is the number of neighbors it has at time t
defined as particles j with rij < 1.45. The cutoff corre-
sponds to the first minimum in the total pair distribution
function, and we checked that alternative definitions of
neighbors via a Voronoi tessellation or a solid-angle-based
method [49] lead to similar results. The angle θijðtÞ is
defined between the x axis (without loss of generality) and
rijðtÞ. The bond-orientational correlation function then
reads

CΨðtÞ ¼
�P

iΨiðtÞΨ�
i ð0ÞP

ijΨið0Þj2
�
; ð4Þ

where the star denotes the conjugate complex and the
sums run over all particles i ¼ 1;…; N. We extract the
α-relaxation time ταðTÞ as CΨðταÞ ¼ e−1.
In Fig. 1(b), we present equilibrium results for CΨðtÞ in

2D at several temperatures selected as in 3D below the
mode-coupling crossover. Clearly, the time and temperature
evolution of the bond-orientational correlation function is
qualitatively similar to that of the self-intermediate scatter-
ing function in 3D shown in Fig. 1(a).

B. Relaxation times and temperature scales

We determine three temperature scales relevant to
describe the dynamic slowdown in supercooled liquids:
the onset temperature To, the mode-coupling crossover
temperature TMCT, and the experimental glass transition
temperature Tg. We first provide the value of these temper-
ature scales and detail below how we estimate them. We
obtain To ¼ 0.2, TMCT ¼ 0.095, and Tg ¼ 0.056 in 3D,

and To ¼ 0.2, TMCT ¼ 0.12, and Tg ¼ 0.07 in 2D. These
characteristic temperatures will be useful to interpret and
organize our results.
In Figs. 2(a) and 2(b), we present the relaxation time τα

for the 3D and 2D models, respectively. At the onset
temperature of glassy dynamics To, where the relaxation
time equals τo, the relaxation time departs from its high-
temperature Arrhenius dependence, ταðTÞ ∝ eE∞=T . The
energy scale E∞ is equal to E∞ ¼ 0.23 (in 3D) and E∞ ¼
0.7 (in 2D), and τo ≈ 3 (in d ¼ 2, 3). In Fig. 2, we focus on
the supercooled regime and report τα normalized by τo as a
function of the inverse temperature. In this representation,
Arrhenius behavior translates into a straight line. In the
simulations, we directly measure the relaxation in the range
τα < 107, equivalently, log10ðτα=τoÞ < 6.5. These mea-
surements are labeled as “Data” in Fig. 2.
Then, we locate the mode-coupling crossover temper-

ature TMCT by using a power-law fit ταðTÞ ∼ ðT − TMCTÞ−γ
in the regime 0 ≤ log10ðτα=τoÞ ≤ 3 [50] using the expo-
nents γ ¼ 2.7 (in 2D) and γ ¼ 2.5 (in 3D). We find
ταðTMCTÞ ∼ 104τo in 2D and 3D.
Direct measurements of τα stop at temperatures

where the correlation functions do not reach e−1 in the
numerical time window. This occurs roughly five decades

(a)

(b)

FIG. 1. Equilibrium time correlation functions characterizing
relaxation dynamics of deeply supercooled liquids. (a) Self-
intermediate scattering function Fs in 3D. (b) Bond-orientational
correlation function CΨ in 2D. In both panels, we show only
temperatures between the mode-coupling crossover and the
experimental glass transition temperature, Tg ≤ T ≤ TMCT.
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before the extrapolated glass transition Tg, which is defined
by log10½ταðTgÞ=τo� ¼ 12. Still, at temperatures where
τα < 107, the final decay is well fitted by a stretched
exponential form F0e−ðt=ταÞ

β
. The stretching exponents β ≈

0.56 (in 3D) and β ≈ 0.6 (in 2D) are nearly temperature
independent within statistical uncertainty, and the ampli-
tude F0 increases weakly with decreasing temperature. This
indicates that time-temperature superposition (TTS) is well
obeyed in our systems. Fixing β to a constant value, we can
use TTS to estimate τα when it falls outside our numerical
window [31]. In practice, we can safely extend our
measurements of ταðTÞ by an additional 1.5 decades, as
indicated by the “TTS” points in Fig. 2, which then reach
log10ðτα=τoÞ ≈ 8 (i.e., about 10 ms).
To estimate the experimental glass transition temperature

Tg, we must extrapolate the relaxation time data by 4
additional orders of magnitude. To do so, we describe τα
over the remaining decades using an Arrhenius fit ταðTÞ ∝
eEA=T , with EA ¼ 2.67 (in 3D) and EA ¼ 2.97 (in 2D), and
locate Tg where log10½ταðTgÞ=τo� ¼ 12. Although the tem-
perature dependence of τα is not purely Arrhenius over the
entire numerical window, our choice of an Arrhenius
extrapolation which neglects fragility provides a lower
bound to the correct value of Tg.
The swap Monte Carlo algorithm allows us to easily

prepare equilibrium configurations even at temperatures
close to the determined Tg. We can thus safely claim that
we analyze the equilibrium dynamics of liquids down to the
experimental glass temperature Tg. The curves at the lowest
temperatures shown in Fig. 1 correspond to the dynamics
at, or very close to, the experimental glass transition

temperature where we can access the first 30 ms of the
relaxation dynamics in our longest simulations.

C. Mean-squared displacements: E pur si muove

To characterize the average motion of the particles, we
compute the mean-squared displacement (MSD):

ΔðtÞ ¼
�
1

N

XN
i¼1

jriðtÞ − rið0Þj2
�
: ð5Þ

The full lines in Fig. 3 present the time dependence of the
MSD at various temperatures in 3D. The data are not
presented in 2D because of the large and spurious collective
fluctuations mentioned above. When the temperature is not
too low, the curves exhibit the usual time dependence with a
ballistic regime at early times followed by a long plateau at
intermediate times before finally entering a diffusive
regime at very long times which we can observe down
to T ¼ 0.09. As the temperature decreases, the intermediate
plateau extends over longer timescales, and the diffusive
regime eventually shifts outside the numerical time win-
dow. Close to Tg, we can observe only the very beginning
of the escape from the plateau, mirroring the behavior of the
self-intermediate scattering function in Fig. 1(a). The MSD
at long times reaches the small value Δ ≈ 0.03 correspond-
ing to an average particle displacement of about one fifth of
the average particle diameter. In other words, the system
appears totally frozen on the very long timescale explored
by the simulations. And yet, as we see, particles move.
Indeed, a more subtle picture emerges by filtering

thermal motion [51,52]. We use a conjugate gradient
algorithm to bring the configurations explored dynamically
friðtÞgi¼1;…;N to their nearest potential energy minimum,
also called inherent structure (IS) frISi ðtÞgi¼1;…;N . From
these, we compute a version of the MSD ΔISðtÞ, where the
erratic thermal motion of particles exploring their cages no

FIG. 3. Mean-squared displacement in 3D deeply supercooled
states. From TMCT to Tg (left to right) in the normal dynamics
ΔðtÞ (full lines) and in the inherent structures (IS) ΔISðtÞ
(symbols). The legend is as in Fig. 1(a). The dash-dotted line
corresponds to Δ ¼ 6 × 10−3 used in Fig. 7 below.

(a) (b)

FIG. 2. Averaged relaxation times in 3D and 2D glass-forming
models. Relaxation time τα rescaled by its value τo at the onset
temperature, as a function of the inverse temperature in 3D (a)
and 2D (b). The data points are directly measured from Fig. 1, and
extended over 1.5 decades using time-temperature superposition
(TTS). An Arrhenius fit (full line) extrapolates τα=τo to the value
1012 to locate the experimental glass transition temperature Tg

(dashed line). We concentrate on the regime between TMCT (dash-
dotted line) and Tg.
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longer contributes. When particles simply fluctuate around
their average position, this procedure returns a vanishing
value for ΔIS, while Δ plateaus at the Debye-Waller factor.
The data for ΔIS shown in Fig. 3 paint a completely

different picture. The two MSD curves coincide only in the
long-time diffusive regime for large particle displacements,
where the small contribution due to thermal vibrations
becomes negligible. At early times in the ballistic regime,
we haveΔIS ≪ Δ as previously reported [52]. Surprisingly,
we observe that close to Tg, ΔISðtÞ develops a nontrivial
time dependence as soon as t > 1. Although the average
structural relaxation time is close to τα ¼ 1012, there are
already nontrivial particle motion and relaxation taking
place at times that are many orders of magnitude shorter.
We conclude that the extended plateau in the MSD in fact
masks early nontrivial relaxation events which take place
much before the average structural relaxation time. These
motions would be difficult to detect when using the self-
intermediate scattering function, as pioneered in Ref. [51].
The nontrivial time evolution of the MSD when measured
in inherent structures also shows that a large number of ISs
are explored over the time window preceding the structural
relaxation, which raises questions about the relevance of
the potential energy landscape to describe the α-relaxation
dynamics of deeply supercooled liquids.
These observations constitute a central theme of this

work: By resolving particle motion in equilibrium con-
ditions, we reveal how the structural relaxation unfolds over
an extended period of time between t ≈ 1 and t ≫ τα at
very low temperatures. In the rest of the article, we analyze
the corresponding particle motion and develop a physical
understanding of the structural relaxation in deeply super-
cooled liquids.

IV. QUALITATIVE OVERVIEW OF THE
RELAXATION DYNAMICS

A. Direct visualization of the relaxation

To resolve relaxation dynamics at the particle scale, we
use the bond-breaking correlation function Ci

BðtÞ [53,54].
By definition, this quantity measures the fraction of the
neighbors of particle i defined at time t ¼ 0 that are still
neighbors later at time t,

Ci
BðtÞ ¼

niðtj0Þ
nið0Þ

; ð6Þ

where nið0Þ is the number of neighbors of particle i at time
t ¼ 0, and niðtj0Þ the number of those particles that are still
neighbors after time t. At t ¼ 0, neighbors are defined via
the criterion rij=σij < 1.485 (in 3D) or rij=σij < 1.3 (in
2D), which corresponds to the first minimum in the
rescaled pair distribution function constructed using dis-
tances rij rescaled by σij. At t > 0, we define neighbors via
rij=σij < 1.7 (in d ¼ 2, 3), which is below the second peak

in the rescaled pair distribution function. This slightly
larger cutoff avoids spurious noise due to particles fre-
quently exiting or entering the neighbor shell due to
thermal vibrations [48].
With these choices, Ci

BðtÞ decays only whenever a
rearrangement involving particle i takes place, and is thus
an excellent indicator of local relaxation events [53],
although not being a single-particle quantity. Thresholding
single-particle displacements (physical displacements or
the ones computed from the visited inherent states) yields
qualitatively similar pictures, but the definition of local
relaxation may become blurred, especially at the highest
studied temperatures. The correlation Ci

BðtÞ thus tracks the
cumulative effect of rearrangements taking place around
particle i over time. Particles which have lost half of their
initial neighborsCi

B ≤ 0.5 are called “mobile” [55]. Particles
withCi

B ¼ 1 have not rearranged and are called “quiescent.”
We define

CBðtÞ ¼
�
1

N

XN
i¼1

Ci
BðtÞ

�
ð7Þ

as the ensemble average of Ci
BðtÞ.

We illustrate the spatiotemporal evolution of the re-
laxation dynamics in a two-dimensional liquid in Fig. 4.
The corresponding videos are provided in Supplemental
Material [56]. The temperature is T ¼ 0.09, well below
TMCT ¼ 0.12. This temperature is the lowest one at
which we can observe full decorrelation within the simu-
lation time tmax ¼ 8.2 × 108 equivalent to 30 ms, since the
relaxation time defined by CΨðταÞ¼e−1 is τα ¼ 1.5×108.
On a logarithmic scale, this temperature is thus roughly
halfway between TMCT (τα=τo≈104) and Tg (τα=τo ≈ 1012).
We show snapshots of the liquid at six times along the
trajectory t1;…; t6 ¼ 2 × 106, 107, 4.6 × 107, 1.1 × 108,
2.3 × 108, 8.3 × 108. The particles are colored according to
the value of the bond-breaking correlation at time tj using a
blue to red code for Ci

BðtjÞ ¼ 1 to 0.
At time t1, two decades before τα, the average correla-

tion CBðt1Þ ¼ 0.97 is still very close to 1. While most
particles are quiescent (blue), we distinguish a few mobile
particles (white or red) clustered into sparse, compact, and
localized domains. These clusters typically contain a few
red particles, which have Ci

Bðt1Þ ¼ 0. These particles have
undergone a series of nontrivial rearrangements which lead
to a complete renewal of their local environment. Particles
at the boundary of these clusters typically appear white,
indicating Ci

Bðt1Þ ¼ 0.5: They have lost half of their initial
neighbors (those inside the mobile cluster). The images
display the raw data for Ci

B, with no spatial averaging. The
sharp separation observed between mobile and quiescent
particles is thus a genuine physical effect. When the
average correlation is CB ¼ 0.5 near time t4, we see that
in real space most particles have either Ci

B ¼ 1 or Ci
B ¼ 0
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with equal probability. This important property becomes
very clear at this very low temperature, as we demonstrate
shortly.
As time increases in Fig. 4, we observe that relaxation

proceeds via two distinct mechanisms. From one snapshot
to the next, we first observe the appearance of new relaxed
clusters in regions that are quiescent in the preceding
snapshot. Clearly, the emergence of such new clusters is a
stochastic process characterized by a time distribution that
we analyze in Sec. V D.
The second physical process leading to the appearance of

newly relaxed particles is via the coarsening of mobile
clusters which exist at time tj and get larger at time tjþ1.
The time dependence of the domain size is studied in
Sec. VI D. At large times, the growth of relaxed regions
leads to their coalescence, so that the system exhibits a

bicontinuous structure of mobile or quiescent domains near
τα. This bicontinuous structure is obviously characterized
by a distribution of domain sizes that we investigate in
Sec. VI D.
At very long times in Fig. 4, we observe small regions

that are still quiescent after 5.5τα. They represent the most
stable regions of the structure at time t ¼ 0. Compared to
the substantial past and present research focusing on fast
relaxing regions and defects, very little is known about
these slow domains. Inspection of the last two snapshots
reveals that the slow domains are slowly invaded by the red
mobile regions and slowly shrink in size as time increases.
In Sec. VI E, we discuss the physics associated with these
slow domains and their relation with the lifetime of
dynamic heterogeneities.

B. Evolution with temperature

The physical picture of the structural relaxation
revealed by the images in Fig. 4 appears relatively simple
because there is a very sharp separation between mobile
and quiescent particles. However, such a clear distinction
emerges only when the temperature is low enough, and it
is not present in the temperature scale traditionally
studied in computer simulations. To illustrate this point,
we compare the pattern of structural relaxation at differ-
ent temperatures. The corresponding videos are provided
in Supplemental Material [56]. We keep the value of the
average correlation function CBðtÞ equal, as this corre-
sponds to a similar degree of decorrelation from the
initial structure.
We first investigate the very initial stages of the relax-

ation process at t ≪ τα. We show in Fig. 5 three snapshots
of 2D liquids at a time t where the average correlation is
CBðtÞ ¼ 0.978. The temperatures are equal, or close, to
three relevant temperatures: To ¼ 0.2 (a), TMCT ¼ 0.12 (b),
and T ¼ 0.075 ¼ 1.07Tg (c). Clearly, the picture changes
with the temperature. At the onset temperature To, many
particles turn to have lost a few neighbors and appear in
light blue. These particles are scattered throughout the
sample and do not form well-defined clusters. Moving to
the mode-coupling crossover temperature TMCT, we dis-
tinguish relatively extended regions containing only qui-
escent particles. The particles which have undergone some
rearrangements start to cluster. Still, the clusters remain
rough, numerous, with ill-defined boundaries. At the lowest
temperature T ¼ 0.075 closest to Tg ¼ 0.07, the early stage
of relaxation looks qualitatively different. We observe a
small number of very mobile (red) particles localized into
compact clusters with clear boundaries. These particles
have undergone several relaxation events leading to
Ci
B ¼ 0. The particles in the rest of the sample are all

quiescent and have not undergone a single rearrangement.
Turning to larger times where structural relaxation occurs

CBðtÞ ¼ 0.5, we again observe a dramatic temperature
dependence. The dynamics is almost spatially homogeneous

FIG. 4. Thirty milliseconds in the life of a supercooled liquid.
Spatiotemporal evolution (left to right, top to bottom) of the
structural relaxation in a 2D deeply supercooled liquid at
T ¼ 0.09, where τα ¼ 1.5 × 108. Particle colors indicate the
bond-breaking correlation Ci

BðtjÞ from blue (quiescent) to red
(mobile) following the color bar indicated top left. The snapshots
are taken at times t1;…; t6 ¼ 2 × 106, 107, 4.6 × 107, 1.1 × 108,
2.3 × 108, 8.2 × 108, at which the average bond-breaking corre-
lation equals 0.97, 0.86, 0.7, 0.54, 0.33, and 0.1. The linear size
of the box is L ¼ 100.
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at the onset temperature and becomes spatially correlated
near TMCT where relatively well-defined domains have
emerged, yet with large fluctuations within them and rough
boundaries. As the temperature is lowered further, we
observe again a much clearer contrast between relaxed and
unrelaxed domains which become more compact and less
irregular at their boundaries. Therefore, even though the
average correlation CBðtÞ is the same within the top and
bottom panels of Fig. 5, the distribution of local values
Ci
BðtÞ evolves from a single peak around the average at high

temperatures to a nearly bimodal distribution, peaking
at 0 and 1 at low temperature. We also note that the
characteristic size of the heterogeneity shown in these plots
changes a lot between To and TMCT but appears to evolve
more slowly below TMCT. We also document this point
below; see Fig. 21.
In Fig. 6, we show that similar conclusions are

supported by our simulations in 3D, although snapshot
rendering is more intricate. To ease visualization, not
only particle colors but also diameters follow the bond-
breaking correlation Ci

B: At short (resp, large) times,
mobile (resp, quiescent) particles are shown with a
larger diameter. In 3D, the emergence at very low temper-
atures of well-defined mobile clusters at short times is
very clear, whereas a very diffuse pattern is observed at
higher temperatures. At large times and low temperature,
extended clusters of quiescent particles (blue) are visible.
We instead notice that it is difficult to observe the dynamic
heterogeneity field near the mode-coupling crossover
in 3D.

V. EARLY TIMES OF THE STRUCTURAL
RELAXATION

A. van Hove distribution functions

To analyze particle motion at very short times, we first
record the self-part of the van Hove distribution function

Gsðr; tÞ ¼
1

4πr2
hδ(r − jriðtÞ − rið0Þj)i ð8Þ

in the three-dimensional liquid; see Fig. 7. To follow the
evolution with the temperature of this quantity, we select

FIG. 6. Temperature evolution of dynamic heterogeneity in 3D.
(a)–(c) Relaxation at early times t ≪ τα where CBðtÞ ¼ 0.978, at
different temperatures taken at t ¼ 6.5, 475, and 1.8 × 107 from
(a) to (c). (d)–(f) Relaxation close to the α relaxation, where
CBðtÞ ¼ 0.5 at different temperatures taken at t ¼ 45, 2.7 × 104,
1.2 × 107 from (d) to (f). The particles are colored following their
bond-breaking correlation (see Fig. 4) and drawn with a diameter
proportional to either 1 − Ci

BðtÞ (top) or Ci
BðtÞ (bottom). The

linear size of the box is L ¼ 21.5.

FIG. 5. Temperature evolution of dynamic heterogeneity in 2D.
Particles are colored following the bond-breaking correlation Ci

B;
see legend in Fig. 4. (a)–(c) Relaxation at early times t ≪ τα
where CBðtÞ ¼ 0.978 at different temperatures. Snapshots are
taken at t ¼ 6; 2 × 103; 3.2 × 108 from (a) to (c). The circles
indicate the point-to-set length scale ξPTS discussed in Fig. 21.
(d)–(f) Relaxation close to the α relaxation, where CBðtÞ ¼ 0.5.
Snapshots are taken at t ¼ 500; 1.5 × 105; 1.7 × 108 from (d) to
(f). The linear size of the box is L ¼ 100.

FIG. 7. Heterogeneous dynamics at early times. van Hove
distribution of particle displacements Gsðr; tÞ in 3D at the time
when ΔISðtÞ ¼ 6 × 10−3 (dash-dotted line in Fig. 3) for
T ¼ 0.095, 0.08, and 0.059 [same legend as in Fig. 1(a)]. The
dash-dotted line is an exponential fit of the tail of the distribution
at the lowest temperature. The inset compares the van Hove
distributions computed at T ¼ 0.059 either from real displace-
ments or from the visited inherent structures (IS).
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times where the MSD in the inherent structure is constant
ΔISðtÞ ¼ 6 × 10−3, which is indicated as a horizontal line
in Fig. 3. This threshold corresponds to the value of ΔIS as
the MSD Δ departs from its plateau. As such, we probe the
distribution of particle displacements at extremely early
times compared to τα.
At all temperatures, the distribution displays a peak

around r ¼ 0 caused by particles vibrating around their
position at t ¼ 0. Although thermal vibrations occur on a
length scale r ≈ 0.15, the van Hove distribution extends to
much broader values, with a tail which is well described by
an exponential decay [57]. The exponential tail encom-
passes displacements that exceed the particle size and
extends to an increasing range of particle displacements
as the temperature lowers. When T ≤ 0.07, a peak emerges
near r ≈ 0.9, which coincides with the position of the first
peak of the pair distribution function gðrÞ. Therefore, the
emerging peak in Gsðr; tÞ is due to particles hopping to the
position previously occupied by one of their neighbors.
This behavior means that dynamic heterogeneity

becomes more pronounced as T decreases, even at t ≪ τα.
On these short timescales, a large majority of particles are
quiescent. These particles have very small displacements
due to thermal vibrations, and they populate the broad peak
near r ¼ 0 in Gsðr; tÞ. However, a very small fraction of
particles are already quite mobile and display displace-
ments that are broadly distributed and reach several particle
diameters long. These mobile particles give rise to the
exponential tail inGsðr; tÞ. In real space, they correspond to
the rare clusters of relaxed particles detected at short times
in Fig. 4. This small population of mobile particles is
responsible for the slow growth of the MSD computed
within inherent states in Fig. 3. This is confirmed in the
inset of Fig. 7 which demonstrates that the exponential tail
is unaffected by removing thermal fluctuations. Finally, the
temperature evolution of the van Hove distribution also
confirms that the contrast between mobile and quiescent
particles becomes stronger at lower temperatures, which
leads to the stronger contrast observed in the relaxation
snapshots in Sec. IV.

B. Complex particle motion inside isolated clusters

The van Hove distribution at short times and low
temperatures shows that a small population of highly
mobile particles coexists with a majority of particles which
simply undergo thermal vibrations. Yet, the distribution
itself provides no information as to how these mobile
particles are organized in space and what type of rearrange-
ments they undergo.
In Fig. 8, we highlight these mobile particles and their

displacements for T ¼ TMCT, and for T ¼ 0.075 near Tg in
the two-dimensional system. We represent with arrows the
displacement vectors of the particles δriðtÞ ¼ riðtÞ − rið0Þ,
at t ¼ 2 × 103, 3.2 × 108 for Figs. 8(a) and 8(b), respec-
tively. These two displacement fields correspond to the

images in Figs. 5(b) and 5(c). The vector magnitudes are
color coded from dark to bright with a maximum magni-
tude clearly depending on the temperature. We observe a
clear spatial heterogeneity in particle displacements, with a
coexistence of mobile particles characterized by large
displacement vectors and quiescent particles with very
small displacements. The displacement field in the quies-
cent regions qualitatively resembles the structure of the
long-wavelength modes among the eigenstates of the
Hessian matrix of amorphous glassy states [58–60].
Yet, a careful look reveals that the physics is qualitatively

different at the two temperatures. These differences are
most appreciated on the right panels, where we magnify
some mobile regions. Near TMCT, the mobile cluster
contains particles which have moved at most jδriðtÞj ≈ 1.
The displacements are coherent, extending over distances
up to ten particles. This explains the partial decorrelation of
the structure, as shown in Fig. 5(b). These displacements
resemble stringlike motion [61].
In comparison, mobile clusters close to Tg are composed

of particles that have moved significantly larger distances
and have fully decorrelated the initial structure. We still
observe modelike displacements in the unrelaxed regions,
although with a much smaller amplitude. The mobile

FIG. 8. Displacement field at early times. Displacement
fields at (a) T ¼ TMCT ¼ 0.12 and (b) T ¼ 0.075 corresponding
to the images in Figs. 5(b) and 5(c). Arrows show the particle
displacement vectors δriðtÞ ¼ riðtÞ − rið0Þ at (a) t ¼ 2 × 103,
(b) 3.2 × 108. The linear size of the box is L ¼ 100. Right:
enlargement of the squared region; displacement vectors are
colored by their magnitude.
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particles are clearly identified, and they form clusters of
various sizes and geometries, which are quite compact with
sharp boundaries. The inset reveals that mobile particles
have undergone a large number of rearrangements leading
to displacement vectors that are very entangled.
At very low temperatures, the physical picture is that of

highly localized rearrangements taking place in an other-
wise elastic matrix responding as an amorphous solid. It
would be interesting to measure spatial correlations of these
small displacements for several temperatures, as they could
indicate a possible crossover from delocalized modelike
motion at high temperature to elasticlike displacements at
lower temperatures.
Inside the clusters of mobile particles, the particle

displacements appear complicated and do not form simple
patterns such as strings [61,62], loops, or simple swaps.
Anticipating Sec. VI, we understand that these complex
displacement patterns result, in fact, from the accumulation
of a large number of elementary relaxation events which
take place inside these localized clusters.

C. Cluster analysis: Statistical properties

One way to quantify the statistical properties of the
localized clusters where structural relaxation occurs at early
times is to perform a cluster analysis. We first threshold
particle mobility into two families and then consider that
two mobile particles belong to the same cluster if their
relative distance is smaller than 1.5, corresponding to the
first minimum in the total pair distribution function. With
these definitions, we can group relaxed particles into
independent clusters and perform an analysis of the
statistical properties of the clusters observed in the simu-
lations. A similar analysis has been performed before in the
regime above TMCT [61,63–65]. Back then, the procedure
required relatively arbitrary thresholding in particle mobi-
lity, which instead becomes more physical at the low
temperatures investigated here. We implement several
thresholding procedures, which all yield the same qualita-
tive picture.
In Fig. 9(a), we show the average number of distinct

clusters ncðtÞ as a function of time for different temper-
atures in 3D. This quantity is extensive at short times, but
its time and temperature evolution should not depend on N.
At all temperatures, nc increases with time before even-
tually reaching a maximum and decreasing at longer times.
We compute the pair distribution function of clusters (not
reported), which does not show any peculiar spatial
dependence at short times. This suggests that the clusters
are, at least initially, randomly distributed in space and
uncorrelated. The time dependence of ncðtÞ is interesting as
the growth toward its maximum is well described by a
power law which extends over a broader range as T
decreases. The corresponding exponent slowly decreases
with decreasing T from ncðtÞ ∼ t0.5 at TMCT to ncðtÞ ∼ t0.38

close to Tg.

We display in Fig. 9(b) the average number of particles
nðtÞ per mobile cluster. At early times, when the number of
clusters starts to grow, their average size n remains modest
(about two to three particles), but the cluster size is
distributed (see below). This analysis confirms the intuition
obtained from Fig. 4: At early times, the dynamics is very
heterogeneous in space and time, and structural relaxation
is initiated in randomly distributed localized clusters
containing only a few particles, which relax in an extended
“sea” of blue, quiescent particles. As time increases, the
typical size of these relaxed clusters increases, and mobile
regions slowly coarsen with time. At the lowest temper-
ature studied, the growth of nðtÞ at times much shorter than
τα is very slow, as revealed by the power law nðtÞ ∼ t0.08

indicated in Fig. 9(b).
At later times, the number nc of mobile clusters reaches a

maximum at a time t ¼ tc before decreasing toward 1 at
very long times, when all particles are mobile and the
system forms a single mobile cluster [62]. Therefore, we
can generically expect the emergence of a maximum
number of clusters. At tc, independent clusters start to
merge either because two clusters appear at nearby loca-
tions or because two nearby growing clusters merge. Either
way, the emergence and growth of mobile clusters should
naturally induce a form of mobility percolation as time
increases [62].

(a)

(b)

FIG. 9. Statistical analysis of relaxed clusters in 3D. (a) Average
number of clusters ncðtÞ of mobile particles for temperatures as in
Fig. 1(a). Dashed lines indicate the time tc at which nc is
maximum. At low temperature, the number of clusters grows as a
power law (line) with exponent 0.38. (b) Average number of
mobile particles nðtÞ per cluster, with a slow power-law growth
indicated as a guide to the eye. Inset: average number ncðtÞ and
size nðtÞ of clusters at t ¼ tc as a function of the inverse
temperature.
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The timescale tc where nc is maximal grows with
decreasing temperature. From T ¼ 0.097 to 0.0715, the
ratio tc=τα decreases from 0.3 to 0.02, while τα grows by
about 4 orders of magnitude. Thus, tc is mostly driven by
the evolution of τα but both timescales are not precisely
proportional. The time tc results from the competition
between the emergence of new relaxed clusters and the
merging of preexisting ones. As such, we see no reason to
interpret tc as an important timescale to describe the
structural relaxation, in contrast to Ref. [62]. In particular,
tc does not lead to any observable signature in time
correlation functions or relaxation spectra.
Our interpretation for the physical origin of a maximum

nc is supported by the steep evolution observed at t > tc for
the average cluster size nðtÞ. Finally the distribution of
cluster sizes Pðn; tÞ at t ¼ tc is also consistent with the
physics of percolation, as it shows a power-law decay with
a temperature-independent exponent Pðn; tcÞ ∼ n−1.8 (data
not shown). Similar distributions have been obtained before
[61,64]. The absence of temperature evolution suggests that
the strong thresholding performed at relatively high temper-
atures seriously weakens the physical evolution observed in
Fig. 4 and may artificially render the high-temperature
regime more heterogeneous and clustered than it really is.
Two characteristic quantities exhibit an interesting tem-

perature evolution, as shown in the inset of Fig. 9. As the
temperature decreases, the average number of clusters
ncðtcÞ decreases, while their typical size nðtcÞ increases.
This echoes the observation made from Figs. 5(d)–5(f)
close to the structural relaxation time: Relaxed domains
become larger and more compact as the temperature
decreases. The compactification of the domains at the
moment they percolate is confirmed by the temperature
evolution of the product nðtcÞ × ncðtcÞ which increases by
about 50% (from 80 to 120) in the temperature regime
shown in Fig. 9.

D. Waiting-time distribution of cluster relaxation:
Emergence of a power-law tail

The power-law growth of the number of relaxed clusters
ncðtÞ suggests that the appearance of a new cluster of
mobile particles is a stochastic process. Here we define τ as
the first time t at which a new cluster of mobile particles
appears. We measure the distribution Πðlog τÞ of waiting
times τ for new clusters of relaxed particles in both 2D and
3D; see Fig. 10. To avoid statistical noise, we represent
only data for temporal bins which have accumulated more
than six events among more than 5 × 103 for each temper-
ature. At the lowest temperatures, it is no longer possible to
normalize the distributions, as we cannot observe the entire
range of waiting times for the appearance of relaxed
clusters. In the log-log representation of Fig. 10, the
low-temperature distributions are defined up to an arbitrary
vertical shift. Finally, to compare the distributions at

different temperatures, we normalize the time axis by the
average relaxation time ταðTÞ at each temperature.
For temperatures near TMCT and slightly below, we

measure the entire distribution of waiting times Πðlog τÞ.
Strikingly, even at these relatively high temperatures (from
an experimental viewpoint), the distributions are already
quite broad since they extend over more than four decades
of waiting times. Compared to an average relaxation time
τα ≈ 104 around TMCT, this implies that the width of the
distribution is comparable to its average. In other words,
there is dynamics happening at all timescales between the
microscopic time t ≈ 1 ≈ τo and the structural relaxation
time τα.
Exploring the temperature regime below TMCT toward

Tg, we find that this trend becomes even more prominent.
The waiting-time distributions broaden as T decreases.
Interestingly, the functional form of the distribution
changes when the temperature gets closer to Tg in the
sense that it develops a clear power-law tail at τ ≪ τα,

Πðlog τÞ ∼ τb: ð9Þ

The exponent bðTÞ depends very weakly on the temper-
atures, as it decreases slowly with decreasing T. In the
vicinity of Tg, we measure b ≈ 0.38 (in 3D) and b ≈ 0.45

(a)

(b)

FIG. 10. Emergence of a power-law tail in the waiting-
time distribution of relaxed clusters. Waiting-time distribution
Πðlog τÞ for the appearance of new clusters of relaxed particles in
(a) 3D and (b) 2D. Close to Tg, the distribution is well fitted at
short times τ=τα ≪ 1 by a power law with an exponent b ≈ 0.38
(in 3D) and 0.45 (in 2D). Legend as in Fig. 1.
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(in 2D). This power-law behavior, which emerges only at
T ≪ TMCT is a novel feature revealed by our numerical
strategy which probes equilibrium dynamics near Tg for the
first time.
The similar power-law behavior found for Πðlog τÞ and

for ncðtÞ in 3D should not come as a surprise, as one
generally expects that

ncðtÞ ¼
Z

log t

−∞
d log τΠðlog τÞ: ð10Þ

Plugging Eq. (9) into the above equation and performing a
change of variable directly yields ncðtÞ ∼ tb, as indeed
observed in Fig. 9(a).

E. Short-time dynamics in the frequency domain:
Emergence of excess wings

In experiments, the relaxation dynamics of supercooled
liquids is often probed thanks to spectroscopy techniques
(dielectric, mechanical, light scattering, NMR) which
measure linear response functions in the frequency domain
[66–68]. To compare our results with experimental mea-
surements, we define the analog of a susceptibility spec-
trum in the frequency domain. We assume that the
relaxation dynamics stems from a distribution of timescales
Gðlog τÞ, such that a correlation function CðtÞ which
monitors structural relaxation can be written as [69]

CðtÞ ¼
Z þ∞

−∞
Gðlog τÞe−t=τd log τ: ð11Þ

This expression amounts to decomposing the broad spec-
trum of relaxation times characterizing supercooled liquids
into a series of elementary exponential processes. In the
Fourier domain, this yields

χðωÞ ¼ −
Z þ∞

−∞
Gðlog τÞ 1

1þ iωτ
d log τ: ð12Þ

We define the relaxation spectrum χ00ðωÞ as the imaginary
part of the susceptibility χðωÞ. Following earlier work, we
express the distribution of timescales G from the measured
time correlation function through the relation G ≈
−dC=d log t [70]. This allows us to compute numerically
an analog of the out-of-phase susceptibility spectrum χ00ðωÞ
[71]. In practice, we choose CðtÞ to be the self-intermediate
scattering function in 3D and the bond-breaking correlation
in 2D. While the quantitative detail of the spectra may
change for other choices of correlation functions (mainly
the relative amplitude of the various processes), the main
features are quite robust. This reflects analogous findings of
observable dependence in experimental studies [44,66–68].
We report the relaxation spectra in Fig. 11 for d ¼ 2, 3.

The spectra exhibit a peak at high frequency ω ≈ 1
reflecting the rapid decay of the time correlation functions

on a microscopic timescale corresponding to thermal
motion within a well-defined cage. The lower amplitude
of the microscopic peak in 2D compared to 3D is easily
explained. The definition of CB, with a larger cutoff
employed to define neighbors at later times, indeed makes
it less sensitive than Fs to such motion.
The second peak found at lower frequency corresponds

to the α-relaxation peak and is typically located at fre-
quency ωα ≈ 1=τα. At the lowest temperatures, the α peak
exits the numerically accessible frequency window, and we
are simply left with the high-frequency flank of the
structural relaxation peak.
In both 2D and 3D, the spectra display a power-law

behavior for the lowest temperatures near Tg,

χ00ðωÞ ∼ ω−σ; ð13Þ

where σðTÞ is an exponent that appears to depend very
weakly on the temperature and slowly decreases as T
decreases. The power law in Eq. (13) emerges in the range
ω ∈ ½10−6; 10−3�, with an exponent σ ≈ 0.38 in 3D and σ ≈
0.45 in 2D. The exponents σ appearing in the spectra at
high frequencies are much smaller than the stretching
exponents β ¼ 0.56 (in 3D) and 0.6 (in 2D) obtained from
fitting the corresponding time correlation functions in the
α-relaxation regime. Therefore, the power law revealed by

(a)

(b)

FIG. 11. Emergence of excess wings in relaxation spectra
near Tg. Equilibrium relaxation spectra χ00 as a function of the
frequency ω in (a) 3D and (b) 2D. The black lines are power-law
fits χ00ðωÞ ∼ ω−σ with σ ≈ 0.38 (in 3D) and σ ≈ 0.45 (in 2D).
Legend as in Fig. 1.
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Eq. (13) cannot be understood as the high-frequency limit
of the α peak. In Ref. [41], we demonstrated that the power
laws correspond to the excess wings appearing in the
spectra of many molecular liquids. We emphasize that the
excess wings become clearly visible only at temperatures
T ≳ Tg, explaining why they have not been reported before
in numerical simulations. We also notice that they do not
take the form of a “β peak” separated from the α peak, as
argued recently in Ref. [62], and do not require an internal
degree of freedom.
Assuming that the distribution of relaxation times

Gðlog τÞ in Eq. (12) is dominated by the appearance of
new clusters of mobile particles at short times, the power
law Πðlog τÞ ∼ τb would translate into Gðlog τÞ ∼ τb.
Plugging this expression into Eq. (12) and performing a
change of variable leads to χ00ðωÞ ∼ ω−b. This suggests that
the exponent σ describing χ00ðωÞ is equal to the exponent b
describing the excess wing. For the two systems studied
here, we indeed get a good agreement with b ≈ σ ≈ 0.38 in
3D and b ≈ σ ≈ 0.45 in 2D. The quantitative agreement
between the measured exponent of the excess wings and the
waiting-time distribution of the relaxed cluster shows that
the latter process provides a microscopic explanation for
this characteristic spectroscopic signature in supercooled
liquids near Tg.

F. Suppression of excess wings in ultrastable glasses

To characterize the physical processes responsible for
excess wings (or, more generally, of secondary processes)
in molecular liquids, relaxation spectra have been measured
in nonequilibrium situations [72,73]. For instance,
aging studies report a slow decrease of the amplitude of
secondary processes with the waiting time tw after a rapid
quench below Tg. This suggests that secondary processes
become weaker as the glass is annealed toward more
stable states. This effect was directly evidenced in recent
experiments using physical vapor deposition as a way to
efficiently synthesize glasses with profoundly different
degrees of stability [73]. This would correspond to
varying the waiting time in aging experiments, albeit
over inaccessible long timescales. The study unequivo-
cally confirmed the suppression of secondary processes in
extremely stable glasses.
To assess whether a similar behavior is observed numeri-

cally, we investigate the dynamics of glasses with varying
stability at temperature T ¼ 0.062 in 3D. We vary glass
stability by first preparing equilibrium liquids at three
temperatures Ti ¼ 0.07, 0.08, and 0.10 using the swap
Monte Carlo algorithm. Using conventional molecular
dynamics with a Nosé-Hoover thermostat, we then quench
them suddenly to T ¼ 0.062. The resulting glasses are aged
at T ¼ 0.062 during tw ¼ 2 × 106. We check that our
measurements do not sensitively depend on tw: It is large
enough to ensure that all important structural aging

processes have shifted outside the observation time
window. The temperature Ti, which may be interpreted
as a fictive temperature [74], mainly controls the degree of
stability of the resulting glasses. A similar strategy was
adopted in Refs. [23,25,26]. Using the relaxation time
ταðTiÞ as a quantitative measure of stability, the range of
temperatures Ti translates into a variation in glass prepa-
ration times between 103 and 1012, which represents a
significant dynamic range.
In Fig. 12(a), we report the relaxation spectra measured

from FsðtÞwith conventional MD simulations starting from
the samples aged during tw. All spectra exhibit a similar
frequency dependence with a power law following Eq. (13)
and an exponent σ that appears almost independent of the
glass stability. Still, the glass stability strongly affects the
amplitude of the relaxation so that

χ00ðωÞ ≈ AðTiÞω−σ ð14Þ

with a prefactor AðTiÞ which decreases by more than 1
order of magnitude from Ti ¼ 0.1 to 0.062. Our measure-
ments directly reveal that secondary processes are sup-
pressed in glasses of increasing stability, in excellent
agreement with experimental observations [73] where a
suppression factor of 3 has been achieved.

(a)

(b)

FIG. 12. Suppression of excess wings in ultrastable glasses in
3D. (a) Spectra χ00ðωÞ measured at T ¼ 0.062 in glasses first
equilibrated at Ti, then quenched at T ¼ 0.062 where they age
during tw ¼ 2 × 106. We report the equilibrium spectrum labeled
by Ti ¼ 0.062. (b) Average number of clusters ncðtÞ of mobile
particles with the same definition as in Fig. 9.
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Our simulations allow us to uncover the physical origin
of this suppression. Following the cluster analysis of
Sec. V, we present in Fig. 12(b) the time dependence of
the number ncðtÞ of clusters of mobile particles in aged
glasses. All curves display the same time dependence,
essentially a power law, with a prefactor that changes by 1
order of magnitude depending on Ti. This observation
extends the link established above between the relaxed
clusters observed at short times and the excess wing
observed in relaxation spectra to nonequilibrium glasses.
Finally, we illustrate this point thanks to simulation

snapshots drawn from 2D simulations. We repeat a protocol
similar to 3D, starting from an equilibrium configuration at
Ti ¼ 0.12 ¼ TMCT, which is suddenly quenched to T ¼
0.075 where it ages for a long waiting time tw ¼ 4 × 107

using conventional canonical molecular dynamics. We then
run the dynamics over a duration t ¼ 107 and record
particle motion. We compare the results to the equilibrium
dynamics obtained over the same duration and temperature
T ¼ 0.075. In Fig. 13, we compare the corresponding
mobility fields measured in the poorly annealed system
(Ti ¼ 0.12) and the very stable one (Ti ¼ 0.075). These
images directly confirm that the number and size of the
relaxed clusters in the two systems are very different. The
depletion of short-time excitations as stability increases
explains the suppression of excess wings and of secondary
relaxations observed in ultrastable glasses. This finding
adds a new item to the growing list of glassy excitations that
get depleted as glass stability is varied [22–26].
The overall physical conclusion is that the population of

localized mobile clusters observed at the early times during
the equilibrium relaxation of supercooled liquids becomes
stability dependent when studying the nonequilibrium
dynamics of glasses. Many more relaxation events are
observed in less stable glasses (a factor of 10 in Fig. 12).
The nature of these additional events is different from

equilibrium ones, as they necessarily correspond to irre-
versible events which slowly drive the system toward
equilibrium. Our measurements for the amplitude AðTiÞ
imply that 90% of the secondary processes at play in poorly
stable glasses prepared using conventional numerical
methods are actually not present in equilibrium conditions
[62,75] and great care must be paid regarding the physical
interpretation of such studies.

VI. HOW STRUCTURAL RELAXATION UNFOLDS
FROM EARLY TO LATE TIMES

A. Maps of local relaxation time

We first illustrate how structural relaxation takes place in
space and time starting from the early mobile clusters
characterized above. We generate a spatial map of local
relaxation times for the long trajectory tmax ¼ 8.2 × 108 at
T ¼ 0.09 of Fig. 4. Such a representation of the spatially
heterogeneous dynamics was used long ago [76–78]. To
this end, we attach to each particle its relaxation time τiα
defined as the first time at which particle i becomes mobile,
keeping our definition of mobility from the inequal-
ity Ci

BðτiαÞ ≤ 0.5.
We show in Fig. 14 two representative maps of the local

relaxation time obtained at T ¼ 0.12 ≈ TMCT [Fig. 14(a)]
and a temperature T ¼ 0.09 halfway between TMCT and Tg

[Fig. 14(b)]. The latter corresponds to the long trajectory of
Fig. 4 which lasts tmax ¼ 8 × 108. The gray regions in
Fig. 14(b) contain the particles that have not yet relaxed
after tmax. The color code uses a logarithmic scale from
bright (yellow) at short times to dark (black) at long times.
As found in Fig. 10, there are particles which become
mobile at extremely short times. Note that the shortest τiα
are bounded by the time delay Δt used to store configu-
rations along the trajectory [we use Δt ¼ 103 and 105 for

FIG. 13. Relaxed clusters at equal times in poorly aged glasses
and equilibrium liquids in 2D. Snapshots of two systems
simulated for t ¼ 107 at temperature T ¼ 0.075. Initial condi-
tions are (a) sample equilibrated at Ti ¼ TMCT ¼ 0.12, then aged
for tw ¼ 4 × 107 at T ¼ 0.075, and (b) equilibrium sample at
Ti ¼ 0.075. Particles are colored following the bond-breaking
correlation, as in Fig. 4. The linear size of the box is L ¼ 100.

FIG. 14. Maps of local relaxation time reveal the emergence of
dynamic facilitation. Map of a local relaxation time τiα in the two-
dimensional system defined as the first time atwhichCi

B ≤ 0.5 and
(a) T ¼ 0.12 ¼ TMCT and (b) T ¼ 0.09. The color codes for the
valueof τiα areona logarithmic scale. In (b), the arrowhighlights the
emergence of dynamic facilitation, and gray regions have not yet
relaxed at tmax ¼ 8 × 108. The box size is L ¼ 100.
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Figs. 14(a) and 14(b), respectively]. The upper bound is set
by the longest local relaxation time in Fig. 14(a) (about
20τα) or by the simulation time tmax in Fig. 14(b).
The images in Fig. 14 illustrate the very broad waiting-

time distributions for the appearance of new mobile
particles in the sample. We observe, in particular, many
zones where particles become mobile orders of magnitude
before the average structural relaxation time τα. They
appear as bright yellow zones, and coexist with regions
that instead have a relaxation time larger than τα. We
identify many more fast zones near TMCT than at T ¼ 0.09.
The slow coarsening of relaxed regions observed in Fig. 4
translates into a smooth spatial spreading of the color in
these relaxation-time maps. Mobility appearing in a local-
ized region at early time extends at longer times to its
neighboring regions which thus appear darker. We also
observe that the typical size of the correlated regions seems
to increase on a logarithmic scale: Bright yellow domains
are very small while darker domains are larger. These
images thus confirm that the relaxation starting at localized
regions at early times slowly spreads to neighboring
regions over logarithmically increasing times.
This very clear spatiotemporal view of the structural

relaxation becomes actually much more complicated at
higher temperatures. Around the mode-coupling temper-
ature in Fig. 14(a), the relaxation starts at early times
(bright) at numerous locations that are rather fuzzy.
Similarly, the spread of mobility to neighboring regions
is much harder to identify. This observation suggests that
dynamic facilitation is much more clearly defined close to
Tg than in the higher-temperature regime explored by
conventional simulations.
We also remark that mobility does not spread isotropi-

cally. On the bottom left of Fig. 14(b), one can indeed
distinguish a domain which relaxes very early, surrounded
in one direction by a facilitated region identified by a
smooth color gradient to the south (indicated by an arrow),
while to the north, one distinguishes a gray region in
which no relaxation takes place over the subsequent four
decades. Therefore, dynamic facilitation acts isotropically
on average, but it appears to be locally anisotropic. This
suggests that the local disorder plays an important role and
controls how mobility can propagate in space. This
observation seems in harmony with the anisotropic kinetic
constraints introduced in certain kinetically constrained
models [70,79,80].
In three-dimensional liquids, we measure the local

relaxation time and display how the dynamics evolves in
space and time. To ease visualization, we show in Fig. 15 a
selected relaxed cluster of particles at very low temperature
T ¼ 0.07. Following Fig. 14, the color code indicates the
local relaxation time. As for 2D systems at low temper-
ature, mobility starts at very early times in small localized
regions and spreads to the neighboring particles over time
to form a larger cluster of mobile particles at larger times.

Qualitatively, dynamic facilitation thus appears to also play
an important role in 3D.

B. Space-time trajectories

In constructing maps of the local relaxation time, each
particle is shown only once with an indication about the
first time it becomes mobile. These maps say nothing about
what happens after this first relaxation event. To address
this point, we construct a dþ 1 space-time trajectory
representing the evolution of the mobility field along a
time axis for d ¼ 2 liquids [8]. To define mobility on a
given time interval of duration Δt, we use the usual
criterion Ci

Bðtþ Δt; tÞ < 0.5. By stacking the mobility
field over consecutive time slices of duration Δt, we can
visualize how mobility propagates in space and time.
In Fig. 16, we show a representative space-time mobility

trajectory at T ¼ 0.09 obtained from the same data as in
Figs. 4 and 14(b). The trajectory of duration tmax ¼ 8 × 108

is split into 400 time slices of width Δt ¼ 2 × 106. The
choice of Δt results from a compromise. It must be small
enough compared to τα so that we can resolve how the
structural relaxation unfolds from early times, but not too
small so the fraction of mobile particles within each time
interval is nonvanishing. With our choice, about 5% of the
particles are mobile in each slice. Only particles that are
mobile with a time slice are rendered. To ease visualization,
we show only particles with 0 < x < L=2. We highlight the
main features of the space-time trajectory by constructing a
surface representation of the set of mobile particles, as
implemented in the OVITO software [81].
The most striking novel observation deduced from

Fig. 16 is the emergence of “tubes” in space-time.
Physically, this corresponds to localized regions in space
which keep relaxing in many successive time slices. We
conclude that a large number of relaxation events accu-
mulates in some regions, even long after the first relaxation
event. In Sec. VI C, we quantify this accumulation effect by
introducing an appropriate statistical tool.

FIG. 15. Dynamic facilitation in the 3D model. A connected
cluster containing 163 mobile particles at T ¼ 0.07 inside a 3D
system composed of N ¼ 104 particles (linear size L ¼ 21.5) at
time t ¼ 4.1 × 106. The particles are represented at their position
at t ¼ 0 using a color which codes for τiα.
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In addition, a careful examination of Fig. 16 reveals that
these tubes are not perfectly aligned along the time direction.
They can bend, widen, or merge with neighboring tubes. In
terms of particle motion, this means that the relaxation
events which accumulate in a localized region are not simply
the repetition of the exact same event (for instance, a
complex but reversible particle motion), which means that
relaxation can spread to neighboring particles. As a result,
mobility propagates in space from one time slice to another.
This observation accounts for the slow coarsening of the
relaxed regions observed in Fig. 4. In Sec. VI D below, we
quantify this coarsening process. The propagation of mobil-
ity from one region to a neighboring one via the accumu-
lation of complex localized relaxation events provides the
microscopic origin of dynamic facilitation.

C. Accumulation of localized relaxation events

To quantify the accumulation of mobility in the same
regions over time, we denote as m1ðΔtÞ the fraction of
particles that are mobile (defined again via Ci

B) in the time
slice ½t; tþ Δt�. We then identify the particles that are
mobile over the next time slice ½tþ Δt; tþ 2Δt�. Finally,
we definem2ðΔtÞ as the fraction of particles that are mobile
in two consecutive time intervals, i.e., mobile in both ½t; tþ
Δt� and ½tþ Δt; tþ 2Δt�.
By construction, m2 ≤ m1, the equality being obtained

when the dynamics repeats itself exactly from one time

slice to the next. In the opposite case of completely
uncorrelated dynamics between two consecutive intervals,
one gets m2 ¼ m2

1 < m1. To quantify the mobility corre-
lation between consecutive time slices, we introduce the
quantity cðΔtÞ,

cðΔtÞ ¼ m2 −m2
1

m1 −m2
1

; ð15Þ

whose normalization ensures that 0 ≤ cðΔtÞ ≤ 1. By def-
inition, we have cðΔtÞ ¼ 1 if the dynamics is perfectly
correlated over two consecutive intervals, while cðΔtÞ ¼ 0
if it is completely uncorrelated. For a givenΔt, a large value
cðΔtÞ implies that a large fraction of mobile particles are
identical in successive time intervals of duration Δt. This is
illustrated in Fig. 17(a).
We investigate the evolution of cðΔtÞ as a function of Δt

and temperature T in both 2D and 3D; see Fig. 17. To

FIG. 16. Space-time trajectory in the 2D model. A trajectory
starting at t ¼ 0 (left) finishing at tmax ¼ 8 × 108 (right) at T ¼
0.09 is split into 400 time slices of duration Δt ¼ 2 × 106. We
show all particles that are mobile within a given time slice,
together with a surface representation which draws a contour of
the coarse-grained mobility field. To ease dþ 1 visualization, the
color linearly codes for the time dimension, and one half of the
system in the x direction is removed.

FIG. 17. The accumulation of relaxation events becomes more
probable toward Tg. (a) The quantity cðΔtÞ in Eq. (15) quantifies
the probability for particles to be mobile within two consecutive
intervals of duration Δt. Data for cðΔtÞ in 3D [(b), legend
provided in Fig. 1(a)] and 2D (c) liquids at various temperatures.
The time axis is rescaled by τα measured from FsðtÞ and CBðtÞ,
respectively.
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compare different temperatures, we rescale Δt by the
average relaxation time τα. The latter is measured from
FsðtÞ in 3D and CBðtÞ in 2D. All curves exhibit a
qualitatively similar time dependence with cðΔtÞ ≈ 0 at
both microscopic times Δt ≈ 1 and at very long times
Δt ≫ τα, where the dynamics in successive frames is
obviously uncorrelated. The probability cðΔtÞ thus exhibits
a maximum at a time which scales almost like τα. The value
at the maximum increases with decreasing the temperature.
We also see that at any fixed value of Δt=τα, the value of
cðΔtÞ grows when T decreases.
These measurements quantitatively confirm the tube

interpretation of the dynamics detected in the space-time
trajectory of Fig. 16. At low temperature, the mobility field
measured in a given time frame becomes increasingly
correlated with the mobility field measured in the con-
secutive time frame: Relaxation events accumulate at
identical locations over long times to form tubes in
dþ 1 dimensions.
The existence of a growing maximum at Δt ≈ τα shows

that the spatial structure of dynamic heterogeneities char-
acterizing the structural relaxation becomes increasingly
similar from one slice of duration τα to the next as the
temperature decreases. For example, at T ¼ 0.075 in 3D,
we find that cðταÞ ≈ 0.5, which implies that half of the
particles that relax over one relaxation time τα also relax
over the next relaxation time. One can physically anticipate
that such a mechanism leads to an increased lifetime of
dynamic heterogeneities at low temperature.

D. Slow temperature-dependent coarsening
of relaxed domains

We now investigate how mobility spreads in space
over larger timescales. Natural quantities to measure the
growth of spatially correlated regions are four-point
spatial correlation functions of the mobility field, either
in real or in Fourier space [82–84]. Both functions are
related to the four-point dynamic susceptibility that has
been the subject of a large number of studies [85–88]. It is,
however, well known that collecting good statistics for
these functions requires very large systems [89–92]. This
represents a numerical effort on its own, which we leave
for future work.
We characterize growing dynamic length scales using

an alternative method based on the chord length distri-
bution. This method was introduced to analyze porous and
bicontinuous structures [93–95]. We note that the method
does not faithfully characterize dynamic heterogeneities at
temperatures above TMCT, where relaxed domains have
fuzzy shapes and ill-defined boundaries. It was, however,
shown to efficiently determine characteristic length
scales in compact bicontinuous structures [94], which
are observed at Tg < T < TMCT. Finally, this method does
not suffer from considerations related to the choice of
statistical ensembles [90,91].

First, we identify relaxed regions via the bond-breaking
correlation; see Fig. 18(a). To determine the spatial exten-
sion of relaxed domains, it is convenient to perform a
coarse-graining and binarize the Ci

B field. To do so, we
discretize the configuration into a grid of cells of linear
size 1 and compute their average Ci

B, particles being
weighted by their area overlap with each cell, which is
then thresholded at 0.5 between mobile and quiescent cells.
We illustrate in Fig. 18 how our procedure transforms a
particle configuration [Fig. 18(a)] into a discrete lattice of
mobile and quiescent cells [Fig. 18(b)]. The binary grid is
then used to measure the distribution of chord length l
defined as horizontal and vertical segments intersecting
mobile domains, as shown in Fig. 18(b).
After averaging, the method yields the probability

distribution of chord lengths Pðl; tÞ at any temperature T ≤
TMCT and time t. As an example, we show in Fig. 18(c) the
chord length distribution measured at T ¼ 0.095 in 2D for
three different times. All distributions have a maximum at
very small l ≈ 1, presumably due to the roughness of the

(a)

(b)

(c)

(d)

FIG. 18. Slow coarsening of relaxed domains measured by
chord length distributions in 2D. (a) Snapshots of a portion of the
two-dimensional liquid with a mobility field at T ¼ 0.095 (color
code from Fig. 4). (b) Discretized version of the mobility field
used to measure the length l of chords drawn vertically and
horizontally which intersect relaxed domains (white). (c) Chord
length distribution Pðl; tÞ at T ¼ 0.095 and increasing times.
(d) Growth of the average chord length hli with time. A slow
algebraic growth develops at early times and low temperatures.
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domains. At larger l, the distribution is smooth and decays
over a typical distance which grows with increasing time.
The decay at large l is roughly exponential, as seen in other
systems [94].
To extract a time-dependent length scale characterizing

the growing size of the domains of relaxed particles, we
compute the first moment of the chord length distribution,

hli ¼
Z

∞

0

dlPðl; tÞl: ð16Þ

The time dependence of hli is shown in Fig. 18(d) for a
broad range of temperatures.
The time dependence of the typical chord length quali-

tatively changes with the temperature. Close to TMCT ¼
0.12 and above, the average relaxation time τα is not yet
very large. Many small domains appear spontaneously
across the system at early times, and they rapidly merge
with one another. The merging of independent clusters is
the mechanism that controls the growth of the typical
domain size in the time regime near τα. In other words,
dynamic facilitation is present above TMCT, but it does not
seem to directly control the time dependence of spatially
correlated dynamic domains.
At lower temperature instead, we observe a sparse

population of regions that appear at early times and coarsen
independently over a large time window before different
domains start to merge. In this early-time regime, which
exists only at temperatures much lower than TMCT, the
typical domain size appears to grow as a power law

hliðtÞ ∼ t1=zðTÞ ð17Þ

with a dynamic exponent zðTÞ which increases slowly as T
decreases. For T ¼ 0.0853, we find, for instance, zðTÞ ≈
5.9 (i.e., 1=z ≈ 0.17). This very large value of the dynamic
exponent zðTÞ implies that the growth of relaxed regions is
strongly subdiffusive in the time regime t ≪ τα. The
decrease of this exponent with temperature demonstrates
that, while the dynamics repeats itself with increasing
probability, it also takes longer for mobility to spread to
neighboring regions. As a word of caution, we note that our
numerical determination of zðTÞ is performed over ranges of
timescales and temperatures which are highly constrained,
leaving open the possibility that the domain growth is
actually better described by a logarithmic increase, for
instance. Finally, the very slow growth of hli in the 2D
model echoes the similarly slow growth of the average
cluster size nðtÞ measured in the 3D model in Fig. 9.

E. How the story ends: Lifetime of dynamic
heterogeneity

We finally describe how structural relaxation takes place
at very long times, beyond the structural relaxation time.
Typically, τα is defined from the decay of a time correlation
function CðtÞ below an arbitrary level, for instance,

CðταÞ ¼ e−1. When CðtÞ is the self-intermediate function,
this means that particles have, on average, moved by a
distance 2π=q after τα. Of course, a similar value is reached
if a fraction of the particles has moved a lot, while the rest is
still immobile. Using the bond-breaking correlation func-
tion at half value, as we frequently do above, means that
either all particles have, on average, lost half of their
neighbors, or that one half of the particles have lost all of
their neighbors while the others did nothing. In other
words, the definition of an “average” relaxation time τα
does not imply that all particles have completely relaxed
after a time τα. In fact, the snapshots shown above clearly
demonstrate that, at very low temperatures, a significant
fraction of the particles have not relaxed at all after τα
while the others have fully relaxed. This paragraph merely
reformulates more explicitly the well-established statement
that the dynamics of supercooled liquids is spatially
heterogeneous [96].
We push the simulations at T ¼ 0.09 up to 5 times longer

than the α-relaxation time and represent the outcome in
Fig. 19. We show the x − y projection of the space-time
representation of Fig. 16, the time axis now pointing inside
the plane, with a linear color code from short (white) to long
(dark) times.When accumulated over such a large timescale,
we observe that a significant fraction of the system remains
completely unrelaxed (gray domains). We also observe that
the latest stages of the dynamics where some slow regions
relax for the first time (red regions) spread from regions that
have already relaxed. We make similar observations in
multiple trajectories: The slowest regions to relax are always
invaded and relaxed from their boundaries. In other words,
the regions that have already relaxed at τα are progressively

FIG. 19. Relaxation of very slow domains in the 2D model. x-y
projection of the space-time mobility trajectory shown in Fig. 16.
The color code indicates, in a linear scale, the time at which
particles become mobile for the first time.
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invading the ones that relax slower than average. This
suggests that the tail of the correlation function at very
long times is physically controlled by the slow coarsening
process described in the previous section.
This has two important consequences.
First, this implies that the gray unrelaxed regions in

Fig. 19 are extremely stable and would tend to relax over a
timescale that is much larger than the average relaxation
time τα. However, their environment is not as stable, and
the relaxation which takes place there facilitates or accel-
erates the relaxation of these slow domains. In Ref. [97], we
argued that this phenomenon provides a physical explan-
ation for the asymmetric shape of relaxation spectra in
deeply supercooled liquids in terms of an underlying
distribution of “natural” relaxation times that has a very
broad tail that is cut off by the facilitated relaxation of the
slowest regions. This mechanism has been discussed in
various contexts [98–102].
Second, the timescale over which the slowest regions

relax in the system controls the so-called lifetime τDH of the
dynamic heterogeneity. Physically, a bicontinuous pattern
of the mobility field with fast and slow particles emerges
near τα, as shown, for instance, in Fig. 5. If the relaxation
time in the slow regions in such plots were given by a
timescale τDH ≫ τα, then the same mobility pattern would
be found over many consecutive time intervals of duration
τα and would start to change significantly only after a time
τDH [103]. The study of this lifetime has been the subject of
intense experimental [96,104–107] and numerical [43,108–
110] studies.
Our simulations show that, as a result of dynamic

facilitation, the lifetime of the slow regions is controlled
by a combination of two factors: (i) the relaxation time of the
fast regions and (ii) the coarsening of mobility from one
relaxed region to the next. Because the latter factor depends
very weakly on the temperature, we expect that τDH may
increase slightly more slowly than τα but should not be
strongly decoupled from it. In simulations where complete
decorrelation can be observed,we find that after 20–40 times
τα, the entire system has completely relaxed and information
about dynamic heterogeneity is then totally lost. This
conclusion appears consistent with recent experiments
[106,107] and simulations [43]. Such a long timescale also
justifies our statement about equilibration in supercooled
liquids, which cannot be reached before at least 20–40 τα as
otherwise, some particles would not have relaxed at all.

VII. DISCUSSION

A. Summary of main novel results

Let us first briefly recapitulate the main new results
arising from studying dynamics over long timescales at
very low temperatures.
First, we observe that in the very low-temperature regime

the dynamics starts at sparse locations and takes the form of
localized but quite complex relaxation events. Detailed

analysis reveals the emergence of power laws characteriz-
ing the time dependence of three quantities: the number of
independent clusters of mobile particles, the distribution of
waiting time for their appearance, and the high-frequency
dependence of ensemble-averaged relaxation spectra
(excess wing). We demonstrate that these power laws are
intimately connected, and their amplitude strongly depends
on the stability of the system.
Second, we describe how these early relaxation

events induce an accumulation of relaxation events repeat-
edly taking place at roughly the same location leading to
the slow coarsening of the relaxed domains. These obser-
vations account for the emergence, at a coarse-grained level,
of dynamic facilitation. In particular, we characterize a
dynamic exponent zðTÞ relating timescales and length
scales, which we extract by introducing a chord length
analysis of the dynamic heterogeneity. The corresponding
growth of relaxed regions is very slow and strongly sub-
diffusive with a large value of zðTÞ, possibly logarithmic.
Third, we observe a qualitative evolution of the nature of

the spatially heterogeneous dynamics at all timescales as
the temperature is decreased much below the mode-
coupling crossover. In particular, we find an increasing
segregation between mobile and immobile regions result-
ing in spatial fluctuations of the mobility that become more
compact with smoother boundaries at low temperatures.
Fourth, we find that at low temperature the regions that

relax the slowest at timescales much larger than τα seem so
stable that the fastest mechanism to relax them is via the
propagation of mobility from faster regions surrounding
them, that is, via dynamic facilitation. Our simulations thus
demonstrate that the lifetime of the dynamic heterogeneity
is controlled by dynamic facilitation.

B. Comparison with previous simulations

Computational research regarding the dynamics of
supercooled liquids is immense and covers several decades
of work [11]. Because we explore a temperature regime that
was not accessible to simulations before, it is useful to
contrast our main results with earlier studies. This is
organized in three broad topics.
First, we discuss the emergence of excess wings

associated with short-time localized relaxation events
characterized by a broad waiting-time distribution, as
reported in Sec. V. This finding more broadly refers to
the topic of secondary relaxations, or β processes, in the
dynamics of supercooled liquids [2,111]. We recall that
excess wings appear in experiments in a time window
roughly between 1 μs and 1 s for temperatures much
lower than TMCT [112–114]. Simulations performed with-
out the swap Monte Carlo algorithm cannot reach equi-
librium at temperatures where excess wings appear. As a
consequence, earlier attempts to explore similar time
and temperature windows necessarily dealt with non-
equilibrium glasses obtained by crossing a computer glass
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transition at a temperature much higher than Tg, typically
near TMCT. In Sec. V F, we show that relaxation events
detected in such poorly annealed glasses are not represen-
tative of those observed in equilibrium materials at the
same temperature. In a recent series of simulations using
computer models not very different from ours [62,75],
these events were mathematically described as an additive
secondary peak in relaxation spectra. Other works have
reported similar conclusions regarding the existence of a β
process [115]. Our results show that this description may
not be adequate, as the high-frequency shoulder observed
in these works in fact turns into extended power laws in
equilibrium at lower temperatures.
Our work also sheds light on an important issue

regarding secondary relaxations. A number of numerical
studies have reported the existence of a β process taking
the form of a peak in the frequency domain located at a
frequency fully decoupled from τα. These studies ana-
lyzed the relaxation behavior of particles that are more
complex than the point particles studied here, for instance,
polymeric systems [116,117] or particles with shapes
[118–120]. These studies suggest that intramolecular
degrees of freedom can make relaxation spectra even
more complex than the ones we report. However, our
observation that excess wings taking the form of extended
power laws exist in our much simpler model shows that
secondary processes do exist in the absence of intramo-
lecular degrees of freedom.
A second major theme in computer studies is the

idea that a crossover temperature separates two physical
regimes in the dynamics of supercooled liquids [35].
This is theoretically rationalized by the existence of a
critical temperature controlling the dynamics of super-
cooled liquids in the context of mean-field approaches
[50,121,122]. This critical temperature is similar to the one
predicted from mode-coupling theory, although its inter-
pretation as an artifact of mean-field approximations has
only recently been fully clarified [123,124]. It is generally
agreed that such mean-field approaches may usefully
describe the first few decades of the dynamic slowdown,
which is precisely the temperature regime studied over the
years by computer simulations [35]. Having access to
considerably lower temperatures confirms that relaxation
dynamics keeps changing with decreasing temperatures.
However, the present results are in fact more naturally
described as a progressive evolution toward low-temper-
ature physics, with no sharp change at a specific temper-
ature. Importantly, most of the features that we report
become prominent and unambiguous only at the lowest
temperatures that we can analyze. We suggest that a
considerable amount of work is needed to reassess con-
clusions drawn in previous works at higher temperatures.
Third, our results show how dynamic facilitation

emerges at very low temperature and plays an important
role in both the approach to τα and at longer times. The

concept of dynamic facilitation has a long history in the
glass literature [98,125], to the point that it serves as a
basis for the construction of a large family of kinetic
glass models [126], which can display many phenomena
observed in more realistic particle systems and have been,
in particular, very useful to characterize dynamic hetero-
geneity [127].
Direct signatures of dynamic facilitation in molecular

dynamics simulations have been discussed before [128–
132]. The most direct studies have, in particular, followed
similar principles: First, use some thresholding procedure
to detect the time at which a given particle is moving (i.e.,
performing some jump), and then search for the enhanced
probability that a nearby particle will relax not too far in the
future [129]. Our philosophy is conceptually different. We
do not perform single-particle analysis of jump dynamics
but rather quantify how the observed collective relaxation
events effectively give rise to dynamic facilitation when
observed over some large timescales and length scales, as
in the space-time representation of Fig. 16 or via the
emergence of a dynamic exponent zðTÞ. Our simulations
suggest that dynamic facilitation becomes more prominent
and should be more easily characterized at lower temper-
atures, which seems to contradict earlier findings [133].
Finally, a recent numerical study suggests that dynamic

facilitation may become long-ranged below TMCT and may
result from elastic interactions [134]. We do not repeat the
detailed analysis proposed in this work at the much lower
temperatures analyzed here, but the gradual coarsening of
relaxed domains suggests that facilitation does not act over
very large distances and can be quantitatively described, at
a coarse-grained level, by a dynamic exponent similar to
the one emerging from nearest-neighbor facilitation in
kinetically constrained models. Reconciling these two
observations represents a worthwhile topic for future work.

C. Consequences for glass transition physics

What do we learn about the physics of supercooled
liquids, and how does this knowledge impact existing
theories of the glass transition?
An important lesson drawn from our results is that

equilibrium relaxation dynamics at low temperatures
appears qualitatively different from observations made in
the usual temperature regime covered by molecular dynam-
ics studies. Whereas particle motion results from collective
modelike mobility patterns involving most particles at high
T, we observe instead localized particle motion that
completely relaxes the structure of mobile particles leaving
the rest of the system essentially unaffected at low T. These
observations capture, in real space, the commonly accepted
idea that dynamics smoothly transitions from a nonacti-
vated relaxation regime that efficiently relaxes the system at
high temperature to a regime dominated by activated
processes involving a finite number of particles at low
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temperature embedded in an otherwise frozen elastic
matrix.
In practice, this crossover happens quite gradually as the

relaxation time increases by about 7 orders of magnitude,
and it is difficult to claim that a particular temperature scale,
such as the mode-coupling crossover TMCT, marks a sharp
change in the physics. Previous studies offered examples of
both sharp [135–137] and smooth [37,39,40,138,139]
changes between the two types of physics, and our analysis
of the relaxation dynamics is in better agreement with the
latter family of studies.
To corroborate this point, we present in Fig. 20

the temperature evolution of the average relaxation
times deduced from two types of correlation functions.
Previous simulations performed in the nonactivated high-
temperature regime have reported a strong decoupling
[48,54,140,141] between the bond-breaking correlation
CBðtÞ and more conventional time correlation functions,
such as the self-intermediate scattering function FsðtÞ or
the bond-orientational correlation CΨðtÞ. This has been
rationalized by the presence of vibrational modelike mobil-
ity patterns such as the one shown in Fig. 8, that are able to
decorrelate FsðtÞ and CΨðtÞ, but would leave CBðtÞ
essentially unaffected [54]. The results shown in Fig. 20
confirm this finding at high temperatures. However, push-
ing the analysis to much lower temperatures reveals that
these two timescales eventually converge. At the lowest
temperature, localized and complex activated relaxation
processes result in large displacements that are able to
simultaneously decorrelate FsðtÞ or CΨðtÞ and CBðtÞ. This
qualitative change in the dynamics toward localized acti-
vated relaxation events emerges gradually, and the two
relaxation times start to coincide at temperatures that are in
fact much lower than TMCT. In practice, this implies that the
dynamic heterogeneity at these low temperatures becomes

fairly independent of the particular observable and specific
choices made to detect particle mobility.
The idea of a crossover toward activated dynamics at low

temperatures has a long history and is, in particular, at the
core of the random first-order-transition (RFOT) theory
[50,142,143]. The theoretical explanation is that the
dynamic transition predicted in the mean-field limit must
be avoided in finite dimensions, as the lifetime of glassy
states necessarily becomes finite [122]. A crossover
between nonactivated high-temperature dynamics and acti-
vated localized events also emerges naturally in kinetically
constrained models [144], but this occurs without invoking
an avoided dynamic transition. Therefore, the observation
of a crossover, in itself, does not confirm any particular
theoretical approach.
More interestingly perhaps, the direct observation of

localized activated events reported here suggests that one
should now be able to understand and characterize their
nature better. Our preliminary investigations show that
relaxation dynamics at low temperatures involves an
extremely large number of transitions between inherent
structures, for instance, implying that the potential energy
landscape cannot be used to gather information about
relaxation dynamics as already noticed [145]. It remains
numerically challenging to unambiguously group inherent
structures into larger metabasins [138,146–149] or to
quantify free-energy barriers [150], as envisioned within
RFOT theory. Revisiting these earlier attempts is an
important goal to characterize the nature of activated
dynamics in the regime where it is effectively present.
We repeatedly argue that dynamic facilitation emerges in

the relaxation dynamics at low temperatures. This obser-
vation is a crucial new piece of evidence in the long-lasting
debate between dynamic and static explanations of the
glass transition [6]. Clearly, the thermodynamic RFOT
theory picture of a liquid broken into a mosaic of droplets
undergoing collective activated relaxation events [142,151]
is invalidated by our results, at least in the simplest picture
of independently relaxing droplets.
There have been several attempts to introduce some

degree of dynamic facilitation within RFOT theory, with
the argument that fast relaxing droplets could affect the
dynamics of slower ones in their neighborhood, as
described phenomenologically in Refs. [99,102], or more
formally in Refs. [101,152]. Our results show that such a
combination would be needed to account for the dynamics
in laboratory experiments, and quantitatively explain the
temperature evolution of central physical quantities, such as
the α-relaxation time or the length scale of dynamic
heterogeneity [153].
In Fig. 21, we provide a decisive quantitative support for

this conclusion in 2D. We directly compare the temperature
evolution of the static point-to-set length ξPTS [154] that
sets the typical size of the droplets in the mosaic picture
[142,151], and the typical length scale of the dynamic

(a) (b)

FIG. 20. Convergence of relaxation times at low temperature in
3D (a) and 2D (b). Relaxation times τα defined from the self-
intermediate scattering function FsðtÞ (a) and bond-orientational
correlation CΨðtÞ (b) compared to the relaxation time τBα defined
from the bond-breaking correlation CBðtÞ. The very different
timescales measured at high temperatures become identical at low
temperatures, much below TMCT (dotted dashed line).
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heterogeneity at the structural relaxation time deduced from
the chord length analysis described in Sec. VI D. The data
for ξPTS are taken from Ref. [18] for our 2D model. A
strong decoupling between static and dynamic length scales
is observed. This has been reported before for T > TMCT
[37,155] in a regime where activated dynamics should not
be relevant. This had left open the possibility that the static
point-to-set length could catch up with the dynamic one in a
low-temperature regime dominated by activated processes,
as discussed in Ref. [156]. Our results invalidate this
hypothesis, and demonstrate that, at least for our 2D
system, the characteristic size of the dynamic heterogeneity
is not controlled by ξPTS, even at temperatures near the
experimental glass transition Tg. This is a major conclusion
that emerges from the present study: The simplest formu-
lation of RFOT theory does not describe our data well
without invoking an important facilitation component
[99,101,102].
Does this conclusion invalidate thermodynamic theories

of the glass transition? Clearly not. First, future work
should consolidate our findings across a broader range of
models, and, more importantly, in 3D where the measure-
ment and comparison of various length scales require a
massive computational effort. Establishing whether 3D
models behave as in Fig. 21 is an important task. Second,
it could still be that the emergence of clusters at short times
that triggers further relaxation over growing domains is due
to the type of activated dynamics envisioned by RFOT
theory, and these events could very well be controlled by
the growing static length scale ξPTS. As an illustration of
this idea, we mark in Fig. 5 the spatial extent of the point-
to-set length scale, which compares reasonably well with
the spatial extension of the domains which first relax.
If correct, this interpretation would imply that structural
relaxation emerges from a combination of physical

ingredients, requiring descriptive tools stemming from
both dynamic and static approaches [101]. More broadly,
future work should reconcile the present findings regarding
the dynamics of supercooled liquids to the recent detailed
characterization of global [19,20] and local [43,157]
thermodynamic fluctuations of the overlap order parameter
[158,159] which are at the root of RFOT theory. Third,
the accumulation of relaxation events over long periods
of time in certain locations suggests that dynamic facili-
tation necessarily has a static origin [160,161]. In addition,
explaining how relaxation at one place triggers relaxation
in the neighborhood should also require linking statics to
dynamics [132]. Therefore, the observation of dynamic
facilitation does not automatically imply that static con-
siderations and structural and thermodynamic information
become irrelevant. Future work should explore how to best
describe or incorporate dynamic facilitation effects in the
context of RFOT theory.
Does the observation of dynamic facilitation automati-

cally validate all predictions stemming from analogies with
kinetically constrained models [8]? Clearly not, and a lot
remains to be done. A key result we obtain in this regard is
the direct measurement of a large dynamic exponent zðTÞ.
The measured value invalidates entire families of kineti-
cally constrained models, including the simplest version of
the Fredrickson-Andersen facilitated model [162], but also
the large family of collective kinetically constrained models
[125,163–166], where nontrivial defects display diffusive
motion [167] corresponding to z ¼ 2. Clearly, our results
are much closer to the behavior found in the family of
anisotropic east [70,79] and arrow [80] models where
defects are subdiffusive [127,168,169]. However, further
work should establish, for instance, whether the power laws
characterizing the short-time dynamics revealed in Sec. V
are similar to the ones reported in Ref. [70] in the 3D east
model which also give rise to excess wings. It would also be
useful to understand whether and how the concept of
kinetic constraints emerges from microscopic atomic
motion and particle interaction, and whether the exponent
zðTÞ varies quantitatively as predicted in the east model.

D. Further perspectives

Finally we describe four important research directions
suggested by our results.
The first important task ahead of us is to test whether

the results obtained here can be generalized to other
models by changing the type of particle interactions and
possibly generalizing to more complicated particle shapes
and molecules. This clearly requires improving the swap
Monte Carlo algorithm even further [15,16] as well as
developing molecular dynamics software and hardware
that are even more efficient [170,171]. It would also be
useful to vary the spatial dimensions over a broader
spectrum [172–174] to see whether glassy dynamics
changes qualitatively by increasing d over a larger range.

FIG. 21. Decoupling of static and dynamic length scales in 2D
supercooled liquids. The dynamic length scale is the average
chord length hli of dynamic heterogeneities at CB ¼ 0.5. The
point-to-set length scale ξPTS is equal to 2Rc, with Rc the
crossover radius from Ref. [18]. Mode-coupling crossover
temperature (dashed-dotted line) and glass transition temperature
(dashed) are indicated.
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A second important task concerns a more detailed
characterization of the spatially heterogeneous dynamics
at the very low temperatures that can now be accessed.
Decades of work have led to the development of an arsenal
of tools consisting of multipoint correlation functions and
dynamic susceptibilities [87,88]. These quantities are well
known and their physical content fully understood.
Technically, however, there are subtleties and potential
artifacts that need to be carefully considered [90]. In
addition, a proper measurement of correlation length scales,
their time and temperature evolution, as well as the
characterization of the geometry of these correlations
require significant statistics along with simulation boxes
that are large enough [89,92]. Such measurements would
allow a quantitative characterization of the growth of
characteristic length scales for dynamic heterogeneity as
well as the evolution of the geometry of correlated regions
for which quantitative scenarios exist [70,175]. This is a
clear task for future work, but it necessitates a large
investment of computational resources.
A third research effort should aim at a better characteri-

zation of dynamic facilitation, which becomes more
prominent at low temperatures than it is above TMCT. It
could be useful to explore the behavior of the various tools
introduced before [130,132,149] to correlate single-particle
motion in space and time at much lower temperatures.
Starting with Ref. [132], several papers have developed
computational tools to identify the analog of the excitations
that define kinetically constrained models in particle-based
simulations [160,176–178]. Would these algorithms be
able to detect the sparse population of relaxing clusters
that drives the relaxation near Tg? Methods should also be
developed to more directly and more precisely measure the
dynamic exponent zðTÞ relating timescales and length
scales, as this is an important emerging consequence of
dynamic facilitation. Finally, we merely observe the emer-
gence of dynamic facilitation, but we do not provide a
microscopic understanding of its origin in terms of struc-
ture, thermodynamics, or geometry of the supercooled
liquid. This ambitious task would be required to provide
a fully microscopic picture of structural relaxation near Tg.
A fourth ambitious goal is the development of more

efficient molecular dynamics schemes that would allow us
to fill the remaining gap between the 30 ms studied here
and the 100 s timescale that characterize most experiments.
Our results show that the physics keeps changing qualita-
tively when shifting the “glass ceiling” by several orders of
magnitude. For the types of models studied here, the
remaining gap in timescales is about 104. Such a colossal
gap cannot be filled by hardware improvements or by
performing longer simulations and will require creative
development and invention of molecular dynamics tech-
niques, maybe coupled to smart Monte Carlo moves.
Filling this gap appears as the last obstacle before reaching
the Holy Grail: simulating 100 s of the life of a supercooled
liquid at the experimental glass transition.
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