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Magnetism is one of the largest, most fundamental, and technologically most relevant fields of
condensed-matter physics. Traditionally, two basic magnetic phases have been distinguished ferromag-
netism and antiferromagnetism. The spin polarization in the electronic band structure reflecting the
magnetization in ferromagnetic crystals underpins the broad range of time-reversal symmetry-breaking
responses in this extensively explored and exploited type of magnets. By comparison, antiferromagnets
have vanishing net magnetization. Recently, there have been observations of materials in which strong
time-reversal symmetry-breaking responses and spin-polarization phenomena, typical of ferromagnets, are
accompanied by antiparallel magnetic crystal order with vanishing net magnetization, typical of
antiferromagnets. A classification and description based on spin-symmetry principles offers a resolution
of this apparent contradiction by establishing a third distinct magnetic phase, dubbed altermagnetism. Our
perspective starts with an overview of the still emerging unique phenomenology of this unconventional
d-wave (or higher even-parity wave) magnetic phase, and of the wide array of altermagnetic material
candidates. We illustrate how altermagnetism can enrich our understanding of overarching condensed-
matter physics concepts and how it can have impact on prominent condensed-matter research areas.
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I. INTRODUCTION

Magnetic solids are traditionally divided into two
elementary phases—ferromagnets and antiferromagnets
[1]. Ferromagnets, known for several millennia, are char-
acterized by a strong macroscopic magnetization. Because
of the spin polarization in the reciprocal momentum space,
reflecting the magnetization order parameter in direct
space, they generate a range of phenomena originating
from electronic band structures with broken time-reversal
(T ) symmetry and spin splitting. Antiferromagnets, on the
other hand, were discovered only a century ago, because of
their vanishing net magnetization, which makes them
behave, in many aspects, as nonmagnetic materials. In
conventional antiferromagnetism, a compensating antipar-
allel ordering of atomic magnetic moments in the direct
physical space, i.e., the effective cancellation of atomic
moments leading to the vanishingly small macroscopic net
magnetization, implies the absence of any counterpart spin-
polarization order parameter in the reciprocal momentum

space. This makes the conventional antiferromagnets, in
many aspects, akin to nonmagnetic materials and invisible
to the macroscopic electrical or optical probes commonly
used in ferromagnets.
Recently, diverse condensed-matter research commun-

ities have been intrigued by theoretical predictions of T -
symmetry breaking macroscopic phenomena [2–16] and
spin-split band structures [2–9,13–25], which are typical
of ferromagnets, in crystals with compensated antiparallel
magnetic ordering, which is characteristic of antiferro-
magnets. The apparent ferromagnetic-antiferromagnetic
dichotomy in these materials challenges the traditional
division of materials by the two basic magnetic phases.
A recent symmetry classification and description [16],
employing a generalized symmetry formalism for describ-
ing spin arrangements on crystals [26–28], resolves this
contradiction. The formalism allows for describing a
broad landscape of magnetic phases by considering sym-
metry transformations that combine generally different
operations in real and spin space. The classification based
on this symmetry formalism establishes, apart from the
traditional ferromagnetism and antiferromagnetism, a third
distinct and comparably abundant phase [16]. This third
phase is characterized by a compensated magnetic order in
direct space with opposite-spin sublattices connected by
crystal-rotation symmetries, and by a corresponding
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unconventional spin-polarization order in the reciprocal
momentum space that reflects the same rotation sym-
metries. The direct-to-reciprocal-space correspondence
results in electronic band structures with broken T sym-
metry and alternating momentum-dependent sign of the
spin splitting. The alternating spin polarizations in both
direct physical space and reciprocal momentum space,
characteristic of the third phase, suggest the term alter-
magnetism [16]. The distinction of the three phases is
highlighted in Fig. 1.
Turning to a broader condensed-matter physics context,

we point out that altermagnetism allows for a realization of
unconventional d-wave magnetism, a long-sought mag-
netic counterpart of unconventional d-wave superconduc-
tivity [29]. Conventional superconductivity and magnetism
are connected by a striking analogy [29], highlighted in
Fig. 2: The electron-electron Cooper pairs forming around
the Fermi surface and driving the conventional s-wave
superconductivity have the counterpart in the majority spin
electron—minority spin-hole pairs distributed isotropically
around the Fermi surface in the conventional model of
(s-wave) ferromagnetism [29]. The discovery of the uncon-
ventional d-wave superconductivity not only opened an
entirely new research landscape of this many-body phase
[30] but also raised a fundamental question of whether and

how an unconventional d-wave counterpart could be
realized in magnetism (Fig. 2) [29].
Earlier considerations focused on possible realizations

of the unconventional d-wave magnetism due to strong
electronic correlations [31–33]. As we will discuss, alter-
magnetism is a realization of the unconventional d-wave
(or high even-parity wave) magnetism that emerges already
on the basic level of an effective single-particle non-
relativistic description of collinear magnets. It is, therefore,
a robust, elementary, magnetically ordered phase. The
theoretical prediction of altermagnetism thus complements,
in a fundamentally unique way, modern studies of spin
quantum phases associated with more complex, and often
more subtle, many-body correlations, relativistic physics,
noncollinear magnetic ordering, topological phenomena, or
frustrated magnetic interactions [34–43]. Simultaneously,
altermagnetism can coexist and constructively interplay
with these additional physical complexities.
Altermagnetism is expected to be abundant in nature and

to occur in both three-dimensional and two-dimensional
crystals, in diverse structural or chemistry types, and in
conduction types covering the whole spectrum from
insulators to superconductors. In Sec. II, we give an
overview of the predicted characteristic features, sym-
metries, and material landscape of the altermagnetic phase.

FIG. 1. Illustrative models of collinear ferromagnetism, antiferromagnetism, and altermagnetism in crystal-structure real space
and nonrelativistic electronic-structure momentum space. (a) Ferromagnetic model with one spin sublattice, and corresponding distinct
spin-group form, nonzero magnetization, T -symmetry breaking momentum-independent spin splitting of bands, and isotropic s-wave
spin-split Fermi surfaces. (b) Antiferromagnetic model with opposite-spin sublattices (red, blue) connected by inversion or translation,
and corresponding distinct spin-group form, zero net magnetization, and T -invariant spin-degenerate bands reminiscent of nonmagnetic
systems. (c) Altermagnetic model with opposite-spin sublattices connected by rotation and not by translation or inversion, and
corresponding distinct spin-group form, zero net magnetization, T -symmetry breaking spin splitting with alternating sign, anisotropic
sublattice spin densities, and anisotropic d (g or i)-wave spin-split Fermi surfaces. See Sec. II B for the definitions of the distinct
spin-group forms Ri

s.
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The properties connected to the spin-polarized
T -symmetry broken band structures of altermagnets
open up a potential for previously unanticipated develop-
ments in a broad condensed-matter physics field. In
Sec. III, we highlight the distinct properties of altermagnets
in the context of overarching physical concepts of lifted
Kramers spin degeneracy, Fermi-liquid instabilities, elec-
tron and magnon quasiparticles, and Berry phase and
nondissipative transport. In Sec. IV, we outline the potential
we foresee of altermagnets in selected active research areas,
including spintronics, ultrafast photomagnetism, neuro-
morphics, thermoelectrics, field-effect electronics, multi-
ferroics, and superconductivity.
While our focus in the following sections is on the

emerging field of altermagnetism from the theory perspec-
tive, we point out here that first measurements have already
indicated that altermagnetism can soon become an active
experimental field. Shortly after the theoretical predictions
of the possible coexistence of the compensated antiparallel

magnetic order and the T -symmetry breaking electronic
responses, supporting evidence has been discovered by
initial experiments [5,10–12], as highlighted in Table I.
Apart from the fundamental physics interest, we expect that
intense experimental research will also be driven by
the potential impact of altermagnetism on technology.
Altermagnetism can occur in crystals with common light
elements, high-magnetic-ordering temperatures, and strong
spin coherence, which are among the key prerequisites for
practical device applications [16].

II. ALTERMAGNETIC PHASE

A. Ab initio band structures

In Fig. 3, we show representative nonrelativistic band
structures of metallic RuO2 [3,8,13,14,16,18] and insulat-
ing FeF2 [47] and MnF2 [20,48], on which we illustrate key
characteristics of the spin-polarization order in the alter-
magnetic band structures that break T symmetry. These
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FIG. 2. Analogy between superconductivity and magnetism. Top: conventional s-wave superconductivity, which has the same
Cooper-pair phase around the Fermi surface and is analogous to conventional magnetism (ferromagnetism) with an excess of one spin
orientation around the Fermi surface. Bottom: unconventional d-wave superconductivity where the Cooper-pair phase changes sign
around the Fermi surface, and the anticipated analogy of unconventional d-wave magnetism where the excess spin orientation changes
sign around the Fermi surface. The unconventional phases have the characteristic nodes highlighted by gray circles. This figure was
inspired by Ref. [29].

TABLE I. Theoretical predictions, supported by experiments, of T -symmetry breaking macroscopic phenomena in RuO2, and a list of
other altermagnetic materials in which these macroscopic responses were also theoretically predicted. The anomalous Hall effect is
a T -odd off-diagonal component of the electrical conductivity tensor [2]. The T -odd spin current can be generated along or transverse to
an applied electrical bias; an out-of-plane spin current generated by an in-plane electrical bias in an altermagnetic layer can exert a torque
on magnetic moments in an adjacent layer in a multilayer stack [8].

Macroscopic response
Theory in
RuO2

Experiment in
RuO2 Theory in other materials

Anomalous Hall effect 2019 [3] 2020 [5] SrRuO3 [44], Mn5Si3 [6], κ-Cl [45], (Cr,Fe)Sb2 [7], perovskites [46]
Spin current and torque 2020 [8,16] 2021 [10–12] κ-Cl [4], CaCrO3 [9]
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altermagnetic material examples belong to the family of
crystals with rutile structure [Fig. 3(a)]. For several insu-
lating members of the rutile family, the compensated
antiparallel arrangement of magnetic moments [Fig. 3(a)]
was well known already to Néel and his contemporaries
who, ironically, introduced them into the literature as a
classic representation of antiferromagnetism [49,50]. The
notion was based on focusing on the lattice of magnetic
atoms alone while omitting the essential role of non-
magnetic atoms on magnetism in the rutile crystals. This
may be one of the reasons why the unconventional spin-
polarization order in the reciprocal momentum space,
resulting in the T -symmetry breaking and alternating
spin splitting of their nonrelativistic band structures
[Figs. 3(b)–3(f)], remained unnoticed for nearly a century.
Remarkably, the room-temperature antiparallel magnetic

ordering in metallic rutile RuO2 was discovered [51,52] and
investigated [53,54] only recently. The subsequent theo-
retical and experimental exploration of the T -symmetry
breaking electronic responses [3,5,8,10–14,16,18,19] has
made RuO2 one of the workhorse materials of the emerging
research of altermagnetism.
Figures 3(b)–3(f) show that the altermagnetic spin split-

ting is strongly momentum dependent in all three rutiles.
In RuO2, it reaches, in parts of the Brillouin zone,
close to 1-eV scale, which is comparable to the spin-
splitting magnitudes in ferromagnets. Unlike ferromagnets,
however, the altermagnetic spin splitting in the nonrelativ-
istic bands is accompanied by a symmetry-protected zero net
magnetization.
Figure 3 also illustrates that spin splittings in altermag-

nets, which are of the strong nonrelativistic origin, can

exceed, by an order of magnitude, the record relativistic
spin splittings in bulk crystals with heavy elements [55].
Moreover, unlike the momentum-dependent spin textures
in the relativistic bands, spin is a good quantum number,
and the electronic states share a common momentum-
independent spin quantization axis in the nonrelativistic
bands of altermagnets.
The spin-split parts of the altermagnetic band structure

are accompanied by spin degeneracies along certain sur-
faces in the Brillouin zone. In Sec. II B, we show that
the altermagnetic spin-group symmetries of the given
crystal characterize the prominent symmetries of the
spin-polarization order in the electronic band structure [16].
Fermi-surface cuts shown in Figs. 3(b) and 3(d) highlight

the typical anisotropic nature of the spin-polarized Fermi
surfaces, with an equal number of states in the opposite spin
channels, and with spin-momentum locking that is even
under the inversion of the momentum and breaks T
symmetry.
The altermagnetic phase is robust in a broad range of

materials, as it can be described within the effective single-
particle Kohn-Sham theory, and the nonrelativistic crystal
potential can play a dominant role in both uncorrelated and
correlated, and in both clean and disordered altermagnets.
This is illustrated, for example, by ab initio calculations in
RuO2 shown in Figs. 3(c) and 3(d). The calculations
demonstrate that the altermagnetic spin splitting is only
weakly affected by the relativistic spin-orbit coupling and
that the prominent features of the altermagnetic spin-
momentum locking are preserved when including correla-
tion effects beyond the local-spin-density approximation of
the density-functional theory [3,18,20]. A stable itinerant

(a) (c) (d)

(b) (e) (f)

FIG. 3. (a) Schematics of the rutile XY2 crystal structure with antiparallel magnetic moments on XA and XB magnetic sublattices.
(b) Brillouin zone of the rutile crystal and ab initio nonrelativistic calculation of a wave-vector kz ¼ 0 cut of the anisotropic d-wave spin-
polarized Fermi surface of metallic RuO2. (c) Ab initio altermagnetic spin splitting of bands in RuO2, calculated without (red and blue)
and with (black) relativistic spin-orbit coupling. (d) Ab initio altermagnetic spin-split Fermi surface for selected kz values in RuO2 with
correlations accounted for within the dynamical mean-field theory. (d,e) Ab initio altermagnetic spin-split bands of insulating FeF2 and
MnF2, respectively. This figure is adapted from Refs. [3,18,20,47].
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altermagnetism is further confirmed in calculations without
Hubbard correlations in other material candidates, such as
Mn5Si3 [6] or KRu4O8 [16]. A sizable altermagnetic spin
splitting also survives in the presence of a strong alloying
disorder, as shown in altermagnetic Cr0.15Fe0.85Sb2 [7].
This robustness can be understood by the fact that the
altermagnetic spin-group symmetries, discussed in the
following section, can hold equally well for the effective
single-particle Kohn-Sham potential, as well as for the
Dyson-equation description of many-body systems.

B. Symmetry classification and description

We now move from the microscopic ab initio theory to a
symmetry-based framework for classification and descrip-
tion of altermagnetism as a distinct phase from ferromag-
netism and antiferromagnetism [16]. The framework allows
for describing a broad landscape of phases by considering
symmetry transformations in real space, or in spin space, or
transformations that combine generally different operations
in real and spin space [26–28]. Classical examples of the
first two cases are liquid and solid phases of matter,
distinguished by the presence vs absence of a real-space
rotation symmetry, and nonmagnetic vs ferromagnetic
phases, distinguished by the presence vs absence of a
spin-space rotation symmetry. Below, we show that the
classification and description of the distinct ferromagnetic,
antiferromagnetic, and altermagnetic phases will consider
the combinations of generally different operations acting
simultaneously in real and spin space [16].
Microscopically, the above symmetry formalism corre-

sponds to nonrelativistic quantum mechanics in which real
space and spin space are decoupled. In magnetism, non-
relativistic physics typically dominates over the relativistic
spin-orbit coupling [26,56]. Nevertheless, the correspond-
ing nonrelativistic spin-group formalism [26–28] has been
employed only sporadically in the magnetic literature
[16,24,25,56–61], in contrast to the commonly employed
relativistic magnetic groups [62–67].
The nonrelativistic spin groups consider pairs of trans-

formations ½RikRj�, where the transformation on the left of
the double vertical bar acts only in spin space, and the
generally different transformation on the right of the double
vertical bar simultaneously acts only in real space; an
example is the important spin-group symmetry of RuO2,
½C2kC4zt�, highlighted in Fig. 4(a), which combines a
twofold spin-space rotation with a fourfold real-space
rotation (nonsymmorphic with translation labeled by t).
In contrast, the relativistic magnetic groups contain only
the same transformations acting simultaneously in spin and
real space, Ri ≡ ½RikRi� [26–28]. Therefore, the magnetic
groups cover a much narrower symmetry landscape than
the spin groups. Correspondingly, the relativistic magnetic
groups can omit phases and phenomena that emerge when
considering the richer nonrelativistic spin-group formalism.
For example, the magnetic groups principally omit the

½C2kC4zt� spin symmetry [Fig. 4(b)]. This symmetry,
however, signals the unconventional d-wave magnetic
phase in RuO2 and governs prominent responses, such
as the giant magnetoresistance [13,16].
A recent theoretical development has shown that the spin

groups lead to the classification and description of three
distinct phases of collinear magnetism [16] (Fig. 1): The
first phase has one spin lattice (or opposite-spin sublattices

(a) (b)

FIG. 4. (a) Schematic top view (upper panel) and 3D view
(lower panel) of the RuO2 crystal with opposite spin directions on
RuA and RuB sublattices depicted in red and blue, oxygen atoms
shown in black, and with the depicted nonrelativistic spin-group
symmetries corresponding to spin group 24=1m2m1m in the
notation of Ref. [16]. The curved red arrow and its label highlight
the generator of opposite-spin sublattice transformations, and the
generators of the halving subgroup of same-spin sublattice
transformations are also highlighted (in black). Here, C2 on
the left of the double vertical bar is a 180° spin-space rotation
transformation around an axis perpendicular to the spins, and E is
the spin-space identity. On the right of the double vertical bar,
C4zt is a fourfold real-space rotation combined with translation,
and Mi are real-space mirror transformations. (b) Schematic spin
arrangement on the RuO2 crystal with antiparallel (upper panel)
and parallel (lower panel) spin directions and the crystallographic
spin-axis orientation depicted by red and blue arrows, and with
the depicted generators of the relativistic magnetic symmetry
group m0m0m. Here, T is time reversal. The crossed arrow
highlights that the magnetic group contains no opposite spin-
sublattice transformation elements. The same magnetic group
describes a fully compensated antiparallel magnetic order, a
parallel magnetic order with a strong nonrelativistic ferromag-
netic moment, as well as an antiparallel magnetic order with a
weak uncompensated relativistic magnetization [16]. This exam-
ple illustrates that the relativistic magnetic groups generally do
not separate between relativistic and nonrelativistic, compensated
and noncompensated, or collinear and noncollinear magnetic
phases. This figure is adapted from Ref. [16].
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not connected by any symmetry transformation). It corre-
sponds to conventional ferromagnetism (ferrimagnetism)
[62]. The second phase has opposite-spin sublattices
connected by translation or inversion and corresponds to
conventional antiferromagnetism [1,26,68]. The third phase
has opposite-spin sublattices connected by rotation (proper
or improper and symmorphic or nonsymmorphic) but not
connected by translation or inversion.
The conventional ferromagnetic phase has a net mag-

netization of a strong nonrelativistic origin in the direct
physical space and a corresponding spin-polarization order
in the reciprocal momentum space that is principally
isotropic (s wave) [Fig. 1(a)]. The electronic structure is
split into majority-spin and minority-spin bands that break
T symmetry [62]. The conventional antiferromagnetic
phase has a staggered order of the magnetic moments in
the direct space of a strong nonrelativistic origin with a zero
net magnetization and no corresponding spin-polarization
order in the reciprocal momentum space [Fig. 1(b)]. The
electronic energy bands are spin degenerate and T invariant
in the limit of zero relativistic spin-orbit coupling, remi-
niscent of nonmagnetic systems [1,69–73]. The third,
altermagnetic phase has an alternating order of the mag-
netic moments in the direct space of a strong nonrelativistic
origin with a zero net magnetization in the limit of zero
relativistic spin-orbit coupling, and a corresponding alter-
nating spin-polarization order in the reciprocal momentum
space [Fig. 1(c)]. The spin-up and spin-down energy bands
are split, break T symmetry, and are equally populated in
the limit of zero relativistic spin-orbit coupling [16].
The spin groups contain both symmetries that are

common to all three collinear magnetic phases (so-called
spin-only groups) and symmetries corresponding exclu-
sively to one of the three phases (so-called nontrivial spin
groups) [16]. Among the common symmetries, arbitrary
rotations of the spin space around the axis of spins (½C∞kE�
with E on the right of the double vertical bar denoting the
real-space identity transformation) [16,27] protect spin as a
good quantum number with a momentum-independent
spin-quantization axis across the whole Brillouin zone.
The energy bands ϵðs;kÞ can then be indexed by the spin s,

and the electronic structure is strictly separated into non-
mixing spin-up and spin-down channels [16], as high-
lighted on the first line of Table II. Since all collinear
magnetic orderings are coplanar, they also have the
coplanarity symmetry (½C̄2kT �) combining the spin-space
inversion, i.e., time reversal, with the 180° spin-space
rotation around an axis perpendicular to the spins
[16,27]. This symmetry protects a general invariance of
the nonrelativistic electronic energy bands under real-space
(crystal-momentum) inversion, i.e., ϵðs;kÞ ¼ ϵðs;−kÞ [16]
(second line of Table II).
The nontrivial spin groups that are specific exclusively to

the nonrelativistic electronic energy bands of altermagnets
are given by Ref. [16],RIII

s ¼½EkH�þ½C2kG−H�¼½EkH�þ
½C2kAH�. Here, E on the left of the double vertical bar
denotes the spin-space identity transformation, and H is a
subgroup containing half of the real-space transformations
of the nonmagnetic crystallographic groupG (including the
real-space identity). The remaining half of the transforma-
tions,G −H, can be written as AH, where A is a real-space
rotation (proper or improper). In contrast, the nontrivial
spin groups describing the momentum-space electronic
structure of the conventional ferromagnetic phase have a
distinct form, RI

s ¼ ½EkG�, and those of the conventional
antiferromagnetic phase have another distinct form, RII

s ¼
½EkG� þ ½C2kG� [16].
Because of the inversion symmetry of bands in collinear

magnets, the above classification is limited to G’s that are
crystallographic point groups (translations replaced with
identity) containing the real-space inversion symmetry
(crystallographic Laue groups), independent of whether
the magnet does or does not have real-space inversion
symmetry [16].
In altermagnets, the corresponding nontrivial spin sub-

group ½EkH� contains symmetry transformations that
interchange atoms belonging only to one of the two spin
sublattices. These symmetries determine the characteristic
anisotropy of the real-space sublattice spin densities and the
anisotropy of the individual spin-channel Fermi surfaces
(third line of Table II). Note thatG −H ¼ AH contains the
other half of the real-space transformations. These are

TABLE II. Spin-group symmetries and corresponding magnetic crystal-structure and nonrelativistic band-structure characteristics.
The first two lines regard symmetries that apply to all three nonrelativistic collinear phases. The remaining lines apply only to
altermagnets. For the definitions of symbols in the first column, see Sec. II B. This table is adapted from Ref. [16].

Spin-group symmetries Magnetic crystal structure Nonrelativistic band structure

½C∞kE� Collinear Spin is a good quantum number and k independent

½C̄2kT � Coplanar Invariance under inversion of k

½EkH� Sublattice spin-density anisotropy Spin-Fermi-surface anisotropy
½C2kAH� Compensated Broken T and spin splitting at general k
Lk ∩ AH ≠ ∅ Spin degeneracy at high-symmetry k
Lk ∩ AH ¼ ∅ þ=− spin splitting at general k=AHk
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generated by a real-space transformation A, which is,
exclusively, a rotation (proper or improper) [16]. The
corresponding spin-group symmetries ½C2kAH� are trans-
formations that interchange atoms between opposite-spin
sublattices. The presence of symmetry transformations
connecting the opposite-spin sublattices protects the zero
net magnetization of the nonrelativistic magnetic structure
[16] (fourth line of Table II). Simultaneously, since the
symmetry transformations connecting the opposite-spin
sublattices include only real-space rotations (proper or
improper), they allow for broken T symmetry in the band
structure, i.e., ϵðs;kÞ ≠ ϵð−s;−kÞ, and for spin splitting,
i.e., ϵðs;kÞ ≠ ϵð−s;kÞ [16] (fourth line of Table II).
The sign of the spin splitting alternates across the

Brillouin zone, in line with the zero net magnetization,
which implies the presence of spin-degenerate high-
symmetry momenta in the band structure. The spin degen-
eracy is protected by symmetry when the little group of
momentum k (Lk) contains at least one of the real-space
symmetry transformations AH connecting opposite-spin
sublattices [16] (Lk ∩ AH ≠ ∅; see fifth line of Table II).
Recall that a little group contains real-space symmetry
transformations that map momentum k onto itself or onto a
momentum that differs from k by a reciprocal lattice vector.
For a general momentum k with spin splitting allowed

by symmetry (Lk ∩ AH ¼ ∅; see sixth line of Table II),
the opposite-spin equal-energy states are, at rotated
momenta, given by AHk.
Reference [16] gives a list of all ten spin Laue groups

RIII
s (or 37 corresponding spin point groups) classifying

and describing altermagnets. They are constructed from
only eight different crystallographic Laue groups. The three
remaining crystallographic Laue groups, G ¼ 1̄, 3̄, or m3,
do not allow for the altermagnetic phase.
Below, we summarize the basic elements of the algo-

rithm for determining the altermagnetic spin group, which
can be constructed by identifying
(1) the crystallographic group of the material,
(2) the crystallographic group of the spin sublattice (in

the case of a bipartite lattice, the spin sublattice point
group corresponds directly to the Wyckoff position
point group), and

(3) the crystallographic rotation transformation connect-
ing the opposite-spin sublattices.

Taking RuO2 as an example, the crystallographic
point group G ¼ 4=mmm, the sublattice (Wyckoff)
point group H ¼ mmm, and the crystallographic point-
group rotation generating the symmetry transforma-
tion connecting the opposite-spin sublattices is C4z
[cf. Fig. 4(a)].
Finally, let us note that symmetry is one of the

fundamental principles in physics for identifying distinct
phases of matter [62,74] and that a phase is commonly
associated with a uniform state of a physical system
distinguished from other phases by, among others, crystal

structure, composition, or type of order (e.g., magnetic).
As a reference, we can recall how observations in the
early 20th century, initially prompting conflicting notions
of paramagnetic or ferromagnetic anomalies, were later
resolved by Néel’s symmetry-based delimitation of the
antiferromagnetic phase [1]. We can compare this to the
recent works that have raised conflicting notions of
ferromagnetic or antiferromagnetic anomalies, and the
resolution of the conflict by the symmetry-based classi-
fication and description of the third, altermagnetic
phase [16].
While above we have only provided a brief summary, a

detailed spin-group classification and description of alter-
magnetism, including a discussion within the general
context of phases of condensed-matter systems, is given
in Ref. [16]. Each phase in a material system exhibits a
characteristic set of physical properties and responses,
which, for altermagnetism, are yet to be fully explored.
Our understanding of, and outlook on, the distinct phe-
nomenology of altermagnetism in a broad context of basic
and applied condensed-matter physics fields will be the
focus of Secs. III and IV. First, we summarize the basic
rules for identifying altermagnets and list representative
material candidates.

C. Identification rules

Elementary rules for identifying the altermagnetic phase
of a crystal can be summarized as follows:
(1) There is an even number of magnetic atoms in the

unit cell, and the number of atoms in the unit cell
does not have to change between the nonmagnetic
and magnetic phases of the crystal [cf. two Ru atoms
in the RuO2 unit cell, shown in Fig. 4(a)].

(2) There is no inversion center between the sites
occupied by the magnetic atoms from the oppo-
site-spin sublattices [cf. the absence of the inversion
center between the RuA and RuB sites in RuO2

because of the oxygen atoms, shown in Fig. 4(a)].
(3) The two opposite-spin sublattices are connected

by crystallographic rotation transformation, pos-
sibly combined with translation or inversion
transformation [cf. the opposite-spin sublattices in
RuO2 connected by C4zt transformation, shown in
Fig. 4(a)].

(4) The spin group is determined by the algorithm
described in Sec. II B (cf. the RuO2 spin group with
A ¼ C4z and H ¼ mmm).

D. Material candidates

The rules from Sec. II C can be used for high-throughput
scanning of altermagnetic material candidates. This section
gives an overview of the predicted range of material types,
illustrated on specific examples.
Symmetry prohibits the realization of altermagnetism

in one-dimensional (1D) chains because of the absence
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of rotation transformations in 1D. On the other hand,
Figs. 6–8, and the list of material candidates given below,
illustrate that altermagnetism can occur in two-dimensional
(2D) and three-dimensional (3D) crystals; the conduction
types can cover the whole spectrum from insulators,
semiconductors, and semimetals, to metals and supercon-
ductors; and the structure and chemistry types can also be
diverse:

(i) quasi-2D oxide insulator V2Se2O [15] or semimetal
Cr2O [75],

(ii) 3D rutile fluoride or oxide insulators FeF2 [47],
MnF2 [20,48], MnO2 [17], and metal RuO2 [3,18],

(iii) perovskite oxide insulators LaMnO3 [22,76],
CaCrO3 [9], and parent cuprate of high-Tc super-
conductor La2CuO4 [16],

(iv) ferrite insulator Fe2O3 [16],
(v) pnictide with metal-insulator transition FeSb2 [7,16]

and metal CrSb [16],
(vi) chalcogenide semiconductor MnTe [16] and (semi)

metal VNb3S6 [16] and CoNb3S6 [3],
(vii) silicide metal Mn5Si3 [6],
(viii) organic insulator κ-Cl [4].
Crystallographic and spin groups, and other characteristics
of the selected altermagnetic material candidates are
summarized in Table III.
A list of crystallographic symmetry groups that, in

principle, allow for hosting the altermagnetic phase is
given in Ref. [16]. We also point out that altermagnetism
can occur in structures with inversion symmetry (e.g.,
rutiles) or without inversion symmetry (e.g., VNb3S6
or CoNb3S6).

(a) (c)

(d)(b)

FIG. 5. (a) Spin-polarized relativistic Fermi surface highlight-
ing the presence of the approximate spin symmetry ½C2jjC4z�,
omitted by the magnetic group. (b) Relativistic momentum-
resolved Berry curvature hotspots originating from the avoided
crossings along the kx;y ¼ 0 lines, whose position in the mo-
mentum space is determined by the spin symmetries in the
absence of the relativistic spin-orbit coupling. (c) Fermi-surface-
resolved Berry curvature of the FeSb2 altermagnet illustrates
pronounced contributions to Berry curvature from the quasinodal
surface kx ¼ 0, ky ¼ 0. (d) Brillouin zone notation. This figure is
adapted from Refs. [5,7,16].

2

VNb3S6

CuO4

3D Layered/

FeSb

MnTe

Metal

Semimetal

Semiconductor

Insulator La2

Quasi-2D

FIG. 6. Crystal structures of selected altermagnetic candidates organized by dimensionality and conduction type. The crystal structure
are discussed in detail in Refs. [7,16].
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(a) (b)

(d)(c)

FIG. 7. (a)–(d) Ab initio spin-split band structures of depicted altermagnetic candidate materials. This figure is adapted from
Refs. [6,7,15,116].

FIG. 8. Altermagnetic candidates identified from ab initio calculations, organized in a altermagnetic transition temperature vs
altermagnetic spin-splitting strength diagram. The size of the balls scales with the largest atomic number in the crystal. This figure is
adapted from Ref. [16] and references therein.
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III. PHYSICAL CONCEPTS

To illustrate the potential and stimulate future research of
altermagnetism in a broad condensed-matter physics field,
we now discuss our understanding of, and outlook on,
unique features of the altermagnetic phase in the context of
several overarching physical concepts.

A. Lifted Kramers spin degeneracy

Energy bands are Kramers spin degenerate [77,78]
across the whole Brillouin zone in all crystals that
are invariant under the symmetry transformation that
combines T and space inversion. Lifting Kramers spin
degeneracy by breaking the symmetry has brought forth a
plethora of physically intriguing and technologically
relevant phenomena, ranging from topological phases
of matter [41,42,79–84] and dissipationless Hall transport
[2,37,42], to charge-spin conversion effects in spintronic
memory devices [40,85–87].
For the many decades of spin-physics research, lifting of

the Kramers spin degeneracy in energy bands has been
considered to originate from two basic mechanisms—
relativistic and nonrelativistic—where the latter is due to
an internal magnetization in ferromagnets or an applied
magnetic field. We start by briefly recalling these two
mechanisms to highlight their distinction from the uncon-
ventional mechanism in altermagnets. Before moving on to
altermagnets, we also briefly review the physics of (lifted)
Kramers spin degeneracy in antiferromagnets to further
emphasize the distinct physics of altermagnetism.
The first conventional mechanism of lifting the Kramers

spin degeneracy that does not require magnetic order links
the broken space-inversion symmetry in the direct crystal
space to the spin space by the electron’s relativistic spin-
orbit coupling [88,89]. It results in inversion-asymmetric

spin-split energy bands with typically noncollinear spin
textures in the reciprocal momentum space. An example of
a Rashba spin splitting in an inversion-asymmetric non-
magnetic 2D system is illustrated in Fig. 9(a).

TABLE III. Altermagnetic candidates identified from ab initio calculations. We list the nonmagnetic space group, spin point group,
even-parity wave anisotropy, metallic (M) or insulating/semiconducting (I) conduction type, altermagnetic transition temperature, and
altermagnetic spin-splitting magnitude and anisotropy type.

Space group Spin point group Anisotropy Conduction TAM (K) Splitting (meV) References

RuO2 P42=mnm 24=1m1m1m d-wave M 400 1400 [3,18]
KRu4O8 I4=m 24=1m d-wave M � � � 300 [16]
Mn5Si3 P63=mcm 2m2m1m d-wave M ≈200 150 [6]
ðCr;FeÞSb2 Pnma 2m2m1m d-wave M � � � 200 [7]
CaCrO3 Pnma 2m2m1m d-wave M 90 200 [9]
CrSb P63=mmc 26=2m2m1m g-wave M 705 1200 [16]

MnF2 P42=mnm 24=1m1m1m d-wave I 67 297 [20,48]
MnO2 P42=mnm 24=1m1m1m d-wave I � � � 900 [17]
CuF2 P21=c 22=2m d-wave I 69 350 [16]
La2CuO4 Bmab 2m2m1m d-wave I 317 10 [16]
LaMnO3 Pnma 2m2m1m d-wave I 139,5 20 [22,76]
κ-Cl Pnma 2m2m1m d-wave I 23 50 [4]
Fe2O3 R3̄c 13̄2m g-wave I 966 200 [16]
MnTe P63=mmc 26=2m2m1m g-wave I 310 1100 [16]

(a) Relativistic

(b) (d)

(c) Altermagnetic

FIG. 9. (a)Model relativistic Rashba spin-split bands. (b)Model
of antiferromagnetic zero-magnetization crystal of BiCoO3

with magnetic symmetry T t, and with broken space-inversion
symmetry. (c) Model nonrelativistic altermagnetic spin split-
ting. (d) Model of altermagnetic crystal of RuO2 with non-
relativistic spin symmetry ½C2kC4t�. The crystal are discussed in
Refs. [16,101].

ŠMEJKAL, SINOVA, and JUNGWIRTH PHYS. REV. X 12, 040501 (2022)

040501-10



The second mechanism is associated with T -symmetry
breaking by internal magnetization of ferromagnets
(ferrimagnets) or by an external magnetic field [62].
Microscopically, the former tends to be dominated by a
nonrelativistic magnetic-exchange interaction and is com-
monly modeled by a momentum-independent effective
Zeeman term in the band structure, as illustrated in
Fig. 1(a).
Next, we discuss Kramers spin degeneracy in antiferro-

magnets. All magnetically ordered crystals have broken T
symmetry in the direct space. While this leads to the
effective Zeeman spin splitting of the band structure in the
reciprocal momentum space in ferromagnets, spin splitting
has been commonly considered to be excluded in crystals
with a compensating antiparallel arrangement of magnetic
moments [1,69–73]. Indeed, there are two types of Kramers
spin-degenerate antiferromagnets.
The first type has a symmetry combining T with

translation t in the direct space of the antiferromagnetic
crystal. The T t symmetry defines type-IV magnetic space
groups. Among those, only the antiferromagnetic crystals
with space-inversion symmetry have the Kramers spin-
degenerate bands. As a result, the bands have T symmetry
in the reciprocal momentum space, ϵðs;kÞ ¼ ϵð−s;−kÞ,
and inversion symmetry, ϵðs;kÞ ¼ ϵðs;−kÞ, apart from
being spin degenerate, ϵðs;kÞ ¼ ϵð−s;kÞ. Examples are
FeRh or MnBi2Te4 [90,91]. In the nonrelativistic limit and
for collinear antiferromagnetic order (cf. Sec. II B), the
Kramers spin degeneracy is protected by the spin-group
symmetry ½C2kt� alone, i.e., independent of whether the
antiferromagnetic crystal is or is not inversion symmetric
in the direct space. We note that the nonrelativistic
collinear symmetry ½C2kt� does not imply that all materials
described by type-IV magnetic space groups necessarily
have vanishing spin splitting in the nonrelativistic limit.
This is because type-IV magnetic space groups encompass
also noncollinear magnets. However, all materials from
type-IV magnetic space groups have T -symmetric bands in
the reciprocal space, whether or not relativistic effects are
included.
The second type of antiferromagnetic crystals with

Kramers spin-degenerate bands break space-inversion
and T (or T t) symmetries in the direct space on their
own but have a symmetry in the direct space combining
the two transformations. In this case, the Kramers spin-
degenerate bands in the reciprocal momentum space have
broken inversion symmetry and broken T symmetry. Here,
CuMnAs or Mn2Au are among the prominent material
examples [92–96]. The Kramers spin degeneracy of non-
relativistic bands in the reciprocal space in these collinear
antiferromagnets is protected by spin symmetry ½C2kĒ�, in
combination with the symmetry ½C̄2kT � (cf. second line in
Table II). In addition, the ½C2kĒ� symmetry protects T
symmetry of the nonrelativistic bands, and ½C̄2kT � protects
inversion symmetry of bands in the nonrelativistic limit.

Breaking of inversion symmetry and T symmetry in the
band-structure reciprocal space of this type of collinear
antiferromagnets is, therefore, purely of relativistic origin.
To complete the above discussion, we add the following

remarks on studies of lifted Kramers spin degeneracy in
antiferromagnets. While magnets with compensated mag-
netic order in the direct space were commonly associated
with spin-degenerate bands in the reciprocal momentum
space, Zeeman or relativistic spin-splitting mechanisms
were also discussed in antiferromagnets. An effective
ferromagneticlike Zeeman splitting, and the correspond-
ing T -symmetry breaking in the band-structure reciprocal
space, was associated, in antiferromagnets, with a net
moment induced by an external magnetic field [97–100].
A T -symmetric relativistic Rashba splitting was predicted
in antiferromagnets such as BiCoO3 with broken space-
inversion symmetry in the direct space, and with the
opposite Co sublattices connected by the real-space T t
symmetry, as shown in Figs. 9(a) and 9(b) [101]. Another
example of a magnetic and relativistic splitting was
experimentally demonstrated in surface states of antifer-
romagnetic NdBi [102]. Both of these types of spin
splitting offer intriguing interplay with antiferromagnet-
ism. However, they also inherit a net magnetization
[Fig. 1(a)] or a noncollinear spin texture [Fig. 9(a)] in
the band-structure momentum space, characteristic of
conventional ferromagnets or relativistic spin-orbit-
coupled systems, respectively.
Having provided the necessary background for contrast,

we now discuss the lifting of the Kramers spin degeneracy
in the altermagnetic phase. As illustrated in Figs. 9(c) and
9(d), it is principally distinct from the conventional
mechanisms. Unlike the relativistic spin-orbit coupling in
nonmagnetic (or magnetic) systems, lifting of the Kramers
spin degeneracy by altermagnetism does not require break-
ing of the space-inversion symmetry. In fact, the non-
relativistic band structure of altermagnets has inversion
symmetry protected by spin-group symmetry correspond-
ing to the coplanarity of magnetic order, as shown on the
second line in Table II. This applies independently of
the presence or absence of inversion symmetry in the
magnetic crystal structure [16]. Also, unlike the relativistic
spin-orbit coupling mechanism, the nonrelativistic elec-
tronic states in the altermagnetic bands have a common
spin-quantization axis, and spin is a good quantum number.
These characteristics are protected by the spin-group
symmetry corresponding to the collinearity of magnetic
order, as highlighted on the first line in Table II.
Comparing to ferromagnets, altermagnets share the

strong nonrelativistic T -symmetry breaking and spin split-
ting in the band structure. In altermagnets, these character-
istics are allowed by the spin-group symmetry shown on
the fourth line in Table II. The distinction from ferromag-
nets is that the same spin-group symmetry also protects the
zero nonrelativistic net magnetization in altermagnets.
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B. Fermi-liquid instabilities

As discussed in previous sections, altermagnetism can
occur in both insulating and metallic systems as a
consequence of certain (broken) symmetries of the spin
arrangement on the crystal. In this section, we highlight
analogies and differences between altermagnetism and
the theory of Fermi-liquid instabilities in metallic systems.
In Fermi-liquid theory, interactions among electron
quasiparticles are described by Landau parameters in
spin-singlet and spin-triplet channels, using an orbital
angular-momentum partial-wave expansion. Large (neg-
ative) values of Landau parameters lead to Pomeranchuk
Fermi-liquid instabilities [31,103]. A prominent example
of an isotropic s-wave instability in the spin-triplet
channel is Stoner ferromagnetism, which corresponds
to the momentum-independent effective Zeeman spin
splitting in the electronic band structure.
Theoretically, a rich landscape of quantumordered phases

is linked to anisotropic (nonzero angular-momentum)
Landau parameters [31]. However, experimental indica-
tions of anisotropic Fermi-liquid instabilities are rare: for
example, nematic-phase instabilities in the spin-singlet
channel with nonzero angular momenta. Their typical
characteristics are anisotropic distortions of Fermi
surfaces. Nematic instabilities have been considered in
fractional quantum Hall systems, Mott insulators, or high-
Tc superconductors—all belonging to the family of com-
plex, strongly correlated systems [31].
In analogy to Stoner ferromagnetism, nonzero angular-

momentum instabilities in the spin-triplet channel typically
break the SUð2Þ symmetry of the nonrelativistic non-
magnetic Fermi liquid [31]. Altermagnetic symmetries
are reminiscent of even-parity wave Fermi-liquid instabil-
ities in the spin-triplet channel [16,18]. Despite the rem-
iniscence, we now illustrate, on the band structure of RuO2,
that the predicted characteristics of the altermagnetic
symmetries are extraordinary.
A spin-splitting mechanism due to an anisotropic

exchange interaction [13,18,20,21] can be identified in
parts of the RuO2 band structure with a single twofold spin-
degenerate band in the nonmagnetic phase, which, in the
altermagnetic phase, undergoes an anisotropic, momentum-
dependent spin splitting with alternating sign [16]. This is
illustrated in Figs. 10(a) and 10(b) on a schematic diagram
and ab initio bands of RuO2. Remarkably, the mechanism
is dominated by anisotropic exchange interactions; i.e., it
persists without including many-body correlation effects
beyond the effective single-particle, local-spin-density
approximation [16,18].
An effective single-particle, two-band Hamiltonian,

H ¼ 2t cos kx cos ky þ 2tJ sin kx sin kyσz; ð1Þ

that models this mechanism contains, apart from the
common kinetic-energy hopping term, a spin-dependent

hopping due to the anisotropic exchange interaction in the
altermagnetic state [6,7,13]. The model band structure is
plotted in Figs. 11(a) and 11(b). The energy spectrum
exhibits spin-degenerate nodal surfaces at kx;y ¼ 0; π,
marked in gray in Fig. 11(a), and protected by mirror
plane symmetries that transform one spin sublattice on the
opposite-spin sublattice and are contained in the little
groups of the nodal-surface momenta (cf. fifth line in
Table II). The resulting nodal structure and spin-splitting
modulation pattern correspond to a dxy-wave symmetry.
The characteristic dxy-wave spin-up and spin-down Fermi
surfaces are anisotropic and mutually rotated by 90°,
following the ½C2kC4� spin-group symmetry. Ab initio
bands of RuO2 and the corresponding model thus illustrate
altermagnetic symmetries reminiscent of a d-wave, spin-
triplet, Fermi-liquid instability. However, the d-wave alter-
magnetism is not ascribed to strong correlations but
originates from the (broken) symmetries of the spin
arrangement on the crystal.
Remarkably, the ab initio band structure of RuO2

demonstrates an additional, distinct spin-splitting mecha-
nism. In this case, the size and momentum dependence of a

(a) (b)

(d)(c)

FIG. 10. (a) Schematic diagram of the anisotropic (d-wave)
exchange Fermi-liquid instability in the altermagnet. The black
line corresponds to the spin-degenerate band in the nonmagnetic
phase, while red and blue lines are spin-split bands in the
altermagnetic phase. (b) Spin-projected (and orbital-projected)
ab initio bands of RuO2 in the energy window corresponding to
panel (a). (c) Schematic diagram of the isotropic (s-wave)
exchange Fermi-liquid instability combined with anisotropic
crystal potential in the altermagnet. Solid and dashed black lines
correspond to the spin-degenerate bands dominated by one or the
other sublattice in the nonmagnetic phase, respectively. Red and
blue lines are spin-split bands in the altermagnetic phase.
(d) Spin-projected (and orbital-projected) ab initio bands of
RuO2 in the energy window corresponding to panel (c). Pink
boxes with labels 1 and 2 correspond to the full ab initio bands of
RuO2 shown in Fig. 3(c). This figure is adapted from Ref. [16].
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strong nonrelativistic altermagnetic spin splitting is deter-
mined by the band splitting due to an anisotropic crystal
potential of the nonmagnetic phase [16]. This unconven-
tional electric spin-splitting mechanism is illustrated on a
schematic diagram in Fig. 10(c). In the nonmagnetic state,
there are two spin-degenerate bands that cross at the
fourfold spin and orbital-degenerate Γ point, while the
orbital degeneracy is lifted away from the Γ point. One of
the two spin-degenerate bands has a dominant projection
on one sublattice, while the other band has a dominant
projection on the other sublattice. The bands are anisotropic
due to the anisotropy of the crystal potential (cf., third line
in Table II). The anisotropies of the spin-degenerate bands
corresponding to the two sublattices are mutually rotated by
90°, reflecting the real-space C4 rotation symmetry that
transforms one crystal sublattice on the other. As a result,
there is a mutual momentum-dependent splitting between
the two spin-degenerate bands away from the Γ point in the
nonmagnetic phase. Upon the transition to the magnetically
ordered altermagnetic phase, an additional momentum-
independent (isotropic) exchange interaction occurs, with
opposite sign in the bands corresponding to opposite-spin
sublattices. As a result, two pairs of spin-split bands form
with opposite sign of the spin splitting. For a given pair, the

size and momentum dependence of the spin splitting is a
copy of the size and momentum dependence of the orbital
splitting in the nonmagnetic state. The presence of this
microscopic spin-splitting mechanism in RuO2 is again
confirmed by ab initio calculations shown in Fig. 10(d). In
this case, the altermagnet can be viewed as two interpen-
etrating s-wave Stoner ferromagnets with opposite mag-
netizations that, because of the interplay with anisotropies
of the crystal potential, generate spin-split d-wave-like
Fermi surfaces.
The potential richness of the landscape of altermagnet-

ism can be further inferred by inspecting the symmetries of
all altermagnetic spin groups. Each altermagnetic spin
point group can be associated with a given even-parity
wave anisotropy of the spin-split Fermi surfaces around the
Γ point [16]. Apart from the d-wave form, this anisotropy
can have a g-wave or i-wave form [16].
Finally, we recall that the discovery of the unconven-

tional d-wave superconductivity not only opened an
entirely new research landscape of this many-body phase
[30] but also raised a fundamental question of whether and
how an unconventional d-wave counterpart could be
realized in magnetism [29]. Earlier considerations focused
on possible realizations of the unconventional d-wave

(a) (c)

(d)(b)

(e) (f)

FIG. 11. (a,b) Model of the altermagnetic quasiparticle with quadratic dispersion around the spin-degenerate Γ point, and spin-
winding number 2 around the Γ point. The model corresponds to Eq. (1). (c,d) Model of the altermagnetic spin-polarized valley
quasiparticle with no spin winding in the valley. The model corresponds to Eq. (2). The center of a valley is at TRIM, and the spin
polarization is opposite at TRIM X and Y. (e) Schematic illustration of distinct symmetries of band structures with nonrelativistic
altermagnetic and relativistic nonmagnetic valleys. (f) Real-space spin-dependent hoppings used to construct model band structures in
panels (a)–(c). This figure is adapted from Refs. [6,7,13].
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magnetism due to strong electronic correlations [31–33].
In contrast, the d-wave (or higher even-parity wave)
altermagnetism discussed above is directly linked to
symmetries of the effective single-particle crystal potential
and does not require strongly correlated systems. This
makes the altermagnetic materials discussed in this work
realistic candidates for a robust unconventional d-wave
(or higher even-parity wave) magnetism, which can
host time-reversal symmetry-breaking responses of com-
parable strength to the conventional s-wave ferromagnets.
Moreover, we have already emphasized that the altermag-
netic symmetries can equally hold for the Dyson-equation
description of correlated systems, as for the effective
single-particle Kohn-Sham potentials. Therefore, altermag-
nets may also facilitate the originally perceived realization
of the unconventional d-wave magnetism via strong
correlations.

C. Electron quasiparticles

The predicted extraordinary Fermi-liquid instabilities in
altermagnets can generate a variety of unconventional
electron quasiparticles. An example can be illustrated on
the energy bands of the model two-band Hamiltonian (1) in
the k · p approximation around the Γ point, highlighted by
a dashed rectangle in Fig. 11(b). The spin-dependent part of
the band structure is given by 2tJkxkyσz. The spin degen-
eracy of the Γ point is generally protected in altermagnets
by the spin-group symmetry ½C2kA� because the Γ point is
invariant under any real-space symmetry transformation
(including the rotations A). The Γ-point spin degeneracy is
analogous to the T -symmetric relativistic bands. Here, an
example is the Rashba model whose spin-dependent part is
given by λðkxσy − kyσxÞ [Fig. 9(a)]. However, unlike the
linearly dispersing quasiparticles around the Γ point of the
inversion-asymmetric relativistic bands, the altermagnetic
quasiparticles in the above model have a quadratic
dispersion around the Γ point, in line with the general
inversion symmetry of bands in altermagnets (cf. second
line in Table II).
The altermagnetic quasiparticles are spin polarized away

from the Γ point and can be assigned a characteristic even
integer, defined as follows [16]: When making a closed
loop in the momentum space around the Γ point in a plane
orthogonal to a spin-degenerate nodal surface crossing the
Γ point, the spin rotates by 360° following two discrete
reversals. Each spin-degenerate nodal surface crossing the
Γ point, which is present in the crystal momentum space,
generates such a spin rotation. The characteristic spin-
group integer is defined as the number of these spin-
degenerate nodal surfaces crossing the Γ point. It can be 2
(d-wave), 4 (g-wave), or 6 (i-wave) in altermagnets [16].
This illustrates the potential richness of the spin-polarized
quasiparticles in altermagnets around the Γ point.
The characteristic spin-group integer of the above alter-

magnetic quasiparticle model is 2. This is in contrast to the

spin-winding number 1 in the relativistic Rashba model.
We also point out that the spin-winding number in the
relativistic systems is associated with continuously varying
spin direction in the momentum space. In contrast, alter-
magnets show that nonzero integer invariants, describing
how many times the quasiparticle spin reverses when
completing a closed path around the Γ point, can also
exist in systems where all spins share a common spin
quantization axis, and spin is a good quantum number.
A different type of predicted altermagnetic electron

quasiparticle can be illustrated on a two-band model
Hamiltonian [6,7,13]:

H ¼ �2tJðcos kx − cos kyÞσz; ð2Þ

whose energy spectrum is shown in Fig. 11(d). [Around the
Γ point, Eq. (2) is related to the model in Eq. (1) by a 45°
rotation of the momentum space, and by setting t ¼ 0.]
In the k · p approximation around time-reversal invariant

momenta (TRIMs) X and Y, highlighted by dashed
rectangles in Fig. 11(d), the spectrum takes the form of
spin-split valleys given by [see Figs. 11(c) and 11(d)],

E�ðX;kÞ ¼ �tJð4 − k2Þ;
E�ðY;kÞ ¼∓ tJð4 − k2Þ: ð3Þ

(Recall that a momentum k is time-reversal invariant when
it differs from −k by a reciprocal lattice vector.)
The possibility to observe spin-split valleys around

TRIMs in real materials is predicted by the spin-group
symmetry analysis and ab initio band-structure calculations
of the altermagnetic phase in, e.g., Mn5Si3 [6] [Fig. 7(c)].
Besides 3D crystals, the altermagnetically spin-split valleys
can also form in 2D materials [15,23,104], as predicted,
e.g., in ab initio calculations of the band structure of a
monolayer insulator V2Se2O [15] [Fig. 7(d)].
Locally, the individual valleys around the X and Y

TRIMs are isotropic in the above model. This illustrates
that altermagnets can host spin-polarized quasiparticles
analogous to the model nonrelativistic s-wave Stoner
ferromagnet, with no spin winding around the TRIM.
However, unlike ferromagnets, the altermagnetic spin-
group symmetries impose that each spin-split TRIM has
a counterpart TRIM elsewhere in the Brillouin zone with
opposite spin splitting. The presence of these TRIM pairs is
protected by the ½C2kAH� spin-group symmetries (cf. fourth
line in Table II).
The altermagnetic spin-polarized quasiparticles in sep-

arate local valleys in the momentum space are reminiscent
of relativistic spin-polarized valley quasiparticles in non-
magnetic hexagonal 2D materials, such as transition metal
dichalcogenides [105]. The common features shared by the
altermagnetic and relativistic quasiparticles are the opposite
spin polarization in valleys occupying different parts of the
Brillouin zone, and the zero net spin polarization when
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integrated over the whole Brillouin zone. However, only
altermagnets allow these valleys to be centered at TRIMs,
as highlighted in Fig. 11(e). In the nonmagnetic relativistic
systems, spin splitting is excluded by T symmetry not only
at the Γ point but at all TRIMs.
So far, we have discussed the electron quasiparticles

from the symmetry perspective limited to the spin-group
transformations acting on the spin- and momentum-depen-
dent band structure. Additional, rich, quasiparticle physics,
including higher-order degeneracy quasiparticles, can
emerge from the analysis of spin-group transformations
acting on the electron wave functions (spin-group repre-
sentations) [16,24,59,61].

D. Magnons

Besides the electron energy spectra and quasiparticles,
we foresee that the symmetries of the direct-space spin-
polarization order parameter in altermagnets will also be
reflected in unconventional characteristics in the reciprocal
momentum space of the spin-wave spectra and magnon
quasiparticles [106].
The typically leading contribution to the magnon

spectra can be obtained by mapping the spin-dependent
electronic structure on the Heisenberg Hamiltonian, H ¼
−
P

i≠j Jijêiêj [59,107,108]. Here, êi is the direction
of the magnetic moment around an atom at position Ri,
and Jij are Heisenberg exchange coupling parameters. In
the Heisenberg model, the real- and spin-space trans-
formations are decoupled, and the symmetries of the
corresponding magnon bands can be described by the
nonrelativistic spin-group formalism [26,59].
In antiferromagnets, translation or inversion symmetry

transformations connecting opposite-spin sublattices pro-
tect the degeneracy of opposite-chirality magnon bands
[26,59]. This has been commonly illustrated on the
opposite-spin sublattices of rutile crystals while omitting
the presence of nonmagnetic atoms in these crystals
[26,59,109]. We have seen in Sec. II, however, that the
nonmagnetic O atoms in metallic rutile RuO2, or F atoms in
insulating rutiles FeF2 or MnF2, break the translation and
inversion symmetries connecting the opposite-spin sublat-
tices. Instead of classic antiferromagnets [26,49,59,109],
rutiles are the prototypical representatives of d-wave
altermagnetism [16], with interlinked unconventional prop-
erties of the direct-space crystal structure and reciprocal-
space electronic, as well as magnonic, band structure [106].
Hematite Fe2O3 is another prominent insulating compen-
sated magnet in magnonic research [110]. In analogy to the
rutiles, the nonmagnetic O atoms in Fe2O3 break the
translation and inversion symmetries while preserving a
rotation symmetry, connecting the opposite-spin sublatti-
ces. Fe2O3 is an example of a g-wave altermagnet [16].
In analogy to the electronic band structure, the degen-

eracy of magnon bands with opposite chirality is predicted
to be lifted in altermagnets, with the sign of the splitting

alternating across the magnon Brillouin zone [106]. On one
hand, altermagnetic magnons can be chiral and carry spin
currents, similar to ferromagnets but with highly aniso-
tropic characteristics. On the other hand, the dispersion of
altermagnetic magnons can be linear around the degenerate
Γ point, similar to antiferromagnets.
For metallic systems, the Landau damping in altermag-

nets can be suppressed due to the spin splitting of the
electron quasiparticles. This is more reminiscent of the low
Landau damping in metallic ferromagnets and contrasts
with the large Landau damping associated with the spin
degeneracy of the electronic bands in antiferromagnets
[106,108]. All these unconventional characteristics make
altermagnets a promising material platform for magnonics,
including the exploration and exploitation of the emission,
propagation, and detection of ultrashort (ps-scale) THz
magnon pulses of wavelengths orders of magnitude smaller
than the wavelengths of the THz photons.

E. Berry phase, nondissipative transport,
and band topology

The Berry phase is a general concept in quantum
mechanics [111]. A prototypical example is the Aharonov-
Bohm phase given by a real-space path integral of the
electrodynamic vector potential along a closed loop or,
equivalently, by an integral of the magnetic field over an
area enclosed by the loop. The phase can be macroscop-
ically observable by resistance oscillations in an applied
magnetic field.
In the crystal momentum space, a Berry connection

analogue of the electrodynamic vector potential, and a
Berry curvature analogue of the magnetic field,

AnðkÞ ¼ ihunkj∇kunki;
BnðkÞ ¼ ∇k ×AnðkÞ; ð4Þ

can also generate macroscopic observables. A prominent
example is the nondissipative Hall current given by the
transverse conductivity [37],

σHallxy ¼ −
e2

ℏ

X
n

Z
BZ

d3k
ð2πÞ3 f½εnðkÞ�B

z
nðkÞ: ð5Þ

Here, f½εnðkÞ� is the Fermi-Dirac distribution function,
εnðkÞ is the energy of the Bloch state in band n with crystal
momentum k, and unkðrÞ is the periodic part of the Bloch
wave function.
Altermagnets are predicted to bring unique elements into

the physics of Berry phase phenomena [2,3,5–7,44,45].
The Berry curvature near the Γ point of a k · p altermagnet-
Rashba model [2], tk2 þ 2tJkxkyσz þ λðkxσy − kyσxÞ, is
given by
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BðkÞ� ¼∓ 2tJλ2kxkyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2JðkxkyÞ2 þ λ2k2

q : ð6Þ

Equation (6) illustrates that the characteristic even-parity
wave (e.g., d-wave) anisotropy in the nonrelativistic band
structure of altermagnets can also be reflected in their
relativistic Berry curvature. In contrast, a counterpart
ferromagnet-Rashba model, tk2 þ Δσz þ λðkxσy − kyσxÞ,
gives an isotropic Berry curvature near the Γ point
[2,37,112–115], reflecting the principally isotropic s-wave
nature of ferromagnetism.
The Berry curvature tends to reach the highest values

near band (anti)crossings [2,37], which implies another
outstanding feature of altermagnets. In contrast to the
typically accidental (anti)crossings in ferromagnets, the
spin-group symmetries of altermagnets impose the pres-
ence of the spin-degenerate nodal surfaces in the non-
relativistic band structure (cf. fifth line in Table II). When
the relativistic spin-orbit coupling is included, these nodal
surfaces (which may be weakly gapped by the spin-orbit
coupling) may become symmetry-defined Berry-curvature
hotspots. This is illustrated in Fig. 5 on relativistic ab initio
band structures of RuO2 and FeSb2 [2,7,13].
Since T is antiunitary in quantum mechanics, the Berry

curvature (4) is odd under T , T BnðkÞ ¼ −Bnð−kÞ, imply-
ing that the integral in Eq. (5) vanishes in T -symmetric
band structures. Breaking of T symmetry in the band
structure of altermagnets is, therefore, the key property that
allows for the observation of macroscopic responses, such
as the anomalous Hall effect [2,3]. Recent experiments [5]
have detected the anomalous Hall effect in RuO2 of a
comparable strength to typical Hall signals in ferromagnets.
This is consistent with the predicted strong altermagnetic
T -symmetry breaking in the band structure of this com-
pensated collinear magnet [3,5] (cf. Table I).
RuO2 is an example in which the lattice of the magnetic

Ru atoms alone would have the opposite-spin sublattices
connected by a translation. As mentioned above, this
symmetry would imply T symmetry of the band structure
(and in combination with inversion symmetry of the crystal,
also spin degeneracy). The presence of the nonmagnetic
oxygen atoms is, therefore, essential for the T -symmetry
breaking (and spin splitting) in the altermagnetic band
structure of RuO2 and, consequently, for the anomalous
Hall effect [3]. The term “crystal Hall effect” [3,7,44,117]
was introduced to highlight this feature. One of the
implications, unparalleled in the conventional anomalous
Hall effect in ferromagnets, is that in altermagnets the Hall
signal is predicted to flip sign not only when reversing the
magnetic moments but also when the symmetry-breaking
arrangement of nonmagnetic atoms reverses between the
two magnetic sublattices [3].
Next, we recall that in 2D systems, Eq. (5) turns into a

surface integral proportional to the Berry phase, which

becomes quantized when the integration covers the full
Brillouin zone in 2D insulators [118]. The corresponding
quantum Hall effect [119] was demonstrated in graphene at
room temperature [120], but it requires a strong magnetic
field. The ferromagnetic quantum anomalous Hall counter-
part [121] can be observed at zero magnetic field but, so far,
has been limited to Kelvin temperatures [42,122]. Since
altermagnetism can host the Berry phase phenomena and
can occur in 2D crystals and in insulators, it opens new
possibilities in the search for high-temperature zero-field
quantum Hall phenomena. For a further in-depth discussion
of Berry phase physics and nondissipative Hall transport in
altermagnets, we refer to the recent topical review [2].
While above we have discussed topological Berry phase

physics, which is a consequence of perturbative relativistic
spin-orbit coupling effects, altermagnets can also lead to
identification of unconventional magnetic topologies of a
nonrelativistic origin [7,16]. The spin degeneracies in
nonrelativistic altermagnetic bands are protected by sym-
metries of the spin point group (spin Laue group) because
the electronic structure is strictly separated into nonmixing
spin-up and spin-down channels [16]. However, additional
band degeneracies can exist within one spin channel, i.e.,
degeneracies in band indices other than spin, which are
protected by space-group symmetries (symmetry trans-
formations also containing translations). These features
can be included in the symmetry analysis based on the
nonrelativistic spin-group formalism and can be important
when exploring exotic topological quasiparticles near such
degeneracies [16,24,25,57,58]. The nonrelativistic spin-
space groups are also well suited for exploring magnon
band topology [59] of altermagnets.

IV. RESEARCH AREAS

We now move to the discussion of the potential of
altermagnetism in specific areas of condensed-matter
research. We start from spintronics in which, besides the
anomalous Hall effect, initial theory predictions of non-
relativistic spin-dependent responses have recently been
tested by experiments.

A. Spintronics

To highlight the novelty of the emerging concept of
spintronics without magnetization and relativity, enabled
by altermagnetism, we first briefly recall the principles of
the established fields of spintronics in ferromagnets and
antiferromagnets.
The nonrelativistic electronic structure of ferromagnets is

split into majority and minority spin bands that break the T
symmetry and where spin is a good quantum number
independent of momentum. This results in different con-
ductances of the two conserved spin channels, which makes
electrical currents in ferromagnets strongly spin polarized.
Passing the spin-polarized current in a multilayer structure
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with reference and sensing (or recording), ferromagnetic
electrodes can generate spin-transfer torque (STT) and
giant/tunneling magnetoresistance (GMR/TMR) effects.
These strong nonrelativistic responses facilitate reorienta-
tion between parallel and antiparallel magnetizations of the
two ferromagnetic electrodes and corresponding resistive
changes on a scale of around 10%–100% utilized in
commercial spintronic memory devices [85–87,123].
Direct antiferromagnetic counterparts of STT and GMR/

TMR effects are principally excluded by the T invariance
and spin degeneracy of the nonrelativistic electronic
structure. As a result, the research of antiferromagnetic
spintronics turned to the typically weaker relativistic
phenomena, such as the spin-orbit torque reorientation of
the Néel vector detected by a scale of about 0.1%–1%
anisotropic magnetoresistance [39,40,92,93,124]. The con-
cept inherits the general weakness of relativistic spintronic
phenomena that are simultaneously generated and sup-
pressed by the spin nonconserving nature of the relativistic
spin-orbit coupling [40].
The strong nonrelativistic T -symmetry breaking and

spin splitting in altermagnetic bands directly opens a
possibility to not only replicate the concepts known from
ferromagnets but also to enrich nonrelativistic spintronics
by new effects and functionalities linked to the zero
nonrelativistic net magnetization [4,8–15].
The anisotropy of the split and equally populated

spin-up and spin-down Fermi surfaces in altermagnets
[cf. Figs. 11(a) and 11(b)] results in spin-dependent
anisotropic group velocities, ∂EþðkÞ=∂ki ≠ ∂E−ðkÞ=∂ki,
where þ=− refers to the spin index. The corresponding
conductivities in d-wave altermagnets are then also spin
dependent and anisotropic. Considering the x and y
directions as the anisotropic axes of the spin-split
Fermi surfaces, we get σþ;xx ≠ σ−;xx, σþ;yy ≠ σ−;yy, and
σ�;xx ¼ σ∓;yy. The electrical current then becomes spin
polarized when the bias is applied along the x or y
direction, as schematically illustrated in Fig. 12(a).
Moreover, as a consequence of the T -symmetry breaking
of the spin-split bands, the sign of the spin polarization
reverses when reversing the altermagnetic-order vector. (In
analogy to the antiferromagnetic Néel vector, we define the
altermagnetic-order vector as the difference between the
magnetization vectors of the opposite-spin sublattices.)
The above nonrelativistic spin-current characteristics are

analogous to ferromagnets. However, in contrast to ferro-
magnets, the altermagnetic spin splitting is also predicted to
cause the reversal of the spin polarization of the current
when the applied electrical bias is flipped between the x and
y directions.
The spin-polarized current directly implies a GMR effect

in a stack comprising two altermagnets, separated by a
conductive nonmagnetic spacer, with the altermagnetic-
order vectors oriented either parallel or antiparallel, as
illustrated in Fig. 12(b). The contribution to GMR from the

spin-dependent conductivities in d-wave altermagnets can
be estimated from the conventional current-in-plane GMR
expression derived in ferromagnets [85],

GMR ¼ 1

4

�
Rσ þ

1

Rσ
− 2

�
; ð7Þ

where Rσ ¼ σþ;xx=σ−;xx ¼ σþ;xx=σþ;yy ¼ σ−;yy=σ−;xx. The
ab initio calculations in RuO2 give GMR reaching a 100%
scale [13] [Fig. 12(e)], highlighting the expected large
GMR ratios in altermagnets.
As noted above, the polarization of the longitudinal spin-

polarized current in altermagnets is predicted to reverse not
only with the reversal of the altermagnetic-order vector but
also with the reorientation (e.g., by 90°) of the applied
electrical bias in the d-wave altermagnet. A directly related
effect, also unparalleled in ferromagnets, is illustrated in
Fig. 12(c). For a bias applied in the diagonal direction
between the two anisotropy axes of the spin-split Fermi
surfaces, the longitudinal current is unpolarized. However,
a nonrelativistic spin current is generated in the transverse
direction. The effect has been predicted in a range of
inorganic and organic materials [4,8,9,15]. The d-wave
altermagnet acts here as an electrical spin splitter, with a
propagation angle between spin-up and spin-down currents
reaching 34° in RuO2 [8]. The corresponding charge-spin
conversion ratio reaches a remarkable 28% [Fig. 12(e)], and
the spin conductivity is a factor of 3 larger than the record
value from a survey of 20 000 nonmagnetic relativistic
spin-Hall materials [125].
The above outstanding charge-spin conversion efficiency

of altermagnetic RuO2 prompted a theoretical proposal of a
spin-splitter torque (SST) [8], in part already supported by
initial experiments [10–12] (cf. Table I). In the geometry
schematically illustrated in Fig. 12(d), an in-plane bias
generates the nonrelativistic spin current in the d-wave
altermagnetic film along the out-of-plane direction, with
the polarization of the spin current controlled by the
orientation of the altermagnetic-order vector. The spin
current then exerts a torque on the adjacent altermagnetic
(or ferromagnetic) layer. SST does not inherit the problems
of STT associated with the out-of-plane direction of the
applied electrical bias [86,126]. Instead, it shares the in-
plane electrical-bias geometry of the spin-orbit torque
generated by the relativistic spin-Hall polarizer while
circumventing the limitations of the more subtle relativistic
spintronic effects [40].
Another nonrelativistic spintronic effect that can be

generally expected to exist in altermagnets is a variant
of the TMR in a tunnel junction with an insulating spacer
separating the two altermagnetic electrodes [13,14]. The
altermagnetic TMR can be illustrated on the model band
structure with spin-split valleys [cf. Figs. 11(c) and 11(d)].
The pairs of valleys with opposite spin polarization result in
the equal net population of spin-up and spin-down states,
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while the densities of states within a given valley become
spin dependent, nþðM1Þ ≠ n−ðM1Þ, nþðM2Þ ≠ n−ðM2Þ,
and n�ðM1Þ ¼ n∓ðM2Þ. For tunneling that conserves the
valley index, parallel and antiparallel configurations of
altermagnetic-order vectors in the two layers, illustrated
in Fig. 13(a), are predicted to give different conductances,
in analogy to ferromagnetic TMR. This can be seen by
applying the Jullière formula [85] per valley [13],

TMR ¼ 1

2

�
Rn þ

1

Rn
− 2

�
; ð8Þ

where the ratio of the spin-up and spin-down densities of
states in the valley is given by Rn ¼ nþðM1Þ=n−ðM1Þ ¼
nþðM1Þ=nþðM2Þ ¼ n−ðM2Þ=n−ðM1Þ.
The ab initio calculations of about 100% TMR ratios in

RuO2 [Fig. 13(b)] or Mn5Si3 [13,14] illustrate the potential
for achieving large TMR responses in tunnel junctions with
altermagnetic electrodes.

Finally, we note that symmetry-wise, TMR is, in
principle, expected in all altermagnetic spin groups [13]
and can reach large magnitudes as long as the spin-
polarized quasiparticles are well separated in the momen-
tum space to provide for the sufficiently decoupled spin
transport channels [Fig. 13(c)]. On the other hand, the
GMR derived from the anisotropy of the macroscopic
(averaged over momentum) spin-dependent conductivities
is predicted to be allowed only in d-wave altermagnets
[13,16].
We now proceed to the discussion of how altermagnet-

ism can contribute to the research of space, time, and
energy downscaling in spintronic devices. The nonrelativ-
istic nature and corresponding large strength of the GMR
(TMR) and SST (STT) effects are important prerequisites
for temporal and spatial scalability of memory devices
utilizing these phenomena for reading and writing infor-
mation. This highlights the importance of the presence
of these phenomena in altermagnets. In contrast, the

Spin-splitter torque

Giant magnetoresistance

Transverse spin-current

(a) Longitudinal spin-current (b)

(e)

(c) (d) Spin-splitter torquee(d)

n(m)

AM(FM)

AM

n( )
jS

E

FIG. 12. (a) Schematics of the longitudinal spin current in altermagnets. For an electric bias E applied along one of the main
anisotropy axes of the spin-split Fermi surfaces, the spin-up and spin-down charge currents are parallel but of different magnitudes due
to the Fermi-surface anisotropies. As a result, the longitudinal charge current is spin polarized. (b) Schematics of a GMR stack in a
current-in-plane geometry. As an example, we show the antiparallel configuration of the altermagnetic-order vectors in the two
electrodes AM1 and AM2. Interfaces are oriented along one of the main anisotropy axes of the spin-split bands. Energy band cuts
highlight the anisotropy around the Γ point, resulting in anisotropic spin-dependent conductivities. (c) Schematics of the transverse spin
current. For E applied in the diagonal direction between the two anisotropy axes of the spin-split Fermi surfaces, the spin-up and spin-
down charge currents combine in an unpolarized longitudinal charge current and in a pure transverse spin current. (d) Spin-splitter-
torque concept on a schematic of altermagnetic-altermagnetic (ferromagnetic) bilayer. A spin-current from the bottom altermagnet
propagates in the out-of-plane direction and generates a spin-splitter torque on the altermagnetic (or ferromagnetic) order vector in the
top layer. (e) Ab initio longitudinal spin-up and spin-down conductivities (red and blue), GMR, and the ratio of the transverse spin
current relative to the longitudinal charge current (SCR) in RuO2. This figure is adapted from Refs. [8,13].
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scalability is limited in antiferromagnetic devices that rely
on the typically weaker relativistic spintronic phenomena.
Realizing the strong nonrelativistic effects and function-

alities in altermagnets will bring advantages compared to
antiferromagnets and to ferromagnets. The large nonrela-
tivistic magnetization, accompanying the spin-polarized
band structure of ferromagnets, represents a significant
limitation for spintronics. The low tolerance to perturbing
magnetic fields implies that stray magnetic fields from the
ferromagnetic films in the GMR(TMR)/STT stacks have to
be suppressed by elaborate device engineering to eliminate
magnetic cross-talk within and between individual memory
bits. This is achieved at the expense of synthesizing
complex multilayer stacks, with typically over ten different
materials, in which the reference or recording electrodes
comprise two or more ferromagnetic layers with mutually
compensating antiparallel magnetizations (the so-called
synthetic antiferromagnets) [85,127]. Even in these elabo-
rate multilayers, the net magnetic stray fields can only be
partially eliminated. In contrast, altermagnetic crystals with
vanishing magnetization and stray fields will offer a
magnetic robustness combined with the absence of mag-
netic cross-talk, which will allow for a significant sim-
plification of the structure of spintronic devices. In
combination with the strong GMR (TMR) and SST
(STT) effects, this can enable spatial downscaling beyond
the limits of ferromagnetic devices.
Another principal advantage compared to ferromagnets,

which altermagnets share with antiferromagnets, is the

close-to THz range of the resonance frequency of collective
spin excitations (magnons), corresponding to the close-to
ps internal timescale of spin dynamics. This opens the
possibility for achieving the least-dissipative and fastest
control of a bistable memory bit [128]. According to the
Landauer thermodynamic principle [129,130], confirmed
in magnetic systems at above around μs timescales
[131,132], the minimal energy dissipation when restoring
one memory bit is given by kBT ln 2, where T is the
temperature and kB denotes the Boltzmann constant. At
room temperature, this Landauer limit is in the range of
about meV; i.e., it corresponds to the energy of a photon of
about THz. Remarkably, switching by an energy corre-
sponding to a single THz photon per magnetic atom, i.e.,
around meV per atom, and with the limiting ps duration of
the delivered THz pulse has been demonstrated recently in
a compensated collinear magnet TmFeO3 [128]. This
shows that reaching the Landauer energy limit of about
meV per memory bit at the limiting ps timescale is
becoming a legitimate, albeit still very challenging,
research goal in ultrafast photomagnetism [133]. Since
the orthoferrite TmFeO3 is an insulating d-wave altermag-
net, it also opens the possibility for detecting the ultrafast
switching dynamics of the altermagnetic-order vector by
the T -symmetry breaking magneto-optical responses com-
monly employed in ferromagnets. In metallic altermagnets,
the research towards the limiting energy and timescales can
further benefit from the presence of the strong nonrelati-
vistic GMR (TMR) and SST (STT) responses.

(c)

(a) Parallel Antiparallel

Tunneling
barrier

AM1 AM2 Tunneling
barrier

AM1 AM2

(b)

FIG. 13. (a) Schematics of a TMR stack with an insulating barrier and altermagnetic electrodes with parallel and antiparallel order
vectors. Energy band cuts highlight the oppositely split valleys, resulting in valley and spin-dependent densities of states. (b) Ab initio
quantum-transmission calculations of the TMR in a RuO2j TiO2j RuO2 tunnel junction. (c) Model spin and transport-momentum
projected band structure, and relative difference between the conductances in the parallel and antiparallel configurations of the
altermagnetic-order vectors in the two electrodes. The TMR is maximized for transport energies corresponding to the spin-split valleys
well separated in momentum. This figure is adapted from Refs. [13,14].
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So far, we have discussed concepts of spintronic devices
in which the magnetic-order vector is uniformly switched
across a manmade memory element. Alternatively, infor-
mation can be coded in self-assembled magnetic nano-
textures, such as domain walls. This is another research
area for which the stray-field-free compensated magnets,
and altermagnets in particular, can be highly favorable.
Self-assembled magnetic nano-textures in Kramers spin-

degenerate antiferromagnets have been suggested as the
origin of the recently observed, highly reproducible, analog
time-dependent switching over the full range from ms
electrical writing pulses to sub-ps optical pulses, and with a
resistivity increase in the switched state on a 10%–100%
scale [134,135]. The devices mimic a logic-in-memory
functionality of spiking neuromorphic elements, thus
offering additional space, time, and energy downscaling
prospects unparalleled in the conventional digital devices
with logic and memory separated by the von Neumann
bottleneck. The resistivity increase in the switched state
was ascribed to the formation of atomically sharp domain
walls [134–136]. They correspond to the ultimate down-
scaling of a magnetic domain-wall width since the Néel
vector flips by 180° from one to the neighboring atomic
plane [136]. If generated in an altermagnet, each atomically
sharp domain wall separating domains with opposite sign
of the altermagnetic-order vector would represent a local
GMR junction that is self-assembled and corresponds to the
ultimate downscaling of the width of the junction spacer.
This atomic-scale GMR would generate a strong additional
contribution to the resistances of the atomically sharp
domain walls in altermagnets. The altermagnetic phase
thus offers a possibility to combine, in one physical system,
the phenomena and functionalities of the commercial
digital ferromagnetic memory devices and of the exper-
imental antiferromagnetic analog neuromorphic devices.

B. Spin caloritronics, field-effect electronics,
and multiferroics

The key merit of ferromagnets from an energy-saving
perspective is nonvolatility; i.e., they can store information
even when the power is switched off. On the other hand,
electrical reading and especially writing information into
ferromagnetic memory devices can generate significant
Joule heating [85]. This can be directly harvested during the
writing process in which the elevated temperature effec-
tively reduces the equilibrium energy barrier separating the
states with opposite magnetization orientation. In the latest
generation of hard disks, elevating the temperature of a bit
while recording is provided through an external laser heat
source. Similarly, all-optical switching by laser pulses is
typically accompanied by significant heating effects [137].
This brings us to a discussion of how altermagnetism,
rather than generating heat, can contribute to energy
harvesting in devices combining heat, charge, and spin
phenomena.

Ferromagnets have been considered for a direct heat
conversion to electricity [138]. Here, the anomalous
Nernst effect, a thermo-electric counterpart of the anoma-
lous Hall effect, is regarded as an attractive candidate
phenomenon [139]. The anomalous Nernst effect gener-
ates an electric field in a transverse direction to the thermal
gradient. Particularly in thin-film or nanostructured
heat-charge conversion devices, the transverse geometry
can significantly enhance the conversion efficiency com-
pared to the conventional longitudinal Seebeck effect
[139]. A complementary research area to the anomalous
Nernst effect are thermal counterparts of the GMR/TMR
and STT phenomena. Here, the energy harvesting concept
is based on employing heat gradients, instead of electrical
bias, to directly read or write information in a memory
device [138].
Altermagnets significantly enlarge the material land-

scape for realizing and optimizing these thermo-electric
responses that originate, in analogy to their electronic
counterparts, from the T -symmetry-broken spin-polarized
band structure. Unlike the typically metallic ferromagnets,
altermagnets are predicted to span a broad range of
conduction types (cf. Sec. II D). This prediction is favor-
able because, from a general thermo-electric perspective,
semimetals or semiconductors are more suitable material
types than metals due to the strong dependence of their
electronic structure on energy near the Fermi level. A
particularly intriguing class of materials are those exhibit-
ing a metal-insulator transition. Among the altermagnetic
candidate materials, FeSb2 [7,16] is an example in which
earlier studies reported an extraordinary (spin-independent)
thermo-electric response, linked to the metal-insulator
transition [140].
So far, we have discussed electrical-current (voltage)

responses to the applied thermal gradients. Altermagnets
may also open intriguing new directions in research and
application of spin-current responses to thermal gradients
in the field commonly referred to as spin caloritronics
[138]. In analogy to the anomalous Nernst and Hall effects,
there is also a spin Nernst effect [141], driven by a thermal
bias, that is a counterpart of the spin Hall effect [38], driven
by an electrical bias. Conventionally, these transverse spin-
current responses to the applied thermal or electrical bias
did not require a magnetically ordered system and were
ascribed to the relativistic spin-orbit coupling. As a result of
the relativistic origin, their magnitudes were typically
weak. In contrast, the transverse spin-current response in
altermagnets can be expected to have a strong nonrelativ-
istic contribution, exceeding, by orders of magnitude, the
relativistic spin Nernst contribution. The expectation is
based on the analogy with the electrically generated
transverse spin current discussed earlier in Sec. IVA. In
RuO2, ab initio calculations have shown that the electri-
cally induced transverse spin current can have a non-
relativistic contribution, the so-called spin-splitter effect,
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which is orders of magnitude stronger than the relativistic
spin Hall effect in the same altermagnetic material [8].
As a final remark on spin caloritronics, we recall the spin

magnon Nernst effect [142], where, instead of electrons, the
spin current is carried by magnons. In Sec. III D, we have
highlighted the expected unconventional phenomenology
of magnons in altermagnets. Their unparalleled combina-
tion of linear dispersion and alternating chirality splitting in
the magnon Brillouin zone is potentially highly favorable
for realizing spin-caloritronic devices.
Similar to spin caloritronics, nonmetallic materials are

also favorable for combining spin physics with field-effect
electronics. Earlier research demonstrated the intriguing
interplay of spintronic and transistor functionalities in
ferromagnetic semiconductors [143,144]. However, the
field suffered from the notorious incompatibility of robust
high-temperature ferromagnetism with semiconducting
band structures. Altermagnets thus open a new prospect
of materials with high magnetic transition temperatures,
allowing us to combine spintronic and semiconducting
device functionalities. The initial experimental demonstra-
tion of a spontaneous anomalous Hall effect in the absence
of an external magnetic field has been reported in a room-
temperature g-wave altermagnetic semiconductor MnTe
[145]. Moreover, theory predicts a high sensitivity of this
and other spintronic responses to small changes of the
Fermi level position near the valence or conduction band
edge, which can be controlled by doping or electrostatic
gating [145].
Finally, we discuss the prospect of an interplay of

altermagnetism with dielectric and ferroelectric (ferroe-
lastic) materials or phases. The initial measurements of the
anomalous Hall effect and spin currents in the d-wave
altermagnet RuO2 exploited the high structural compat-
ibility with TiO2 [5,10,12], which is one of the most
commonly used dielectrics in consumer electronics, as
well as a commonly employed memristive element in
experimental neuromorphic devices [146]. Another
closely related dielectric, HfO2, plays an important role
in modern CMOS devices, and the recent discovery of
ferroelectricity in HfO2 thin films has triggered a renewed
interest in the development of scalable, nonvolatile,
ferroelectric memories [147]. Interfaces of structurally
compatible altermagnetic and ferroelectric (ferroelastic)
films pave the way for nonvolatile electric-field control of
magnetism via a coupling between the ferroic orders.
Such a coupling can also be realized in multiferroic
materials hosting the magnetic and ferroelectric orders
within the same crystal [148]. Since only insulating
(semiconducting) materials can be ferroelectric, a coex-
isting ferromagnetic order is rare because ferromagnetism
favors metallic structures, which again highlights the new
opportunities brought up by altermagnetism. The promi-
nent multiferroic materials are noncentrosymmetric per-
ovskite oxides with a compensated magnetic order [148].

As shown in Sec. II D, altermagnetism is compatible with
this material family. Here, CaMnO3 is an example multi-
ferroic [149] that is a candidate for hosting the d-wave
altermagnetic phase [16].

C. Superconductivity

The family of insulating perovskite oxides brings us to
its prominent cuprate member La2CuO4 that, upon doping,
turns into a high-temperature d-wave superconductor [30].
The recognition that this cuprate crystal belongs to a
d-wave altermagnetic spin group [16] leads to the anticipation
of a new research direction exploring an interplay between
altermagnetism and superconductivity [16,150]. Research in
this context may include areas such as the coexistence of
altermagnetism and unconventional superconductivity with
anisotropic Cooper pairing [151], altermagnetic fluctuations
as a pairing mechanism [151], or phenomena at altermagnet
or superconductor interfaces [152,153].
Since altermagnets have spin-degenerate nodal surfaces

protected by spin-group symmetries, a spin-singlet Cooper
pairing may occur for the corresponding momenta. For the
spin-singlet case, in analogy to conventional antiferromag-
nets, the 2 × 2 Cooper-pair potential matrix (gap function
or order parameter) Δ̂ðkÞ satisfies Δ↑↑ðkÞ ¼ Δ↓↓ðkÞ ¼ 0,
Δ↓↑ðkÞ ¼ −Δ↑↓ðkÞ, and Δ↑↓ðkÞ ¼ Δ↑↓ð−kÞ [151]. The
matrix is unitary, with corresponding zero net spin average
of the pairing state, and it describes even-parity wave
Copper pairing, including the anisotropic, e.g., d-wave,
pairing.
However, the altermagnetic spin-group symmetries also

allow for spin-split and broken T -symmetry parts of the
Brillouin zone, where ϵðs;kÞ ≠ ϵð−s;−kÞ and AHk ≠ k
(cf. fourth and sixth lines in Table II). These momenta
can support spin-triplet Cooper pairing. In analogy to
ferromagnets, the spin-triplet Cooper-pair potential matrix
corresponding to a spin-split spin-up Fermi surface of the

altermagnet, Δ̂ð↑ÞðkÞ, takes the form Δð↑Þ
↑↓ ðkÞ ¼ Δð↑Þ

↓↑ ðkÞ ¼
Δð↑Þ

↓↓ ðkÞ ¼ 0 and Δð↑Þ
↑↑ ðkÞ ¼ −Δð↑Þ

↑↑ ð−kÞ [151]. The matrix
in this case is nonunitary and describes odd-parity wave
Copper pairing [151]. Unlike ferromagnets, however, the
altermagnetic spin-group symmetries impose the presence
of a counterpart spin-down Fermi surface with a corre-

sponding Δ̂ð↓Þðk0Þ that satisfies Δð↓Þ
↑↓ ðk0Þ ¼Δð↓Þ

↓↑ ðk0Þ ¼
Δð↓Þ

↑↑ ðk0Þ ¼ 0, Δð↓Þ
↓↓ ðk0Þ ¼ −Δð↓Þ

↓↓ ð−k0Þ, and Δð↓Þ
↓↓ ðk0Þ¼

Δð↑Þ
↑↑ ðkÞ, where k0 ¼ AHk. On one hand, altermagnets

can thus share the spin-triplet symmetry of Cooper pairing
with ferromagnets. On the other hand, unlike ferromagnets,
the altermagnetic spin-group symmetries protect a zero net
spin average of the spin-triplet superconducting state. In the
context of unconventional superconductivity, we again see
that altermagnets can share features typical of ferromagnets
or typical of antiferromagnets, and they can also show
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features unparalleled in either of the two conventional
magnetic phases.
Apart from the compatibility of altermagnetism with the

different types of Cooper pairing, altermagnetic fluctua-
tions can provide mechanisms for generating electron
pairing that have not been explored before. Since the
electron-phonon coupling mechanism tends to be limited
to the conventional spin-singlet s-wave pairing [151],
altermagnets can be particularly relevant for the research
of unconventional superconductivity, including both the
spin-singlet and spin-triplet anisotropic types of Cooper
pairing.
Finally, we foresee intriguing new physics at altermagnet

or superconductor interfaces in areas including Andreev
reflection [152] or Majorana fermion quasiparticles [153].
On one hand, the behavior of altermagnets at these
interfaces can be reminiscent of conventional antiferro-
magnets when dominated by the spin-symmetry-protected
nodal surface. On the other hand, interface orientations
exposing the strong altermagnetic spin splitting can gen-
erate a phenomenology similar to the ferromagnet or
superconductor interfaces. As in the case of bulk crystals,
the research of interface effects can exploit the predicted
broad range of altermagnetic material types.

V. CONCLUSION

In this work, we have described a third basic magnetic
phase that emerges already on the fundamental level of
nonrelativistic, uncorrelated band theory of nonfrustrated
collinear magnets. The altermagnetic phase has unconven-
tional spin-polarization orders in the direct physical space
and reciprocal momentum space; this phase is systemati-
cally classified and described by symmetry-group theory,
and it is predicted to be abundant among diverse material
types. The significance of this unconventional d-wave (or
higher even-parity wave) magnetic phase is further under-
lined by the unique ways in which altermagnetism can
contribute to the development of fundamental physical
concepts and to the research in modern condensed-matter
physics fields. Given the still relatively early stage of our
understanding of altermagnetism, and the limited space,
our choice of discussion topics in this work should be
regarded as broadly illustrative and provisional. We can
anticipate that in the near future, altermagnetism will have
an impact on other fields including magnetic topological
matter or axion electrodynamics. Our current view of the
emerging research landscape of altermagnetism is summa-
rized in Fig. 14.

FIG. 14. Summary of the emerging research landscape of altermagnetism.
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