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Light-matter interaction is well understood on the single-atom level and routinely used to manipulate
atomic gases. However, in denser ensembles, collective effects emerge that are caused by light-induced
dipole-dipole interactions and multiple photon scattering. Here, we report on the observation of a
mechanical deformation of a cloud of ultracold 87Rb atoms due to the collective interplay of the atoms and a
homogenous light field. This collective light scattering results in a self-confining potential with interesting
features: It exhibits nonlocal properties, is attractive for both red- and blue-detuned light fields, and induces
a remarkably strong force that depends on the gradient of the atomic density. Our experimental
observations are discussed in the framework of a theoretical model based on a local-field approach for
the light scattered by the atomic cloud. Our study provides a new angle on light propagation in high-
density ensembles and expands the range of tools available for tailoring interactions in ultracold
atomic gases.

DOI: 10.1103/PhysRevX.12.031018 Subject Areas: Atomic and Molecular Physics

I. INTRODUCTION

A single atom interacting with a laser beam usually
experiences a combination of radiation pressure pushing
the atom along the beam as well as a dipole or gradient
force pulling the particle toward regions of a local beam
intensity extremum [1,2]. In dense [3–7] or periodically
structured [8,9] ensembles, the collective backaction of the
atoms on the light field can lead to significant additional
effects [10]. These include, for example, superradiance
[11,12], modifications of emission patterns [13,14], or shifts
of atomic resonance lines [15–18]. A number of theoretical
proposals discuss how this collective interaction and the
resulting forces can reshape atomic clouds [3,7,19–23].
Here, we report on the first observation of mechanical

effects due to collective light-induced dipole-dipole (LIDD)
interactions without enhancement or selecting spatial mode

structures by employing cavities [24–28]. We show that a
homogeneously illuminated cloud of ultracold atoms ex-
periences a remarkably strong compressing potential
for both red- and blue-detuned light fields. The resulting
LIDD potential minimum is intrinsically tied to the atomic
ensemble and can freely evolve in additional external
potentials. These properties distinguish the LIDD inter-
action from well-known dipole forces or a previously
reported effect termed electrostriction [29].
In simplified terms, the LIDD interaction can be seen as a

second-order effect where atoms interact with the light
scattered by other particles. This way, it effectively consti-
tutes a nonlocal (long-range), self-confining, and control-
lable particle-particle interaction [21,22]. The nonlocality
of the LIDD interaction manifests itself in the fact that the
force does not depend only on the local atomic density. It
could, thus, be a new way to tailor atomic interactions
beyond s-wave scattering [30–33] or (static) dipole-dipole
interaction [34] in polar gases [35,36]. Our observations
represent a first step toward an experimental implementa-
tion of various theoretical ideas based on the LIDD
potential properties [37].
This work is organized as follows: In Sec. II, we

introduce the experimental setup and the measurement
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procedure and give some theoretical intuition for the
expected LIDD effects. In Sec. III, we present and discuss
the experimental results. Section IV gives more details on
the theory and the numerical simulation. The work is closed
by a short summary and discussion in Sec. V. Further
details on the experiment and numerical modeling are
presented in Appendixes A–C.

II. EXPERIMENTAL SYSTEM

Our experimental setup (see Fig. 1 and Refs. [38,39] for
more details) is optimized to produce elongated one-
dimensional 87Rb quasicondensates (1D BECs) of typically
N ¼ ð5–10Þ × 103 atoms in the F ¼ 1, mF ¼ −1 state,
magnetically confined 60 μm below a gold-coated atom
chip [38,40]. The 1D BEC is prepared in the radial ground
state of a magnetic trap with axial frequency ωz ¼ 2π ×
18.6 Hz and transverse frequency ω⊥ ¼ 2π × 2.96 kHz. In
the trap, the atom density has an average Gaussian width of
a⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmω⊥Þ
p

≈ 200 nm, with m the atomic mass of
87Rb. The length L of the 1D BEC in the axial direction
depends on the number of atoms, for N ¼ 7000 atoms,
L ≈ 90 μm [41]. After switching off the magnetic trapping
fields (in about 1 μs), the atoms fall for 44 ms time of flight
(TOF) until they reach the detection region [Fig. 1]. There,

the atoms are imaged while passing through an on-resonant
light sheet [39].
10–500 μs after switching off the magnetic trap, a 5-μs-

long laser pulse at various detunings from the F ¼ 1 to the
F0 ¼ 2 transition (D2 line) and intensities is used to trigger
the LIDD interaction between the atoms. As the cloud
expands rapidly in the transverse direction, changing the
time delay between trap release and the laser pulse allows
us to illuminate the sample at different mean atomic
densities while keeping the total atom number constant.
We choose a laser beam waist radius of approximately
1 mm, much larger than the size of the expanding 1D BEC,
to ensure homogeneous illumination and prevent residual
dipole forces. The full experimental sequence is illustrated
in Fig. 1(b). The laser beam inducing the LIDD interaction
propagates nearly parallel to the axial direction of the 1D
BEC. To avoid reflections on the vacuum window and the
gold-coated surface of the atom chip back onto the atom
cloud, the beam is aligned with a horizontal angle of
approximately 2° and tilted downward by 0.5°.
We probe the LIDD interaction for mean atomic den-

sities ranging from 260 to 3 atoms=μm3, corresponding to
free expansion times of the atomic cloud between 10 and
500 μs (see Fig. 3). The gravitational displacement of the
cloud during the expansion amounts to less than 1 μm,

FIG. 1. (a) 3D illustration of the experimental setup. A 1D BEC is magnetically trapped below an atom chip. After releasing the atoms
from the trap, they are illuminated with a spatially homogeneous laser pulse to induce the LIDD interaction. The beam is aligned nearly
parallel to the long (z) axis (see the text). After 44 ms TOF, the atomic cloud is imaged using a light sheet imaging system. (b) Sketch of
the experimental sequence: After switching off the trap, the 1D BEC expands for 10–500 μs before being illuminated with a 5-μs-long
laser pulse. The LIDD interaction causes the atomic cloud to contract in the transverse directions, resulting in a reduced transverse width
σL compared to the width σ0 without additional illumination of the freely expanding cloud. Averaged light sheet images with mean atom
number N ¼ 6600ð130Þ (c) without and (d) with illumination by the laser beam with blue-detuned light (Δ ¼ þ100Γ) and intensity
I ¼ 28.3ð0.8ÞIsat for 5 μs, 105 μs after trap release. The lines indicate the corresponding transverse density profile after integrating over
the full extension of the 1D BEC along the long z axis. Note that the 1D BEC expands mainly in the initially tightly confined transverse
(radial) directions, resulting in an inverted aspect ratio of the cloud after 44 ms of flight in the light sheet image.
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while its radius expands to less than 2 μm and remains
much smaller than the waist of the laser beam.

A. Theoretical intuition

The concept of LIDD interactions can be understood
from two equivalent models: In a particle picture, we first
note that the well-known radiation pressure and dipole
forces arise from interaction between a single atom and an
external light field. But particles immersed in a sufficiently
large or dense cloud also interact with light scattered by
other atoms. This collective multiple scattering can be
understood as an effective long-range particle-particle
interaction. Equivalently, one can observe that atoms
collectively reshape the incoming laser field through their
refractive index, and the resulting (local) electric field
intensity gives rise to an effective atom-light potential
[4–7]. This potential depends on the local as well as the
integrated atomic density; see Eq. (9).

A gradient in the density, thus, leads to a gradient in the
potential and results in a force on the atoms. As we discuss
in more detail in Sec. IV, this force turns out to be net
attractive for both red- and blue-detuned light fields.
Figure 2 illustrates that for red-detuned light the 1D BEC

focuses the incoming laser beam as the refractive index
increases with the particle density [19]. The resulting
gradient in the light field pulls the atoms toward regions
of higher particle density, which leads to even stronger
focusing of the light field. For high atomic densities, this
self-focusing is counteracted by the repulsive s-wave
scattering of the atoms and atom loss (discussed in Sec. III).
For blue-detuned light, we have the opposite process

leading to a similar effect: Here, the refractive index drops
below one, and the cloud behaves like a divergent lens,
pushing the light field away from the atoms. But for blue-
detuned light, atoms are pulled toward regions of lower light
intensity, such that they again accumulate in regions of high
atomic density.

(a) (b) (c)

(d) (e) (f)

FIG. 2. Simulated interaction between a 1D BEC and red- or blue-detuned light. (a) Density distribution for N ¼ 6200 atoms after an
expansion time of 100 μs. For red-detuned light (Δ ¼ −392Γ), this corresponds to a peak refractive index of approximately 1.002. For
blue-detuned light (Δ ¼ þ100Γ), the refractive index is reduced to approximately 0.993. The black dotted ellipse indicates where the
atom density drops to 10% of its peak value. (b) The macroscopic electric field [solution to Eq. (8)] from the interaction between a red-
detuned plane laser wave (traveling from left to right, indicated by arrows) and the cloud of atoms (indicated by the dotted ellipse). We
see that atoms act like a focusing lens. (c) Resulting atom-light potential [cf. Eq. (9)]. The saturation is chosen as in Fig. 3 with
s ¼ 319 × 10−6. (d) Radial potential at y ¼ z ¼ 0 for red- and blue-detuned cases (red and blue solid line, respectively); the black, dash-
dotted curve shows the original radial trapping potential ℏω⊥x2=ð2a2⊥Þ for comparison; the radial atomic density is indicated by the
dotted green curve and measured by the right ordinate. The potentials are shifted such that Vð0Þ ¼ 0. Note that the collective atom-light
potentials are remarkably strong, comparable to the original magnetic trapping potential, but they have a very different shape. The LIDD
self-confining potential shows a depth equivalent to approximately 8 μK. (e) The same as (b), but for blue-detuned (Δ ¼ þ100Γ) light.
The atoms now act like a divergent lens. (f) The same as (c), atom-light potential for a saturation s ¼ 708 × 10−6 and Δ ¼ þ100Γ. In
both (c) and (f), the highest potential energy corresponds to light interacting with a single atom. The spatial variation of the potential
energy causes a compression for red as well as for blue detunings (force indicated by arrows).
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An essential difference between usual radiation forces
and the LIDD interaction is that the latter is an effective
particle-particle interaction, mediated by scattered light. It
does not trap atoms at a fixed position (for example, the
focus of a laser beam) but draws them toward regions of
maximum particle density. If the cloud is displaced, the
LIDD potential moves with it, as long as the atoms are
(homogeneously) illuminated.
The arrows in Figs. 2(c) and 2(f) indicate the LIDD force

as a negative gradient of the respective atom-light potential.
Here, due to the elongated geometry, the force acts mainly
in the radial direction. We also note that the forces are not
symmetric with respect to a reflection at the plane z ¼ 0
(i.e., a transformation z → −z), a feature of their nonlocal
behavior (see also discussion in the context of Fig. 5).

III. RESULTS

In our experimental data, the most prominent effect of
LIDD interactions manifests itself in a compression, i.e., a
reduction of the transverse width of the atom cloud after
time of flight. Figure 3(a) shows the ratio σ̄L=σ̄0 of the
average transverse width of the atom cloud with (σ̄L) and
without (σ̄0) laser interaction for various mean atomic
densities ρ, ranging from 260 to 3 atoms=μm3 [42]. We
find the strongest compression for both red- and blue-
detuned light pulses at densities of 50–150 atoms=μm3. For
shorter expansion times corresponding to higher densities,
the attractive LIDD dynamics are still strongly influenced
by the repulsive s-wave interaction between the atoms.
As explained in Sec. IV, the LIDD force depends on the

gradient of the atomic density and linearly on the saturation
parameter s ¼ ðI=IsatÞ=½1þ 4ðΔ=ΓÞ2�, with the saturation
intensity Isat ¼ 3.12 mW=cm2, the decay rate Γ ¼ 2π ×
6.067 MHz, and the detuning between the atomic resonance
and the laser frequency Δ ¼ ωL − ω0 [see Eq. (5)].
Note that for similar parameters we observe a stronger

compression for red- than for blue-detuned light fields;
cf. also Fig. 2(d). To explain this, it helps to imagine the
BEC as a stack of weak, thin lenses: In the red-detuned
case, each consecutive lens focuses the incoming field
more. This generates an increasingly strong intensity
gradient for larger values of z. For blue-detuned light,
the lenses disperse the beam, leading to a weaker intensity
gradient, especially at large z. This implies that a laser blue
detuned close to resonance (giving stronger dispersive
lenses) locally generates a weaker field gradient than
expected for larger detunings. This simplified model from
ray optics also helps to understand the asymmetry in Fig. 4
and the local compression shown in Fig. 5.
For mean atomic densities lower than 50 atoms=μm3, the

compression due to LIDD interactions is accompanied only
by approximately 3% of the atoms displaced due to
spontaneous emission recoil, which is visible as a halo
in the light sheet images [see Fig. 3(b) and Appendix C]. In
this regime, the experimental data are in good agreement

with the numerical simulations based on the theoretical
model discussed in Sec. IV for both red (Δ ¼ −392Γ) and
blue (Δ ¼ þ100Γ) detunings.
However, for dense atomic samples illuminated by

intense beams, we see two additional effects: First, we
observe onsets of superradiance through groups of atoms
that are spatially separated from the initial 1D BEC by
�2ℏk0 andþ4ℏk0, k0 being the wave number of the atomic

FIG. 3. (a) Relative average transverse width σ̄L=σ̄0 of the 1D
BEC after TOF with (σ̄L) and without (σ̄0) LIDD interaction at
different expansion times (atomic densities). The blue triangles
[red circles] depict results for a laser detuning of Δ ¼ þ100Γ
[Δ ¼ −392Γ] with a saturation parameter s ¼ 708ð20Þ × 10−6

[s ¼ 319ð11Þ × 10−6] and mean atom number N ¼ 6600ð130Þ
[N ¼ 7450ð60Þ]. The reduction of the relative mean transverse
width is compared to the theoretical prediction with (solid lines)
and without (dashed lines) considering the observed atomic loss,
respectively [see the text and dashed line in (b)]. The shaded areas
are theoretical predictions that account for a�10% variation of the
atom number and the saturation parameter. (b) Integrated fluores-
cence signal S̄L after LIDD interaction compared to the signal
without laser pulse interaction S̄0 [for the dataset shown in (a) with
Δ ¼ −392Γ, losses for Δ ¼ þ100Γ are similar]. The black
triangles show the integrated signal of the entire light sheet image,
the red circles the signal in the bulk BEC; see also Fig. 9. For
densities smaller than 50 atoms=μm3, only the density-indepen-
dent recoil due to spontaneous emission induced by the laser pulse
is observed. For larger densities, additional mechanisms like
superradiance and possibly light-assisted collisions cause atom
loss of up to 25% (red circles). Adding these losses in the
simulations greatly reduces the difference between theory and
data [compare dashed and solid lines in (a)]. Error bars depict the
standard error of the mean.
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transition; see also Fig. 9(d). Atoms scattered to −4ℏk0 lie
outside the light sheet imaging region.
Second, we find that up to 18% of the atoms are missing

from the light sheet images. This indicates that either the lost
atoms are not on resonance with the light sheet (e.g., due to
molecule formation) or they receive sufficient momentum to
miss the imaging region after the longTOF.This special atom
loss depends linearly on themean atomic density ρ [see black
triangles in Fig 3(b)], thus indicating a two-body collision
loss process. We attribute it to light-assisted collisions [43].
Raman scattering into other magnetic or hyperfine sublevels
of the 87Rb ground state can be ruled out, since these atoms
would still appear in the light sheet images.
The observed atom loss is not part of the theory model

discussed in Sec. IV. In the numerical simulations, we hence
include a phenomenological term−iηjψ j2 accounting for the

losses through a free parameter η adjusted to reproduce the
experimentally observed reduction of the atom number
[cf. the dashed line in Fig. 3(b)]. The losses can be related
to the two-body loss constant β [43,44] as SL=S0 ≃ 1=
ð1þ TβρÞ, where ρ is the mean atomic density at the start
of illumination (as in Fig. 3) andT ¼ 5 μs is the illumination
time. We find β ≃ 1.5 × 10−10 cm3 s−1, which is consistent
with the results of Ref. [43].
As can be seen in Fig. 3(a), the inclusion of the observed

atom losses in the simulations significantly reduces the gap
between experiment and simulations for mean densities
higher than 50 atoms=μm3. The remaining difference
might be resolved by refining the loss model, including
superradiance and incorporating higher-order correlation
functions in the theory (see discussion in Sec. IV).
We also observe asymmetric detuning-dependent effects

close to resonance. Figure 4 shows the measured com-
pression for a fixed laser beam intensity as a function of the

FIG. 5. Relative transverse width σLðzÞ=σ0ðzÞ as a function of
the (axial) z axis of the BEC (after TOF ¼ 44 ms) with σLðzÞ
and without σ0ðzÞ interaction with a 5-μs-long laser pulse
at a detuning of (a) Δ ¼ −392Γ, atom number N ¼ 7450ð60Þ,
and saturation s ¼ 319ð11Þ × 10−6 and (b) Δ ¼ þ100Γ,
N ¼ 6600ð130Þ, and s ¼ 708ð29Þ × 10−6. The laser pulse pro-
pagates from left to right. The circles (triangles) represent the
measurements with the light pulse triggered after 105 ð235Þ μs
expansion time. The error bars show the standard error of the
mean. The lines show the results of simulations including thermal
phase and density noise for the condensate temperature
T ¼ 135 nK; see Appendix B. The shaded areas depict the
standard error of the mean obtained from 100 runs of the
numerical simulation. An asymmetric compression of the trans-
verse width along the axial direction of the BEC is clearly
observable for different mean atomic densities ρ at the start of the
LIDD interaction. This behavior arises due to the nonlocality of
the LIDD interaction.

FIG. 4. (a) Relative average transverse width after illuminating
the BEC for 5 μs (with beam intensity I ¼ 11.54 mW=cm2 or
s ¼ 150 × 10−6 at Δ ¼ −100Γ) as a function of the detuning Δ
after 100 (¼̂ 54 atoms=μm3, turquoise circles) and 200 μs
(¼̂16 atoms=μm3, purple triangles) free expansion time. We
observe a reduction of the transverse width for red and blue
detunings, while the maximum compression is redshifted from
the bare atomic resonance at Δ ¼ 0. (b) Atomic signal after
illumination normalized to the initial signal for a mean atomic
density of 54 atoms=μm3. Close to resonance, we observe not
only a growing scattering halo around the 1D BEC (turquoise
circles), but also the onset of superradiance and additional atom
loss (reduction of the total signal, black triangles). We also
observe a redshift in the losses. These phenomena are not
included in the numerical simulations [solid lines in (a)], which,
therefore, only qualitatively match the data. The error bars depict
the standard error of the mean. Because of the strong loss close to
resonance, the data are postselected based on the remaining atom
number in the 1D BEC (cf. Fig. 9). The dashed line in (b) shows
the signal remaining in the 1D BEC after illumination of a dilute
cloud (500 μs expansion time). For dilute clouds, the total signal
remains constant.
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detuning Δ. While for red detunings a clear compression is
observable even for large jΔj, we see LIDD effects for blue
detuning mainly close to resonance. This asymmetry is
much stronger than what would be expected from the
Clausius-Mossotti relation Eq. (7).
In Fig. 5, we show the radial compression as a function of

the axial (z) position. For high atomic densities and red
detunings, the relative compression is strongest at z > 0; i.e.,
the maximum compression is not at the peak 1D density (at
z ¼ 0) of the quasicondensate but shifted in the direction
of the propagation axis of the laser beam. For blue detunings,
the maximum is shifted in the opposite direction, i.e., toward
the beam source [cf. force arrows in Figs. 2(c) and 2(f)]. This
effect is less prominent for low atom density.
The observed features are in good agreement with

numerical simulations including the finite temperature
of the 1D BEC (see Appendix B). As discussed in
Sec. II A, the spatial dependence of the LIDD force is
determined by the (de)focusing of the light field by the
entire atomic cloud. The resulting inhomogeneous com-
pression can, thus, be interpreted as a feature of the
nonlocality of the LIDD interaction.

IV. THEORY

In a simplified model, one can describe the BEC as a
cloud of two-level atoms interacting with a classical
electromagnetic field. Adiabatically eliminating the excited
state, one obtains an effective Gross-Pitaevskii equation for
the ground-state atoms [45]:

iℏ∂tψðrÞ ¼
�
−
ℏ2∇2

2m
þ VTðrÞ þUjψðrÞj2

�
ψðrÞ

þ Re

� jd · EþðrÞj2
ℏðΔþ iΓ=2Þ

�
ψðrÞ: ð1Þ

Here, VT is the trapping potential, which in our case is
turned off before the interaction with the light field; U ¼
4πℏ2as=m with the s-wave scattering length as gives the
mean-field interaction. The term in the second row in
Eq. (1) describes the action of the light field on the atoms
and is later called atom-light potential Valðr;ψÞ.
The level of approximation of the electric field EðrÞ ¼

EþðrÞe−iωLt þ c:c: determines which effects are included
in the model: For example, assuming only a pure laser field
EþðrÞ → ELeikL·r gives an ensemble where each atom
independently interacts with the laser.
Effective interactions between the atoms arise when we

instead use the macroscopic electric field Eþ → Eþ
m, ful-

filling the inhomogeneous wave equation

∇ × ð∇ ×E�
mÞ þ

1

c2
∂
2
tE�

m ¼ −
1

ε0c2
∂
2
tP�; ð2Þ

with the polarization density PþðrÞ ¼ ε0χðrÞEþ
mðrÞ.

Unfortunately, most geometries do not allow for a simple
analytic solution of Eq. (2), but with some simplifications it
can be used to describe, for example, superradiance [46] in
perpendicularly pumped BECs [45]. Using the Green’s
tensor [4,48]

GðrÞ ¼ 1

4πε0

eikr

r3

�
1ðk2r2 þ ikr − 1Þ − r ⊗ r

r2
ðk2r2 þ 3ikr − 3Þ

�
−

1

3ε0
δðrÞ1; ð3Þ

one can formally solve Eq. (2) for an incoming plane wave field ELeikL·r to

Eþ
mðrÞ ¼ ELeikL·r þ

Z
d3r0Gðr − r0ÞPþðr0Þ: ð4Þ

Using a single-scattering (first Born) approximation, we write Pþ ≈ −dðd ·ELÞeikL·rjψ j2=½ℏðΔþ iΓ=2Þ� in Eq. (4) and use
the result in Eq. (1). Neglecting products of Green’s tensors, one then arrives at an effective atom-light potential [3,20–22]:

Valðr;ψÞ ≈ Re

� jd ·ELj2
ℏðΔþ iΓ=2Þ

��
1 −

3Γ
2
Re

�Z
d3r0

Gðr − r0Þ
ðΔþ iΓ=2Þ jψðr

0Þj2
��

; ð5Þ

with a dimensionless interaction kernel G defined via

d ·

��
GðrÞ þ δðrÞ

3ε0

�
· d

�
e−ikL·r ¼ k30jdj2

4πε0
GðrÞ: ð6Þ

Here, k0 ¼ ω0=c and Γ ¼ k30jdj2=ð3πε0ℏÞ is the single-atom decay rate.The additional δðrÞ=ð3ε0Þ here cancels the original
δ term in Eq. (3). This way, we avoid a contribution from the unphysical case where two atoms are located at the same
position. The term δðrÞ=ð3ε0Þ is added to cancel the self-interaction from Eq. (3) [49].
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The form given in Eq. (5) clearly separates the inter-
action between individual atoms and the incoming laser
field from the effective LIDD potential. It is also visible that
LIDD couplings are generally proportional toΔ−2 and scale
linearly with the light intensity or atom number. But, as we
discuss in Appendix A, such a truncated model is valid only
if the effects of multiple scattering between the atoms and
the light field can be neglected; see Fig. 7.
To include effects of multiple scattering, which is

significant at the atom densities used in our experiment,
we use a different model in the present work. Since
atoms actually interact with the local field, we set
Eþ → Eþ

loc ¼ Eþ
m − Pþ=ð3ε0Þ in Eq. (1). While Eþ

m is still
the macroscopic field solving Eq. (2), the polarization
in Eqs. (2) or (4) is then proportional to the local field:
Pþ ¼ −dðd · Eþ

locÞjψ j2=½ℏðΔþ iΓ=2Þ� [50].
In the current experiment, the incoming laser field is σ−

polarized to drive the transition between the F ¼ 1,
mF ¼ −1 and F0 ¼ 2, m0

F ¼ −2 states. Because of the
elongated geometry of the cloud, light scattering in the
forward and backward direction dominates the interaction.
Since this scattering is polarization conserving, we assume
that the macroscopic field is also σ− polarized and parallel
to the dipole vector d ¼ jdjed. This allows us to neglect
scattering to other internal states and leads directly to the
scalar atomic polarizability, α ¼ −jdj2=ℏðΔþ iΓ=2Þ,
and the susceptibility fulfilling the Clausius-Mossotti or,
equivalently, Lorentz-Lorenz relation

χðrÞ ¼ jψðrÞj2α=ε0
1 − jψðrÞj2α=ð3ε0Þ

: ð7Þ

Approximating the incoming laser field as a plane wave of
amplitude EL, we can define the macroscopic field as
EmðrÞ ≔ ELΘðrÞed. The mode function ΘðrÞ is then
obtained by solving the Helmholtz equation

f∇2 þ k2L½1þ χðrÞ�gΘðrÞ ¼ 0: ð8Þ

Introducing the Rabi frequency for the incoming field,
ℏΩL=2 ¼ −jdjEL, and the saturation for a single atom,
sðΔÞ ¼ ðjΩLj2=2Þ=ðΔ2 þ Γ2=4Þ, we can rewrite the atom-
light potential ValðrÞ ¼ Re½α�jElocðrÞj2 as

ValðrÞ ¼ −
ℏsðΔÞ
2

Δ
j1þ αjψðrÞj2=ð3ε0Þj2

jΘðrÞj2: ð9Þ

In this form, there is no obvious distinction between atoms
coupling to the free laser field and the effective light-
induced dipole-dipole interaction. The atoms collectively
reshape the electromagnetic field, and each atom then
interacts with the resulting local field. We, thus, see that
the particle density enters the potential both through the
prefactor but also indirectly (nonlocally) via the solution of
Eq. (8) with the susceptibility given in Eq. (7).

Numerical simulations of Eq. (8) and the resulting atom-
light potential for typical experimental parameters are
shown in Fig. 2. The potential energy ValðrÞ has its
minimum approximately at the center of the cloud and a
steep radial gradient. Outside the cloud, the potential
reaches the constant value for a single atom in a plane
wave (jΘj → 1, jψ j2 → 0).
The short discussion here is mostly a qualitative explan-

ation. Of course, the effective atom-light potentials given in
Eqs. (5) and (9) can be derived rigorously [3–7,51–53].
Such a derivation shows that higher-order density correla-
tions have to be neglected in order to obtain the classical
susceptibility from Eq. (7) [4,6,10]. Numerical simulations
based on classical dipoles also show that the Lorentz-
Lorenz (Clausius-Mossotti) model holds for thermal sam-
ples where the effect of correlation functions is smeared
out [14,15].
For the low densities of the present experiment, the

possible corrections to the Lorentz-Lorenz relation are
expected to be small [10]. Indeed, jψðrÞj2α=ε0 ∼ 10−2

for typical densities and detunings. Additionally, in a
quasicondensate, the long-range order breaks down due
to thermal density noise [54,55] (see also Appendix B).
However, higher-order correlations might point the way to
resolve the discrepancy between experiment and simulation
observed for higher densities in Fig. 3.

A. Numerical modeling

Our numerical procedure starts with calculating the
ground state of the 1D BEC for a given atom number in
the trap described in Sec. II using a split-step method with
imaginary time propagation. This state then evolves with-
out a trap in three dimensions for up to 400 μs [cf. expan-
sion time in Fig. 1(b)]. During this time, the average width
of the 1D BEC expands as σðtÞ ¼ σð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðω⊥tÞ2

p
[56].

Subsequently, light of a given saturation s and detuningΔ
is switched on for 5 μs. Calculating the atom-light potential
(9) then requires solving the Helmholtz equation (8) for an
inhomogeneous refractive index

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χðrÞp

. This is done
using theWavesimpackage forMATLABbyOsnabrugge et al.
[57–59], which essentially gives an iterative solution to the
integral equation for the electric field (4).
During the interaction time, we thus use a split-step

method to simulate the three-dimensional evolution of
Eq. (1) with the atom-light potential given in Eq. (9).
The dimensionless function ΘðrÞ is obtained using the
Wavesim package and is repeatedly updated during the
atom-light interaction to account for changes in the atomic
density.
Once the light is switched off, the wave function evolves

without external potentials for another 420 μs. At this
stage, the cloud is dilute enough to ignore s-wave scatter-
ing, and any further expansion is purely ballistic. The
transverse width of the Fourier transform of this expanded
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state is, thus, used as a theory model for the experimentally
measured width after TOF (cf. Fig. 6).
To calculate the z-dependent compression shown in Fig. 5,

we simulate the full expansion up to 44 ms of TOF. Because
of the long expansion time, we further include thermal phase
and density noise of the condensate during the ballistic
expansion; details are given in Appendix B.
Up to this point, the entire theoretical model is deter-

mined purely by the experimental settings and has no
adjustable parameters. The model is sufficient to describe
the collective dispersive coupling between the atoms and
the light field, provided the densities are low enough to
permit the use of the effective susceptibility in Eq. (7) [10].
Superradiant emission into �2ℏk momentum states could
be included by adding sufficient seed noise to the initial
ground state [12].
As mentioned in Sec. III, the electrodynamical model in

Sec. IV has to be supplemented to include the experimentally

observed atom losses, which we attribute mainly to light-
assisted collisions. Such losses decrease the pressure due to
s-wave scattering and, thus, reduce the expansion rate of the
cloud.Therefore, this leads to a larger relative compression as
compared to the expansion without losses.
We model these losses by adding a density-dependent

phenomenological loss term V loss ¼ −iηjψ j2 to Eq. (1), the
only free parameter of our model. This allows us to estimate
the effect of particle loss on the radial compression shown
in Fig. 3.
At high densities, the repulsive s-wave interaction

between the atoms counteracts the effects of the LIDD
interactions. Therefore, atom losses are the main cause for
the observed compression at short expansion times but play
only a negligible role after long expansion times. At low
densities, the observed reduction of the transverse width is
mainly an effect of LIDD interactions.

V. CONCLUSION

In summary, we demonstrated that a freely expanding 1D
BEC illuminated homogeneously along its axial direction
experiences a strong, compressing radial force. Our
numerical simulations show that a conceptually simple
theoretical model using a mean-field approach, which does,
however, require significant computational resources, suc-
cessfully describes the experimental results for densities
≲50 atoms=μm3. At higher densities, we observe strong
atom loss, which we attribute to light-assisted collisions
[43]. The discrepancy between simulation and experiment
at higher density is mainly caused by this loss.
The observed spatial dependence of the compression can

be explained as a result of focusing (or defocusing,
depending on the sign of the detuning) of the laser light
in the atomic cloud, which is a manifestation of the
nonlocality of the LIDD interaction in our experimental
setup [19]. Illuminating the medium by many laser beams
shining from different directions [22,27] or by light trans-
mitted through a waveguide [26,60,61] would show further
nontrivial aspects of the LIDD interaction’s nonlocality, for
example, their ability to establish long-range correlations
between ultracold atoms.
Spatially varying level shifts associated with collective

atom-light interactions may not only provide an additional
noise source for high-precision atomic quantum sensors,
but also enable interesting options to be used as a tool.
LIDD interactions can give rise to an attractive 1=r
interatomic potential, which allows one to simulate and
study “gravitational-like” interaction between highly delo-
calized (ultracold) quantum particles [22]. This interaction
is, in principle, tunable over several orders of magnitude
and could enable simulations of astrophysical scenarios
[62] performed in quantum-controlled setups.
Since the LIDD force is density dependent, expanding

atomic clouds will be directed toward regions of higher
density, a property which could be used for delta kick

(a)

(b)

FIG. 6. Simulated expansion of a cloud of N ¼ 6600 atoms
with (solid lines) and without (dashed lines) the interaction with a
spatially homogeneous laser pulse. The pulse with a saturation
s ¼ 708 × 10−6 and a detuning Δ ¼ þ100Γ starts after an
expansion time texp ¼ 105 μs and lasts for 5 μs. In the trap, at
t ¼ 0, the cloud has a Gaussian width a⊥ ≈ 200 nm. (a) Evolution
of the average radial density ρ⊥ðt; xÞ ¼

R
dy

R
dzjψðt; x; y; zÞj2

(in 1000 atoms=μm; see the color scale on the right); the lines
indicate the width σ of a fitted Gaussian ∼ exp½−x2=ð2σ2Þ�.
(b) Transverse width of the Fourier transformed wave functions,
ρ̃⊥ðt; qxÞ ¼

R
dqy

R
dqzjψ̃ðt; qx; qy; qzÞj2 ∼ exp½−q2x=ð2σ̃2Þ�. The

dashed vertical lines indicate the interaction time with the light
pulse. We see that the width of the cloud does not change during
the pulse, but the width of its Fourier transform (its momentum
distribution) does. During the interaction, the wave function
accumulates a position-dependent phase, which explains why the
widths in real and Fourier space are reduced despite the otherwise
free expansion.
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collimation [63,64]. It is interesting to note that the LIDD
potential shows similar confinement strengths as used for
trapping ultracold atomic gasses [33,40].
In addition, the LIDD interaction is an effective, com-

pressing atom-atom potential with a shape self-consistently
determined by the atom cloud which may open comple-
mentary techniques for coherent collective manipulation of
atomic ensembles, e.g., by a pulsed optical grating [65].
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APPENDIX A: ESTIMATES BASED ON
APPROXIMATE DIPOLE-DIPOLE POTENTIAL

In Eq. (5), we give a simplified potential for the atom-
light interaction, which is based on a single-scattering
(first Born) approximation for light propagation.
Expressing the potential this way has the benefit that it
clearly separates the coupling between the atoms and the
incoming laser field from the effective dipole-dipole
interaction, which is second order in the detuning. The
nonlocal character of LIDD interactions is visible from the
convolution integral, which shows that the interaction at
point r depends on the density of the entire sample. This
potential is used to predict compression and density
modulations in elongated BECs and effective 1=r poten-
tials in specific geometries [20–22].
However, it is clear that the perturbative approach for

light propagation can be valid only at low particle densities

where multiple scattering events can be neglected. At
higher densities, one has to switch to numerical simulations
either in particle models [15,66] or solving the wave
equation, as we do.
In Fig. 7, we show simulations based on the single-

scattering potential [Eq. (5)] (dashed lines) for the data
presented also in Fig. 3. As expected, this approximation
performs less favorable as compared to simulations using
the more evolved approach given in Eq. (9) (solid lines).
The simulations shown in Fig. 7 do not account for particle
losses and, therefore, are at odds with the data for short
expansion times (higher densities).

APPENDIX B: INCLUSION OF
THERMAL EXPANSION

The theory presented in Sec. IVand the simulations used
for Figs. 2, 3, 4, and 6 assume a perfect condensate at
temperature T ¼ 0. However, in the present experiment
with a large atom number in a 1D quasicondensate, the
experimentally estimated temperature is T ¼ 135ð10Þ nK
(see Fig. 8).
The nonzero temperature of a 1D BEC manifests itself in

a phase and density noise along the axial direction, δϕðzÞ
and δρðzÞ. For short expansion times (approximately less
than 1 ms), this noise has little effect on the evolution of the
1D BEC, especially on the radial dynamics in which we are
mostly interested.
But the phase and density noise associated with the finite

temperature become relevant for the long-time expansion
along the longitudinal direction. This is important when we

FIG. 7. Simulations of the relative average transverse width
σ̄L=σ̄0 of a BEC illuminated after different expansion times. The
solid lines show the compression calculated with the full atom-
light potential from Eq. (9) (used also for Fig. 3), while the
dashed lines use the lowest-order approximation given in Eq. (5).
The blue (red) lines are for detuning Δ ¼ þ100Γ (Δ ¼ −392Γ),
atom number N ¼ 6600 (7450), and saturation s ¼ 708 × 10−6

ð319 × 10−6Þ and do not include the experimentally observed
losses. For expansion times > 100 μs, we see that the full
model is in good agreement with the experimental data
(indicated by circles and squares), while the approximate poten-
tial [Eq. (5)] gives a misleading prediction, especially for the
blue-detuned case.
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want to compare simulation and experiment for the
z-dependent compression σLðzÞ=σ0ðzÞ shown in Fig. 5.
The experimental data are taken after a time of flight
tTOF ¼ 44 ms.
To calculate the long-time expansion at T > 0 shown in

Fig. 5,we therefore apply the followingnumerical procedure.
(1) Calculate the in-trap phase and amplitude noise

δϕðzÞ and δρðzÞ for the given temperature and
trap parameters. For an in-trap 1D density
ρ1Dð0; zÞ ¼ ∬ dxdyjψð0; x; y; zÞj2, they are given
by the Ornstein-Uhlenbeck processes [68–70]:

d
dz

δϕðzÞ ¼ −δϕðzÞ=Λϕ þ gϕðzÞ; ðB1Þ

d
dz

δρðzÞ ¼ −δρðzÞ=Λρ þ gρðzÞ ðB2Þ

with gϕ and gρ being Gaussian random forces with
zero mean while hgϕðzÞgϕðz0Þi ¼ κTðzÞδðz − z0Þ
and hgρðzÞgρðz0Þi ¼ 4κTðzÞρ21Dð0; zÞδðz − z0Þ with
κTðzÞ ¼ mkBT=½ℏ2ρ1Dð0; zÞ�. The relaxation lengths
are ΛρðzÞ ¼ ðℏ=2Þ½2mℏω⊥asρ1Dð0; zÞ�−1=2 and
Λϕ → ∞ for our setup.

(2) Simulate the expansion after trap release, the inter-
action with the light field, and the subsequent
expansion for another approximately 420 μs for

T ¼ 0 as described in Sec. IVA. After this second
expansion time, the effects of s-wave scattering can
be neglected, and all further expansion is ballistic.

(3) Step 2 returns a wave function ψðt1; x; y; zÞ on a 3D
grid with an approximately Gaussian transverse
density of width σðt1; zÞ. During the remaining time
of flight, the radial width expands from σðt1; zÞ ≈
2 μm to σðtTOF; zÞ ≈ 180 μm. To reduce the memory
load, we thus switch to a radially symmetric wave
function with the radial grid chosen such that both
ψðt1; r; zÞ and ψðtTOF; r; zÞ are well resolved.

(4) Add the phase and density noise calculated in
step 1 via

ψ̆ðt1; r; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jψðt1; r; zÞj2 þ f⊥ðr; zÞδρðzÞ

q

× exp ½iϕðt1; r; zÞ þ iδϕðzÞ�; ðB3Þ
with ϕðt1; r; zÞ ¼ arg½ψðt1; r; zÞ� and a radial distri-
bution f⊥ðr; zÞ ≃ expf−r2=½2σ2ðt1; zÞ�g.

(5) The ballistic expansion of the wave function is
performed in a single step via

ψ̆ðtTOF; r; zÞ ¼ FH−1
h
e−iℏðq2zþq2rÞðtTOF−t1Þ=ð2mÞ

× FH½ψ̆ðt1; r; zÞ�
i
; ðB4Þ

where FH½ψ � describes a Fourier transform in the
z direction together with a Hankel transform [71]
in the radial direction and qz and qr are the
corresponding reciprocal grids.

(6) The local widths after time of flight, σðtTOF; zÞ, are
then obtained by fitting a radial Gaussian at each
position z.

(7) Steps 4–6 are typically repeated 100 times with
different seed noise δρ and δϕ. The widths shown in
Fig. 5 are an average over these repetitions and
additionally smoothed to account for the fact that
the light sheet measurement is unable to resolve the
density fluctuations seen in the simulations. The
shaded areas in Fig. 5 represent the standard
deviation from the mean of these 100 repetitions.

A comparison between the simulated longitudinal den-
sity ρ1DðtTOF; zÞ after TOF and the measured data is given
inFig. 8. There,we see that the simulation (blue curve) agrees
well with the fitted profile for a condensate (red curve), the
deviation arising from the thermal fraction missing in the
simulation. The simulated density at the center appears to
be too high; this could explain the discrepancy between
simulation and measurement in the same region in Fig. 5.
Arguably, it would be more rigorous to include the phase

and density noise along with a thermal fraction right from
the beginning of the simulation (i.e., at trap release). In the
LIDD simulation, this thermal noise would give rise to
superradiance for certain parameters, mainly for dense
atomic clouds (see Sec. III in the main text). But, since
such a rigorous simulation would add substantial numerical

FIG. 8. Measured 1D density after 44 ms TOF for N ¼
7450ð60Þ atoms (black dots, average over ten repeats) compared
to the simulated 1D density including phase and amplitude
noise for N ¼ 7450 atoms and T ¼ 135 nK after 44 ms TOF,
averaged over 100 repeats (blue line; see the text). The red line
shows a bimodal fit to the data yielding a temperature of
T ¼ 135ð10Þ nK. The density of the condensed fraction is
modeled with a Yang-Yang profile, the thermal fraction contain-
ing approximately 10% of the atoms by a Bose function (dashed
purple line) [67]. The gray shaded area depicts the plot range in
Fig. 5 in the main text.
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cost with little additional insight for the present experiment,
this endeavor is postponed for future work.
Another reason not to include the thermal noise from the

very beginning is our intention to separate the effects of
superradiance and LIDD interactions in order to show that
the latter causes the atomic cloud contraction regardless
of the change of the momentum distribution in the
longitudinal direction.

APPENDIX C: MEASUREMENT OF THE
SATURATION PARAMETER s

To measure the saturation parameter s of the laser pulse,
the magnetic trap is switched off and a pulse of varying
duration (0–200 μs) is applied after 0.5 ms expansion

time. By this time, the cloud radius has expanded by a
factor of ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ω2⊥t2TOFÞ
p

≈ 9.4, and the density is low
enough such that the additional losses which we attribute
to light-assisted collisions are found to be negligible in the
experiment. With this setting, the total signal in the light
sheet remains constant for varying pulse durations, while
the signal from atoms remaining in the BEC (see Fig. 9)
decays as SðtÞ ¼ Sð0Þ exp ð−RtÞ with single-photon scat-
tering rate R ¼ ðΓ=2Þðs=sþ 1Þ ≈ ðΓs=2Þ for small s. The
saturation parameter s of the laser pulse is obtained by an
exponential fit to the signal in the bulk BEC for varying
pulse duration after 500 μs expansion time. The calibra-
tion data are taken right before or after the corresponding
datasets (shown in the main text) with identical detuning
and intensity.

FIG. 9. Region of interests (ROI) for scattering rate measurement. Single-shot image of a 1D BEC after 44 ms time of flight without (a)
and with (b) illumination with a 40-μs-long laser pulse 500 μs after trap release. The data are recorded with mean atom number
N ¼ 7450ð60Þ, s ¼ 319ð11Þ × 10−6, and Δ ¼ −392Γ. The orange lines indicate the ROI for the evaluation of the signal in the atom
cloud (cf. Fig. 3). The laser beam is aligned parallel to the axial direction of the initial 1D BEC and indicated by the yellow arrow. (c),(d)
Integrated longitudinal profile without (c) and with (d) illumination (logarithmic scale), each averaged over five repeats. Apart from the
bulk BEC at z ¼ 0, two additional side peaks at Δz ∼�500 μm are visible. This is the signal from atoms that have gained a momentum
ℏΔk ¼ Δzðm=tTOFÞ ≈�2h=λ ¼ �2ℏk0 along z while interacting with the laser beam (λ ≈ 780 nm). The peaks at Δz ≈�500 μm,
corresponding to Δk ≈�2k0, are due to superradiant emission, mostly in the forward direction. For 0 ≤ k ≤ 2k0, the recoil of the atoms
due to absorption and spontaneous emission is clearly visible.
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