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The simplest topologically ordered phase in 2þ 1D is the deconfined phase ofZ2 gauge theory (realized
in the toric code, for example). This phase permits a duality that exchanges electric and magnetic
excitations (“e” and “m” particles). The phase transition where one of these particles condenses, while the
other remains gapped, has 3D Ising exponents. But the transition out of the deconfined phase when self-
duality symmetry is preserved is more mysterious. It has so far been unclear whether this transition is
continuous, but if continuous, it may be the simplest critical point for which a useful continuum Lagrangian
is still lacking. These questions are relevant to soft matter, too, since the gauge theory also describes
classical membranes in 3D. Here, we study the self-dual transition with Monte Carlo simulations of the Z2

gauge-Higgs model on cubic lattices of linear size L ≤ 96. Our results indicate a continuous transition, for
example via a striking parameter-free scaling collapse. We use duality symmetry to distinguish the leading
duality-odd and duality-even scaling operators A and S. We explain why standard techniques for locating
the critical point are ineffective, and we develop an alternative using “renormalization group trajectories” of
cumulants. We check that two- and three-point functions are scale invariant, with scaling dimensions xA
and xS (autocorrelations in the Monte Carlo dynamics also yield a dynamical exponent z). Separately, we
propose a general picture for emergent 1-form symmetries, in terms of “patching” of membranes or world
surfaces. We relate this to the percolation of anyon worldlines in spacetime. The latter yields a fourth
exponent for the self-dual transition. We propose variations of the model for further investigation.
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I. INTRODUCTION

Continuum field theory provides a language for a huge
range of classical and quantum phase transitions [1,2],
including many cases for which a simple Landau-Ginsburg
formulation is insufficient [3–10]. For example, a wide
range of topological phase transitions, lacking any local
order parameter [3], may be brought under some measure
of analytical control using the language of continuum
gauge theory, together with various kinds of perturbative
expansion (ϵ expansions, large N expansions, etc.).
However, despite the wild success of the field theory
approach to critical phenomena, there exist phase transi-
tions in simple and natural models that still remain out of
reach of field theory tools. This paper characterizes what
we suggest is the paradigmatic example of these mysterious
transitions, which is the “self-dual” phase transition

between confined and deconfined phases of Z2 gauge
theory in three dimensions [11–14].
The Z2-gauge-Higgs model [3,11,15] has a stable

deconfined phase, as well as a trivial phase, in three
dimensions. In the context of quantum systems in
2þ 1D (the model also has a 3D classical interpretation
that we discuss below), the deconfined phase is the simplest
Z2 spin liquid [16–21]: the phase of matter realized, for
example, by the toric code [22]. The anyon excitations of
this phase include quasiparticles denoted e and m, with
nontrivial mutual statistics, which correspond to the charge
and flux in the gauge theory.
The simplest lattice field theory formulation of the Z2-

gauge-Higgs model has a two-dimensional parameter space
[3,11–13,15,23]. In the quantum language, these two
couplings allow us to separately control the masses of
both e and m excitations. In the language of the lattice
gauge theory, one of the couplings controls the “stiffness”
associated with fluctuations of the matter field, and the
other, the stiffness of the gauge field: see the schematic
in Fig. 1.
While there are only two stable phases in Fig. 1,

there are various possibilities for the transition between
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them [6,11–14]. The Higgs and confinement transitions
correspond to condensation of the e particle and of the m
particle, respectively. These two lines of transitions are, in
fact, completely equivalent, as they are mapped into each
other by the crucial duality transformation, which
exchanges the two kinds of particles. They are subtle
phase transitions with no local order parameter [3].
Nevertheless, they are amenable to field theory tools.
For example, gauge fluctuations are, in fact, irrelevant at
the Higgs transition [11]. Its universal scaling is therefore
the same as in the limit of infinite gauge stiffness, where the
partition function is simply related to that of the standard
Ising model (with a sum over boundary conditions): In a
sense, we can define a “fictitious” Ising order parameter. In
the language of anyons, the reason that this transition
(where e condenses) is relatively conventional is becausem
remains massive, which ensures that nontrivial braiding
processes are not important at low energies.
By contrast, the nature of the transition out of the

deconfined phase on the self-dual line, where there is a
symmetry between e and m, has not been understood.
Previous Monte Carlo [13] and series expansion [14] studies
gave some evidence for a multicritical point here, but the
order of the transition, and the structure of the phase diagram
close to this “corner” of the deconfined phase, have not been
definitively resolved [13,24]. The argument above, which
relates the Higgs transition to a simple Landau theory, no
longer applies, so we really have to confront the issue of
coarse-graining a discrete gauge field, whose low-lying
excitations have nontrivial mutual statistics.
The basic challenge can also be understood in geomet-

rical terms. The gauge-Higgs model describes various
phases of fluctuating membranes in three spatial

dimensions [6]. This system is fascinating in its own right,
relevant to experiments on amphiphilic membranes, where
the deconfined phase is known as the “symmetric sponge”
phase [25–31]. We argue below that, if the “holes” in these
membranes are “small,” and disappear under coarse-grain-
ing, the membranes are effectively closed surfaces.
Mapping them to Ising domain walls is then one way to
think about the fictitious Ising order parameter described
above. But, as the self-dual point is approached, the holes
become large (we demonstrate this explicitly), so this way
of thinking breaks down.
In this paper, we determine many of the properties of the

self-dual transition using extensive Monte Carlo simula-
tions and arguments based on the renormalization group
(RG) and symmetry. Our numerical results include the first
demonstration of scale invariance at this transition, via
scaling collapse of numerous observables. Our results for
exponents also raise intriguing theoretical questions about
how to understand this transition.
First, we give strong evidence that the transition is

governed by a scale-invariant fixed point, for example,
via a striking scaling collapse that does not require any
fitting parameters. We classify the leading local operators
SðrÞ and AðrÞ as even and odd under duality symmetry,
respectively, and estimate their scaling dimensions xS and
xA using scaling collapses and two-point functions. We
check that three-point functions are compatible with
conformal invariance.
We also address some fundamental aspects of the anyon

condensation transitions away from the self-dual line. As
noted above, a key feature of the Higgs and confinement
transitions is the possibility of using a Landau theory for a
“fictitious” Ising order parameter. (These are sometimes
referred to as “Ising*” transitions [32].) The emergence of
this order parameter may be related to the question of where
in the phase diagram certain “1-form” symmetries [33–36]
emerge under coarse-graining.
We propose an explicit construction of the fictitious Ising

field (and of the string operators of the 1-form symmetry).
This construction is based on “repairing” or “patching” the
membranes that appear in a geometrical representation of
the partition function. We relate the feasibility of this
patching operation to the question of whether e and m
worldlines “percolate” in spacetime, and we obtain the
phase diagram for this percolation [6] numerically. This
approach shows that the fictitious Ising fields can be
constructed on the Ising* transition lines, but not at the
self-dual critical point. However, we find that scale invari-
ance at the self-dual transition can be diagnosed via the
percolation of worldlines, and we compute their universal
fractal dimension df. (The result hints at a possible relation
between exponents.)
We discuss the role of self-duality symmetry, arguing

that it becomes an emergent internal symmetry in the IR.
While our numerical analysis here is for the standard
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FIG. 1. Topology of the phase diagram of Z2 gauge theory with
matter. The shaded region is the trivial phase. The double line
represents a first-order line, ending at a standard critical endpoint.
The Higgs and confinement transitions have Ising exponents. The
question mark shows the region studied in this paper. We give
evidence for a scale-invariant, self-dual critical point.
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gauge-Higgs model, we also propose a modified lattice
model, with a simpler action of duality, which would be
interesting to study further.
The dynamics of the Monte Carlo algorithm (in

Monte Carlo time) correspond to a physically sensible
universality class for the stochastic dynamics of mem-
branes in 3D. We find that the dynamical exponent for this
universality class is z ≃ 2.48 (not to be confused with the
dynamical exponent zQM ¼ 1 of the zero-temperature
quantum dynamics in the 2þ 1D interpretation), and we
show that two-time correlation functions are another way to
obtain xA;S. The fact that the dynamical exponent is large is
one of the challenges in simulating this model: Unlike in
many simple ordering transitions [37], no efficient nonlocal
Monte Carlo update, which reduces z to a small value, is
known for this problem.
Various features of the fixed point make standard

approaches to determining the precise location of the phase
transition point, and the order of the transition, ineffective.
These features include the structure of Binder cumulants
close to the transition, the lack of any local operator with a
small scaling dimension, and the fact that xS is very close to
1.5. (This is the threshold separating the divergence and
convergence of the heat capacity, and the proximity to this
threshold leads to large scaling corrections in this quantity.)
These features were a key challenge for our initial attempts
at data analysis. We describe how they may be overcome,
for example by focusing on appropriate dimensionless
observables that allow a parameter-free scaling collapse.
Our numerical estimates for the exponents xS and xA turn

out to be close to certain exponents in the XY universality
class. This is remarkable in view of the mutual statistics of
the condensing quasiparticles [13,14,38–40], which mean
that we do not expect a relationship with the XY fixed point
(Sec. X D). The fixed point studied here is certainly distinct
from the XY fixed point, as implied, for example, by the
very different universal properties of the adjacent phases.
On the other hand, it is not hard to find examples of pairs of
3D fixed points with exponents that are fairly close but
distinct. This issue is discussed further in Sec. X. There are
also many variations of the present model that remain to be
studied (Secs. X B, X C, and XI). Figure 2 is a schematic of
some of the topics discussed.
Textbook discussions of critical phenomena sometimes

give the impression that studying universality in phase
transitions is synonymous with studying Lagrangian quan-
tum field theory. Therefore, it is important to remember that
there are critical points for which we so far lack any useful
continuum Lagrangian (Sec. XI). Given that the self-dual
transition is second order, as previously suspected [13,14]
and as the numerical evidence presented here shows, then it
is perhaps the simplest example of one of these untamed
beasts.
However, a rich variety of other topological transitions,

with distinct (nontrivially braiding) anyons simultaneously

becoming massless, are possible, with other discrete gauge
theories providing further simple examples. Models with
U(1) symmetry are also interesting [38,41–43], though they
are more closely connected to continuum U(1) gauge theory
(perhaps with Chern-Simons terms). A systematic program
to understand all of these transitions would be valuable. Past
results on the formulation of field theories for deconfined
phase transitions [10,44–55], wheremutually nonlocal fields
and Berry phases connecting different gapless degrees of
freedom also play a key role, may provide some tools.
The Z2 deconfined phase is adjacent to another family of

critical “quantum loop models” [56–60] with no known
Lagrangian description [60]. Interestingly, while these
critical points may again be viewed in terms of membranes
in spacetime, the obstacle to a continuum description is
different there: a topological constraint on the dynamics,
rather than the existence of massless particles with non-
trivial braiding.
These different kinds of examples suggest that statistical

ensembles of membranes [61] in three and four dimensions
(elementary “string field theories” [62–64]) still hold many
lessons for critical phenomena.

II. ISING GAUGE MODEL

The gauge-Higgs model has many guises. We begin by
reviewing several equivalent formulations of the partition

FIG. 2. Some of the topics discussed.
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function we study and the basic features of the phase
diagram. Readers should skip topics with which they are
familiar.

A. As a lattice gauge theory

This theory is the standard formulation of Z2 gauge
theory, with matter, on a cubic lattice [3,15]. (Z2 gauge
theory is also referred to as “Ising” gauge theory.) The
degrees of freedom are classical Ising matter fields τi ¼ �1
on the sites i of the lattice and gauge fields σij ¼ �1 on the
links hiji. The action includes a stiffness K for the gauge
fluctuations and a coupling J for the matter field. If □

denotes a square plaquette, the partition function is

Z ∝
X

fσg;fτg
exp

�
K
X
□

� Y
hiji∈□

σij

�
þ J

X
hiji

τiσijτj

�
: ð1Þ

Throughout, we work on an L × L × L torus [65]. The
action is invariant under the Z2 gauge transformation
τi → τiχi, σij → χiσijχj with χi ¼ �1. If desired, we can
choose the gauge τi ¼ 1, leaving a lattice model for the σ
spins on the links only, with terms Jσ on the links, which
emphasizes that Eq. (1) is a lattice model with no internal
global symmetries [3]. However, along a line in the phase
diagram, it has a self-duality symmetry, as discussed below.
In parts of the phase diagram, the model also has 1-form
symmetries, either microscopic or emergent, which we
discuss in Sec. IX.
It will be convenient to define [3,23]

x ¼ tanhK; y ¼ tanh J: ð2Þ

The phase diagram in this parametrization is shown in the
main panel of Fig. 3. The dashed line is where the model is
self-dual. The approximately rectangular region in the
bottom-right corner, at large gauge stiffness K and small
matter field coupling J, is the deconfined phase supporting
deconfined anyons (Sec. II D).

B. As a model of membranes

The model can be mapped to a statistical ensemble of
“membranes” on the cubic lattice [6,66]. In this picture, the
parameters x and y control the microscopic surface tension
for the membrane, and the microscopic line tension for the
membrane boundary, respectively. The partition function is
(see the Appendix A for details)

Zðx; yÞ ¼
X
M

xjMjyj∂Mj: ð3Þ

Here, a membrane configuration M is simply any set of
plaquettes of the cubic lattice: We call the plaquettes in M
“occupied.” The energy of a configuration depends on
the total number jMj of occupied plaquettes in the

configuration and on the total length of the membrane
“boundary,” j∂Mj. This length is the number of links
where an odd number of occupied plaquettes meet. We
refer to these as occupied links.
Note that the deconfined phase occurs in the regime

where the membrane surface is cheap but the membrane
boundary is expensive. The extreme limit of the deconfined
phase is x ¼ 1, y ¼ 0, where we have an ensemble of
closed membranes with vanishing surface tension. We may
exit the deconfined phase either by suppressing the mem-
brane area (decreasing x sufficiently) or by tearing holes in
the membranes (increasing y sufficiently) [6].
Figure 4 shows part of a membrane configuration taken

from a simulation close to the self-dual critical point that
we study. Plaquettes in M have been colored in (arbitrar-
ily), and the boundary links in ∂M have been marked in
red. The membrane representation suggests investigating
“geometrical” (percolation-like) observables close to the
critical point, as well as thermodynamic ones [6]. We
discuss this in Sec. IX, showing that the loops in ∂M form
a scale-invariant ensemble at the self-dual critical point.
The membrane picture is one way to see the duality

property of the model [3]. In Eq. (3), the partition function
is expressed as a sum over membrane configurations on the
original cubic lattice. An alternative graphical representa-
tion yields an ensemble of precisely the same form, but for
membranes on the dual cubic lattice (Appendix A), with
dual values of the plaquette and link fugacities:

x0 ≡ 1 − y
1þ y

; y0 ≡ 1 − x
1þ x

: ð4Þ

FIG. 3. Sketch of the phase diagram in the ðx; yÞ plane. The
gauge stiffness K ¼ tanh−1 x increases to the right, and the matter
field coupling J ¼ tanh−1 y increases upwards (self-dual line,
shown as a dashed line). Inset: same phase diagram in the ðy; y0Þ
coordinates, where duality acts as a reflection. (The exponents
below imply that the e and m condensation lines are asymptoti-
cally parallel as they approach the self-dual critical point, though
the curvature is not visible at this scale.)
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This pair of mappings shows that Zðx; yÞ is equal, up to a
trivial constant, to Zðx0; y0Þ [67]. Below, we show that
duality can also be thought of as a conventional symmetry
operation. This symmetry is not manifest in the formula-
tions above but may be made apparent in an alternate
representation of the partition sum in terms of worldlines of
e and m particles (Sec. II C).
Note that, in view of Eq. (4), we are free to choose ðy; y0Þ

as coordinates for the phase diagram, as in the inset to
Fig. 3. The line y ¼ y0 is then the self-dual line, where the
Boltzmann weights are invariant under duality symmetry.

C. Manifestly self-dual loop representation

The quantum interpretation reviewed in the next sub-
section motivates yet another representation of the path
integral, in terms of two species of “loops,”which represent
worldlines of both e and m particles. This representation
makes self-duality manifest. The price is minus signs in the
Boltzmann weight, which encode the mutual semion
statistics of the anyons e and m.
The partition function can bewritten as (seeAppendixA 3

for details)

Z ∝ 4
X
Ce;Cm

ð−1ÞXðCe;CmÞyjCejy0jCmj: ð5Þ

The electric and magnetic worldline configurations Ce and
Cm, which we refer to as loop configurations, are sets of
“occupied” links on the original and dual lattices, respec-
tively. See Fig. 5. Any even number of occupied linksmay be
adjacent to each site, so the term “loops” is used loosely (see
endnote [68] for details). Note that Ce may be identified with

the membrane boundaries ∂M in the previous
representation.
The crucial feature in Eq. (5) is the topological factor

ð−1ÞX, which gives a factor of −1 for each linking between
an eworldline and anmworldline. [That is, XðCe; CmÞ ¼ 0,
1 is the Z2 linking number of the two worldline configu-
rations. It can be computed, for example, by introducing an
arbitrary membrane configuration M̃ such that ∂M̃ ¼ Ce
and counting the number of intersections between M̃ and
Cm modulo 2.] The values of the dual-link fugacities y and
y0 are defined in Eq. (2).
An interesting model of U(1) (oriented) flux lines with a

linking sign has been studied in Ref. [38] (see also
variations in Refs. [38,41–43]). That model has many
features in common with Eq. (5) and also describes a
problem of condensation of anyons with mutual statistics.
However, it also has significant differences as a result of a
global Uð1Þ × Uð1Þ symmetry. We expect the Uð1Þ × Uð1Þ
model to be described, at least in principle, by a continuum
Chern-Simons gauge theory. The “Z2 × Z2” loop model in
Eq. (5) is also closely related to a quantum wave function in
3þ 1D that sustains 2þ 1D Z2 topological order on its
boundary [69–71].
Returning to Eq. (5), it is possible to sum over Cm exactly

(Appendix A 3). We then return to the membrane expres-
sion (3) for the partition function, with Ce ¼ ∂M.
Similarly, integrating out Ce gives the dual membrane
picture on the dual lattice. (Note that the line tension y0
or y of the species that is integrated out determines the
surface tension of the membranes.)
However, the representation (5) makes the duality

symmetry that exists when y ¼ y0 (i.e., when x ¼ x0)
manifest. We can think of the symmetry operation as a
translation by ð1=2; 1=2; 1=2Þ, where the lattice spacing of
each cubic lattice is unity. This translation exchanges the
cubic lattice with its dual, so it exchanges e and m
worldlines. Microscopically, this is not an internal sym-
metry (since it involves translation), but we will argue in
Sec. III that self-duality becomes an internal Z2 symmetry
of the IR theory.
Section X A presents an alternative loop model in which

the e and m loops share the same lattice.

FIG. 4. Membranes with boundaries: part of a configuration,
close to the critical point on the self-dual line. Occupied
plaquettes are shown in color (colors have no meaning). Occu-
pied links, where an odd number of plaquettes meet, are shown in
thick red lines.

FIG. 5. Cubes of the original and dual lattices, with e world-
lines (red) and m worldlines (blue) on the former and the latter,
respectively. (This configuration has linking number X ¼ 1.)

SELF-DUAL CRITICALITY IN THREE-DIMENSIONAL … PHYS. REV. X 11, 041008 (2021)

041008-5



D. Anyons and the toric code in a field

The 3D gauge theory is expected to capture the universal
physics of a wide range of 2þ 1D quantum models with a
Z2 spin liquid phase. An anisotropic limit of the 3D theory,
where the z direction becomes a continuous imaginary time
coordinate, maps exactly to the partition function for such a
Hamiltonian on the square lattice. SeeRefs. [9,15] for details
of such mappings. Here, we review the basic excitations of
the deconfined phase, as well as how they relate to the
geometrical pictures above, in qualitative terms.
It is convenient to start with the toric code [22], a

particularly simple model lying in the deconfined phase.
The degrees of freedom are spin-1=2 s on the links of the
square lattice. The Hamiltonian includes a plaquette term
and a vertex term:

H ¼ −V
�X

□

XXXX þ
X
þ
ZZZZ

�
: ð6Þ

The first product is shorthand for the Pauli-X operators on
the four links making up a given plaquette, and the second
is for the four Pauli-Z operators on the links touching a
given site. Here, V is a coupling constant, which we have
chosen to be equal for the two terms to ensure self-duality
symmetry. Noting that we can equally well view spins
either as living at the midpoints of bonds on the original
square lattice or at the midpoints of bonds on the dual
square lattice, the duality symmetry operation may be
viewed as a translation by ð1=2; 1=2Þ, together with an
exchange of X and Z [72].
In ground states [74], all the plaquette and vertex terms

in Eq. (6) are equal to 1, and they are superpositions of
“strings”—either on the original lattice (if we use the Z
basis, a link with Z ¼ −1 is regarded as part of a loop) or
the dual lattice (if we use the X basis) [22]. There are two
fundamental types of excitation, related by duality [75]. A
vertex where ZZZZ ¼ −1 is an e particle, and a plaquette
where XXXX ¼ −1 is an m particle. These are distinct
types of anyons. Each is a boson, but adiabatically braiding
an e around anm changes the sign of the wave function. (In
other words, they are mutual semions. The combination of
an e particle and an m particle forms another type of anyon
whose topological sector is denoted “ϵ”: This also has −1
statistics with e and m, but it is a fermion [22,76].) In the Z
basis, an e excitation is the endpoint of a string (Fig. 6).
The toric code is a fine-tuned limit in which the e and m

particles are nondynamical. Critical phenomena are pos-
sible when the model is perturbed so that pair creation and
annihilation of these particles becomes possible. This result
may be achieved by adding magnetic fields in both the X
and Z directions [13,14]. (For example, adding the operator
X to the Hamiltonian allows both hopping and pair creation
or annihilation of bare e particles on a given link.) The
resulting model has been intensely studied [13,14,24,77]
(including as an effective theory for an anisotropic

Kitaev-Heisenberg-Γ magnet [40]). Duality exchanges
the two magnetic fields, so the line hX ¼ hZ preserves
duality symmetry.
The phase diagram of the toric code in X and Z fields is

expected to be equivalent to that discussed in the previous
sections, up to nonuniversal constants [13]. The dimen-
sionless field hX=V, which can induce condensation of the
e particle, plays the role of the vertical coordinate in Fig. 1,
and hZ=V plays the role of the horizontal coordinate.
The connection with the geometrical pictures above

arises from writing the imaginary-time partition function
in various choices of basis. We describe this only in
qualitative terms below.
In the Z basis, the wave function is a superposition of

terms like that illustrated in Fig. 6 (left) with e particles (at
sites of the square lattice) forming endpoints of strings.
Constructing the sum over Feynman trajectories using this
basis, the world surfaces of strings form a set of membranes
M, and the worldlines of e particles form a set of loops that
are the boundaries Ce ¼ ∂M of these membranes. (In the
limit hX ¼ 0, there are no bare e particles in the ground
state, and correspondingly, the membranes are closed
surfaces.) This picture is a continuous-time version of that
in Sec. II B. The dual membrane picture is obtained by
working in the X basis, where the worldlines of m particles
are manifest.
Alternately, we may pick a basis in which both the

plaquette products XXXX and the vertex products ZZZZ
are diagonal, which is possible since all of these terms
commute. The Feynman trajectory sum is then over world-
line configurations Ce and Cm for both e andm particles, and
it is a continuous-time version of the loop model in Eq. (5).

E. Ising* and first-order lines

To conclude this overview of the model, we recap some
features of the phase transition lines in Fig. 1 or, equiv-
alently, Fig. 3.

e

e

t

FIG. 6. Relation between e particles and membranes. Left
diagram: In the Z basis, the toric-code wave function is a
superposition of strings of occupied links (bold) representing
Z ¼ −1, and an e excitation is a vertex where an odd number of
occupied links meet. Right diagram: Constructing a path integral
(for a generic perturbed model) in this basis, world surfaces of
strings become membranes M (grey), and worldlines of e
particles form the membrane boundary, or “loops,” ∂M ¼ Ce.
(The figure on the right is schematic: In the model we study,
membrane configurations look like Fig. 4.)
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Starting in the deconfined phase (in the lower right-hand
corner of Fig. 3), we may exit it in three ways, two of which
are related by duality [3,11,13]. Condensing the e particle
while keeping the mass ofm finite corresponds to the upper
boundary of the deconfined region in Fig. 3 (main panel);
this is the Higgs transition in the lattice gauge theory.
Condensing m while e remains massive is equivalent by
duality, and it is the left-hand boundary of the deconfined
region in Fig. 3 (main panel). This case is the confinement
transition in lattice gauge theory.
These transitions are continuous with Ising exponents, at

least sufficiently close to the boundaries of the phase
diagram [15], as we now rapidly review. These transitions,
described by a weakly gauged Landau theory, are some-
times referred to as Ising* transitions (see, for example,
Ref. [32]) to denote the fact that, because of gauging, only
the Z2-even operators of the Ising CFT survive as local
operators.
Consider, first, the Higgs transition in the limit x ¼ 1,

i.e., infinite gauge stiffness K ¼ ∞. The freezing of gauge
fluctuations in this limit gives an exact mapping to a
standard cubic lattice Ising model. But Ising exponents are
retained at least along some part of the phase transition line,
for finite K, which can be argued by fixing the gauge and
deriving an effective longer-range Ising Hamiltonian per-
turbatively in e−K [3,11]. In the quantum language, the
point is that, as long as the m and ϵ anyons are gapped, we
can, for many purposes, neglect the fact that the e particle
that is condensing is an anyon, rather than a local excitation
[39]. By duality, equivalent points hold for the confinement
transition.
A more intuitive way to understand the relation to Ising

is developed in Sec. IX and Ref. [78]. Let us start with the
membrane representation in the limit where the membrane
boundary is completely suppressed [y ¼ 0 in Eq. (3), or
y0 ¼ 0 in the dual membrane picture]. Again, this corre-
sponds to the transitions on the boundaries of the phase
diagram. In this limit, the membranes form closed surfaces,
so they may be mapped exactly to domain walls in a
nearest-neighbor Ising model (with a sum over boundary
conditions [79]).
Now, when we increase y slightly, the membranes

acquire holes in them, which means that there is no longer
an unambiguous mapping to an Ising model. But if the
holes are sufficiently small, we might expect this ambiguity
to be unimportant on large scales, so we can again think in
terms of an ordering transition for a fictitious Ising order
parameter.
We make this idea of a fictitious Ising order parameter

precise using an explicit construction, based on the idea of
“repairing” or “patching” the membranes in the represen-
tation (3) of the partition function (Sec. IX and Ref. [78]).
We argue that this construction can be performed all the
way along the Ising* critical lines but not at the self-dual
critical point, where a different universality class takes over.

For completeness, let us note that we can also think of
the Ising* transition in the loop model representation,
Eq. (5). Loosely speaking, when one species of loops
has a finite typical size, coarse-graining beyond this scale
gives a loop model for a single species of unoriented loops.
Models of this kind are a standard representation of the
Ising universality class, in terms of worldlines of the Ising
quanta.
The self-dual transition point [11–14], where the two

Ising* lines meet, will be discussed in the rest of the text.
The line of first-order transitions occurs within the trivial

phase, so it is relatively conventional. It is also a line where
self-duality symmetry is spontaneously broken. The natural
expectation is that the critical endpoint of this line is in the
Ising universality class, with the Ising order parameter
being the anti-self-dual operator defined below. Ising
universality for this critical endpoint is consistent with a
very rough estimate of the universal crossing value of the
Binder cumulant, as shown in Appendix B.
In addition to these thermodynamic transitions, we may

also define geometrical transitions [6] using the geometry
of the membranes in Eq. (3) (Appendix D).

III. SELF-DUALITY AS A SYMMETRY

We anticipate that, for any scale-invariant critical point
on the self-dual line, self-duality becomes an internal Z2

symmetry of the IR theory.
One way to argue for this is via the manifestly self-dual

representation of the partition function in Eq. (5) with y ¼ y0,
which has a translation symmetry by ð1=2; 1=2; 1=2Þ,
exchanging e and m worldlines. Correspondingly, the 2D
quantum model in Sec. II D has a symmetry involving
translation by ð1=2; 1=2Þ, which exchanges e and m
particles.
The simplest assumption is that, at a scale-invariant

critical point, this microscopic symmetry gives rise to an
internal Z2 symmetry of the IR fixed point theory. Loosely
speaking, the action of the translation on the rescaled
spatial coordinate of the coarse-grained theory disappears
in the IR limit, so the microscopic symmetry transformation
should map to a purely internal symmetry transformation
on the operators of the IR theory [80].
We can motivate this further by noting that alternative

models for the deconfined phase can be constructed in
which the duality symmetry, exchanging e and m, is
an internal symmetry even at the lattice level.
References [82,83] give exactly solvable 2D string-net
Hamiltonians for the deconfined phase with this property
[84]. We may also define a variant of the 3D loop model (5)
in which the e and m loops live on the same lattice, with a
Z2 symmetry exchanging them. This model is defined in
Sec. X A. It is plausible that by varying the interactions in
either of these models we could access the same self-dual
fixed point, at the corner of the deconfined phase, as in the
original model.
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The phase diagram of the gauge-Higgs model, restricted
to the self-dual line, is shown schematically in Fig. 7. The
first-order line in Fig. 1 corresponds to spontaneous
breaking of self-duality symmetry, as discussed below.

A. Defining (anti)symmetric operators

Duality acts on the phase diagram as y ↔ y0. We now
define lattice operators S and A, which are conjugate to the
self-dual and anti-self-dual couplings, namely, yþ y0 and
y − y0, respectively.
We continue to use the language of membranes

(Sec. II B). First, define “face” and “edge” operators,
F ðpÞ and EðlÞ, respectively, which are equal to either 0
or 1 and which measure whether a given plaquette p or link
l of the cubic lattice is occupied in the membrane
configuration M. In other words, F ðpÞ ¼ 1 if p ∈ M
and F ðpÞ¼0 if p∉M; EðlÞ¼1 if l ∈ ∂M and EðlÞ ¼ 0
if l ∉ ∂M. (See Appendix A for expressions for F and E
in terms of σ and τ.)
The duality transformation maps these operators to

operators on the dual lattice which play an equivalent role
in the dual membrane ensemble. From the expressions in
Appendix A, or, alternately, by extending the duality
transformation to the case of spatially varying couplings
x and y, we see that this mapping is

F → −
2x

1 − x2
E þ x

1þ x
; ð7Þ

E → −
2y

1 − y2
F þ y

1þ y
: ð8Þ

We have suppressed plaquette and link indices to avoid
clutter. The transformed operator on the rhs is located at the
link or plaquette that is dual to the plaquette or link of the
operator on the lhs.
Next, let us symmetrize these operators with respect to

the lattice point group, which naturally leads to operators
that are centered either on a cube of the lattice or on a
vertex. We useF cubeðcÞ to denote the sum ofF over the six
plaquettes of a cube c, and F vertexðvÞ to denote (one-half
times) the sum of F over the 12 plaquettes that touch a
vertex v. Similarly, EcubeðcÞ is (one-half times) the sum
over the 12 links in a cube, and EvertexðvÞ is the sum over the
six links touching a vertex. (We include the factors of 1=2
so that the expectation values of Ecube and Evertex are equal,
and similarly for F cube and F vertex.)

Finally, specializing to the self-dual line, we define

Acube ¼ F cube þ
2x

1 − x2
Ecube −

6x
1þ x

; ð9Þ

Scube ¼ F cube −
2x

1 − x2
Ecube þ

6x
1þ x

; ð10Þ

and analogously for operators Avertex and Svertex at the
vertices.
These operators transform simply under duality:

Acube ↔ −Avertex; ð11Þ

Scube ↔ þSvertex: ð12Þ

In addition, X
c

AcubeðcÞ ¼
X
v

AvertexðvÞ; ð13Þ

X
c

ScubeðcÞ ¼
X
v

SvertexðvÞ: ð14Þ

These “integrated” operators, which can be written either as
sums over cubes or vertices, are the anti-self-dual and self-
dual perturbations of the self-dual line.
Now, we expand the lattice operators above in terms of

continuum operators of a putative IR fixed point. Denote
the leading Z2-odd and Z2-even scalar continuum oper-
ators by AðrÞ and SðrÞ, respectively, with no subscript. We
also write AcubeðrÞ, AvertexðrÞ, etc., for lattice operators,
where r is the location of the appropriate cube or vertex.
To be consistent with Eqs. (11) and (14), the operator

Scube must be of the form

ScubeðrÞ ¼ ðself-dual operatorsÞ
þ ðderivatives of anti-self-dual operatorsÞ;

and analogously for the other lattice A and S operators, in
order that their integrated versions have well-defined
symmetry under duality. Taking into account point-group
symmetry, some of the allowed terms in Scube and Svertex are

ScubeðrÞ ¼ αSðrÞ þ β∇2AðrÞ þ γ∇2SðrÞ þ…; ð15Þ

SvertexðrÞ ¼ αSðrÞ − β∇2AðrÞ þ γ∇2SðrÞ þ…: ð16Þ

Here, α, β, and γ are nonuniversal constants. The sign of the
Z2-odd term is reversed in the second line, in order that
mixed correlators of lattice operators are consistent with
Eq. (11). Equivalent formulas apply for the lattice A
operators, with A and S exchanged, and separate nonuni-
versal constants.
We use the operators Acube and Scube in our simulations.

We see that these lattice operators may be identified (up to

Duality broken Trivial

FIG. 7. Phase diagram on the self-dual line, i.e., on the line
y ¼ ð1 − xÞ=ð1þ xÞ (where x ¼ x0 and y ¼ y0).
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derivative operators and other operators that are expected to
be highly irrelevant) with the leading self-dual and anti-
self-dual continuum operators.
From now on, we denote the lattice operators simply as

AðrÞ and SðrÞ, where r is the coordinate of a cube. We use
A or S, without an argument, to denote the spatially
averaged quantity—for example,

A ¼ 1

L3

X
r

AðrÞ: ð17Þ

We write xA and xS for the scaling dimensions of the two
operators.

B. Spontaneous breaking of duality symmetry

The phase diagram on the self-dual line is shown in
Fig. 7. Importantly, A in Eq. (17) is an order parameter for
the symmetry breaking that occurs when we exit the
deconfined phase. By self-duality symmetry, its average
vanishes,

hAi ¼ 0; ð18Þ

but in the duality-broken phase, its magnitude
ffiffiffiffiffiffiffiffiffi
hA2i

p
remains nonzero in the thermodynamic limit.
Raw data for this quantity are shown in Fig. 8, close to

the critical point of interest. In all plots, we parametrize the
position along the self-dual line with x, so the deconfined
phase corresponds to the right-hand side of the figure. At
first glance, Fig. 8 is consistent with the order parameter
becoming nonzero in a continuous fashion below some xc
(whose estimation we discuss below).
The operator S, whose average is shown in Fig. 9, is

analogous to the “energy” operator at a conventional
classical transition since it does not break symmetry: For
a continuous transition, the correlation length exponent is

ν ¼ 1

3 − xS
: ð19Þ

The data in Figs. 8 and 9 may be restated in terms of the
average occupation of plaquettes and links in the membrane
picture. On the section of the self-dual line where duality is
spontaneously broken, there are two coexisting equilibria
with different plaquette and link densities. We plot these
two solutions explicitly in Appendix B. In the critical
regime of interest here, the average occupation number of
links is relatively small, approximately 2.5%, but despite
this feature, they make up a scale-invariant ensemble of
loops (Sec. IX).
We now discuss how to establish the universal properties

of the transition.

IV. SCALE INVARIANCE

A. Initial obstacles

One standard means of locating a phase transition is to
analyze the specific heat, which, for many simple ordering
transitions, diverges at the critical point. If so, data for
different system sizes can typically be scaled, allowing the
critical point and correlation length exponent to be deter-
mined. Here, the variable SðrÞ plays the role of an energy,
as discussed in the previous section, and L3varðSÞ is
analogous to a specific heat. Values for different system
sizes are shown in Fig. 10.
At first sight, the behavior is the expected one: Curves

show a peak. But on closer inspection, it is unclear whether
the peak diverges at large L or tends to a constant. It also
becomes clear that variation of the width and height of the
peaks does not follow the simple scaling form

VarðSÞ ¼ L−2xSfðzÞ; ð20Þ

where z ¼ ðx − xcÞL1=ν and ν ¼ 1=ð3 − xSÞ. At first
glance, it looks like this transition will be plagued by large
finite-size effects, and it will be difficult to see any sign of
scale invariance. In fact, this is not the case, which will

FIG. 8. Duality-breaking order parameter
ffiffiffiffiffiffiffiffiffi
hA2i

p
as a function

of x on the self-dual line, for various system sizes (indicated in the
legend). The lines are just a guide to the eye. The deconfined
phase is at larger x.

FIG. 9. hSi as a function of x for different system sizes. The
legend indicates system size. The lines are just a guide to the eye.
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become clear after analyzing the behavior of the variable A.
(We will return to the specific heat below.)
Another standard tool to determine the location of a

critical point is the Binder cumulant for the order parameter
[88]. Here, A is our order parameter, and we define a
rescaled [89] version of the Binder parameter:

b4ðAÞ ¼ −
κ4ðAÞ
2κ2ðAÞ2

; ð21Þ

where κnðAÞ is the nth order cumulant. With this normali-
zation, b4ðAÞ becomes 0 in the deconfined phase (where A
is disordered and has a Gaussian distribution) and tends to 1
in the first-order coexistence region (where A has a two-
delta distribution).
At a conventional second-order symmetry-breaking

transition (e.g., Ising), the Binder parameter varies mono-
tonically from 0 to 1, and different system sizes show a
crossing that allows accurate location of the critical point.
This is not the case here, as shown in Fig. 11. Rather than
crossing, the curves present a minimum near x ¼ 0.6367.
However, the curves do tend to touch here, consistent with

scale invariance [b4ðAÞ is a dimensionless quantity, which
should be asymptotically L independent at a critical point],
although some finite-size effects can be appreciated. A
previous estimate of xc ≈ 0.6359 [13] is not consistent with
the location of the minimum (we will give a more accurate
estimate below).
So, after a first look at these two standard quantities, it is

hard to assess whether the data obey scaling collapse, and it
seems, at first sight, that accurate estimation of xc will be
more troublesome than for other systems and may be
plagued by finite-size effects. Having reached this point, a
key step for our understanding was analyzing a parameter-
free scaling collapse, which we describe next.

B. Parameter-free scaling collapse; RG trajectories

We advocate using a parameter-free procedure to deter-
mine the quality of scaling collapse of the data near a
critical point. We construct a parametric plot using as
coordinates two dimensionless quantities, b4ðAÞ and b1ðAÞ
(defined below).
In the scaling region,

b4ðAÞ ¼ fðzÞ; ð22Þ

where z ¼ ðx − xcÞL1=ν. Other dimensionless ratios of
cumulants are candidates for the second dimensionless
quantity. Binder defined a ratio based on the sixth-order
cumulant: VL¼κ6ðAÞ=(30κ2ðAÞ3) [88]. High-order cumu-
lants are sensitive to the tails of the distribution and can be
difficult to estimate accurately. Therefore, we instead
advocate using the ratio hjAji=hA2i1=2:

b1ðAÞ ¼
1

1 −
ffiffiffiffiffiffiffiffi
2=π

p � hjAji
κ2ðAÞ1=2

−
ffiffiffi
2

π

r �
: ð23Þ

The coefficients have again been chosen so that b1ðAÞ tends
to 0 in the deconfined phase and to 1 in the coexistence
region. Note that b1ðAÞ behaves qualitatively like b4ðAÞ in
Fig. 11, and its expected scaling form is as in Eq. (22), with
a different scaling function. For a standard Ising transition,
b1 goes monotonically from 0 to 1 with a crossing for
different system sizes: There, it can be used to determine
the critical temperature, with the advantage of being
slightly easier to estimate than b4ðAÞ.
By plotting b4ðAÞ versus b1ðAÞ, we obtain a parametric

plot where z is the parameter; see Fig. 12. If scaling is
obeyed, points with different x and L, but the same z, must
overlap. This approach is a fair test of scale invariance
because we do not have to fix or fit any parameters by hand
and instead just plot raw data.
The data trace a trajectory from the point (0,0) to the

point (1,1), showing very good overlap, except near the
region (b1ðAÞ; b4ðAÞ) ≈ ð−0.109;−0.285Þ where we see
some finite-size effects. However, these finite-size effects

FIG. 10. Heat capacity: variance of S (multiplied by L3) as a
function of x for different system sizes. The legend indicates
system size. The lines are B-spline fits and are just a guide
to the eye.

FIG. 11. We show b4ðAÞ ¼ −ð1=2Þκ4ðAÞ=VarðAÞ2 as a func-
tion of x for different system sizes. The legend indicates system
size. The lines are B-spline fits and are just a guide to the eye.
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become small for L > 32. This figure represents, on its
own, strong evidence that the multicritical point is a
second-order phase transition.
This figure can also be used to estimate the critical point.

We construct RG trajectories in the (b1ðAÞ; b4ðAÞ) plane by
following the points for a fixed value of x as L is increased.
The points representing a system (for a fixed generic x)
should flow along the universal line towards either the (0,0)
or the (1,1) fixed point. The inset of Fig. 12 shows this flow
for two different x values. For the system sizes used, this
simple procedure already determines the critical point with
four digits of precision. We observe that for x > 0.6367, the
system flows towards (0,0), while for x < 0.6366, it flows
to (1,1). The repulsive fixed point is located (within the
precision of the procedure) at the lower-left extreme of the
universal curve.
We see that the data in Fig. 11 should approximately

scale for L≳ 32 (fits are given below). A similar figure
using ratios involving S [e.g., b4ðSÞ or κ3ðSÞ=κ2ðSÞ3=2]
does not show good overlap, as expected from the
discussion of Fig. 10. It would be strange to have very
large finite-size effects in quantities depending on S but not
on those depending on A. The explanation turns out to be
very simple. The exponent xS is very near 1.5, where the
regular contribution to VarðSÞ cannot be neglected. When
this is taken into account, quantities depending on S also
obey scaling (Sec. V B).

V. CRITICAL EXPONENTS

We turn to scaling fits in order to determine xc and the
scaling dimensions of A and S (xA and xS, respectively).

Details of how fits were constructed may be found in
Appendix C. The results of the various fits are summarized
in Table I.

A. Scaling collapse for A

The scaling form for dimensionless quantities such as
b1ðAÞ involves, in addition to the scaling function, the
parameters xc and ν ¼ 1=ð3 − xSÞ. Figure 13 shows the
scaling collapse of the data for b1ðAÞ and the fitted scaling
function. The critical coupling xc obtained (Table I) is very
near the initial estimation made in Sec. III B, and xS is near
1.5, as noted above. A fit of b4ðAÞ gives very similar results
(Table I).
In order to obtain the exponent xA, we fit

ffiffiffiffiffiffiffiffiffi
hA2i

q
¼ L−xAgðzÞ: ð24Þ

The resulting scaling function gðzÞ is shown in Fig. 14, and
the fitted parameters are indicated in Table I. Fitting hjAji
yields similar results.
No finite-size-scaling corrections are included in these

fits, although for L ¼ 32 these corrections are still non-
negligible (compared to the error bars). If data for L ¼ 32
are excluded from the fits for b1ðAÞ and b4ðAÞ, the
estimates of xS increase.

FIG. 12. Parameter-free scaling collapse for b4ðAÞ as a function
of b1ðAÞ for several system sizes (colored). Black stars mark the
two phases: the deconfined phase at (0,0) and the broken-duality
phase (i.e., first-order coexistence) at (1,1). The inset shows a
zoom of the lower-left corner of the main panel. Two selected x
values (0.6364 and 0.6370) are highlighted, and arrows are drawn
in between consecutive system sizes. Close to the critical
point, x ≈ 0.6367, values remain in a small region around
(b1ðAÞ; b4ðAÞ) ≈ ð−0.109;−0.285Þ.

TABLE I. Results of fits. Errors shown are purely statistical.

Variable xc xS xA χ2 d.o.f.

b1ðAÞ 0.636660(16) 1.446(56) 49.53 46
b4ðAÞ 0.636670(14) 1.445(62) 65.8 46ffiffiffiffiffiffiffiffiffi

hA2i
p

0.636702(20) 1.502(43) 1.222(16) 44.9 40
hjAji 0.636702(22) 1.510(48) 1.221(16) 43.1 40
VarðSÞ 0.636661(14) 1.5(fixed) 88.6 81
κ3ðSÞ 0.636651(18) 1.506(9) 68.6 66

FIG. 13. Scaling collapse of b1ðAÞ versus scaling variable
z ¼ ðx − xcÞL1=ν, where 1=ν ¼ 3 − xS. The blue line corresponds
to the fitted scaling function using B-splines with 12 degrees of
freedom. The legend indicates the different system sizes.
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B. Scaling collapse for S

We have suggested above that the failure of a straight-
forward scaling collapse for VarðSÞ is due to xS being very
close to 3=2, the threshold where the regular contribution
becomes comparable with the scaling contribution.
Fortunately, a simple modification of the scaling ansatz
should be accurate when jxS − 3=2j ≪ 1= logL:

L3VarðSÞ ≃ fðzÞ þ 4πα2S logðLÞ: ð25Þ

Here, α2S is the normalization constant for the two-point
function of S (Sec. VI). The function fðzÞ includes a z-
independent constant contribution, which arises from
nonuniversal short-distance correlations [90].
We have performed fits to this form, keeping ν ¼ 2=3

fixed (in line with the approximation above), so only the
critical coupling xc and the coefficient C ¼ 4πα2S of the
logarithm can be adjusted to obtain scaling collapse. The
scaling function is shown in Fig. 15. We obtain a good fit,
even when data from small system sizes are included. The
estimated xc is again very similar to previous estimates.
Also, the constant C ¼ 10.05ð23Þ obtained is consistent
with our calculation of the correlation function in the next
section. In summary, the fit to VarðSÞ is consistent with the
correlator of S obeying scaling, with xS very close to 3=2
(indeed, allowing ν to be free in this fit, instead of fixed to
2=3, did not improve the fit quality).
An alternative way to avoid dealing with the regular

contribution is to analyze higher-order cumulants. The
singular contribution near a critical point scales as
κnðSÞ ¼ L−nxSfðzÞ, while the regular contribution should
scale as κnðSÞregular ∝ L−dðn−1Þ. For xS ≈ 3=2 and n ¼ 2,
both contributions scale in the same way, but for n ¼ 3, the
singular contribution should dominate. Indeed, the data for
κ3ðSÞ can be collapsed, as shown in Fig. 16. We obtain xc
and xS values fully consistent with previous results

(Table I), although it is worth noting that the statistical
error of xS is much smaller.

C. Summary of exponents from the fits

We have provided clear evidence that the Ising gauge-
Higgs model has a scale-invariant multicritical point.
Simulations are inevitably restricted to finite length scales,
so they can never rigorously exclude an extremely weak
first-order transition; but all of the observables we have
examined exhibit good scaling collapse, with fairly modest
finite-size effects.
As there are some finite-size effects, we consider a

reasonable confidence interval for the critical point to be
xc ∈ ½0.63665; 0.6367�. For the study of correlation func-
tions, in the next sections we round to four digits and
consider critical behavior at xc ≈ 0.6367.
For the exponent xS, the value obtained from κ3ðSÞ

(Table I) has the smallest statistical error, and we take it as a

FIG. 14. Scaling collapse of LxA
ffiffiffiffiffiffiffiffiffi
hA2i

p
versus scaling variable

z ¼ ðx − xcÞL1=ν, where 1=ν ¼ 3 − xS. The blue line is the fitted
scaling function using B-splines with 10 degrees of freedom. The
legend indicates system sizes.

FIG. 15. Scaling collapse for L3(VarðSÞ − C logðLÞ) versus
the scaling variable z ¼ ðx − xcÞL1=ν, where 1=ν ¼ 3 − xS. The
blue line corresponds to the fitted scaling function using B-
splines with 10 degrees of freedom. The legend indicates different
system sizes. In this fit, only xS has been fixed to 3=2; see text for
explanation of the scaling ansatz.

FIG. 16. Scaling collapse for L3xSκ3ðSÞ versus the scaling
variable z ¼ ðx − xcÞL1=ν, where 1=ν ¼ 3 − xS. The blue line
corresponds to the fitted scaling function using B-splines with
10 degrees of freedom.
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reference in the following. Our statistical error bars do not
take into account possible systematic errors related, for
example, to finite-size effects, so a realistic confidence
interval should be larger; however, we have verified that
dropping the smaller system sizes in the fit only very slightly
increases xS, remaining within the statistical error bars.
Our estimate of xS leads to ν ¼ 0.669ð4Þ. This is not too

far from estimates ν ≈ 0.7 [14] and ν ≈ 0.69 [77] based on
the calculation of the gap in the toric code using small-field
series expansions (up to eighth order). However, a basic
issue with the series expansion method is that it cannot
detect a first-order transition [14]; i.e., it must assume a
continuous transition rather than demonstrating one.
Reference [77] attempts to rectify this by comparing
estimates of the ground-state energy from series expansion
with a variational wave function, but we expect that the
accuracy with which this method could detect a weak first-
order transition is severely limited by the accuracy of the
variational wave function.
A realistic confidence interval for xA should again be

larger than the statistical one in Table I. We note that the xc
estimates obtained from

ffiffiffiffiffiffiffiffiffi
hA2i

p
and hjAji are slightly larger

than for the other fits; if we estimate xA keeping xc ¼
0.63666 fixed, then the value drops to 1.20, slightly below
the statistical confidence interval.
Standard scaling relations [91] imply that the order

parameter exponent β, defined by
ffiffiffiffiffiffiffiffiffi
hA2i

p
∼ ðxc − xÞβ in

the infinite system, is β ¼ xA=ð3 − xSÞ (compare Fig. 8).
Asymptotically close to the self-dual critical point, the shape
of the Higgs and confinement lines in the inset to Fig. 3
should be y− ∼�jδyþjð3−xAÞ=ð3−xSÞ, where y�¼ðy�y0Þ
gives the self-dual and anti-self-dual couplings. Since
ð3 − xAÞ=ð3 − xSÞ is a little larger than one, the Higgs
and confinement lines are asymptotically parallel as they
approach the critical point.
The values obtained for the critical exponents clearly

differ from Ising values, but they are surprisingly close to
certain exponents in the XY model. This point will be
discussed in Sec. X.

VI. TWO-POINT CORRELATORS

We now show that two-point functions of the local
operators AðrÞ and SðrÞ are consistent with scale invari-
ance,

hAð0ÞAðrÞi ¼ α2A
r2xA

; hSð0ÞSðrÞiconn ¼
α2S
r2xS

: ð26Þ

Figure 17 compares data for the critical two-point functions
to such power-law fits, giving good agreement at larger
separations. The exponents xA and xS in the fits have been
fixed to the values 1.224 and 1.506, respectively (see
Table I), while the nonuniversal constants αA;S, which we
will require in Sec. VII, have been left free.

The simulations also give access to dynamical correla-
tion functions in Monte Carlo time, which we analyze in
Sec. VIII. These also encode the exponents xA and xS,
together with a dynamical exponent z.

VII. THREE-POINT FUNCTION AND
CONFORMAL INVARIANCE

Conformal invariance fixes the three-point functions in
terms of the fields’ scaling dimensions and operator product
expansion (OPE) coefficients [91]. Conversely, data for
three-point functions allow a direct numerical test of
conformal invariance.
TheOPEcoefficients for the fieldsA andS that are allowed

by duality symmetry to be nonzero areCAAS andCSSS. Here,
we examine the three-point function hAð0ÞAðrÞSðr0Þiconn
and give a very rough estimate of the corresponding OPE
coefficient CAAS. Data for hSð0ÞSðrÞSðr0Þiconn were too
noisy for a similar analysis.
The form dictated by conformal invariance for the three-

point function is

hAð0ÞAðrÞSðr0Þiconn ¼
CAAS × α2AαS

jrj2xA−xS jr0jxS jr − r0jxS ; ð27Þ

FIG. 17. Two-point correlators for the operators A (top) and S
(bottom). The displacement between the two operators is taken
parallel to a lattice direction. Dashed lines are fits of the L ¼ 64
data in the range r ∈ ½10; 15� to the forms in Eq. (26), with
xA ¼ 1.224, xS ¼ 1.506 fixed and αA;S free, giving α2A ¼ 0.72
and α2S ¼ 0.77.
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where αA;S are the same operator normalization constants
that appear in the two-point functions (26).
We consider four possible spatial arrangements for the

three points in the correlator, lying either on a line (L) or on
the vertices of a right triangle (D):

LAASðrÞ≡ hAð0; 0; 0ÞAðr; 0; 0ÞSð2r; 0; 0Þiconn; ð28Þ

LASAðrÞ≡ hAð0; 0; 0ÞSðr; 0; 0ÞAð2r; 0; 0Þiconn; ð29Þ

DAASðrÞ≡ hAð0; 0; 0ÞAðr; 0; 0ÞSðr; r; 0Þiconn; ð30Þ

DASAðrÞ≡ hAð0; 0; 0ÞSðr; 0; 0ÞAðr; r; 0Þiconn: ð31Þ

We use ratios of these three-point functions to test for
conformal invariance. The CFT prediction depends only on
xA and xS (and on the arrangement of points in the
correlator), so this test does not require an independent
estimate of the nonuniversal constants αA;S in Eq. (27).
Figure 18 compares each of the three independent three-

point function ratios with the CFT prediction (for
xA ¼ 1.224, xS ¼ 1.506), which is marked with a dashed
line. Modulo uncertainty in the exponent estimates, the data
should converge to these lines at large r. Statistical errors
limit us to small r because of the rapid decay of the three-
point functions with r. Even so, there is agreement, within
errors, with the CFT prediction once r≳ 3.
Motivated by this consistency, we make a very prelimi-

nary estimate of the universal constant CAAS. Figure 19
shows finite-r estimates obtained from Eq. (27) (for each
geometry of the three-point functions). The data suggest
that CAAS ∼ 1.5. The uncertainty is large because of the
very small range of r and because the uncertainty in αA;S

(obtained from the two-point function in Sec. VI) is hard to
estimate. It would be worthwhile to improve this estimate.
References [92,93] discuss methods for numerical estima-
tion of OPE coefficients.

VIII. STOCHASTIC DYNAMICS
OF MEMBRANES

So far, we have discussed the gauge theory as a problem
of equilibrium statistical mechanics in either 2þ 1 or 3þ 0
dimensions. But our simulations involve a fourth coordi-
nate, which is Monte Carlo time (denoted t). The
Monte Carlo dynamics may be interpreted physically as
a model for stochastic thermal motion of classical mem-
branes (Sec. II B), or, alternately, of classical spins in 3D
(Sec. II A). These dynamics contain additional universal
data beyond the data in static correlations: most impor-
tantly, the dynamical exponent z that dictates how the
typical relaxational timescale τ scales with system size L at
the critical point, τ ∼ Lz [94]. Two-time correlation func-
tions in this dynamics are also an alternative means of
determining the exponents xA and xS, as shown below.

A. Universal dynamics and duality

There is great freedom in the microscopic definition of
the stochastic dynamics, i.e., the choice of update for our
Monte Carlo Markov chain. But we expect to find a
dynamical fixed point that embraces a large class of
microscopic updates that are local and preserve detailed
balance (our updates are local and are described in
Sec. VIII C below). This case is analogous to, say, the
critical 3D Ising model, which shows a robust universality
class for spin-flip dynamics with no conservation laws (the
universality class of “Model A” [95–110]).
As in the Ising model, the dynamical universality

class may change if we introduce conservation laws

FIG. 18. Test of conformal invariance: ratios of the three-point
correlators defined in the text. Assuming exponent values
xA ¼ 1.224, xS ¼ 1.506, conformal invariance requires these
ratios to converge at large r to the values indicated by dashed
lines (error bars are from variation between six samples). We find
agreement with the predicted value, within error bars, once r≳ 3.
Error bars become too large for a useful comparison once r > 4.

FIG. 19. Main panel: finite-r estimates of the OPE coefficient
CAAS using three-point functions with four different geometries,
using data from system size L ¼ 48 (error bars are from variation
between six samples). Inset: average of the four estimates for
L ¼ 48 and also for L ¼ 32.
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[96]. For example, dynamics that conserve the total
membrane area (the total number of occupied plaquettes)
could be relevant to some experimental settings. The
dynamical universality class may also change if we include
nonlocal updates in the Monte Carlo simulations: Finding a
nonlocal update that speeds up simulations by reducing z is
a challenging open problem (Sec. XI).
The present dynamical critical point has one subtlety that

arises from self-duality. We have argued that self-duality is
aZ2 symmetry of the 3D fixed point, allowing us to classify
scaling operators as Z2 even or odd (S and A, respectively).
The mixed correlator hASi therefore vanishes in the
equilibrium ensemble [111]. But the Monte Carlo dynam-
ics itself is not Z2 symmetric [12]. To define the dynamics,
we had to choose one of the two dual representations, either
on the original cubic lattice or on its dual, breaking the
symmetry between them. As a result, the mixed correlator
hASi can be nonzero for nonequal times.
Assuming that the scaling operators AðrÞ and SðrÞ of the

three-dimensional theory are lifted to scaling operators
Aðr; tÞ and Sðr; tÞ in the dynamical theory, standard
dynamical scaling [96] at large jrj and t gives [112]

hAðr; tÞAð0; 0Þi ¼ t−2xA=zFAAðt=jrjz; t=LzÞ; ð32Þ

hSðr; tÞSð0; 0Þi ¼ t−2xS=zFSSðt=jrjz; t=LzÞ; ð33Þ

hAðr; tÞSð0; 0Þi ¼ t−ðxAþxSÞ=zFASðt=jrjz; t=LzÞ: ð34Þ

The Z2 symmetry of the equilibrium critical point ensures
that the last line vanishes at equal time.

B. Dynamical scaling collapse

First, we obtain the dynamical exponent from the typical
relaxation timescale τðLÞ of a sample of size L. We
estimate this timescale from the exponential decay of
various two-time correlators, in particular, those of S and
A (inset to Fig. 20). The various estimates are consistent
with each other [113], and fitting τðLÞ to a power law gives
(the error bar is purely statistical)

z ¼ 2.48ð10Þ: ð35Þ

For comparison, this is larger than the dynamical exponent
for spin-flip dynamics in the 3D Ising model [97–110], for
which a recent estimate is z ¼ 2.0245ð15Þ [110]. The
exponent is closer to that for Metropolis dynamics at the
confinement transition of pureZ2 gauge theory (correspond-
ing, by duality, to plaquette flip dynamics in the ensemble
with x ¼ 1), which was estimated as z ¼ 2.70ð3Þ [114].
The main panel of Fig. 20 demonstrates scaling collapse

for the temporal correlators of the spatially averaged
operators A and S, using this exponent. [The relevant
scaling forms are given by integrating Eqs. (32)–(34).]
Results are consistent with expectations from Sec. VIII A,

including the continuous vanishing of the scaling function
for hSð0ÞAðtÞi as t → 0.

C. Monte Carlo updates

The simplest Monte Carlo update is one that flips the
state of a single plaquette with the appropriate Metropolis
probability. However, a notable feature of configurations
close to the multicritical point is that only a very small
fraction (≈2.5%) of links are occupied. When occupied
links are rare, an attempted plaquette update has a high
chance of creating four new occupied links, significantly
increasing the energy, and therefore a high chance of being
rejected.
This fact suggests that while plaquette updates are

necessary for allowing occupied links to move, they are
inefficient at moving surfaces around. To speed up the
equilibration of surfaces, we therefore combine plaquette
updates with a second update that flips the state of all six
surfacesof a cube.Since thismovenever changes thenumber
of occupied links, it does not face the problem above, and
since it is still a local update, we do not expect it to change z,
as we have confirmed numerically. See Appendix C for
further details, including the scheme for parallelization.

IX. MEMBRANE PATCHING, EMERGENT
1-FORM SYMMETRY, AND

WORLDLINE PERCOLATION

In this section, we widen our focus to more general
transitions out of the deconfined phase, including those

FIG. 20. Main panels: scaling collapse of autocorrelation
functions for hAð0ÞAðtÞi (top), hSð0ÞSðtÞi (center), and
hSð0ÞAðtÞi (bottom) as a function of t=Lz (using xA ¼ 1.224
and xS ¼ 1.506). Inset: autocorrelation time as a function of
system size for four different correlators—hEð0ÞEðtÞi (blue
triangle), hAð0ÞAðtÞi (orange triangle), hSð0ÞSðtÞi (green penta-
gon), and hSð0ÞAðtÞi (red star). The straight line fits all the data
points to a power law τ ¼ ALz, with z ¼ 2.48.
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away from the self-dual line. We give a construction for the
“fictitious” Ising order parameters (which are the key
feature of Ising* transitions) on the Higgs and confinement
lines. We find that these fictitious order parameters can be
constructed all the way along the Ising* lines but not at the
self-dual critical point. The disappearance of the fictitious
order parameter at the self-dual critical point is associated
with the emergence of a scale-invariant ensemble of
loops there.
Studying this ensemble of loops with percolation-like

observables [6,91] allows another numerical test of scale
invariance at the self-dual critical point, and it gives another
critical exponent with which to characterize it (Secs. IX B
and IX C).

A. Patching membranes

The fact that the e and m condensation transitions have
Ising exponents (away from the self-dual line) is easy to
understand at the boundaries of the phase diagram (Fig. 3),
as reviewed in Sec. II E [3,11]. In these limits, the partition
function can be written as a sum over closed membrane
configurations. Mapping these closed membranes to Ising
domain walls gives the relation to Ising.
Moving away from this extreme limit, the membranes

acquire “holes” [6]. (We use the term “hole” loosely: More
precisely, we mean any connected cluster of links in ∂M,
as defined in Sec. II B.) But it is natural to think that, if
these holes have a finite typical size, coarse-graining
beyond this size may restore a picture in terms of closed
membranes that can be interpreted as Ising domain walls
[115]. This is a heuristic explanation for why an effective
Landau theory is useful even some distance away from the
boundary of the phase diagram.
Here, we first want to give an explicit construction of

these emergent degrees of freedom. Our approach is simply
to “repair” the membranesM in a given configuration. We
will be schematic, deferring further details and a numerical
demonstration to Ref. [78]. Second, we want to understand
what happens to the fictitious order parameter when we
move along the Ising* transition line towards the self-dual
critical point. This issue is closely connected to the question
of where in the phase diagram emergent 1-form symmetries
[33–36] exist.
We consider the membrane ensemble in Eq. (3), which is

convenient for describing one of the two dual 1-form
symmetries. By duality, analogous considerations apply for
the dual symmetry. (The Ising* transition that we discuss
below is the m condensation line.)
Let us briefly make the connection with a formal point of

view. The fictitious Ising order parameter will make sense if
(perhaps after coarse-graining) we can consistently define
string operators VP ¼ �1, supported on arbitrary paths P
in spacetime, that count the parity of the number of
membranes that intersect P. Let us assume that we can
define such operators, which are functions of the membrane

configuration M and whose value is unchanged if the
shape of the path P is deformed (while preserving the
locations of the endpoints, if P is not a closed loop). We can
then define a coarse-grained Ising variable ϕr, up to a
global Z2 ambiguity, by identifying ϕrϕr0 with VP for any
path P between r and r0. (Here, for simplicity, we consider
an infinite system [117].)
Such string operators, obeying an invariance under

deformations, define a Z2 1-form symmetry (see
Refs. [35,36], and Refs. [33,118,119], where the alternate
term “gauge-like symmetry” is used, for definitions) [120].
Switching briefly to the language of 2D quantum states, the
analogous quantum operators in the toric code are simply
the familiar topological string operators [22,33], which can
be used to create pairs of m anyons at their endpoints (a
similar dual operator creates pairs of e anyons). Perturbing
away from the solvable limit of the toric code, dressed
versions of these string operators are expected to exist, in
principle, so long as the other anyons, which braid non-
trivially with m, remain gapped [36,121–123].
Returning to the membrane picture, how would we

explicitly define such string operators, or the ϕr configu-
ration, in a simulation? A natural approach is to start with
the membrane configuration, and try to “patch up” the
holes, to give closed membranes. This approach is not a
strictly local process since holes can be of any size. We also
have some freedom in the convention, or algorithm, for
constructing the patching surfaces (one possible convention
is given in endnote [125]). But, if holes have a finite typical
size, and large holes are exponentially rare, we expect the
nonlocality in the patching operation to be mild. Each finite
“loop” (cluster of links) in ∂M may be patched by
attaching a finite surface of comparable size. This is
illustrated in Fig. 21.
Once this is done, we may define ϕr (again with a global

Z2 freedom). Because of the nonlocality of the patching
operation, this effective field is only likely to be a useful
concept on length scales larger than the typical size of a

FIG. 21. Membrane patching process (schematic). A configu-
rationM of membranes, with a nonempty boundary ∂M made up
of finite clusters of occupied links (shown in red) is “patched” by
attaching finite surfaces (blue) to the components of ∂M. In the
resulting ensemble of closed membranes, line operators may be
defined, specifying an emergent 1-form symmetry. A fictitious
scalar field ϕ ¼ �1 may also be introduced, whose domain walls
are the patched membranes. The Ising* transition is the ordering
transition for this fictitious field.
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loop. (It will therefore be most useful as an effective field in
a Lagrangian when it has a correlation length that is
parametrically larger than this loop size, or infinite.)
This construction allows us to compute the “two-point”
correlation function of ϕr in a simulation and to extract the
corresponding anomalous dimension, despite the fact that
ϕr is not a local gauge-invariant quantity [78].
We may also define thickened string operators. Let P be,

say, a straight path of length l ≫ 1. In order to determine how
many domain walls P pass through after patching, we must
check how many loops P thread in the unpatched configu-
ration M. This check requires us to examine a cigar-shaped
region around P, wide enough to contain (with probability
close to one) all the loops that P threads. The operator VP is
therefore a function of the degrees of freedomwithin this cigar-
shaped region.When large loops are exponentially suppressed,
the largest loop that P threads will typically be of size of order
lnl (due to rare large loops), so the typical width of the cigar
should be of this order. However, close to the endpoints ofP, it
is sufficient for the width to be only somewhat larger than the
typical loop size (i.e., l independent).
The above pertains to the case where the “holes” have a

finite typical size ξh. If, on the other hand, ξh diverges, so
that samples of arbitrarily large size L contain holes of size
comparable with L, then this procedure for defining the
string operator and effective Ising order parameter is liable
to fail (since ϕr and VP can become highly nonlocal). In
other words, a sufficient [126] condition for this procedure
to work is that the appropriate set of worldlines, ∂M, is in
the nonpercolating phase when viewed as a bond perco-
lation configuration.
For this reason, it is interesting to revisit the question of

where in the phase diagram these worldlines percolate [6],
which we do next. For example, as we move along the
confinement transition line, starting at y ¼ 0 (where there
are no worldlines) and moving towards the self-dual critical
point, where does the fictitious order parameter ϕr—as
defined by the above simple algorithm—stop making
sense? The results below indicate that it makes sense all
the way along the confinement line but not at the self-dual
critical point where that line terminates. They are consistent
with the simplest expectation: that the 1-form symmetry
that exists at y ¼ 0 persists as an emergent symmetry all the
way along the confinement transition line but disappears at
the self-dual critical point. Therefore, the RG flow from the
self-dual fixed point to the Ising* fixed point involves the
emergence of the 1-form symmetry. Similar considerations
apply for the dual 1-form symmetry along the Higgs line.

B. Percolation summary

Our result for the percolation phase diagram is shown in
Fig. 22 and explained in Sec. IX C. Within our numerical
precision, the percolation phase boundary matches the
thermodynamic boundary of the deconfined phase along
the entire Higgs transition line (to the right of the self-dual

line) and passes through the self-dual critical point. (The
percolation transition line also lies very close to the first-
order line, though closer examination indicates that these
two lines do not entirely coincide; see Appendix D.)
The fact that the percolation line passes through the self-

dual critical point agrees with the scenario in Ref. [6]. A far
as we are aware, however, this result is not guaranteed
a priori: The geometrical percolation transition could have
separated from the Higgs transition at some point along the
Higgs line, with the multicritical point lying in the interior
of the percolating phase (see Ref. [127]).
It is also striking that the self-dual critical point lies on

the percolation phase boundary despite having a very low
fraction of occupied links, around 2.5%. Despite their low
density, these links make up a scale-invariant ensemble of
clusters. Figure 23 shows the loops ∂M in an example
configuration.
This scale invariance allows us to define a new exponent at

the self-dual critical point, namely, the fractal dimension df
of the critical loops.A priori, this exponent is independent of
the scaling dimensions of local operators discussed above:
df ¼ 3 − xconn is determined by the scaling dimension xconn
of a nonlocal geometrical operator of the type familiar from
percolation [91,129]. Interestingly, though, our numerical
result for df below (Sec. IX C),

df ¼ 1.77ð2Þ; ð36Þ

is consistent with xconn ¼? xA, perhaps hinting at additional
hidden symmetry structure at this critical point. (See
Sec. X A for an argument that xA ≤ xconn.)

C. Percolation observables

We locate the boundary between percolating and
short-loop (nonpercolating) phases using the spanning

FIG. 22. Phase diagram showing the phase boundary for
percolation of e worldlines [defined as clusters of links in
∂M; see Eq. (3)]. The deconfined phase lies within the non-
percolating phase. The self-dual line is shown as a dashed line.
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probability Ps, which is the probability that the sample
contains a loop that spans the sample in a given axis
direction [130]. In the thermodynamic limit, this quantity
converges to 0 and to 1 in the nonpercolating and
percolating phases, respectively, and it is expected to take
a universal value in between 0 and 1 at a continuous
transition between the two phases.
We estimate the percolation phase boundary from cross-

ings inPs, plotted as a function of y, using small system sizes
L ¼ 8, 12, and 16 (data not shown). We use larger sizes to
analyze the transitions at x ¼ 1, at y ¼ 1, at the multicritical
point, and in the region around it. We may also obtain the
correlation length exponent from a scaling collapse of Ps.
The phase diagram in Fig. 22 shows three different

phases. The deconfined phase has short loops, while the
thermodynamically trivial phase splits into a percolating
and a nonpercolating phase (this is possible because the
percolation transition need not have any thermodynamic
signature). Note that here we are considering percolation of
e worldlines: The phase diagram for percolation of m
worldlines (in the dual membrane representation) may be
obtained by duality.
As a check, we first examine the percolation transitions

on the boundary of the phase diagram, where we expect to
see standard universality classes (data in Appendix D). At
x ¼ 1, results are as expected from the Ising mapping, with
a fractal dimension consistent with the known value for
critical Ising worldlines [131,132] and a correlation length
exponent consistent with the Ising value. At y ¼ 1, where
the percolation transition is purely geometrical (has no
thermodynamic signature), exponents are consistent with
the standard 3D percolation universality class.

Figure 24 shows data on the self-dual line, close to the
self-dual critical point. The data are compatible with a
critical point very close to x ¼ 0.6367 (inset of Fig. 24),
i.e., with geometrical criticality coinciding with the self-
dual critical point at the corner of the deconfined phase. A
scaling collapse of Ps as a function of ðx − xcÞL1=ν, leaving
xc and ν free (not shown), gives xc ¼ 0.63664ð10Þ and
ν ¼ 0.69ð6Þ, compatible with our best estimates for the
self-dual multicritical point. In Fig. 24, we show the scaling
collapse when xc is fixed to our previous best estimate xc ¼
0.636660 (Sec. VA). We use B-splines with five knots and
obtain ν ¼ 0.70ð6Þ for a fit that gives χ2 ¼ 27 for
24 degrees of freedom. Using ν−1 ¼ 3 − xS, this result
for ν is consistent with our previous estimate of xS, though
with lower precision.
At the self-dual critical point, loops are fractal and exist

on all scales (Fig. 23). The fractal dimension df can be
estimated from fitting the total mass of the largest loop to a
power law in L, Fig. 25. The straight line fits the whole

FIG. 24. Scaling collapse of Ps as a function of ðx − xcÞL1=ν

with xc ¼ 0.63666 fixed. Inset: flow of Ps as a function of the
system size for several x values close to the multicritical point,
showing approximate scale invariance at x ¼ 0.6367.

FIG. 23. Loops in a sample of system size L ¼ 32 at
x ¼ 0.6367. A spanning loop is highlighted in red (note periodic
B.C.s). Our definition of a loop allows for junctions where four or
six occupied links meet, but as can be seen, they are relatively rare
at the critical point.

FIG. 25. Mass of the largest cluster (number of links) as a
function of the system size at x ¼ 0.6367. The dashed line fits
system sizes as a power law ALdf, with df ¼ 1.77ð2Þ.
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range of system sizes from 8 to 64, providing the estimate
df ¼ 1.77ð2Þ quoted above.

X. RELATED MODELS

The previous section concludes our analysis of numeri-
cal data. We now consider some variations of the model and
relations to other models. Section XA connects the self-
dual critical point to another partition function, for a
“topologically constrained” ensemble of loops, which
may be interesting to study further. Sections X B
and X C discuss perturbations and crossovers in the
gauge-Higgs model. Section XD discusses our numerical
observation that the exponents xA and xS are close to
exponents in the XY model, as well as issues related to
continuum field theory.

A. An unusual self-dual loop model

In Sec. II C, we considered a representation of the gauge-
Higgs partition function as a loop model, for two species of
loops [133], with a topological sign factor ð−1Þlinking in the
Boltzmann weight. In that model, the two species of loops
live on distinct cubic lattices. Here, we consider a modified
loop model in which the loops live on the same cubic
lattice. This change allows the partition function to be
reexpressed in a form involving a topological constraint
rather than a topological sign factor.
Let Ce and Cm be two species of loops on the cubic

lattice. Here, we define the allowed loop configurations
differently than those in Sec. II C: Now, we insist that the
loops are strictly self-avoiding and mutually avoiding (a
loop may visit a given site once at most, for example). With
this definition, the linking number X̂ is well defined.
The partition function is

Zmod ¼ 4
X
Ce;Cm

yjCejy0jCmjð−1ÞX̂ðCe;CmÞ: ð37Þ

(jCej is the number of occupied links in Ce, etc., and the
loops in Ce ∪ Cm are mutually avoiding.) We do not yet
know the full phase diagram of this new model, but it is
plausible that it may also show a self-dual critical point, in
the same universality class as the lattice gauge theory
studied above.
As an aside, we note that the model could be varied in

many ways. We could allow the loops to be clusters [as in
the previous model, Eq. (5)], by allowing the number of
occupied links adjacent to a site to be any even number
[rather than just 0 or 2 as in Eq. (37)]. With this choice, the
model maps onto the original gauge-Higgs model in the
limit y → 0 and in the limit y0 → 0. This choice may have
advantages for simulations (as may other choices of lattice
as noted below). These changes do not affect the points we
make here, so we consider the more easily visualized
ensemble of strictly self-avoiding loops.

Let C denote the full loop configuration, without regard
to species labels, and let us specialize to the self-dual line
where y ¼ y0:

Zmod ¼ 4
X
C

yjCj
X
species
labels

ð−1ÞX̂ðCe;CmÞ: ð38Þ

The final sum is over assignments of the loops in C to
species e or m, i.e., over splittings of C into Ce and Cm. For
simplicity, let us choose (nonperiodic) boundary conditions
such that loops cannot end on the boundary or wind around
the system.
We can sum over the species assignments explicitly, for a

fixed C. The result is simple (see endnote [134] for the
argument):

Zmod ¼ 4
X
C

yjCj × 2ð loops in CÞ × χC: ð39Þ

Here, χC ¼ 0, 1 depends only on the topology of C and
simply imposes a restriction (constraint) on the allowed
topologies: χC ¼ 1 so long as every loop in the configu-
ration links with an even number of other loops, and χC ¼ 0
otherwise. This topological constraint is crucial.
[Removing it, by removing the factor χC from Eq. (39),
leaves the partition function for a version of the XY
model [135].]
Strikingly, the expression in Eq. (39) is sign-free [unlike

Eq. (38)] and could be sampled with Monte Carlo methods,
using a local update that preserved the mod 2 total linking
number of each loop. It would be interesting to know the
phase diagram of this model or variants of it. (For an
efficient numerical study, it might be useful to modify the
lattice geometry of the model so that loops can form
nontrivial links on a shorter length scale [136].)
This model also allows an interesting topological inter-

pretation for correlation functions of the anti-self-dual
operator.
In the ensemble (37), let us define the operator ÃðrÞ at a

site r to take the value 0 if the site is not visited by a loop, 1
if the site is visited by an e loop, and −1 if the site is visited
by an m loop. This operator is odd under duality, so it is
analogous to the operator AðrÞ defined for the gauge-Higgs
model in Sec. III A.
By again explicitly summing over the loops’ species

labels, we may write correlators of Ã in the formulation of
Eq. (39). First, an insertion of ÃðrÞ forces a loop to pass
through r. Second, the ÃðrÞ insertion forces the total
linking number of this anchored loop (with other loops)
to reverse its parity. In the original ensemble (39), every
loop has even linking. In the presence of Ã insertions, the
linking number of a loop that passes through an odd
number of Ã operators must instead be odd (while the
linking number of a loop that passes through an even
number of Ã operators remains even).
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In Fig. 26, we illustrate some of the configurations that
contribute to hÃðrÞÃðr0Þi. For simplicity, we show the
schematic situation at small y, where the loop length is
suppressed. The first term involves a single loop (with zero
linking) that passes through both insertions. The other
terms involve a chain of linked loops, with the loops at the
two ends of the chain, passing through r and r0, having odd
linking. (This picture shows that, in the limit of small y, the
correlation length ξ for this correlator is proportional to
j ln yj−1 since we must pay a factor of y for every unit of
loop length.) Moving away from the regime of small y, it
remains true that there are two types of terms: those where
the two Ã insertions lie on the same loop and those where
they lie on distinct loops that (unlike all the other loops in
the configuration) have odd linking.
Assuming this model has a self-dual critical point, then

this topological picture for hÃ Ãi yields an inequality for
the fractal dimension df of loops, which sheds some light
on the coincidence of exponents that we found numerically
in Sec. IX. Recall that the connectivity correlator,
Pconnðr; r0Þ ∼ r−2xconn , is the probability that two distant
sites are connected by a loop. Above, we have shown that
these connected configurations are a subset of the con-
figurations that contribute to hÃ Ãi. In other words,
hÃ Ãi ¼ Pconn þ R, where R is the sum over the remaining
configurations, which is positive. Therefore,

xA ≤ xconn; ð40Þ

or, equivalently, df ≤ 3 − xA.
We expect that when the model above is perturbed away

from the self-dual line, an Ising* transition can take place,
as in the original gauge-Higgs model. In the language of
Eq. (37), this occurs in the same manner discussed in
Sec. II E: If one of the loop species has a finite typical size,
it can be integrated out at large scales, leaving a simple
ensemble of Ising-like worldlines (topologically uncon-
strained loops with a fugacity of 1 per loop). It is also
possible to see this crossover in the language of Eq. (39):
Adding the duality-breaking perturbation Ã relieves the
topological linking constraint in Eq. (39) and leads to an
ensemble where large loops have a fugacity of 1 [137].

B. Perturbations of the gauge-Higgs model

After this detour, we return to the standard gauge-Higgs
model to discuss some remaining questions.

We have characterized the leading self-dual and anti-self-
dual scalar (spin-zero) operators at the self-dual critical
point numerically, but it remains to characterize the sub-
leading operators in these sectors, as well as operators with
higher spin. One motivation for this is to formally deter-
mine the number of relevant scaling parameters once
duality is broken, as we explain below.
On the appropriate line in parameter space, self-duality is

an exact property of the standard gauge-Higgs model. But
in many settings where the gauge-Higgs model is a useful
effective theory, exact self-duality will be broken in the
ultraviolet by additional interactions. It is natural to con-
jecture that the phase diagram structure in Fig. 1 can
nevertheless survive, with self-duality appearing as an
emergent symmetry at the corner of the deconfined phase,
where Higgs and confinement transitions meet. In order for
this to be the case, A and S should be the only relevant
scalar operators at the self-dual critical point.
At first glance, this case is demonstrated by the fact that

we only had to tune two parameters to reach this critical
point. However, this is not quite correct: The microscopic
self-duality symmetry of the self-dual line forces all anti-
self-dual perturbations to vanish there (not only the leading
A perturbation). Therefore, in principle, we should sepa-
rately check whether the subleading duality-odd scalar
operator is relevant or irrelevant. Since A itself has a large
scaling dimension, we might expect that this subleading
operator will be irrelevant, but this should be checked.
The subleading duality-even operator is irrelevant, but a

sufficiently large duality-even perturbation may yield a
“self-dual tricritical” point with an additional relevant
direction.
In Ref. [77], it was argued, using series expansions, that

the toric code with X, Y, and Z fields had a critical line,
with varying exponents, in the hx ¼ hz plane, which will be
interesting to investigate further, as continuously varying
exponents in 3D are rare. However, it should be noted that,
in the present language, the perturbation hy breaks both
internal and spatiotemporal symmetry. The toric-code
Hamiltonian with hx ¼ hz, discussed in Sec. II D, has a
duality symmetry D that we may take to be X → TðZÞ,
Z → TðXÞ, Y → −TðYÞ, where T represents a translation
by ð1=2; 1=2Þ. It also has an antiunitary time-reversal
symmetry, which we may take to act as X → X, Z → Z,
Y → −Y, i → −i. Adding the hY field breaks both of these
symmetries. (It preserves their product.) It would be
interesting to identify the leading continuum perturbation
of the self-dual critical point that is induced by the hy
coupling.
Recent work has demonstrated infinite-randomness scal-

ing for a range of Higgs transitions in 2þ 1D quantum
gauge theories with quenched disorder in the couplings
[138]. It would be interesting to study the effect of disorder
on the self-dual topological phase transition. The exponents
xS and xA imply that spatially uncorrelated quenched

FIG. 26. Schematic: some of the configurations contributing to
the correlator hÃðrÞÃðr0Þi in the model (39). Circles indicate
locations r, r0.
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disorder is a strongly relevant perturbation of the self-dual
critical point in its 2þ 1D quantum manifestation, regard-
less of whether this disorder preserves duality or not [139].

C. Dimensional crossovers

Various dimensional crossover effects may also be worth
studying. By making one of the three lattice directions finite
and of width 1=T ≫ 1 (with periodic boundary conditions),
we may study the effect of a low but nonzero temperature in
the quantum problem [91]. Standard considerations show
that on the boundaries of the phase diagram (at y ¼ 0 or
y0 ¼ 0), the 3D Ising* transitions give way to 2D Ising
transitions, but in the interior of the phase diagram, these
transitions become crossovers, with a finite correlation
length [140]. This correlation length is exponentially large
in 1=T at small T. In the worldline representation (5), this
scaling is associated with closed worldlines of the massive
anyon, which are of length 1=T and wrap around the
temporal cycle [141]. (This exponential scaling may be
why a numerical study of theZ2 gauge-Higgs model instead
reported finite-temperature transitions [142].) A line of first-
order transitions on the self-dual line will remain at small
finite temperature. What happens to the self-dual critical
point at nonzero temperature is less clear. The simplest
possibility is that it becomes a conventional critical endpoint
so that the interior of the phase diagram contains only a first-
order line, bounded by two conventional critical endpoints.
Other boundary condition choices for the finite dimen-

sion give other phase diagrams. For example, consider the
loop model (5) in a slab geometry of thickness l, with open
boundary conditions in the finite direction, with loop
strands forbidden from terminating on the boundary.
Physically, this can be obtained by taking a 2D quantum
system deep in the deconfined phase (corresponding to
y; y0 ≪ 1) and then varying the couplings inside a strip of
width l to allow anyons to proliferate there. Isolated
strands that span the finite direction are now forbidden,
so the mechanism that rendered the correlation length finite
in the previous quasi-2D geometry is removed. Instead,
after coarse-graining to scales much larger than l, we may
argue for an effective 2D loop model with two species of
loops (and with no nontrivial topological sign factor). Away
from the self-dual line, 2D Ising transitions are likely,
which are associated with proliferation of a single loop
species (a single anyon type). It may also be possible to
have a gapless Ashkin-Teller-like regime on part of the self-
dual line, where both species are critical.
If we think of the length-l direction here as imaginary

time instead of space, this setup may be related to the
interesting finding of 2D Ashkin-Teller criticality in a
deformed toric-code wave function, for which equal-time
correlators map to correlators in a 2D classical model [143].
This deformed wave function is given by a finite-depth
nonunitary circuit acting on the toric-code wave function.
This can be visualized in a path integral representation. In

the zero-temperature path integral for the deconfined phase,
the evolution for imaginary times ð−∞; 0Þ can be viewed as
preparing the ground-state ket and the evolution for times
ð0;∞Þ as preparing the corresponding bra. To obtain equal-
time correlators in the deformed wave function, we insert a
“slab” of finite temporal extent in between these two pieces,
representing the action of the nonunitary circuit on the bra
and ket. This is reminiscent of the setup for the quasi-2D
loop model above (since in the spactime region outside the
slab, we set y ¼ y0 ¼ 0, meaning that, in the loop model
picture, worldlines are forbidden except inside the slab).
It will also be interesting to characterize boundary

critical phenomena, and conformally invariant boundary
conditions, for the self-dual topological transition.

D. Comparison with XY� and other field theories

A striking feature of our numerical results is that the
values for scaling dimensions are close to certain values for
the 3D XY (starred) fixed point. Below, we discuss why this
is surprising, as well as some of the challenges for a field
theory treatment of the model.
At first sight—however, see below—a relationship with

XY appears to be a natural guess [6], by analogy with
conventional ordering transitions, where two Ising critical
lines (together with a first-order line) can meet at an XY
critical point. In the present model, flow to the XY fixed
point may be ruled out immediately, for example, by the
fact that the adjacent phases and the low-lying operators do
not match. But, in addition, “starred” (orbifolded) versions
of the XY fixed point may be ruled out—these also fail to
reproduce the universal physics.
Given two conventional Ising-like order parameters φx

and φy, and an additional Z2 symmetry that exchanges
them, XY criticality for φ ¼ ðφx;φyÞ can arise by tuning
one parameter because the symmetry-allowed “cubic”
anisotropy φ4

x þ φ4
y − 6φ2

xφ
2
y is a (weakly) irrelevant oper-

ator at the XY fixed point [144,145].
In the present model, we know that the Ising* transition

lines, away from the self-dual point, can be understood as
ordering transitions for “fictitious” (non-gauge-invariant)
Ising-like order parameters. Therefore, at first sight, it is
tempting to make an analogy with the above Landau theory,
which would mean identifying the operator S with the
thermal operator φ2 and the operator A with the symmetry-
breaking mass operator φ2

x − φ2
y. The scaling dimensions of

these operators in the XY model are xφ2 ¼ 1.51136ð22Þ
and xφ2

x−φ2
y
¼1.23629ð11Þ [146–148]. Strikingly, the

differences between these values and our results for xS
and xA in Table I are small, comparable in size with the
(statistical) error bars quoted in the table [149].
The basic problem with this analogy is that it ignores the

nontrivial mutual statistics between e and m excitations
[13,14,38] that are the key feature of the transition. These
mutual statistics do not affect critical exponents on the
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Ising* lines because only one of the two excitations is
massless on these lines. But both excitations become
massless at the self-dual critical point.
For example, any consistent description of the fixed

point should correctly reproduce the spectrum of low-lying
anyonic quasiparticles that exists when we perturb slightly
away from the self-dual critical point into the deconfined
phase. It is hard to see how this could be consistent with a
mapping that related the operators of the present fixed point
to those of the XY fixed point. For example, starred
versions of the anisotropic XY theory, in which we gauge
the order parameters φx, φy with flat gauge fields, man-
ifestly fail to capture these mutual statistics.
The argument against a connection with (starred) XY can

also be made in the geometrical pictures. In the membrane
picture, the possibility of defining a fictitious Ising order
parameter is associated with the membranes being effec-
tively closed on large scales, as discussed in Sec. IX. But at
the self-dual critical point, we have holes in these mem-
branes on all scales, as we have demonstrated explicitly.
Therefore, the attempt to make a connection with a simple
Landau theory, at least in this manner, fails at this
critical point.
Therefore, it seems very likely that the exponents xA and

xS at the self-dual critical point are numerically close to XY
exponents but distinct from them. (As we have seen, if the
exponents were the same as those of the XY fixed point, this
relationship between the operator spectrum of a topological
phase transition and that of a simple ordering transition
would have to be of a fundamentally new kind.) It would be
interesting to have an explanation for this closeness of
exponents in distinct universality classes [150].
Let us comment on another approach to a putative field

theory. This is to use a U(1) gauge theory, with symmetry-
breaking perturbations, as a “UV” starting point, hoping to
flow to the fixed point of interest. Progress on field theories
for deconfined criticality [10,44–55], including explicitly
self-dual formulations [51,52] (for instance, Ref. [52] con-
structs a symmetry-enriched Z2 topological order that
includes a self-duality within a larger symmetry group),
provides some insight. However, a basic challenge in this
approach is the need to eliminate global U(1) symmetries
associated with U(1) gauge flux conservation, which are
unphysical in the present context. This challenge requires
monopole perturbations in the Lagrangian. These operators
are not local functions of the fields in the Lagrangian, so they
are hard to treat. Concretely, one possibility is to start with
the well-known representation of Z2 topological order as a
Uð1Þ ×Uð1Þ gauge theory with a mutual Chern-Simons
term [151–154]. Each gauge field may be coupled to a
bosonic matter field, whose quanta are e and m anyons,
respectively, and transitions out of the deconfined phasemay
be induced by varying the masses of these particles. The
problem is that, as it stands, this field theory has globalUð1Þ
(flux conservation) symmetries that are not present in the

microscopic model we have been discussing. To faithfully
capture the symmetries of the problem of interest we must
include the appropriate symmetry-breaking terms in the
Lagrangian, which include (gauge-invariant) monopole
operators. As noted above, we are currently short of
techniques for treating field theories with such terms in
the Lagrangian. Therefore, while the above gives a formal
UVLagrangian that may flow to the fixed point of interest, it
is more challenging to construct a theory that is tractable or
predictive. We will discuss possible means of sidestepping
these obstacles to a field theory description elsewhere.

XI. OUTLOOK

The three-dimensional Z2 gauge-Higgs model is the
simplest nontrivial lattice gauge theory
[3,11,13,14,23,24,155]. Its remarkable duality property
allows for a self-dual topological phase transition whose
properties have long been unresolved. We have given direct
evidence for scale invariance at this transition, exploring
system sizes up to 2 orders of magnitude larger than the
lattice spacing. Exciting directions remain open, on the
computational, experimental, and theoretical fronts.
First, there are many intriguing questions that could be

addressed using further simulations. At the basic level,
armed with the accurate estimate of xc, further characteri-
zation of the critical point will be possible, examining the
scaling dimensions of a wider range of operators (Sec. X B)
and pinning down OPE coefficients more precisely
(Sec. VII). It will also be interesting to study correlators
involving extended operators [6,78,124,156].
We have also proposed new models that could be

simulated. The loop model in Sec. X A has a simplified
action of self-duality. It has a sign-free reformulation of a
nonstandard kind, as an ensemble of loops with a simple
topological constraint. (This connects, heuristically, to the
longstanding question from polymer physics of how to think
about the renormalization group formodelswith topological
constraints [60,157–165].) This sign-free formulation could
be exploited to determine the model’s phase diagram and
may suggest a more general strategy for obtaining sign-free
lattice models for topological transitions.
In the context of the standard lattice gauge theory, a

range of perturbations and crossovers may be studied
(Secs. X B and X C), for example, to search for self-dual
tricriticality.
The self-dual topological phase transition can be viewed

as a paradigmatic challenge for Monte Carlo algorithm
design. Although it is Monte Carlo sign-free (unlike many
other lattice gauge theories [166–169]), the lack of a
nonlocal cluster update [37] for ensembles of membranes
and the large dynamical exponent (Sec. VIII) make it
expensive to simulate. Creative algorithmic improvements
would be valuable. We might consider updates acting on
larger finite clusters, perhaps optimized using machine
learning [170,171].
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If we are in the deconfined phase but close to the
self-dual critical point, various features of the spectrum of
massive quasiparticles [14,77] will be universal and
could perhaps be examined using Monte Carlo [172],
series expansion [14,77], or tensor network techniques
[173,174]. For example, does the fermionic ϵ excitation
exist as a stable bound state in this regime, or does it
inevitably decay into an e and an m?
Even away from the self-dual point, interesting questions

remain. The existence of fictitious Ising order parameters
on the Higgs and confinement transition lines is the
key to the theoretical understanding of these transitions
[3,6,11,66]. We have argued that we can construct these
field configurations explicitly by a quasilocal patching
process in the membrane representation of the partition
function so that, for example, the Ising “two-point func-
tion” Gðr; r0Þ can be computed numerically. Formally, this
is the expectation value of a dressed string operator that
extends from r to r0 (Sec. IX). In a separate work, we will
analyze the emergence of this structure in more detail [78].
The self-dual critical point may be accessible experi-

mentally, either in its 3D classical or its 2þ 1D quantum
manifestation. It would be exciting to see the full structure
of the gauge-Higgs phase diagram, with the meeting of the
two Ising* lines, in experiments on amphiphilic membranes
(verifying a longstanding conjecture [6]). In order to access
this point, the membranes must have free edges, i.e., a
nonempty membrane boundary ∂M. However, the results
in Appendix B suggest that the required density of free
edges may be relatively small.
Strategies for quantum simulation of lattice gauge

theories are under intensive development [175–184], so
it may one day be possible to explore the self-dual critical
point and its real-time quantum dynamics experimentally.
Perplexing theoretical questions remain. Why are our

estimates for xA and xS so close to XY values (Sec. X D)?
Further numerical characterizations of the critical point
mentioned above may shed light on this. Significant input
may also come from the conformal bootstrap [185–188], by
exploring the space of theories with the requisite Z2

symmetry.
There remains the fundamental question that we started

with: Can we formulate a useful continuum field theory for
the self-dual topological transition? Criteria for “useful-
ness” could include the possibility of calculating exponents
in a systematic expansion, as well as the possibility of
deriving the structure of phase diagrams analytically. More
generally, the time seems ripe for a numerical and theo-
retical attack on phase transitions where multiple species of
anyons, with nontrivial statistics, simultaneously condense
[13,14,38,39].
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APPENDIX A: MEMBRANE
REPRESENTATION OF Z

We now review the standard relationship between the
Ising gauge theory partition function and partition func-
tions for membranes on either the original cubic lattice or
its dual [6]. In the interpretation as a 2D quantum system in
imaginary time, these membranes are world surfaces of
either electric or magnetic strings (cf. Fig. 6), depending on
whether we use the original lattice or the dual lattice. In
general, the strings (which live in a 2D spatial plane) can be
open lines, terminating at e or m particles in the respective
cases. Therefore, the membranes (which live in 3D space-
time) are not closed, in general, but rather have boundaries,
which are the worldlines of e or m particles, respectively.
The “action” of a given membrane configuration (the
logarithm of the Boltzmann weight) is, up to constants,
the area of the world surfaces plus the length of the
worldlines.

1. Membranes on the original lattice

Using the fact that the variables take only the values �1,
Z in Eq. (1) can be rewritten in a form convenient for a
standard graphical expansion:

Zðx;yÞ≡ 1

24L
3

X
fσg;fτg

Y
□

�
1þx

Y
σ

�Y
l

ð1þyσττÞ; ðA1Þ

with K ¼ 1
2
lnð1þ x=1 − xÞ and J ¼ 1

2
lnð1þ y=1 − yÞ. We

expand out the products over (1) plaquettes□ and (2) links
l in Eq. (A1), and represent a given term by coloring
plaquettes of the lattice and highlighting links in bold, as in
Fig. 4. A plaquette is colored (“occupied”) iff we pick the
“x

Q
σ” term for that plaquette, and similarly, a link is bold

if we pick the “yσττ” term. For a given term in the
expansion, the collection of occupied plaquettes constitutes
the membrane configuration M.
Now, for each term, we must sum over σ and τ. The term

will vanish if there is any link l where the terms we have
chosen contribute σl an odd number of times in total, which
means that the set of bold links must coincide with the
membrane boundary ∂M to have a nonvanishing term
(∂M is defined as the set of links where an odd number of
colored plaquettes meet). If this is satisfied, then the sums
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over σ and τ are both nonvanishing, giving trivial factors
23L

3

and 2L
3

, respectively, that cancel the normalization
term chosen in Eq. (A1). We are left with the partition
function as a sum over membrane configurations weighted
by xjMjyj∂Mj, Eq. (3).
From this expansion, we also see that the face and edge

operators defined in Sec. III may be written as

F ðpÞ ¼ x
1 − x2

�Y
l∈p

σl − x

�
; ðA2Þ

EðlÞ ¼ y
1 − y2

ðσijτiτj − yÞ; ðA3Þ

for a plaquette p and link l ¼ hiji, respectively.
For example, F ðpÞð1 − x

Q
l∈p σlÞ ¼ x

Q
l∈p σl, which

means that inserting F ðpÞ in a correlator has the effect of
restricting the expansion to terms where the plaquette p is
occupied. Equivalently, F ðpÞ is 1 if p is occupied and 0
otherwise. Anticipating the next subsection, let us also
write down the dual operators Edualðl�Þ and F dualðp�Þ,
where l� is a link of the dual lattice that is dual to (pierces)
some plaquette p of the original lattice, and p� is a
plaquette of the dual lattice that is pierced by some link
hiji of the original lattice. By the definition of the dual
membrane ensemble (see below),

F dualðp�Þ ¼ 1 − σijτiτj
2

; ðA4Þ

Edualðl�Þ ¼ 1 −
Q

l∈pσl
2

: ðA5Þ

The duality relations given in Eqs. (7) and (8) of the main
text follow from Eqs. (A2)–(A5) above.
The expansion above is the standard high-temperature

expansion,meaning that terms areweighted by powers of the
“fugacities” x and y, which are small whenK and J are small.
Since the lattice is finite, the expansion may be done exactly,
to all orders: i.e., onemay think of it as a reformulation of the
partition function and not as a perturbative series. It is a
generalization of the high-temperature expansion of the Ising
model, whichwould be obtained if the σ field was absent and
we just had loops associated with yττ.

2. Membranes on the dual lattice

Equation (A1) can be related to membranes on the dual
lattice even more directly.
Let us choose the gauge τ ¼ 1 so that the partition

function is a sum over only the σ ¼ �1 on each link. We
can represent a given term by a collection of occupied links,
where a linkl is occupied iff σl ¼ −1. (Note that this notion
of a link being occupied is unrelated to the one in the
previous subsection.) Next, recall that plaquettes of the dual
lattice are in 1∶1 correspondence with links of the original
lattice, so a configuration of occupied links is equivalent to a

configuration of occupied plaquettes fM on the dual lattice.

What is the Boltzmann weight of fM? Each occupied
plaquette costs x0 ≡ ð1 − yÞ=ð1þ yÞ [from the ratio of the
1þ yσ term in Eq. (A1) with σ ¼ −1 to that with σ ¼ þ1].
Further, a link of the dual lattice where an odd number of
occupied plaquettes meet means a square on the original

lattice where
Q

σ ¼ −1. So each link in ∂fM contributes
y0 ≡ ð1 − xÞ=ð1þ xÞ. Including the normalization,

Zðx; yÞ ¼ ð1þ xÞ3L3ð1þ yÞ3L3

23L
3

X
M̃

x0jeMjy0j∂ eMj: ðA6Þ

3. Manifestly self-dual representation

Next, we demonstrate the reformulation in terms of two
species of loops (or, more precisely, clusters), cf. Fig. 5.
In addition to the degrees of freedom σ and τ on the links

and sites (respectively) of the original lattice, let us add
degrees of freedom σ̃ and τ̃ on the links and sites of the dual
lattice. Let us denote the links of the original lattice by L
and those of the dual lattice by eL. Define
Z0 ¼

X
σ;τ;σ̃;τ̃

e−Stop½σ;σ̃�
Y
l∈L

ð1þ yσττÞ
Y
l̃∈L̃

ð1þ y0σ̃ τ̃ τ̃Þ: ðA7Þ

The “topological” action Stop½σ; σ̃� is both gauge invariant

and symmetric between σ and σ̃: e−Stop ¼ ð−1ÞX̂, where X̂ is
the Z2 linking number of the flux lines of σ with those of σ̃.
However, it is convenient here to define it as

e−Stop ¼
Y
l̃∈L̃

�
δσ̃l̃;1 þ δσ̃l̃;−1

Y
σ

�
; ðA8Þ

where these properties are not manifest.
To see the equivalence to the original Ising gauge theory

(A1), we simply pick the gauge τ̃ ¼ 1 and do the sum on σ̃
separately for each link,

X
σ̃

�
δσ̃l̃;1 þ δσ̃l̃;−1

Y
σ

�
ð1þ y0σ̃Þ

¼ ð1þ y0Þ
�
1þ x

Y
σ

�
; ðA9Þ

so that

Z0 ¼ 2L
3ð1þ y0Þ3L3

X
fσg;fτg

Y
□

�
1þ x

Y
σ

�Y
l

ð1þ yσττÞ:

ðA10Þ

To obtain the expression in terms of Ce and Cm in Eq. (5),
we first perform the graphical expansion of the two
products in Eq. (A7), giving the sum over loop
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configurations Ce and Cm (Fig. 5). In addition to the
fugacities y and y0, these are weighted by

X
σ;σ̃

e−Stop
�Y

l∈Ce

σl

��Y
l̃∈Cm

σ̃l̃

�

¼ 2ð4L3þ2Þð−1ÞXðCe;CmÞ: ðA11Þ

We can see this by using Eq. (A8) to make a graphical
expansion of the left-hand side above in terms of a
membrane configuration M on the original lattice with
boundary ∂M ¼ Ce. For a given term in the expansion, the
σ̃ are fixed by the Kronecker deltas, which dictates the sign
of the product

Q
l̃∈Cm σ̃ on the lhs of Eq. (A11). There are,

for periodic boundary conditions, 2L
3þ2 choices of M for

fixed ∂M ¼ Ce, but they all give the same sign. Altogether,

Z0 ¼ 2ð6L3þ2ÞX
Ce;Cm

ð−1ÞXðCe;CmÞyjCejy0jCmj: ðA12Þ

Summarizing, Z0 can be related to Z in Eqs. (3)
and (A1) by

Z ¼ 4c
X
Ce;Cm

ð−1ÞXðCe;CmÞyjCejy0jCmj; ðA13Þ

where c ¼ 2L
3ð1þ y0Þ−3L3 ¼ 2−2L

3ð1þ xÞ3L3

, which gives
Eq. (5) of the main text. The proportionality constant c
[omitted in Eq. (5)] is a trivial (nonuniversal) extensive
contribution to the free energy, but the factor of 4 is
universal and is the ground-state degeneracy of the 2D
quantum system in its deconfined phase.

APPENDIX B: FIRST-ORDER COEXISTENCE

Although we have concentrated our study on the vicinity
of the multicritical point, we can extract from the data some
information related to the first-order coexistence region
along the self-dual line. Starting from the deconfined phase

(large x), this region starts at the multicritical point xc and
ends at a critical endpoint xcep. The estimate xc ≈ 0.6367
was obtained in Secs. IV and V. The location of xcep is, in
principle, easier to determine because in this region, b4ðAÞ
[defined in Eq. (21)] behaves monotonically and presents a
crossing, as shown in Fig. 27. From the figure, we roughly
estimate xcep ≈ 0.605. Though this is a rough estimate, it is
worth noting that the value of b4ðAÞ at the crossing point is
consistent with standard Ising universality (as for the
liquid-gas critical endpoint), for which b4ðAÞ ≈ 0.7 [189].
In between xc and xcep, histograms of A or of the total

membrane area or membrane boundary length have two
peaks, corresponding to the two coexisting phases. For
large system sizes, our MC scheme will not properly
sample both minima, so it could become hard to obtain
equations of state for each phase. However, we can exploit
the symmetry properties of A and S. Denoting expectation
values in the two equilibria by h…i�, in the thermodynamic

FIG. 27. We show b4ðAÞ ¼ −ð1=2Þκ4ðAÞ=VarðAÞ2 as a func-
tion of x for three system sizes. The lines are cubic
polynomial fits.

FIG. 28. Top panel: average plaquette occupation number
versus x obtained from hjAji and hSi on the self-dual line (see
text). The limits of these curves as L → ∞ give the two equations
of state for the two coexisting phases. The colors in the legend
indicate different system sizes. The dashed black line is the
average of the two coexisting phases, determined by hAi ¼ 0, and
the black stars indicate the locations of xcep and xc (xcep < xc).
Lines are just a guide to the eye. Bottom panel: similarly for the
average link occupation number.
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limit, we have hAi� ¼ �hjAji. Therefore, by Eqs. (9)
and (10),

hAreai�
3L3

¼ �hjAji þ hSi
12

; ðB1Þ

hLengthi�
3L3

¼ 1 − x2

2x
�hjAji − hSi

12
þ 1 − x

2
; ðB2Þ

on the coexistence region of the self-dual line and in the
thermodynamic limit. These equations give equations of
state for each phase. The results are shown in Fig. 28.

APPENDIX C: DETAILS OF MC SCHEME
AND OF FITS

For most of our simulations, each MC step consists in
updating all of the plaquettes (taking each of the three
orientations in turn) and then updating all of the cubes. To
allow parallelization, we divide plaquettes parallel to the
ðx; yÞ plane into two sublattices, and similarly for pla-
quettes in the ðy; zÞ and ðx; zÞ planes. We also divide cubes
into two sublattices. We use one MC step as our unit of
time. We study system sizes up to L ¼ 96, and our longest
simulations had 4 × 109 MC steps. Error bars for cumulants
of A and S are calculated using bootstrap methods [37] (for
this purpose, the correlation time is estimated as the time
for the correlation to decay by a factor of 10).
For the fits in Sec. V, the scaling functions were described

using B-splines with 8 to 12 degrees of freedom. The data
used for the fits were restricted to x ∈ ½0.633; 0.640� and to
scaling variable z ∈ ½−0.5; 0.5�, although the particular
intervals could slightly change from fit to fit. The system
sizes included correspond to the best statistical fit, in the
sense that the p-value (probability of getting a χ2 value

below the one obtained from the fit, for the degrees of
freedom used) was maximized.

APPENDIX D: FURTHER PERCOLATION DATA

1. Percolation at the Ising* transition (x= 1)

The transition at x ¼ 1 maps to the 3D Ising critical
point. Up to a difference in boundary conditions, the
worldlines are those in a standard high-temperature expan-
sion of the Ising model, and the percolation transition
happens precisely at the Ising critical point for the cubic
lattice, y ¼ 0.21809. We indeed find that curves for the
spanning probability Ps cross close to this value and can be
collapsed by plotting as a function of ðy − ycÞL1=ν, using
known Ising critical values, yc;I ¼ 0.21809 and νI ¼
0.63012 [131] (see Fig. 29). We also check that the mass
of the largest loop (number of links,Mmax) follows a power
law with a fractal dimension consistent with the known
value df;I ¼ 1.7349ð65Þ for Ising worldlines [131]. The
inset of Fig. 29 showsMmax as a function of the system size
at y ¼ 0.218.

2. Percolation on the y= 1 boundary

When the percolation transition takes place within the
thermodynamically trivial phase, we expect conventional
percolation universality [190]. As an example, we consider
the case y ¼ 1. An attempt to obtain scaling collapse of Ps
suggests that finite-size effects are important for this range
of system sizes. Figure 30 shows an attempt at scaling
collapse using νP ¼ 0.8762 [192]. An estimate of the
fractal dimension of the loops from Mmax (inset to
Fig. 30) gives df ¼ 2.56 (to be compared with 2.53 for
the percolation universality class).

FIG. 29. Main panel: scaling collapse of Ps as a function of
ðy − yc;IÞL1=νI , for x ¼ 1, with yc;I ¼ 0.21809 and νI ¼ 0.63012.
Inset: Mmax as a function of the system size L at x ¼ 1,
y ¼ 0.218. The straight line shows a power law using the fractal
dimensions of Ising worldlines df;I ¼ 1.7349.

FIG. 30. Main panel: scaling collapse of Ps as a function of
ðx − xcPÞL1=νP , for y ¼ 1, with xcP ¼ 0.0865 and νP ¼ 0.8762.
Inset: Mmax as a function of the system size L at x ¼ 0.087. The
straight line shows the power law with fractal dimension of
percolation universality class, df;P ¼ 2.53.
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3. Percolation on the self-dual line

The phase diagram in Fig. 22 in the main text shows that
we encounter several percolation transitions as we move
along the self-dual line. We have shown data close to the
self-dual critical point xc in the main text. For smaller x, we
encounter the first-order line where two phases coexist, one
with A > 0 and one with A < 0. To separate the properties
of the two coexisting phases, we may average Ps separately
for configurations with A > 0 and A < 0. The phase with
A > 0 appears to percolate throughout the entire range of
the first-order line. Therefore, the phase with A < 0 must
also percolate for some region of the first-order line close to
the critical endpoint (since the two phases become identical
there). One possibility (at first sight, the more natural) is
that the phase with A < 0 undergoes a percolation tran-
sition at some intermediate x lying on the interior of the
first-order line. Another possibility is that this transition is
pushed all the way to xc, with the A < 0 phase having an
extremely weak but nonzero percolation order parameter
for x≲ xc. Data for small sizes do not allow us to determine
which of these occurs.
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