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Charge profiles in liquid electrolytes are of crucial importance for applications such as supercapacitors,
fuel cells, batteries, or the self-assembly of particles in colloidal or biological settings. However, creating
localized (screened) charge profiles in the bulk of such electrolytes generally requires the presence of
surfaces—for example, provided by colloidal particles or outer surfaces of the material—which poses
a fundamental constraint on the material design. Here, we show that topological defects in nematic
electrolytes can perform as regions for local charge separation, forming charged defect cores and, in some
geometries, even electric multilayers, as opposed to the electric double layers found in isotropic
electrolytes. Using a Landau-de Gennes-Poisson-Boltzmann theoretical framework, we show that ions
highly effectively couple with the topological defect cores via ion solvability and with the local director-
field distortions of the defects via flexoelectricity. The defect charging is shown for different defect types—
lines, points, and walls—using geometries of ionically screened flat isotropic-nematic interfaces, radial
hedgehog point defects, and half-integer wedge disclinations in the bulk and as stabilized by (charged)
colloidal particles. More generally, our findings are relevant for possible applications where topological
defects act as diffuse ionic capacitors or as ionic charge carriers.
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I. INTRODUCTION

The ability to spatially control electric charge has
relevance in a range of fields—from charged polymers
[1,2], and biological [3] and active matter [4], to colloidal
materials [5], complex fluids [6], and even microelectronics
[7]. Of special importance are systems where the charge
carriers are ions, the so-called electrolytes; they occur in
applications such as fuel cells, batteries, actuators, and
sensors, but also in the biological context in cells (aqueous
electrolytes). Electrolytes can be based on liquids [8],
polymer gels [9], or solids [10], and depending on the
application, physical properties such as high ionic conduc-
tivity or specific electrode compatibility are desired.
However, importantly, the ability to locally control the
charge or charge profiles in these types of electrolytes is
limited in the sense that separating charges—i.e., creating
electric double layers—generally requires the presence of

an interface, such as a solid-liquid or a liquid-liquid
interface. Here, we show that so-called nematic (liquid-
crystalline) electrolytes are free of these limitations because
of their partially ordered (orientational) structure.
The coupling of ionic charges to orientational (tensorial)

order in nematic electrolytes, as we shall show, has some
analogy with the ionic coupling to the composition (scalar)
profile in mixtures of two (or more) partially immiscible
fluids, such as oil and water, where the charge accumulates
at the interface between the different components [11–16].
The difference of ion solvability between the two phases in
such fluid-fluid mixtures, or ion partitioning, gives rise to
the Donnan (or Galvani) potential between the oil and
water bulk phases and also electrifies the oil-water interface
by the formation of a back-to-back electric double layer at
the oil-water interface [17,18], mirroring the depletion
region of semiconductor PN junctions. Consequently, the
fluid-fluid interfacial tension is altered [19], and the inter-
face carries an intrinsic capacitance, which can alter the
total capacitance of electrochemical cells [20,21]. These
approaches were shown recently to even drive surface
phase transitions between various types of electric double
layers containing an antagonistic salt [22]. However, there
is limited control for the positioning of an oil-water
interface and, therefore, for where the double layer forms.
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In contrast, nematic fluids, because of their increased
degree of order compared to isotropic fluids while still
being fluidlike, offer more possibilities for charge control.
The manipulation of the electric charge–typically as

free ions—was explored in nematic fluids for various
motivations. A known example was the first LCD display
that used ionic doping [23]. More recently, charge and ions
have been shown to affect ion transport [24–27], surface
anchoring [28–30], colloidal self-assembly [31–33], and
surface charge control [34]. Nematic fluids possess orienta-
tional order of their building blocks, which can exhibit
topologically protected patterns, called topological defects.
Topological defects in the form of points, lines, and walls
can be ascribed different topological invariants, including
winding number and topological charge (different from
electric). In recent years, the control of nematic topological
defects advanced to the level that they can be designed and
created into topological elements as diverse as loops,
points, solitons, and even knots [35–41], establishing an
effective, topological, soft-matter platform capable of
diverse topological manipulations on the microscopic level,
including with optical tweezers [42], external fields
[43–45], and even driving with active matter [46]. The
central idea of this paper is that efficient charge separation
in the bulk of the material, combined with the possibility to
manipulate the topological defects of nematic electrolytes,
can then lead to the capacity to use topological defects as
controllable fluidlike microelectronic elements.
In this paper, we demonstrate the use of nematic

topological defects for bulk manipulation of free ions using
mesoscopic numerical modeling based on a Landau-de
Gennes-Poisson-Boltzmann approach. Specifically, we
show that coupling of ions to the nematic-ordered structure
is particularly strong in topological defects and leads to
charging of the defect cores, which are then screened by
bulk electric “multi” (double) layers. Selected topological
defect geometries are used to demonstrate the concept of
electric charging of topological defects, including point
hedgehog, �1=2 wedge defect lines, and (Saturn-ring)
defect loops around spherical colloidal particles. The
charging mechanism of the topological defects is shown
to be governed by ion partitioning and coupling to
flexoelectricity and order electricity, which can be under-
stood from the simplified geometry of a flat isotropic-
nematic interface. More generally, the idea of this paper is
that topological defects as part of a more general, topo-
logical, soft-matter platform could be transformed into soft
microelectronic circuits.

II. METHODS AND MATERIAL SYSTEM

We consider systems where the orientational order of a
nematic electrolyte couples to ionic degrees of freedom,
as schematically shown in Fig. 1. The exemplary materials
are ion-doped nematic electrolytes, where the medium
can be either thermotropic or lyotropic, with dielectric

anisotropy [47] and flexoelectricity [48]. A strong approach
to explore topological defects at the mesoscale is by
constructing the total free energy of the system F from
different elementary contributions [49,50],

F ½ϕ; ρ�;Q� ¼ FLC½Q� þ F S½ρ�� þ FC½ρ�;Q�
þ FEL½ϕ; ρ�;Q�; ð1Þ

with ϕðrÞ=ðβqeÞ being the electrostatic potential, qe the
elementary charge, and β−1 ¼ kBT the thermal energy. We
denote the ionic number densities of cations (anions) by
ρþðrÞ (ρ−ðrÞ), and the nematic-order parameter tensor with
QðrÞ. We specify each contribution below.
The free energy of a distorted—elastically or by a

variable nematic degree of order—nematic electrolyte is
described by the Landau-de Gennes free energy [49]:

FLC½Q� ¼
Z

dr

�
L
2
∂kQijðrÞ∂kQijðrÞ þ

A
2
tr½QðrÞ2�

þ B
3
tr½QðrÞ3� þ C

4
ftr½QðrÞ2�g2

�
; ð2Þ

with L the single elastic constant, and A, B, and C Landau-
de Gennes bulk parameters. The single elastic constant is
used for simplification, but we also note that many nematic
materials have three different elastic constants of similar
values.
The nonelectrostatic part of the ions is modeled as an

ideal gas contribution to the free energy [51],

FIG. 1. Scheme of a nematic topological defect loop, with the
isotropic core visualized in green, where positive and negative
ions redistribute according to the local order parameter, director
field, and flexoelectric polarization.
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βF S½ρ�� ¼
X
α¼�

Z
dr ραðrÞfln½ραðrÞΛ3

α� − 1g; ð3Þ

with Λ� being the thermal de Broglie wavelength for
cations and ions, respectively. The ions are electrostatically
coupled to each other and to Q via a dielectric (tensorial)
coupling and via flexoelectricity and order electricity,

βFEL½ϕ; ρ�;Q� ¼
Z

dr

�
qðrÞϕðrÞ þ∇ϕðrÞ ⋅ Pf(QðrÞ)

−
1

8πλBϵ̄
ϵijðQðrÞÞ∂iϕðrÞ∂jϕðrÞ

�
; ð4Þ

with the flexoelectric and order-electric polarization qePf

given in the one-constant approximation,

ðPfÞiðrÞ ¼ G∂jQijðrÞ; ð5Þ

withG the flexoelectric constant. Note that the flexoelectric
and order-electric modes are mixed in the one-constant
approximation; henceforth, when we mention flexoelec-
tricity, it is implied that we mean flexoelectricity and order
electricity, unless stated otherwise. The different flexo-
electric and order-electric modes can be independently
tuned, if higher-order terms in gradients of Q are consid-
ered [52]. The ideal gas formulation of the nonelectrostatic
part of the ionic free energy is based on selected assump-
tions: Ion concentrations are sufficiently low, so effects
such as Bjerrum pair formation [53] and ion packing [54]
can be neglected. For the electrostatic part, we assume that
dipolar effects [55] are sufficiently weak such that only the
minimal couplings are needed, and mesogens are not net
charged [56]. The dielectric tensor in nematic electrolytes is
given by [49] ϵijðrÞ ¼ ϵ̄δij þ 2

3
ϵamQijðrÞ, with ϵ̄ the iso-

tropic dielectric constant and ϵam the molecular dielectric
anisotropy. Finally, we introduce the isotropic Bjerrum
length λB ¼ βq2e=ð4πϵ0ϵ̄Þ, with ϵ0 the vacuum permittivity.
The solvation-energy (or ion-partitioning) contribution

FC½ρ�;Q� is a nonelectrostatic coupling of QðrÞ with
ρ�ðrÞ,

βFC½ρ�;Q� ¼
X
α¼�

Z
dr gαραðrÞtr½QðrÞ2�; ð6Þ

which can be interpreted as a coupling of ρ�ðrÞ to an
external potential βV�ðrÞ ¼ g�tr½QðrÞ2�, with g� the
dimensionless Gibbs transfer energies [57,58]. The g�
can be interpreted as the free-energy cost for an ion to
be transferred from the isotropic phase to the nematic
phase, and it can be experimentally determined [59]. A
similar contribution to the free energy has been investigated
in lyotropic liquid crystals [60], changing the isotropic-
nematic transition temperature. Such couplings are typical
in solutes, which are usually more soluble in a more

disordered phase; for example, compare the solvability
of a solute in gases, liquids, and solids. In binary fluid-fluid
mixtures, free-energy contributions of this type are intro-
duced, either via linear coupling [61–63] or via couplings
based on the lattice gas [13].
For the results presented, we use the following

material parameters, which are typical for standard nem-
atics: L¼4×10−11 Jm−1, A¼−0.172×106 Jm−3, B ¼
−2.12 × 106 Jm−3, C ¼ 1.74 × 106 Jm−3 [with an equi-
librium nematic degree of order Sb ¼ 1

2
ð−B=3Cþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðB=3CÞ2 − 8A=3C
p

Þ ≈ 0.53], and dielectric properties
[64] ϵ̄ ¼ 10.3 (so λB ¼ 6 nm), ϵmk ¼ 33.3, ϵm⊥ ¼ 12.4,
and ϵma ¼ ϵmk − ϵm⊥. Typical values for the flexoelectric

coefficient for calamitics are qeG ¼ 1–10 pCm−1

[65,66], whereas bent-core nematics can have values in
the nCm−1 range [67]. For solvability of ions in nematics,
we assume that they are dissolved better in the disordered
(isotropic) phase, taking gþ ¼ 3 and g− ¼ 8; note that the
exact numbers depend on the type of solvent, the temper-
ature, and the type of ions. Negative values of g�
correspond to a preference for the nematic phase, which
we will not consider here but can be equally implemented.
Finally, typical (isotropic) Debye screening lengths in
thermotropics are between 50 and 1000 nm [29,68–70],
and with doping, even values of about 1 nm can be reached
[71]. We generally focus on regimes where Bjerrum pair
formation can be neglected based on studies in isotropic
electrolytes; see Fig. 4 in Ref. [53]. However, in order to
have Debye lengths comparable to the defect size to
highlight the effects of ion partitioning, in some cases
we also choose densities (∼10−4 M) where Bjerrum pair
formation could be a possibility based on Ref. [53], noting
that, to the best of our knowledge, Bjerrum pair formation
is only poorly understood in anisotropic dielectric materi-
als. For all numerical calculations performed in this work,
we use the finite-element software package COMSOL

Multiphysics.

III. ELECTRIC DOUBLE LAYER OF AN
ISOTROPIC-NEMATIC INTERFACE

First, we demonstrate the ion-nematic couplings in the
simple geometry of a flat isotropic-nematic (IN) interface,
which provides central insights into the ion coupling in the
cores of nematic-electrolyte topological defects. To obtain
analytical insight, we assume that the nematic order is
uniaxial,

QijðrÞ ¼
3

2
SðrÞ

�
niðrÞnjðrÞ −

1

3
δij

�
; ð7Þ

with SðrÞ the scalar uniaxial order parameter and nðrÞ the
nematic director. We assume n ¼ ez to find the Euler-
Lagrange (EL) equations δF=δSðzÞ ¼ 0,
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3

2
βLS00ðzÞ þ Gϕ00ðzÞ þ ϵma

12πλBϵ̄
½ϕ0ðzÞ�2

¼ 3SðzÞ
X
α¼�

gαραðzÞ þ
∂
∂S

�
9

16
βC½SðzÞ�2½SðzÞ − SIN�2

�
;

ð8Þ

with SIN ¼ −2B=ð9CÞ ¼ 0.272, and a prime indicating a
spatial derivative with respect to z. From δF=δϕðzÞ ¼ 0,
we find the Poisson equation

�
(1þ 2

3

ϵma
ϵ̄
SðzÞ)ϕ0ðzÞ − 4πλBGS0ðzÞ

�0

¼ −4πλB½ρþðzÞ − ρ−ðzÞ�; ð9Þ

where δF=δρ�ðzÞ ¼ μ� gives

ρ�ðzÞ ¼ ρs exp

�
∓ϕðzÞ − 3

2
g�SðzÞ2

�
: ð10Þ

The ions are grand-canonically coupled to an isotropic
reservoir of total bulk ion density 2ρs and chemical
potential βμ� ¼ lnðρsΛ3

�Þ. Note that another choice of
the assumed uniform director field would renormalize the
values of G and L.
The set of Eqs. (8)–(10) has selected analytical solutions:
(i) For ρs ¼ G ¼ 0, the analytical solution is [18,72]

SðzÞ ¼ SIN
2

�
1þ tanh

�
z
2ξ

��
; ð11Þ

with ξ ¼ 3
ffiffiffiffiffiffiffiffiffi
3LC

p
=ð−BÞ the correlation length.

We fix the integration constants such that the mean
order parameter equals SIN=2 and that, for z > 0, we
have the nematic phase, while for z < 0, we have the
isotropic phase.

(ii) For G ≠ 0 and ρs ¼ 0, the Poisson equation can be
integrated to find

ϕðzÞ ¼ 6πλBG
ϵma

ln

�
1þ 2

3

ϵma
ϵ̄
SðzÞ

�
: ð12Þ

This result shows a potential difference ϕO between
the isotropic and nematic phases, where we set the
potential in the bulk isotropic phase to zero, with

ϕO ¼ 6πλBG
ϵma

ln

�
1þ 2

3

ϵma
ϵ̄
SIN

�
: ð13Þ

We estimate the magnitude of this potential by using
values of standard nematic electrolytes (see Sec. II)
to find that ϕO ¼ 0.2–2. At room temperature,
this result is equivalent to 5–50 mV—substantially
large potential differences to which ion densities can
couple.

(iii) For G ¼ 0 and L → 0 (regime of small nematic
elasticity), the IN interface becomes sharp, i.e.,
SðzÞ ¼ 0 for z < 0 and SðzÞ ¼ SIN for z > 0. The
Poisson equation then reduces to the modified
Poisson-Boltzmann equation,

ϕ00ðzÞ ¼
�
κ2I sinh½ϕðzÞ� z < 0

κ2N sinh½ϕðzÞ − ϕD� z > 0:
ð14Þ

Here, ϕD ¼ ð3=4ÞS2INðg− − gþÞ is the Donnan po-
tential. We write the Debye screening length κ−1N
(κ−1I ) in the nematic (isotropic) phase, with κ2i ¼
8πλiBρ

i
s, i ¼ I,N with isotropic bulk density ρIs ¼ ρs,

and nematic bulk density ρNs ¼ ρs exp½−ð3=4Þ×
S2INðgþ þ g−Þ�. Furthermore, we write the isotropic
Bjerrum length λIB ¼ λB and nematic Bjerrum length
λNB ¼ λBðϵ̄=ϵNÞ, with ϵN ¼ ϵ̄þ ð2=3Þϵma SIN. Equiv-
alent to the boundary condition ϕ0ðzÞ ¼ 0 for
z → �∞, we can impose charge neutrality of the
bulk fluids, which gives us the boundary conditions
limz→−∞ ϕðzÞ ¼ 0 and limz→∞ ϕðzÞ ¼ ϕD. Together
with these boundary conditions, the solution of
Eq. (14) is equivalent to that of ions partitioning
over an oil-water interface [73]:

ϕðzÞ¼

8>><
>>:
2log

�
1þCI expðκIzÞ
1−CI expðκIzÞ

�
z<0

2log

�
1þCN expð−κNzÞ
1−CN expð−κNzÞ

�
þϕD z>0;

ð15Þ

with integration constants CI and CN . Moreover,
ϕðzÞ is continuous at z ¼ 0, and there is a continuity
condition for the dielectric displacements, ϵ̄ϕ0ð0−Þ¼
ϵNϕ

0ð0þÞ. If we define χ ≔ κI ϵ̄=ðκNϵNÞ, then the
integration constants can be compactly written as

CI ¼
χ þ coshðϕD=2Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ2 þ 2χ coshðϕD=2Þ

p
sinhðϕD=2Þ

ð16Þ

and

CN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þχ2þ2χ coshðϕD=2Þ

p
−1−χ coshðϕD=2Þ

χ sinhðϕD=2Þ
:

ð17Þ

Finally, we find the density profiles

ρ�ðzÞ ¼

8>><
>>:

ρIs
h
1∓CI expðκIzÞ
1�CI expðκIzÞ

i
2

z < 0

ρNs
h
1∓CN expð−κNzÞ
1�CN expð−κNzÞ

i
2

z > 0:
ð18Þ
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From this analytical solution, we learn that g� has
various effects. On the one hand, it causes a potential
difference between the isotropic bulk and the nem-
atic bulk, set by the difference g− − gþ. In addition,
these quantities renormalize the bulk ion densities
set by the sum gþ þ g−, and, consequently, the
screening length is affected. We can imagine this
process as follows: A back-to-back electric double
layer is formed with a higher charge density at the
isotropic side of the interface, compensated by a
lower, but spatially more extended charge density at
the nematic side.

In addition to the analytical solutions (i)–(iii), we numeri-
cally solve the full electric double layer at the isotropic-
nematic interface, with the results presented in Fig. 2. We
find that order electricity (or dielectric anisotropy) does not
affect the interface structure, as described by SðzÞ, to
a significant extent for these low salt concentrations [see
Fig. 2(a), red line], which can be understood from Eq. (8),
where the effective elastic torque (first term) dominates the
dielectric and flexoelectric torques (second and third terms,
respectively). Furthermore, in contrast to the unscreened
case [Eq. (12)], there is no potential difference between the
isotropic and nematic bulk [see Fig. 2(b), red line], although
an electric field is generated close to the interface, as
indicated by the modulation of the electrostatic potential
around the isotropic-nematic interface. From the ion density
profiles, we see that an electric double layer is formed where
the bulk densities in the isotropic and nematic phases are
equal [see Fig. 2(c), red lines]. Hence, the absence of a
potential difference of the two bulk phases can be understood
in terms of maintaining bulk charge neutrality. Finally, for
G > 0, the isotropic side of the interface is positively
charged, whereas the nematic side is negatively charged,
where the polarity of the double layer switches sign
for G < 0.
When only ion partitioning is included, the interface

structure is not substantially affected for these dilute
systems [Fig. 2(a), green line], similar to what is known
for isotropic electrolytes [62]. Furthermore, a Donnan
potential is generated between the isotropic and nematic
phases [Fig. 2(b), green line], similar to the infinitely sharp
interface [Eq. (15)]. Again, a back-to-back electric double
layer is formed at the interface, as in the order-electric
case, with the main difference being that the ion bulk
densities and screening lengths in the isotropic and nematic
phases are unequal [see Fig. 2(c), green line]. For this
specific choice of parameters, the isotropic side of the
interface is negatively charged, and the nematic side is
positively charged.
When both ion partitioning and order electricity are

taken into account, we see their combined effects in the
electrostatic potential [Fig. 2(b), blue line]. There is a
potential difference, but a nonmonotonic modulation also
appears close to the interface. In this specific case, the

order-electric effect generates a double layer with opposite
polarity compared to the double layer formed by ion
partitioning. The result is that order electricity flips the
sign of the charge compared to the ion-partitioning-only
case because we have chosenG to be sufficiently large. The
charge of the double layer in the order-electric case would
have been enhanced when combined with ion partitioning
if we had chosen gþ > g− instead of g− > gþ as was done
in Fig. 2.

IV. ELECTRIC DOUBLE LAYER OF A RADIAL
HEDGEHOG TOPOLOGICAL DEFECT

Topological defects in nematic electrolytes have topo-
logically distinct director-distortion profiles, which are
electrostatically susceptible to mechanisms of order

(a)

(b)

(c)

FIG. 2. Electric double layer of flat isotropic nematic interface
(positioned at z ¼ 0). We show the effect of order electricity and
ion partitioning on (a) the order parameter profile SðzÞ, (b) the
dimensionless electrostatic potential ϕðzÞ, and (c) the ion
densities for anions ρ−ðzÞ (solid lines) and cations ρþðzÞ (dashed
lines). In all plots, we use κ−1I ¼ 50 nm, which results in a bulk
ion density in the isotropic phase ρIs ¼ 4.4 × 10−6 M, and the
nematic correlation length is ξ ¼ 20 nm. When order electricity
is included, we use the order-electric coefficient qeG¼
1 pCm−1, and when ion partitioning is included, we use gþ¼3
and g− ¼ 8.
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electricity and flexoelectricity. An elementary topological
defect in nematic electrolytes is the uniaxial radial hedge-
hog defect (n ¼ er), and we demonstrate that such a
topological defect can be charged with ions. The EL
equations are solved using a spherical box with radius R,
exploiting the spherical symmetry and assuming boundary
conditions S0ð0Þ ¼ S0ðRÞ ¼ 0 and no free surface charge
density. In Fig. 3, we show the electric-double-layer
characteristics for regimes of (i) nonzero flexoelectricity
G ≠ 0 and no ion partitioning g� ¼ 0 (red curves), (ii) zero
flexoelectricity G ¼ 0 and preferred ion solvability in the
isotropic phase g� > 0 (green curves) and, (iii) nonzero
flexoelectricity G ≠ 0 and preferred ion solvability in the
isotropic phase g� > 0 (blue). In line with the results for the
flat interface in Sec. III, we observe that the order parameter

profile (i.e., the molten defect core) is only weakly
influenced by the presence of ion partitioning or flexoelec-
tricity and order electricity [see Fig. 3(a)]. As usual, we
observe an isotropic core and that the order parameter
attains its bulk value for r sufficiently large [74].
The electrostatic potential in the defect is strongly

dependent on the value of g� and G [see Fig. 3(b)] with
the potential difference generated between the isotropic
core and the nematic bulk. The main difference from the
flat isotropic-nematic interface is that the electrostatic
potential at the core center does not vanish, ϕð0Þ ≠ 0.
This difference indicates that even when the core is
perfectly isotropic, there is a net ionic charge density, as
can be understood from Eq. (10). In other words, the
isotropic core is too small to effectively perform as an
isotropic bulk, and this is also apparent in the ion density
profiles, where ρ�ðrÞ do not attain their bulk values ρIs in
the isotropic core [see Fig. 3(c) for any of the three cases].
Actually, it is difficult to attain bulk neutrality in the
isotropic phase because the interfacial width is relatively
large. Oil-water droplets, in contrast, have been studied,
where local charge neutrality in the droplet is achieved in
Ref. [75], but these droplets are much larger than the
isotropic core of an uniaxial hedgehog. However, we still
use ρIs (and not ρNs ) as our reference density because then
the same reference density is used for both the flexoelectric
case and the ion partitioning case (recall ρNs ¼ ρIs for
g� ¼ 0), but they are unequal for g� ≠ 0.
From Fig. 3(c), we see that the defect core carries a net

charge. We calculate this net charge N as

N ¼
Z
r<Rc

dr ½ρþðrÞ − ρ−ðrÞ�; ð19Þ

where Rc is an arbitrarily chosen cutoff radius for which the
system attains an order parameter of half its bulk value
(Rc ≈ 25 nm). In Fig. 4, we show the dependence ofN with

(b)(a)

FIG. 4. Total charge number N in the isotropic core of a
radial hedgehog defect for varying values of the flexoelectric
or order-electric coefficient G as a function of the isotropic
Debye screening length κ−1I . Panel (a) corresponds to a
regime with no ion partitioning, gþ ¼ g− ¼ 0, and panel
(b) corresponds to one with ion partitioning, gþ ¼ 3 and
g− ¼ 8. The system size is 250 nm.

(c)

(b)

(a)

FIG. 3. Electric double layer of a radial þ1 nematic topological
point defect. We show the effect of flexoelectricity and order
electricity, and ion partitioning on (a) the order parameter profile
SðzÞ, (b) the dimensionless electrostatic potential ϕðzÞ, and
(c) the ion densities for anions ρ−ðrÞ (solid lines) and cations
ρþðrÞ (dashed lines). In all plots, we use κ−1I ¼ 10 nm, which
results in a bulk ion density in the isotropic phase
ρIs ¼ 1.1 × 10−4 M. When order electricity and flexoelectricity
are included, we use qeG ¼ 3 pCm−1, and when ion partitioning
is included, we use gþ ¼ 3 and g− ¼ 8. The system size is taken
to be R ¼ 250 nm.
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respect to κ−1I and G (a) without and (b) with ion
partitioning, where the partition coefficients are chosen
to give rise to an electric double layer with opposite polarity
compared to the pure flexoelectric or order-electric case.
Note that tuning κ−1I corresponds to tuning the reservoir salt
concentration and not the average salt concentration in the
hedgehog defect. For no ion partitioning [Fig. 4(a)], we see
that higher values of flexoelectric couplingG lead to higher
N and that the highest N occurs for small κ−1I (high values
of ρIS). When there is ion partitioning with opposite
polarity, we see in Fig. 4(b) that increasing G initially
reduces the amount of charge in the isotropic core, which is
then followed by an increase in N when the core changes
from negatively charged to positively charged.
Finally, we note that despite the isotropic core being

electrically charged, the defect as a whole, together with the
nematic region, is globally charge neutral. In this sense,
Fig. 3(c) shows that the highest local ion densities are
concentrated close to the isotropic core, but for sufficiently
large r, the screening cloud becomes oppositely charged,
with a small positive (only ion partitioning) or negative
(only flexoelectricity) net charge density. In other words,
there is a strong localization of charge in the isotropic core,
whereas the neutralizing charge is spread out over a larger
volume sufficiently far from this core in order to maintain
global charge neutrality. As a practical illustration, this
“sign switch” of the net ionic charge occurs in Fig. 3(c)
for r ≈ 215 nm (red lines), r ≈ 60 nm (green lines), and
r ≈ 190 nm (blue lines).

V. WEDGE DISCLINATIONS

Nematic topological defect lines are another type of
elementary object that can be formed in nematic electro-
lytes as a result of surface- or external-field-imposed
frustration of the orientational order, and—as we show—
they can perform as effective diffuse capacitors. We use the
full Q-tensor theory in our calculations from Sec. II and
exploit the translational invariance along the z direction,
and we impose a uniaxial far-field condition for
Qðr → ∞;φ; zÞ (in cylindrical coordinates) with bulk order
parameter Sb and a director field given by Oseen’s solution
[76–78] nðrÞ ¼ ½cosðkφÞ; sinðkφÞ; 0�, where k is the wind-
ing number of the defect.
In Fig. 5, we show the results of solving the EL equations

of such a system under the assumption of global charge
neutrality. The nematic order parameter profiles are
not influenced by the ions in this parameter regime. In
Fig. 5(a), we plot the uniaxial order parameter (nematic
degree of order) S, whereas in Fig. 5(b), we plot the biaxial
order parameter P. The green curve in all plots indicates the
(cylindrical) isosurface S ¼ 0.48, which effectively corre-
sponds to the isotropic core of the defect. In Fig. 5(c), we
plot the eigenvalues of Q along the cross section y ¼ 0,
along with the values of S and P. The dotted lines indicate

the core region. For these wedge disclinations, we also find
that theQ tensor is not influenced by the presence of ions or
flexoelectricity, as was also the case for the flat IN interface
and the radial hedgehog defect.
In Figs. 5(d)–5(f), we plot the net ionic charge density

½ρþðx; yÞ − ρ−ðx; yÞ�=ρIs for a k ¼ −1=2 defect. The
streamlines show the director profile in order to aid
visualization of the defect. In Fig. 5(d), we show a
representative example for g� ≠ 0 but G ¼ 0. We see that
the core is negatively charged since g− > gþ, although the
core, in this case, is not isotropic but biaxial. The external
potential governing ion partitioning, in this case, is
βVαðrÞ ¼ gα½3SðrÞ2=2þ 2PðrÞ2�, which suggests that the
ions couple the same way to SðrÞ as to PðrÞ. However, the
combination in brackets is smaller in the core, so there is
still preferential ion partitioning within the (biaxial) core.
The ion cloud within the core is cylindrically symmetric,
but outside the core, where the double layer is positively
charged, we observe that the double layer takes over the
symmetry of the director profile, albeit with a much smaller
(positive) charge density.
In Fig. 5(e), we show how the ions couple to flexoelec-

tricity and order electricity, and we see a more complicated
charge pattern. A core region with positive charge is formed
with three lobes of negative charge.Therefore,we call this an
electric quadlayer instead of an electric double layer.
In Fig. 5(f), we see the combined effects from Figs. 5(d)
and 5(e). Because of the choice gþ < g−, the effect is that the
center of the core in Fig. 5(e) becomes negatively charged. If
we would have taken gþ > g−, the positive charge in the
center would have been enhanced compared to the pure
flexoelectric case. In Figs. 5(g)–5(i), we show the same
calculations but for k ¼ 1=2. The physics is still the same as
for k ¼ −1=2, but the symmetry is different. For example,
when there is only flexoelectricity and order electricity, an
electric double layer is formed around the core instead of an
electric quadlayer [compare Fig. 5(e) with Fig. 5(h)].
The structure of the electric double layer (quadlayer) for

k ¼ −1=2 [Fig. 5(e)] and the double layer for k ¼ þ1=2
[Fig. 5(h)] can be understood from the flexoelectric bound
charge density ρfðrÞ ¼ −∇ · Pf ¼ −G∂i∂jQijðrÞ. Charge
separation is energetically costly, and since the system
wants to be locally charge neutral as much as possible,
the ion profile will follow the profile of ρfðrÞ: Where
ρfðrÞ > 0, we see that ρþðrÞ − ρ−ðrÞ < 0 and vice versa.
To illustrate this case, we plot ρfðrÞ in Fig. 6(a) for the case
of Fig. 5(e) (k ¼ −1=2) and in Fig. 6(b) for the case of
Fig. 5(h) (k ¼ þ1=2). The flexoelectric bound charge
patterns are the same as the ionic patterns but with a
different sign. The streamlines in both plots show the
direction of the flexoelectric polarization qePfðrÞ.
In Figs. 6(c) and 6(d), we show the ρþðrÞ − ρ−ðrÞ and

ρfðrÞ along the x axis for k ¼ −1=2 in Fig. 6(c) and for
k ¼ 1=2 in Fig. 6(d) for two different screening lengths,
κ−1I ¼ 10 nm and κ−1I ¼ 50 nm. Although the precise
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structure of the profiles differs for both defects, we see that
ρfðx; 0Þ is independent of κ−1I as we have observed earlier.
For physical values of κ−1I , in our calculations, we always
see that ρþðrÞ − ρ−ðrÞ < ρfðrÞ and that, for higher Debye
screening length, the profile of ρþðrÞ − ρ−ðrÞ is more
spread out and smaller in amplitude. Indeed, when there
are not enough ions available to locally neutralize the
flexoelectric bound charge density, ions prefer to maximize
their entropy by spreading more homogeneously through-
out the defect. In other words, lower screening length
means better screening, and the ions experience only the
local field of the flexoelectric bound charge; thus, they

adapt better to this profile, while for high screening length,
ions also experience the effects of the bound charges that
are farther away. Hence, a lower value of κ−1I means
stronger localization of ionic free charges around the
flexoelectric bound charges. Although the amplitude might
differ, the symmetry is always the same; only the charges
are more spread out.
The total charge per unit contour length of the wedge

disclination is shown in Fig. 7 as a function of κ−1I for the
two types of defects that we consider. Figure 5(e) shows
that a −1=2 defect with only flexoelectric coupling is
predominantly positively charged for G > 0. Increasing

FIG. 5. Nematic structure and ion-charge distributions around �1=2 wedge disclinations. (a) Scalar order parameter S, with the
isosurface S ¼ 0.48 (in green) indicating the effective defect core. (b) Biaxial order parameter P. (c) Eigenvalues of tensor order
parameter Q and scalar order parameters along x for y ¼ 0. The dotted line is the isosurface S ¼ 0.48. (d)–(f) Net ion-charge
distributions ½ρþðx; yÞ − ρ−ðx; yÞ�=ρIs for a −1=2 defect, for the cases with (d) only ion partitioning (gþ ¼ 3, g− ¼ 8, G ¼ 0), (e) only
flexoelectricity (g� ¼ 0, qeG ¼ 10 pCm−1), and (f) both effects (gþ ¼ 3, g− ¼ 8, qeG ¼ 10 pCm−1). (g)–(i) Same plots for a 1=2
defect for (g) only ion partitioning (gþ ¼ 3, g− ¼ 8, G ¼ 0), (h) only flexoelectricity (g� ¼ 0, qeG ¼ 10 pCm−1), and (i) both effects
(gþ ¼ 3, g− ¼ 8, qeG ¼ 10 pCm−1). In all plots, we use κ−1I ¼ 10 nm, which results in an isotropic bulk ion density
ρIs ¼ 1.1 × 10−4 M, and the streamlines in (d)–(i) indicate the nematic-director pattern.
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κ−1I means reducing the amount of ions but also less
localization to the flexoelectric bound charge. If there is
strong localization, there is a local minimum in the blue
lobe, which reduces if κ−1I is increased. Hence, initially, N
increases as well. Then, we see a decline in N because ρIs
decreases. Ion partitioning, on the other hand, always
makes the core negatively charged [see Fig. 5(d)], and
increasing κ−1I will not change the shape of the profile, only
how it is extended in space and its amplitude. Hence,
increasing κ−1I means that the total negative charge declines
[see Fig. 7(b), solid line]. When flexoelectricity is turned
on, these two effects are superimposed, and we get the other
curves in panel (b). A similar behavior is observed for
k ¼ 1=2 defects [Figs. 7(c) and 7(d)]. At low κ−1I , there is a
strong localization of charge around the flexoelectric bound
charge density; however, increasing κ−1I results in ions

getting more delocalized from the flexoelectric bound
charge background, and we observe that the defect core
becomes net negative charged. Ultimately, the net negative
charge in the defect should also decrease because increas-
ing κ−1I is equivalent to reducing ρIs.
Finally, we show that the charge patterns that can be

realized are indeed very rich and dependent on the topology
of the defect. In Fig. 8, we show the ion distributions
around a k ¼ −1 defect line. The effective defect core is
larger for such a defect than the half-integer defects
discussed above, as is indicated by the green contour lines
in Fig. 8 compared to the one shown in Fig. 5. In Fig. 8(a),
we consider only the effects of ion partitioning, observing
a buildup of a negative spherical-charge distribution in the
core of the defect. The neutralizing positive charge,
however, is much lower, and we use red contour lines to

(c)(b)(a) (d)

FIG. 7. Total charge numberN per unit contour length ld of half-integer wedge disclinations as a function of isotropic Debye screening
length κ−1I . (a,b) For k ¼ −1=2 and (c,d) k ¼ 1=2 defects, with (a,c) only flexoelectricity (g� ¼ 0) with varying values of the
flexoelectric coefficient G and (b,d) with ion partitioning gþ ¼ 3 and g− ¼ 8 for various values of G.

(a) (b)
(c)

(d)

FIG. 6. Comparison of flexoelectric bound charge with the ion free charge density in �1=2 wedge disclinations. (a,b) Flexoelectric
polarization charge density ρfðx; yÞ as a color map, with arrows indicating the direction of the flexoelectric polarization qePfðx; yÞ for
g� ¼ 0, qeG ¼ 10 pCm−1, and κ−1I ¼ 10 nm for (a) k ¼ −1=2 and (b) k ¼ 1=2. (c,d) Charge profiles along the x axis for the same
parameter values, where we also compare with the net ion-charge density ρþðx; yÞ − ρ−ðx; yÞ for (c) k ¼ −1=2 and (d) k ¼ 1=2 defects.
The solid lines are for κ−1I ¼ 10 nm, while the dotted lines are for κ−1I ¼ 50 nm.
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visualize them,reflecting thedifferentsymmetryof thedefect
compared to the�1=2 cases. The flexoelectric case shows a
more intricate charge pattern [Fig. 8(b)], reflecting the
director profile symmetry. Compared to the �1=2 defects
where the flexoelectric case results in a double layer and a
quadlayer around the defect core, the −1 defect features an
electric pentalayer, where a positively charged region is
surrounded by four lobes of negative charge. When ion
partitioning is combined with flexoelectricity with gþ < g−,
there is a possibility of having a negatively charged region
with four lobes of positive charge, as is seen in Fig. 8(c).

VI. LIQUID-CRYSTAL COLLOIDS

Topological defects emerge inherently in nematic liquid-
crystal colloids caused by the specific anchoring conditions
at the particle surface. A central example is a spherical
particle of radius a with homeotropic (perpendicular)
boundary conditions, while the far field has a uniform
director field along, say, the z direction. Depending on the
anchoring strength, particle size, and elastic constant,
either a point defect or a Saturn-ring defect is formed,
which we show directly affects how ions are distributed
around the particle. In the calculations, we assume a
uniform far field and homeotropic anchoring at the particle
surfaces. We assume that the particle is impenetrable for
ions and has dielectric constant ϵp ¼ 2 and constant-sur-
face charge density qeσ. In order to numerically stabilize
the defects, we use a relaxation-type solving procedure with
initial conditions based on the multipole expansion of the
director field.
In Fig. 9, we show the screening cloud charge density in

the case of a Saturn-ring defect around a spherical particle
of radius a ¼ 250 nm, considering the cases with only ion
partitioning and only flexoelectricity, as well as a combi-
nation of both. First, we focus on a system where the
spherical particle is uncharged, σ ¼ 0. When only ion

partitioning is considered, we see a buildup of negative
charge in the Saturn-ring defect [see Fig. 9(a)]. When
flexoelectricity is added, the director profile induces a
specific charge pattern as discussed in Sec. V but only
when compared in a cross-sectional flat plane. Since the
Saturn-ring defect is locally the same as a þ1=2 defect, the
charge pattern in Fig. 9(b) around the Saturn ring is
identical to the one of Fig. 5(e), but it is a bit distorted
because of the presence of the colloidal particle. There is
also a net positive-ion-charge density around the north and
south poles of the particle because of the director
distortions, although the particle itself is uncharged. In
Fig. 9(c), we see the effects of ion partitioning and
flexoelectricity superimposed, reducing the overall charge
density. Furthermore, the positive charge densities around
the north and south poles are reduced.
In Figs. 9(d)–9(f), we show the effects of surface charge

density on the colloidal particle for low screening lengths
κ−1I ¼ 25 nm. For such low screening lengths, the electric
double layer around the particle is roughly spherical, and
the charge patterns around the particle are the same as in
Figs. 9(a)–9(c) but with this spherical, negatively charged
double layer superimposed. For higher screening lengths,
the double layer is more elongated (not shown), but then the
effects of the defects are washed out (see Ref. [70]).
For larger particles, the point defect is more stable than

the Saturn-ring defect, as is shown by the streamlines in
Fig. 10. The structure is not influenced by the low salt
concentrations that we consider here. With only ion
partitioning, the defect core becomes negatively charged;
see Fig. 10(a). If we zoom in more (the defect core is much
smaller than the particle size), we see in Fig. 10(b) that the
defect core is actually a ring, and we have a charged ring
with a radius of about 50 nm, and the director configuration
can be thought of as consisting of two −1=2 defects that are
almost fused.

FIG. 8. Net ion-charge distributions ½ρþðx; yÞ − ρ−ðx; yÞ�=ρIs around a k ¼ −1 wedge disclination. (a) Only ion partitioning, gþ ¼ 3,
g− ¼ 8, G ¼ 0. The dark red line is the isosurface ½ρþðx; yÞ − ρ−ðx; yÞ�=ρIs ¼ 0.01, indicating the low positive-charge density
surrounding the negatively charged core. (b) Only flexoelectricity (g� ¼ 0, qeG ¼ 10 pCm−1), and (c) both effects (gþ ¼ 3, g− ¼ 8,
qeG ¼ 10 pCm−1). In all plots, we use κ−1I ¼ 10 nm, which results in an isotropic bulk ion density ρIs ¼ 1.1 × 10−4 M, and the
streamlines indicate the nematic director pattern surrounding the defect.
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With flexoelectricity, director distortions lead to a local
net charge density around the particle, but they are much
smaller than the ions that gather around the defect below
the particle. In contrast, in the case of the Saturn-ring
defect, they are of similar magnitude [compare Fig. 9(b)
with Fig. 10(c)]. When zoomed in on the defect, we see a
charge pattern that is very similar to the one in Fig. 8(b) but
with a small negatively charged core. The reason is, again,
that it is actually a small ring of locally −1=2 disclination—
Fig. 5(e). If the defect was a true point defect, the negative
charge density in the center would disappear, and the
charge pattern would be more similar to the −1 wedge
disclination of Fig. 8 when compared in a cross-sectional
flat plane. Finally, when ion partitioning is added to the
flexoelectric effect, the core becomes less negatively
charged, and overall, the charge density decreases [see
Figs. 10(e) and 10(f)].
Although we often compare the defects in this section

with the wedge disclinations of Sec. V, we should keep in
mind that this analogy can only be made in a cross section
of the defect. In reality, one should rotate the patterns in
Figs. 9 and 10 around the z axis to get the true three-
dimensional charge distribution. In order to get a feel for
the three-dimensional structure of the charge distribution,

we show in Fig. 11, for the ion-partitioning only and
flexoelectricity only cases, a few selected isosurfaces of the
ion-charge distributions around a colloidal sphere.

VII. EXPERIMENTAL RELEVANCE

We envisage three lines of possible experiments where
the presented results could be realized or have a prominent
role: (i) direct measurements of charge patterns, (ii) inter-
actions and self-assembly of colloidal particles, and
(iii) electrochemistry of nematic electrolytes. The vision
of such work would be to create an ionically charged soft
matter platform, where objects including topological
defects and colloidal particles could perform as distinct
microelectronic elements, capable of advanced charge
manipulation, storage, and overall charge control. A clear
experimental challenge in realizing such a platform is to be
able to quantify and control the multiple relevant material
mechanisms, including not only the elastic, dielectric, and
flexoelectric properties of the nematic solvent—which
are usually known to a fair degree—but also the ion
solvability, the isotropic (reference) Debye length (both
in the nematic and the isotropic phase), and the shift in the
isotropic-nematic transition temperature caused by the ions

FIG. 9. Net ion-charge distributions ½ρþðrÞ − ρ−ðrÞ�=ρIs around a Saturn-ring defect formed around a colloidal sphere of radius
a ¼ 250 nm with strong homeotropic boundary conditions. The streamlines indicate the nematic-director pattern. In panels (a)–(c),
the particle is uncharged, while in panels (d)–(f), the particle has a constant-surface charge density qeσ ¼ 0.001qe nm−2. We
distinguish cases with (a,d) only ion partitioning (gþ ¼ 3, g− ¼ 8, G ¼ 0), (b,e) only flexoelectricity (g� ¼ 0, qeG ¼ 10 pCm−1),
and (c,f) both effects (gþ ¼ 3, g− ¼ 8, qeG ¼ 10 pCm−1). In all plots, we use κ−1I ¼ 25 nm, which results in an isotropic bulk ion
density ρIs ¼ 1.8 × 10−5 M.
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(to determine g�)—which are much less (or even poorly)
known today in nematic systems.
The predicted charge patterns could possibly be deter-

mined in direct measurements by extending the x-ray
reflectivity [17] or surface plasmon resonance [79,80]
methods applied to isotropic electrolytes to nematic sys-
tems. In particular, one could possibly measure double
layers by determining, for example, the Donnan potential
generated over a flat isotropic-nematic interface (see
Sec. III), which already gives full insight into ionic
charging of nematics but within a rather simpler planar
geometry.
Ionic charging in nematic electrolytes—likely combined

with elastic interactions—can lead to a rich landscape of
anisotropic attractive-repulsive interparticle potentials,
which will be different from interactions of particles with
just spheroidal double layers. For example, in the absence
of flexoelectricity and ion partitioning, the dielectric
anisotropy alone leads to anisotropic electrostatic inter-
actions even for spherical particles in nematic solvents [33].
This result can be traced back to the spheroidal shape of the
electric double layer, and it leads to a small but measurable
effect in the Brownian motion of a pair of particles. As
shown in this work, at sufficiently low screening lengths,
the spheroidal double layer in flexoelectric nematics gets

distorted in a very anisotropic manner, leading to charge
regions of the same and opposite sign compared to the
particle charge [see Figs. 9(d)–9(f)], which, at the level
of interparticle interactions, can cause the emergence of
novel anisotropic attractive and repulsive directions.
Furthermore, charge-regulation effects, which depend on
the specific particle-charge chemistry, can additionally
affect or be used to affect particle self-assembly processes
[34]. Finally, note that even around uncharged colloidal
spheres, complex ionic charge patterns can form (Fig. 11)
and are again expected to affect particle interactions.
Finally, the electrochemical response of individual or

structures of charged defects can prove interesting, for
example, by affecting the differential capacitance or local
conductivity of the system. To the best of our knowledge,
besides the role of electrode topological defects in
graphene-based supercapacitors [81], the electrochemical
response of individual charged nematic topological defects
is, to a large degree, unknown, with selected studies in
nematic liquid crystals in the absence of defects [82,83] or
defect patterns in ac-driven charged nematic cells [84,85].
Expectedly, the response of single nematic defects or their
structures could be understood by constructing equivalent
circuit models, both for nonoverlapping [86] and over-
lapping double layers [87].

FIG. 10. Net ion-charge distributions ½ρþðrÞ − ρ−ðrÞ�=ρIs around a point defect formed next to an uncharged colloidal sphere of
radius a ¼ 1 μm with strong homeotropic boundary conditions. The streamlines indicate the nematic-director pattern. The first row
shows the ion distribution around the particle; the second row shows a zoomed-in version around the defect. We distinguish cases
with (a,b) only ion partitioning (gþ ¼ 3, g− ¼ 8, G ¼ 0), (c,d) only flexoelectricity (g� ¼ 0, qeG ¼ 10 pCm−1), and (e,f) both
effects (gþ ¼ 3, g− ¼ 8, qeG ¼ 10 pCm−1). In all plots, we use κ−1I ¼ 25 nm, which results in an isotropic bulk ion
density ρIs ¼ 1.8 × 10−5 M.

JEFFREY C. EVERTS and MIHA RAVNIK PHYS. REV. X 11, 011054 (2021)

011054-12



VIII. CONCLUSIONS AND OUTLOOK

This work underlies the basic physical principles behind
the formation of inhomogeneous ion distributions in
nematic liquid crystals. The effects of ion partitioning
and a composition-dependent dielectric constant can be
efficiently explored within the mean-field approximation
by a Landau-Ginzburg-Poisson-Boltzmann theory [62].
We generalized such a theory to liquid-crystalline nematic
order, where the local order parameter is the tensor QðrÞ,
instead of a scalar, such as in binary fluid-fluid mixtures.
Compared to fluid-fluid mixtures, liquid crystals have
additional structures that make them distinct, such as the
presence of topological defects [35,88], nematic elasticity
[89], dielectric anisotropy [90,91], order electricity, and
flexoelectricity [92–96]. Their interplay with other fields
has been investigated thoroughly, such as with fluid
velocity fields [97] and electric fields [98].
Our main finding is that ion partitioning leads to a

buildup of ionic charge in defect cores, whereas flexoelec-
tricity causes ionic charge separation according to the
director distortions. Consequently, we envisage that topo-
logical defects can act as ionic charge carriers or as diffuse
ionic capacitors. In general, we envisage that the electric
double layer can be designed when the symmetry between
flexoelectric modes is broken and when more complicated

director structures are considered. The precise geometry of
the double layer can have profound effects on the effective
interaction of colloidal particles, also when combined with
the particle shape [99] or with multiple colloidal particles
[100], and can have relevance in various applications, such
as controlled microcargo release [101]. Another interesting
extension of this work would be to consider how ions
influence, for example, the interaction between two topo-
logical defects, or how the ions in nematic fluids respond to
an external electric field. More complicated geometries
would be interesting—such as topological defects spanning
over the whole system, between particles, in confined
cavities, or within memory networks, all systems that
are widely studied and developed in a nonelectrostatic
context.
Charging of topological defects could be further inter-

esting for regimes of higher ion densities—with effects
beyond our work—where the continuum Poisson-
Boltzmann-type approach breaks down. In this case, one
can expect, for example, Bjerrum pair formation [53],
overscreening and crowding [102], and an increase of the
screening length with ion concentration [103], which are
effects known in isotropic electrolytes. In particular, we
expect that ions at higher densities can, for example, disrupt
the liquid-crystalline structure (both profiles of the director
and degree of order), which in turn can have profound
back influence on the actual charge patterns. A theoretical
implementation of such effects might require an explicit
modeling of the solvent, rather than viewing it as a
dielectric continuum that depends on the nematic order
parameter, and this is a challenging problem even for
isotropic electrolytes [104].
Finally, in this paper, we focused on equilibrium charge

structures, but the out-of-equilibrium dynamical properties
would be the logical next step. Already in isotropic
systems, ions have proven to be subjected to many
interesting dynamical phenomena [105], and in the
liquid-crystal context, they have been investigated in terms
of anisotropic ionic conductivity and an anisotropic dielec-
tric tensor [106]. A possible idea would be to extend the
theory derived in Ref. [107] with the effects of flexoelec-
tricity and ion partitioning included and to look for
measurable signatures of the complex charge patterns
presented here. The coupling of ion degrees of freedom
and nematic degrees of freedom via flexoelectricity, ion
partitioning, dielectric tensor, and anisotropic conductivity
may certainly lead to additional control and manipulation in
these kinds of systems and possibly to the design of
nanometer-sized liquid-crystal electronic elements.
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