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An accurate description of the optical response of subwavelengthmetallic particles and nanogap structures
is a key problem of plasmonics. Quantum hydrodynamic theory (QHT) has emerged as a powerful method to
calculate the optical response ofmetallic nanoparticles (NPs) since it takes into account nonlocality and spill-
out effects. Nevertheless, the absorption spectra of metallic NPs obtained with conventional QHT, i.e.,
incorporating Thomas-Fermi (TF) and von Weizsäcker (vW) kinetic energy (KE) contributions, can be
affected by several spurious resonances at energies higher than the main localized surface plasmon (LSP).
These peaks are not present in reference time-dependent density-functional-theory spectra, where, instead,
only a broad shoulder exists. Moreover, we show here that these peaks incorrectly reduce the LSP peak
intensity and have a strong dependence on the simulation domain size so that a proper calculation of QHT
absorption spectra can be problematic. In this article, we introduce a more general QHT method accounting
for KE contributions depending on the Laplacian of the electronic density (q), thus, beyond the gradient-only
dependence of the TFvW functional.We show that employing a KE functional with a term proportional to q2

results in an absorption spectrum free of spurious peaks, with LSP resonance of correct intensity and
numerically stable Bennett state. Finally, we present a novel Laplacian-level KE functional that is very
accurate for the description of the optical properties of NPs of different sizes as well as for dimers. Thus, the
Laplacian-level QHT represents a novel, efficient, and accurate platform to study plasmonic systems.

DOI: 10.1103/PhysRevX.11.011049 Subject Areas: Computational Physics,
Condensed Matter Physics, Plasmonics

I. INTRODUCTION

Metal nanoparticles (NPs) play a crucial role in the
enhancement of the optical field due to plasmonic effects
[1], which make them an ideal platform for nonlinear optics
[2,3], hot-electron enhancement for photovoltaics [4,5],
surface-enhanced Raman scattering [6], and imaging [7].
When it comes to the nanoscale, nonlocal and quantum
effects play a crucial role in light-matter interaction [8].
Among theoretical approaches [9–17], time-dependent
density-functional theory (TD-DFT) [18,19] stands out
since it allows us to accurately resolve the optical response
of plasmonic structures at the nanoscale, including both
quantum and atomistic effects [11,16,20–24]. However,
TD-DFT is computationally expensive since all occupied
orbitals need to be evaluated.

Another approach would be to treat the electron system
semiclassically: a fluid characterized by the macroscopic
local quantities, such as the electron density nðr; tÞ and the
electron velocity field vðr; tÞ [25–28], but at the same time
considering quantum effects through energy functionals of
the electron-density fluctuations. This approach is known
as hydrodynamic theory (HT). The HT is part of a larger
class of methods based on the orbital-free (OF) [29–31]
description of quantum electronic systems dating back to
the works of Thomas [32] and Fermi [33]. Although the
interest in OF-DFT methods has gradually decreased in
favor of Kohn-Sham (KS) orbital-based methods, the last
decades have witnessed a reinvigorated interest due to the
ideal scaling of computational resources with respect to the
size of the electronic system offered by the OF-DFT
approach [34]. Most of the research efforts in this field,
however, have been devoted to static properties [35–38]
and, more recently, also to response properties with the
time-dependent OF-DFT [39–42]. In both cases, the central
quantity that controls the accuracy of these methods is the
noninteracting kinetic energy (KE) functional.
The most simple KE functional is the Thomas-Fermi

(TF) functional, which accounts for the Pauli exclusion
principle for a homogeneous system of noninteracting

*cristian.ciraci@iit.it

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 11, 011049 (2021)

2160-3308=21=11(1)=011049(20) 011049-1 Published by the American Physical Society

https://orcid.org/0000-0002-2093-6098
https://orcid.org/0000-0003-0940-8830
https://orcid.org/0000-0003-3349-8389
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevX.11.011049&domain=pdf&date_stamp=2021-03-11
https://doi.org/10.1103/PhysRevX.11.011049
https://doi.org/10.1103/PhysRevX.11.011049
https://doi.org/10.1103/PhysRevX.11.011049
https://doi.org/10.1103/PhysRevX.11.011049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


electrons [29], and it yields the electron quantum pressure
pðr; tÞ ∝ nðr; tÞ5=3 [43] that accounts for the nonlocal
electron response. It has been demonstrated that TF-HT
is able to provide surprisingly accurate predictions that well
match experiments with noble metal NPs, such as Au [44]
and Ag [45], both qualitatively and quantitatively.
Nevertheless, for alkali metals or aluminum, the TF-HT
predicts a blueshift of the localized surface-plasmon
resonance with respect to the classical Mie resonance
[46], in contradiction with the redshift from the experi-
ments [47] and TD-DFT calculations [48]. The origin of
this difference lies in neglecting the spill out of the
plasmon-induced charges at the NP surface [46]. In fact,
the TF-HT approach employs (with some recent exception
[49]) a spatially uniform electronic density inside the NP
and zero outside (i.e., hard-wall boundary) [15].
To properly address spill-out effects, the spatial depend-

ence of electron density as well as a correction to the KE
functional, in order to describe the density variation effects,
must be introduced. The simplest functional that depends
on the gradient of the density is the von Weizsäcker (vW)
functional [29,50]. The TF-HT with a fraction (λ, with
0 < λ ≤ 1) of the vW correction (i.e., the TFλvW KE
functional) is usually referred to in the literature as the
quantum hydrodynamic theory (QHT) since the vW func-
tional does not have a classical counterpart. The QHT has
been largely used in plasma physics [51–56], magneto-
plasmonics [57–59], plasmonic response properties of
metal NPs of different geometries [60–66], as well as
for surfaces [67–69] and strongly coupled plasmonic
structures [65,70,71]. It has been shown that the QHT
can predict plasmon resonance, spill out, and retardation
effects in noble and simple metal NPs, matching very well
with TD-DFT calculations [62,65]. There are also other
works on the development of the QHT that consider the
viscous contribution of electron fluid [70,72] and formu-
lation of HT for nonlinear phenomena [73–75]. However, it
is important to highlight that the QHT results depend on the
approximation made for the KE functional (e.g., λ param-
eter) as well as on the electronic density, which is an input
quantity. The input electronic density can be obtained from a
preceding OF-DFT calculation using the same KE func-
tional used for the response, i.e., the self-consistent QHT
(SC-QHT) approach of Ref. [61]. Other approaches use the
exact KS density [62] or, more efficiently, a model density
[60,62] that reproduces the decay of the exact KS density.
Although QHT can describe different quantum effects

relevant in plasmonics, it is not unaffected by drawbacks:
(i) Various TF-HT [76–78] and QHT [59,61–64,69]

investigations for NPs [61,62], rods [63,64], and
surfaces or slabs [59,69,76–78] show the presence of
one (or even more) additional resonances above the
main plasmon peak and below the plasma frequency
(ωp). These resonances originate from the spatial
variation of the electronic density as first pointed out

by Bennett [76]. No Bennett states are observed
when using hard-wall boundary conditions, both in
the QHT [79–81] and in the TF-HT [81–84]: In these
approaches, several peaks (volume plasmons) occur
due to nonlocality but only at frequencies larger than
ωp. Such Bennett states are thus peculiar to models
with nonuniform density. In TD-DFT, a single
Bennett state has been computed for jellium surfaces
[85–87] at about 0.8ωp in the case of sodium.
Instead, for large jellium spheres, only a shoulder
above the main plasmon peak is present [16] due to
the interaction between single-particle transitions
and surface modes [88–92].

To better illustrate this point, we anticipate in
Fig. 1(a) the absorption spectra of one of the systems
investigated in this work, i.e., a sodium jellium nano-
sphere. All calculations in this work focus on sodium
(Wigner-Seitz radius rs ¼ 4 a:u:, with plasma fre-
quency ωp ¼ 5.89 eV), which is commonly inves-
tigated as a model metallic system. Figure 1(a) reports
a direct comparison of the QHT with the TFvW
functional (KS/TFvW denotes using λ ¼ 1 and the
KS density as the input density) and reference TD-
DFT. TD-DFT can be considered as a reference for
QHT because the latter method can be directly derived
from TD-DFT equations (and for the two-electron
case, the methods coincide) [56,70,93]. Although the
energy position of themain peak, the localized surface
plasmon (LSP), is very well reproduced, additional
peaks are present in the QHT spectrum, which is not
the case for the reference TD-DFT spectrum. The
results in Fig. 1(a) represent the current state of the art
of QHT calculations: Clearly, the presence of the other
peaks strongly limits the QHT accuracy and appli-
cability. Note that also the number and the position of
the Bennett states strongly depend on the input density
as well as on the λ parameter [69,77,78].

(ii) The QHT absorption spectrum of the metal nano-
particle is characterized by the critical frequency
[59,62,68]

ℏωc ¼
ℏ2

me

κ2

8

ffiffiffi
λ

p
¼ jμj

ffiffiffi
λ

p

λg
; ð1Þ

where κ is the exponential decay constant of the
ground-state density, λg is the vW fraction used for
the ground-state-density calculation (λg ¼ 1 for exact
KS density), λ is the vW fraction used in the QHT
response calculation, and μ ¼ λgðℏ2κ2Þ=ð8meÞ is the
chemical potential [62]. For theKS calculations of the
large Na jellium nanosphere, we have κ ≈ 1.05 a:u:
and μ ≈ 3.75 eV [62]. For energies above ℏωc, the
induced density (i.e., the first-order change of the
electronic density due to the excitation) has both an
oscillating and exponentially decaying behavior, as
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shown in Fig. 1(b), which is problematic to treat
numerically. We show in this article that the energy
position of all the peaks above the critical frequency
strongly changes with the computational domain size
so that a numerically converging QHT spectrum is
challenging to obtain. The critical frequency can be
artificially increased using an input density that
decays faster (i.e., κ > 1.05 or λg < 1). In Ref. [61],
for example, the SC-QHT approach with λg ¼ λ ¼
1=9 (and thus, ℏωc ¼ 3jμj) was employed (i.e., the
second-order gradient expansion [94]), leading to an
input density decaying three times faster than the KS
density, and thus strongly underestimating the spill-
out effects [62]. In the present work, we focus only on
the more physical case of correct input density.

(iii) The TFλvW functional is known to be quite a rough
approximation of the exact KE, and different lim-
itations of this functional have been shown in
different contexts, e.g., lack of dynamical correc-
tions [40,55,68,95] and incorrect response for homo-
geneous electron gas [30,96,97]. Thus, the great
accuracy of QHT calculations with the TFλvW
functional obtained in some cases [61,62] should
be related to some error cancellation and, therefore,
cannot have general validity.

In order to overcome these limitations, in this article, we
extend the QHT approach to Laplacian-level KE func-
tionals [94,97–105]. Laplacian-level KE functionals have
been investigated in the past for ground-state properties, but
with limited success [99–102]. Only recently, Laplacian-
level functionals performing well for semiconductors and
metals in the framework of OF-DFT have been introduced
[97,105]: The Pauli-Gaussian second-order and Laplacian
(PGSL) functional has an improved Lindhard response
[97], which is an important property for the description of
metallic systems. Laplacian-level KE functionals are much
simpler than fully nonlocal functionals based on the
Lindhard response in the reciprocal space [30,40,95,96]
and can be easily applied to finite systems [97]. While
Laplacian-level functionals have been applied for the
ground-state properties, their application for optical proper-
ties is completely unexplored. In this work, we introduce
the Laplacian-level QHT linear-response equations in the
frequency domain. We carry out a general form of the QHT
equations that holds for any arbitrary Laplacian-level
functional, boosting the QHT potential in an unprecedented
manner. We perform calculations for Na jellium nano-
spheres (up to 6000 electrons) and demonstrate that in the
QHT-PGSL approach, only the main LSP peak appears in
the lower part of the absorption spectrum, which is stable to
the changes of computational domain size as well as on the
input density. In fact, in QHT-PGSL, the induced density
decays in the same way for all frequencies, and no critical
frequencies exist anymore.
Finally, we go beyond the PGSL approximation and

introduce the plasmonic tailored PGSLN functional, which
gives very accurate plasmon energy, peak intensity, and
Feibelman d-parameter [106], as well as a single numeri-
cally stable Bennett state. We present a detailed comparison
of the different KE functional for QHT, and we clearly
demonstrate that the QHT-PGSLN approach is the most
accurate and numerically stable method to treat plasmonics
nanosystems.
The article is organized as follows: InSec. II,we introduce

the equations governing the Laplacian-level QHT, which
also contains the conventional QHT-TFvW approach as a
special case. In Sec. III, we discuss theoretically the proper-
ties of the induced density in the tail region in spherical
systems, showing that the QHT-PGSL has an unexpected

FIG. 1. (a) Normalized absorption cross section (in logarithmic
scale) for a Na jellium sphere with radius R ¼ 2.168 nm (and
Ne ¼ 1074 electrons) as obtained from TD-DFTand QHT (using
KS density and TFvW functional). ℏωc is the critical frequency;
see Eq. (1). (b) Induced charge density n1 in atomic units (a.u.) at
different energy excitations as calculated from QHTwith the KS
density and the TFvW functional. The inset in (a) schematically
illustrates the nanosphere interaction with the incident plane
wave. See the Appendix A for definitions and details on the
absorption spectra calculation.
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and completely different behavior with respect to the
conventional QHT. In Sec. IV, we provide numerical details
of our implementation which can efficiently describe sys-
tems with spherical and cylindrical symmetry. In Sec. V, we
compare in detail the absorption spectra of Na jellium
nanospheres from TD-DFT, QHT-TFvW, QHT-PGS, and
QHT-PGSL, showing their different dependence on the
computational domain size as well as their oscillator
strength. In Sec. VI, we describe the numerical results of
the induced density decay for Na jellium nanospheres,
which confirms the theoretical prediction of Sec. III. In
Sec. VII, we present the derivation and the results for the
PGSLN functional, which can be tuned to have a Bennett
state at the correct energy. In Sec. VIII, we benchmark the
energy, the oscillator strength, and the Feibelman d-param-
eter as a function of the particle size. In Sec. IX, we present
the results for spherical dimers. Finally, the conclusion and
future perspectives are drawn in Sec. X.

II. LAPLACIAN-LEVEL FUNCTIONALS IN
QUANTUM HYDRODYNAMICS

The linearized QHT response [28,107] is governed by
the following equations [61,62] for the electric field E and
polarization vector P:

∇ ×∇ ×E −
ω2

c2
E ¼ ω2μ0P; ð2aÞ

en0
me

∇
�
δG½n�
δn

�
1

þ ðω2 þ iγωÞP ¼ −ε0ω2
pE; ð2bÞ

where c is the speed of light, ε0 and μ0 are the vacuum
permittivity and permeability, me and e are the electron
mass and charge (in absolute value), γ is the phenomeno-
logical damping rate, and ωpðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2n0ðrÞ=ðmeϵ0Þ

p
is

the plasma frequency with n0ðrÞ being the ground-state
(equilibrium) electron density. ðδG½n�=δnÞ1 is the first-
order term for the potential associated with the energy
functional G½n� given by

G½n� ¼ Ts½n� þ ELDA
XC ½n�; ð3Þ

where ELDA
XC ½n� is the exchange-correlation (XC) energy

functional in the local density approximation (LDA), while
Ts is the noninteracting KE functional.
In general, the exact energy functional can be written as

Ts½n� ¼
Z

½τTFðnÞ þ τvWðn; wÞ�d3rþ Cs½n� þ Cd½n;ω�;

ð4Þ

where

τTFðnÞ ¼ ðEha20Þ
3

10
ð3π2Þ2=3n5=3 ð5Þ

is the TF kinetic energy density (a simple local function of
the electronic density), and

τvWðn; wÞ ¼ ðEha20Þ
w
8n

ð6Þ

is the vW term which depends on both n and on the squared
gradient of the density w ¼ ∇n · ∇n. In Eqs. (5) and (6),
Eh ¼ ℏ2=ðmea20Þ is the Hartree energy, and a0 is the Bohr
radius. Finally, Cs and Cd represent the generic density
functionals for static and dynamic corrections, respectively.
Although some schemes have been proposed [40,70,95],
the first-principles derivation of dynamic corrections
presents fundamental challenges, especially for finite-size
systems.
In this article, we consider only static corrections. In

particular, at the Laplacian level of theory, the KE has the
form

Ts½n� ¼
Z

τðn; w; qÞd3r; ð7Þ

where the Laplacian of the density is q ¼ ∇2n, which is a
new ingredient in addition to w. The function τðn; w; qÞ can
be approximated in several ways [94,97–101]. In the PGSL
functional [97], the function τðn; w; qÞ is approximated as
the sum of the vW [50], Pauli-Gaussian (PGα), and
Laplacian (Lβ) terms [97]

τðn; w; qÞ ¼ τvWðn; wÞ þ τPGαðn; wÞ þ τLβðn; qÞ; ð8Þ

where

τPGαðn; wÞ ¼ τTFðnÞe−αCn−8=3w; ð9aÞ

τLβðn; qÞ ¼ βτTFðnÞq2r ¼ βDn−5=3q2; ð9bÞ

with the coefficients being C ¼ ð3π2Þ−2=3=4 and D ¼
3ð3π2Þ−2=3Eha20=160.
In Eq. (9b), we also introduce the (adimensional)

reduced Laplacian [97,101,108], i.e., qr ¼ 3q=ð40τTFÞ,
which is largely used for the development of KE
functionals.
It is useful to identify the following cases:
(i) α ¼ 0, β ¼ 0. Equations (3)–(9) reduce to the

models employed in previous works [62,65,68];
i.e., Ts½n� is approximated as the sum of the TF
and vW functionals, and we indicate this case as
TFvW (i.e., TFλvW with λ ¼ 1).

(ii) α ≠ 0, β ¼ 0. It corresponds to the case where the
QHT is improved with the addition of the PGα
functional. We refer to this case as QHT-PGα.

(iii) α ≠ 0, β ≠ 0. This is the more complex case in
which the Laplacian-level correction Lβ is included
in the energy functional. This case is referred to as
QHT-PGαLβ.
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The parameters α and β can be determined in a
nonempirical way by imposing exact asymptotic solutions.
In particular, we set α ¼ 40=27 in order to satisfy second-
order gradient expansion [97,109] and use PGS for PG40/
27. Moreover, we follow the results of Ref. [97] and fix
β ¼ 0.25 such that the overall correction functional
PGSL0.25 accurately reproduces the linear-response func-
tion of a noninteracting homogeneous electron gas at both
small and large wave vectors [97]. For brevity, we use the
acronym PGSL for PGSL0.25.
In order to calculate the potential, we take the functional

derivative of Ts½n� [108] and obtain

δTs

δn
¼ τn þ wðτnnq − 2τnwÞ þ ðτqn − 2τwÞq
þ 2ðτnqq − τwqÞð∇n · ∇qÞ
þ 2ðτnwq − τwwÞð∇n ·∇wÞ
þ 2τwqqð∇w ·∇qÞ þ τwwqj∇wj2
þ τwq∇2wþ τqq∇2qþ τqqqj∇qj2; ð10Þ

where the subscripts i ¼ n, w, q denote the corresponding
partial derivatives. The detailed derivation of Eq. (10) is
given in Sec. I of the Supplemental Material [110]; a similar
derivation can be found in Ref. [100].
While the kinetic potential in Eq. (10) is the key quantity

for self-consistent OF-DFT calculations, it is not used in the
QHT linear response, where, instead, the second-order
functional derivative (never investigated so far) is required.
In particular, the first-order term of the potential ðδTs=δnÞ1
is required, and it can be obtained using a perturbation
approach where the perturbed density is taken as
n ¼ n0 þ n1, with n1 ¼ ð1=eÞ∇ · P being the electron
density perturbation. After some tedious algebra and
neglecting higher-order terms, we obtain the following
expression for the linear potential (see Secs. I and II of the
Supplemental Material for the full derivation [110]):

�
δTs

δn

�
1

¼
�
δTI

s

δn

�
1

þ
�
δTII

s

δn

�
1

þ
�
δTIII

s

δn

�
1

; ð11Þ

where

�
δTI

s

δn

�
1

¼ τð0Þnn n1; ð12aÞ

�
δTII

s

δn

�
1

¼ −2τð0Þnnwj∇n0j2n1 − 2τð0Þnw ½n1∇2n0 þ∇n0 ·∇n1� − 2τð0Þw ∇2n1 ð12bÞ

− 2τð0Þww½2ð∇n0 · ∇n1Þ∇2n0 þ∇ðj∇n0j2Þ ·∇n1 þ 2∇n0 ·∇ð∇n0 ·∇n1Þ� ð12cÞ

− 4τð0Þwwwð∇n0 · ∇n1Þ½∇n0 · ∇ðj∇n0j2Þ� ð12dÞ

− 2τð0Þnwwf2ð∇n0 · ∇n1Þj∇n0j2 þ ½∇n0 ·∇ðj∇n0j2Þ�n1g; ð12eÞ
�
δTIII

s

δn

�
1

¼ τð0Þnnnqj∇n0j2n1 þ τð0Þnnq½2∇n0 · ∇n1 þ n1∇2n0� þ 2τð0Þnq∇2n1 ð12fÞ

þ τð0Þnnqqfj∇n0j2∇2n1 þ 2n1½∇n0 ·∇ð∇2n0Þ�g ð12gÞ

þ τð0Þnqq½∇2n0∇2n1 þ 2∇n1 · ∇ð∇2n0Þ þ 2∇n0 ·∇ð∇2n1Þ þ∇2ð∇2n0Þn1� ð12hÞ

þ τð0Þqq∇2ð∇2n1Þ ð12iÞ

þ τð0Þqqqf2½∇ð∇2n0Þ ·∇ð∇2n1Þ� þ∇2ð∇2n0Þ∇2n1g ð12jÞ

þ τð0Þnqqqf2½∇n0 ·∇ð∇2n0Þ�∇2n1 þ j∇ð∇2n0Þj2n1g ð12kÞ

þτð0Þqqqqj∇ð∇2n0Þj2∇2n1: ð12lÞ
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The superscript (0) indicates that the function is evalu-
ated at n ¼ n0. The terms are grouped so that ðδTI

s=δnÞ1
includes only derivatives of τ with respect to n, ðδTII

s =δnÞ1
includes derivatives of τ with respect to w, and finally,
ðδTIII

s =δnÞ1 includes derivatives of τ with respect to q.
Equation (12) thus represents a novel and a quite general
expression for the QHT first-order potential with increasing
complexity.
The term ðδTI

s=δnÞ1 is the only one included in the TF-
HT model, which is a local model. In the case of the TFvW
functional, only the terms (12a) and (12b) survive. With the
PGS functional, all terms in ðδTII

s =δnÞ1 are included,
whereas PGSL includes all terms but (12j)–(12l), as third-
and fourth-order derivatives of τ with respect to q are not
present in Eq. (8). The terms in Eqs. (12j)–(12l) are present
in the functional described in Sec. VII, where the Laplacian
term does not have a simple quadratic dependence on q.
Despite its apparent complexity, Eq. (12) can be imple-

mented in finite-element codes. Moreover, we note that
Eq. (12) is not the most general expression for a Laplacian-
level KE functional: When τ includes terms with products
of w and q, additional terms are present, which will be
investigated elsewhere. Such a product is present in the
fourth-order gradient expansion [98].
Finally, we recall that the first-order term

ðδELDA
XC ½n�=δnÞ1 for the XC potential can be obtained via

the Perdew-Zunger LDA parametrization [111], and a its
full expression can be found in Ref. [62].

III. ASYMPTOTIC ANALYSIS

As discussed in Ref. [62], the tail of the ground-state
density plays a fundamental role in the determination of the
QHT solutions. In this section, we summarize and generalize
the derivation inRef. [62] to a Laplacian-level functional.We
start by taking the divergence of Eq. (2b), and we use the
quasistatic approximation (so that ε0∇ ·E ¼ ∇ · P ¼ en1),
obtaining

∇ ·
en0
me

∇
�
δG
δn

�
1

¼ −ω2en1 −
e2

me

�
e
ε0
n0n1 þ∇n0 · E

�
: ð13Þ

To obtain the asymptotic form of Eq. (13), we assume
that [62]

n0ðrÞ → A0 expð−κrÞ; ð14Þ

n1ðrÞ → B0 expð−νκrÞ cosðθÞ; ð15Þ

where κ > 0 is the decay constant of theground-state density,
and νκ is the decay constant of the (dipole excited) induced
density.
The right-hand side (rhs) of Eq. (13) is asymptotically

vanishing, and it decays as

−ω2en1 þ
3e2κd1
4πϵ0me

n0 cosðθÞ
r3

; ð16Þ

where d1 is the dipole moment of n1 (see Ref. [62]).
For the left-hand side (lhs), we first note terms like τTF,

τPGα, and the XC term will vanish exponentially [62]. Thus,
in the case of the PGSL functional, we need to consider
only τvW and the new term τLβ. For spherical systems, we
have that the lhs of Eq. (13) can be written as

∇n0ðrÞ∇
�
δTLβ

s

δn

�
1

¼
X6
n¼0

Fk½r; n0ðrÞ�
dkn1ðrÞ
drk

; ð17Þ

where n1ðrÞ ¼ n1ðrÞ cosðθÞ and Fk are functions reported
in Sec. III of the Supplemental Material [110]. Note for the
PGSL functional, Eq. (17) involves derivatives of n1 up to
the sixth order. After some algebra (see Sec. III of the
Supplemental Material [110]), we obtain

∇n0∇
�
δTvW

s

δn

�
1

→

�
−
ν4

4
þ ν3

2
−
ν2

4

�
κ4n1; ð18Þ

∇n0∇
�
δTLβ

s

δn

�
1

→ β

ffiffiffi
33

p

π4=3

�
243ν6 − 1377ν5 þ 2025ν4 þ 765ν3 − 3885ν2 þ 2865ν − 650

19440
κ6
�

n1
n2=30

: ð19Þ

Equation (18) has already been derived in Ref. [62],
whereas Eq. (19) is a key finding of the present work. We
recall that the terms with ELDA

XC and TPGα
s decay exponen-

tially faster than n1, and that Eqs. (18) and (19) represent
only the leading terms in the asymptotic region.

When β ¼ 0, the PGSL functional is asymptotically
equivalent to the vW functional: When ℏω is higher than
critical energy [see Eq. (1)], the asymptotic decay is
complex valued and oscillating. Otherwise, the asymptotic
decay is exponential, and ν depends on ω.
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When β > 0, we find, interestingly, that the Lβ term
gives an exponentially increasing contribution due to the
division by n2=30 , which dominates over the term in Eq. (18)
as well as the term on the rhs. Thus, the asymptotic solution
does not depend on ω, as in the conventional QHT
approach with the TFvW functional, but it is related to
the solutions of the sixth-degree polynomial in ν in
Eq. (19), which are

− 1.320; þ0.543; þ2=3;

þ 1.123; þ5=3; þ 2.987: ð20Þ

Only for those values of ν, the lhs term vanishes asymp-
totically, as does the rhs. Some of these solutions are not
possible or unstable, i.e., those with ν ≤ 2=3, as the term
n1=n

2=3
0 will not decay asymptotically. The other three

values of ν give the right asymptotic solution, but a high-
order analytical analysis or a full numerical solution is
required to select the actual value of ν. Interestingly, all
these solutions have ν > 1, which is another difference with
respect to the QHT approach with the TFvW functional
[62], where ν < 1.

IV. NUMERICAL IMPLEMENTATION

The system of Eqs. (2) with Eq. (3) and expressions (12)
is solved for a plane-wave excitation using a commercial
implementation of the finite-element method (FEM) [112].
In order to easily compute absorption spectra for spheres

and sphere dimers, we implement our equations using the
2.5D technique, which significantly reduces the computa-
tional time for axisymmetric structures [62,113,114].
A detailed explanation of the FEM implementation can
be found in Appendix B. In particular, we use Dirichlet
boundary conditions without making any assumptions
of the asymptotic decay. A completely independent imple-
mentation has also been carried out using a finite-difference
method for spherical systems in the quasistatic approxi-
mation: The results obtained with the two methods are
numerically the same, and details of the finite-difference
implementation will be published elsewhere.
In order to solve the system of Eqs. (2), an expression for

the ground-state density function n0ðrÞ is required.
Throughout the article, we consider the following two
ground-state density functions: (i) the exact KS density
nKS0 ðrÞ calculated using a DFT in-house code [62], and (ii) a
model density defined as [60,62]

nMod
0 ðrÞ ¼ 1

1þ exp ½κModðr − RÞ� ð21Þ

normalized with a condition
R
nMod
0 dV ¼ Ne, where Ne is

the number of electrons. For the κMod coefficient, the
κMod ¼ 1.05=a0 value is fixed and fitted with asymptotic
decay of the KS electronic density decay [62]. Figure 2

shows nKS0 and nMod
0 densities for a Na (Wigner-Seitz radius

rs ¼ 4 a:u:) jellium nanosphere with Ne ¼ 1074 electrons
(nanosphere radius R ¼ 2.168 nm). Note that nMod

0 does
not display Friedel oscillations inside the nanosphere
volume (surface marked with the vertical line), which
are instead present in nKS0 . The inset shows that the
asymptotic decay is the same for both cases.

V. ABSORPTION SPECTRA

In Fig. 3, we report the comparison of the normalized
absorption cross section for a Na jellium nanosphere with
Ne ¼ 1074 electrons as obtained using QHT with three
different KE functionals (TFvW, PGS, PGSL) as well as the
TD-DFT approaches (see Appendix A for definitions and

FIG. 2. KS (nKS0 ) and model (nMod
0 ) ground-state densities for a

Na jellium sphere with Ne ¼ 1074 electrons. The inset shows the
variation of densities in the logarithmic scale. Values are
normalized to the bulk density nb ¼ ð4=3πr3sÞ−1.

FIG. 3. Normalized absorption cross section σ=σ0 (see the
Appendix A for definitions) in logarithmic scale for a Na jellium
sphere with Ne ¼ 1074 electrons as obtained from TD-DFT,
QHT-TFvW, QHT-PGS, and QHT-PGSL using KS and model
ground-state densities. ℏωc is the critical frequency; see Eq. (1).
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details). The QHT results with a given KE functional F are
indicated in the following as KS=F or Mod=F, if the KS
density or the model density is used as the input density,
respectively. When it is not relevant for the discussion to
specify the input density, the shorthand QHT-F is used.
Figure 3 shows that the energy of the LSP resonance

(first main peak) for QHT-TFvW and QHT-PGS is in good
agreement (within 10 meV) with TD-DFT (approximately
3.22 eV), which is broader due to quantum-size effects,
while KS/PGSL and Mod/PGSL give the LSP peaks at
approximately 3.37 and 3.31 eV, respectively, which are
blueshifted with respect to TD-DFT results (for further
analysis of the position of LSP peak, see Sec. VIII). As we
discuss in the Introduction, QHT-TFvW gives accurate
energy of the LSP and predicts additional peaks at higher
energies, which are not present in the TD-DFT. Almost the
same situation is obtained for QHT-PGS, meaning that even
the more general gradient approximation in Eq. (9a) does
not solve the problem of additional peaks. On the other
hand, the QHT-PGSL absorption spectrum is quite differ-
ent. The main difference between QHT-TFvW and QHT-
PGSL is not the energy shift of the LSP but the absence of
additional resonances in the latter. Actually, a second small
peak is present in the QHT-PGSL spectrum at high energy,
namely, approximately 5.85 eV [hardly visible in Fig. 3(b)]
for KS/PGSL and approximately 5.7 eV for Mod/PGSL.
This peak is a Bennett state (which can be identified as
shown in Fig. S6 of the Supplemental Material [110]), and
it is further discussed in Sec. VII.
Although the QHT-TFvW predicts very well the LSP

resonance when compared to more sophisticated TD-DFT
approaches, the presence of additional peaks is a major
shortcoming. These peaks are, in fact, very sensitive to the
details in the tail of the density (see Fig. S4 in the
Supplemental Material [110], where a model density with
different κMod are considered). A small modification of the
tail of the input density should not change the absorption
spectrum significantly. This is the case for the Mod/PGSL
absorption spectra, which are thus robust with respect to the
input density. On the other hand, the Mod/TFvW absorp-
tion spectrum is instead very sensitive, and it results in
being largely affected by additional peaks. These peaks
have an energy higher than ℏωc and can hardly be treated in
an efficient numerical scheme.
This behavior is shown in Fig. 4, where the QHT-TFvW

normalized absorption cross sections (σ=σ0) for the same
jellium nanosphere are calculated for increasing size of the
simulation domain. These calculations have been done with
an in-house-developed finite-difference code for spherical
systems (see Sec. IV), which reproduces exactly the FEM
results reported in this work but is more accurate in the
asymptotic region (since it requires only a one-dimensional
discretization). The results are obtained with KS (upper
panel) and model (lower panel) ground-state densities.
Clearly, as the domain size increases, more and more

modes appear (and with reduced intensities) in the spec-
trum without any limit. Thus, the absorption spectrum is
very sensitive to the domain size. We note that no previous
report in the literature has considered the numerical
convergence of those states in QHT calculations. With
an infinite computational domain size, there should be an
infinite number of states with infinitely small peak inten-
sity; i.e., no peaks can be distinguished anymore, and only
an unstructured shoulder could be present.
This behavior is indeed shown in Fig. 5 where we report

theQHTandTD-DFTresults for two different computational
domain sizes. We use a larger damping (see Eq. (2b) and

FIG. 4. The effect of computational domain size (L) on the
normalized absorption spectra as obtained from KS/QHT (a) and
Mod/QHT (b) for a Na jellium nanosphere with Ne ¼ 1074
electrons.
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FIG. 5. High-energy part of the normalized absorption cross
section forNe ¼ 1074 electron Na jellium nanosphere considering
different computational domain sizes for QHTwith different func-
tionals and TD-DFT. KS/PGSL* means that the spectrum has been
redshifted in order to have the same energy position as KS/TFvW.
The damping is γ ¼ 0.2 eV (γ ¼ 0.234 eV) for KS/TFvW
(KS/PGSL*). ℏωc is the critical frequency; see Eq. (1).
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Appendix A) for KS/TFvW (namely, γ ¼ 0.2 eV) so that it
will give the same intensity at the LSP peak as TD-DFT.
While the TD-DFT results are converged with standard
domain size, convergence seems to appear for KS/TFvW
onlywith a domain size of 10.6 nm (200 a.u.), where nomore
Bennett peaks can be distinguished and only a shoulder is
present. However, this shoulder, which starts at ℏωc, is
significantly higher (about a factor of 2.5 in intensity) than
the TD-DFTone, which starts later at about 3.7 eV. Clearly, a
domain size of 200 a.u. to obtain a converged absorption
spectrum is not reasonable for any application in plasmonics,
and it is obtained only with a specialized code for reference
calculations.
In Fig. 5, we also report the KS/PGSL* results, where the

* indicates that the spectra are redshifted by 0.15 eV in
order to have the same LSP energy position as QHT; the
damping is fixed to γ ¼ 0.234 eV so that the peak intensity
is also the same. The plot shows that the KS/PGSL* does
not change at all with the computational domain size (see
also Fig S5 in the Supplemental Material [110]), and
overall it is much closer to TD-DFT than QHT.
A more quantitative comparison of methods can be done

by considering the integrated absorption cross section

IðωÞ ¼
Z

ω

0

σðω0Þdω0; ð22Þ

which converges to ðπe2Þ=ð2ϵ0mecÞNe for ω → ∞, where
Ne is the number of electrons [89,115,116].
The integrated absorption is plotted in Fig. 6, and it

shows that IðωÞ for QHT-TFvW and QHT-PGSL* con-
verge to the same value for high energies. However, while
the integrated absorption curve for TD-DFT and QHT-
PGSL* are very close to each other, the growth in QHT-
TFvW is much slower, meaning that the oscillator strength
(i.e., the energy-integrated intensity) in QHT-TFvW is split
into several Bennett modes, whereas the single peak in

QHT-PGSL* contains it all. In fact, the integrated absorp-
tion for QHT-TFvW at ℏω ¼ ℏωc is about 15% smaller
than QHT-PGSL* and TD-DFT.
In Sec. VIII, a more detailed analysis of the oscillator

strength and absorption cross section for different numbers
of electrons is presented. Here, we remark that these
features are not limited to spherical NPs but could happen
in other geometries or materials. In fact, for ωc the identical
expression was obtained for a jellium sphere [62] and slab
[68]. Thus, in general, one could have for LSPωLSP ≃ ωc or
even ωLSP > ωc. In such cases, the QHT cannot describe
the LSP peak (see also Fig. S4 in the Supplemental
Material [110]).

VI. INDUCED CHARGE DENSITY

As we discuss in Sec. III, the decay of QHT-TFvW
induced densities is frequency dependent, and solutions are
pure exponentially decaying at the metal surface only if the
incident plane-wave energy is lower than ℏωc, whereas
using the PGSL functional, a fixed exponential decay
should be obtained.
This fact can be verified numerically by plotting the

computed induced charge density n1 (associated with the
absorption). In Fig. 7, we plot jn1j (in logarithmic scale) as
obtained from the KS/TFvWand KS/PGSL for a Na jellium
nanosphere with Ne ¼ 1074. To have a clear comparison of
decay rates, the curves for jn1j are shifted to have the
maximum at z ¼ R and normalized to jn1ðRÞj, while n0
density is normalized only to n0ðRÞ.
For the KS/TFvW induced density, the decay slope

shows a clear dependence on the incident energy ℏω,
becoming oscillatory for ℏω > ℏωc ¼ 3.55 eV (note that
KS/TFvW induced densities are not converged with respect
to the computational domain size, as we discuss in Sec. V).
On the other hand, the KS/PGSL calculations yield the

same slope for all excitation energies, as we analytically
demonstrate in Sec. III. A numerical fit of the decay gives a
value of ν close to þ1.12, i.e., the slowest from asymp-
totically decaying solutions (with ν > 2=3), see Eq. (20).
It is important to note that the TD-DFT calculations

[Fig. 7(c)] give qualitatively similar results to the QHT-
PGSL. In fact, for TD-DFTwe get the same decay slope for
the induced density (at least for ℏω < ℏωp). However, as
we discuss in Sec. III, in QHT-PGSL we have ν > 1, while
ν < 1 in the QHT-TFvW, meaning that spill-out effects are
somehow smaller in QHT-PSGL.
Nonetheless, we need to point out that this feature is

peculiar to PGSL, which is one of the few Laplacian-level
KE functionals, and PGSL has not been developed for QHT
calculations. Thus, another Laplacian-level KE functional
can be developed with different features. In Sec. VIII, the
induced charge density is further analyzed in terms of
Feibelman d-parameters.
Another important aspect is the numerical stability of the

QHT-PGSL approach: Not only the absorption spectra do
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FIG. 6. Integrated intensity from KS/TFvW, KS/PGSL*, and
TD-DFT for a Na jellium nanosphere with Ne ¼ 1074 electrons.
The classical limit is also reported.
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not depend on the domain size, but the fact that the decay
constant is fixed and independent of the frequency allows
the use of the mixed boundary condition for an exponential
decay (i.e., r̂ · ∇n1 þ νκn1 ¼ 0), allowing converged
results even with a very small domain size (see Fig. S5
in the Supplemental Material [110]).

VII. TOWARD AN ACCURATE KINETIC ENERGY
FUNCTIONAL FOR QHT

In the previous sections, we show that the QHT results
with the PGSL functional are distinctively different from

the ones obtained with the more conventional TFvW and
PGS functionals. In particular, the PGSL functional modi-
fies the description of the density tail, removes all the
additional high-energy peaks, and improves the oscillator
strength of the LSP peak, but it overestimates its energy. We
recall that the PGSL functional has not been developed for
QHT linear response but for ground-state OF-DFT calcu-
lations of bulk properties of metal and semiconductors [97].
Nevertheless, we show in the previous sections that the
Laplacian term (i.e., βq2) present in the PGSL functional is
of fundamental importance also for QHT. In this section,
we propose a modification of the PGSL functional to
describe accurately the QHT linear-response properties. We
find that a modification of the β parameter does not lead to
any relevant modification of the results. This can be
understood considering that the asymptotic solutions
[i.e., Eq. (20)] do not depend on β.
Here, we consider the following kinetic energy density

(named PGSLN):

τ ¼ τvW þ τPGS þ τTF½βqr2 þ 2βq20 lnð1þ qr=q0Þ�; ð23Þ

where q0 is a parameter. In this way, for large qr (qr ≫ q0),
i.e., in the density tail, the functional will be equivalent to
PGSL, whereas for qr ≪ q0 (i.e., inside the nanoparticle,
where jqrj < 0.2; see Fig. S7 of the Supplemental Material
[110]), we have that

τ ≈ τvW þ τPGS þ 2q0βqr þOðqr3Þ; ð24Þ

thus removing the quadratic term qr2. For small qr, the
PGSLN functional will be thus equivalent to PGS because a
linear term in qr does not contribute to the kinetic energy or
to the kinetic potential [117]. The PGSLN is an accurate
total kinetic energy functional yielding also accurate total
energies of jellium nanospheres; see Table S2 of the
Supplemental Material [110]. The parameter q0 has a
well-defined physical meaning, as it defines how rapidly
the PGSL behavior is recovered at the density tail: The
larger q0, the further the quadratic term qr2 is recovered.
The PGSLN is thus an interpolation between two density
regimes where exact conditions are known; the asymptotic
region where the quadratic term qr2 will render the induced
density decay independent of the frequency (see Sec. III)
and the region inside the nanoparticle where the density is
slowly varying and the PGS functional satisfies the second-
order gradient expansion [97]. The transition between these
two density regimes is described by the q0 parameter,
whose actual value is defined in the following.
In Fig. 8, we report the absorption spectrum as computed

from TD-DFT, KS/PGSL, and KS/PGSLN using a larger
damping for PGSL and PGSLN in order to have the same
intensity for the LSP peak.
The first main difference between KS/PGSL and

KS/PGSLN is the presence of a well-defined second

(a)

(b)

(c)

FIG. 7. Modulus of induced charged density at different energies
for a Na jellium spherewithNe ¼ 1074 electrons as calculated from
KS/TFvW (a), KS/PGSL (b), and TD-DFT (c). The blue curves
correspond to the densities associated with the LSP excitation
energy. The critical frequency is ℏωc ¼ 3.55 eV; see Ref. [62].
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(Bennett) peak at 4.7 eV (see also Fig. S6 in the
Supplemental Material [110]). For KS/PGSL the Bennett
peak (at 5.85 eV) cannot be distinguished at all when a
large damping is used. The KS/PGSLN spectra are stable
with respect to the computational domain size (see Fig. S5
in the Supplemental Material [110]), but the energy
position of the Bennett state changes with the values of
q0, as shown in the inset. When q0 ≈ 0, the PGSLN
functional is close to PGSL and indeed the position of
the Bennett peak is at very high energy (close to the volume
plasmons, as also shown in Fig. 3). Larger q0 gives smaller
energy of the Bennett peak. We define the PGSLN func-
tional with q0 ¼ 700 a.u. in order to have the Bennett peak
at 4.7 eV, as obtained from TD-DFT calculations for Na
metal surfaces [85,86]. Fixing q0 ¼ 700 a.u. means that
the PGSLN functional recovers the PGSL behavior only
quite far outside the nanoparticle (see Fig. S7 of the
Supplemental Material [110]). Note that fixing the param-
eters from the reference calculations of model systems is a
standard procedure for DFT functional development since
the known exact conditions are usually insufficient to build
the full functional [99,108,118].
As stated in the Introduction, in TD-DFT calculations of

nanoparticles, a well-defined Bennett state is not present,
because it is strongly damped and broadened due to the
interaction with single-particle transitions (not included, by
definition, in any hydrodynamical approach). Thus, the
overall agreement between the PGSLN and TD-DFT
spectra is not very good in the high-energy part (a sharp
peak is present in QHT-PGSLN, whereas TD-DFT shows
only a broad shoulder). A possible solution to be inves-
tigated in the future is to use in QHTa frequency-dependent

damping (in contrast to a fixed value employed here) so that
the QHT Bennett peak could be made broader (as it is in
TD-DFT).
The second important difference is that the position of

the LSP in PGSLN is redshifted to the correct (i.e., TD-
DFT) position. Thus, the PGSLN functional not only
predicts a correct and numerically stable Bennett peak,
but it also corrects the overestimation of the LSP energy,
peculiar to the PGSL functional. Thus, the selected value of
q0 defined from the position of the Bennett state also yields
a LSP energy in excellent agreement with TD-DFT results.
This result can be seen as an independent check of the
reliability of the q0 parameter, and it is an important result
as the q0 parameter could be also defined to reproduce the
LSP peak energy position: In this case, as a direct
consequence, the Bennett state will be at the right energy.
Thus, the q0 parameter is not a bare empirical parameter,
but it describes the interplay between the Bennett state,
which is related to the density decay far away from the
system, and the LSP peak, which is instead related to
density behavior inside the nanoparticle. In Sec. VIII, a
detailed benchmark on the LSP energy position for Na
jellium spheres of different dimensions is presented.
Finally, in Fig. 9, we consider the induced density n1 for

different functionals. Figure 9 shows that KS/TFvWandKS/
PGS give a quite accurate description of the induced density
as compared to TD-DFT, but with an asymptotic tail (see the
inset), which is slower than TD-DFT. KS/PGSL is instead
more confined inside the nanoparticles and decays faster
(see also Fig. 7). The KS/PGSLN induced density is instead
close to the KS/PGS one inside the nanoparticle, whereas in
the tail, it approaches KS/PGSL. In Fig. 9, we also report the
induced density from the SC-QHT approach: The shape of
the n1 is very different from all other QHT and TD-DFT
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FIG. 9. Imaginary part of the induced density for a Na jellium
nanosphere with Ne ¼ 1074 as computed for TD-DFT, KS/
TFvW, KS/PGS, KS/PGSL, KS/PGSLN, and SC-QHT. The inset
shows the tail region in logarithmic scale.
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FIG. 8. Normalized absorption cross section (in logarithmic
scale) for a Na jellium nanosphere with Ne ¼ 1074 electrons as
computed from TD-DFT, KS/PGSL, and KS/PGSLN with
q0 ¼ 700. The damping is γ ¼ 0.234 eV (γ ¼ 0.224 eV) for
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results, as SC-QHTuses the self-consistent OF-DFT density
as the input density, which is very different from the exact
KS density.More quantitative analysis with the Feibelman d
parameter is given in Sec. VIII.

VIII. BENCHMARKING KINETIC ENERGY
FUNCTIONALS FOR JELLIUM NANOSPHERES

OF DIFFERENT DIMENSIONS

An important aspect in nanoplasmonic systems is the
LSP resonance dependence on the NP size [47,48,119]. In
Fig. 10(a) (horizontal axis is in logarithmic scale), we show
the LSP resonance energy of various Na jellium nanospheres
with the number of electrons Ne varying from 338 to 6174
(the corresponding radius is R ¼ rsN

1=3
e ) as computed from

TD-DFT, KS/TFvW, KS/PGS, KS/PGSL, and KS/PGSLN.
We see that for all approaches, LSP energy is lower than Mie
theory value ℏωMie ¼ 3.4 eV (shown as a horizontal line)
and approaching it for large Ne. The mean average errors
(MAEs) with respect to reference TD-DFT are reported in
the first part of Table I for both KS and model density. Note
that a detailed comparison of QHT method vs TD-DFT can
only be achieved using the KS density. In fact, the model
density is not the one used for the reference TD-DFT
calculations. In any case, for applications involving large
systems, the model density is simpler to use; thus, it is
relevant to verify (even if approximately) its accuracy.
Figure 10(a) and Table I show that the accuracy of KS/

TFvW is very high (MAE ¼ 18 meV), which is somehow
surprising, considering the shortcomings of the TFvW
functional discussed in the Introduction. For Mod/TFvW,
the accuracy is even higher (MAE ¼ 6 meV, close to the
numerical accuracy of our implementation). The PGS

functional, which has some better properties than the
TFvW functional [97], yields similar accuracy. On the
other hand, PGSL overestimates the LSP peak by 80 meV
for the model density and 129 meV for the KS density. This
seems like quite a large error, but it is not if we consider that
the widely used TF-HT has an error of 287 meVon a similar
test set [62]. The larger error of KS/PGSL with respect to
Mod/PGSL can be traced back to the higher oscillating
behavior of the KS density inside the NP (see Fig. 2). Such
quantum oscillations induce higher values of the Laplacian
(see Fig. S7 in the Supplemental Material [110]) and thus
higher contributions to the energy and potential. On the
other hand, with the model density, both the gradient and
the Laplacian are vanishing small inside the NP. An “exact”
KE functional should be able to describe both situations,
but this is not the case of the PGSL functional, which has
not been optimized for the jellium nanosphere or for the
QHT approach. Instead, a properly constructed functional
like PGSLN has even better accuracy than KS/TFvW: The
MAE of KS/PGSLN is, in fact, only 6 meV.
To describe the accuracy of a given theoretical method

for the calculation of the absorption spectra, not only the
energy of the LSP peak has to be considered, but also the
oscillator strength fosc associated with it. The oscillator
strength is readily available in an eigenvalue formulation of
QHT [60,120]. Our QHT implementation is frequency
dependent, and, therefore, the oscillator strength is not
directly computed, but it can be extracted from the
absorption spectra using the fitting procedure described
in Sec. IV of the Supplemental Material [110]. The
oscillator strength of the LSP peak can also be extracted
from the TD-DFT spectra if the onset of the plasmon
shoulder is considered (Sec. IV of the Supplemental
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FIG. 10. (a) LSP energy, (b) corresponding oscillator strength
(fosc) normalized to the Mie one, and (c) d-parameter (real part)
at the LSP energy for Na jellium spheres as a function of the
number of electrons (Ne) as computed from TD-DFT, KS/TFvW,
KS/PGS, KS/PGSL, and KS/PGSLN, as well as the classical
results.

TABLE I. Performance of the QHT approach using different
kinetic energy functionals (TFvW, PGS, PGSL, and PGSLN)
with different input density (KS, model). The first block reports
the mean absolute error (MAE) in meV for the energy position of
the main LSP peak. The second block reports the mean absolute
relative error (MARE) in percent for the oscillator strength of the
main LSP peak. The last block reports the MAE (in a.u.) for the
Feibelman d-parameter (real part) as computed from the induced
density at the LSP energy. Best results (or close to them) are in
bold; worst results (or close to them) are underlined.

Density TFvW PGS PGSL PGSLN

LSP, MAE (meV)
KS 18 19 129 6
Mod 6 12 80 14

fosc, MARE (%)
KS 13.7 13.4 2.8 2.9
Mod 6.3 6.1 2.4 0.8

Re½d�, MAE (bohr)
KS 0.35 0.33 1.84 0.32
Mod 0.19 0.15 1.26 0.41
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Material [110]). Previous attempts to compute the fosc of
the LSP peak are based on the sum-rule approaches [91]. In
Fig. 10(b), we report fosc of the LSP peak, as obtained from
TD-DFT and the same KE functionals. Figure 10(b) shows
that for all methods, LSP converges to the classical Mie
results for large Ne. However, fosc for KS/TFvW and KS/
PGS is largely underestimated, as the main plasmon peak is
subdivided into different peaks, as previously discussed.
On the other hand, the main peak of KS/PGSL contains
almost all the oscillator strength, as in the classical
calculations. The mean average error with respect to
reference TD-DFT is reported in the second part of
Table I. QHT-TFvW and QHT-PGS are thus quite inaccu-
rate for the oscillator strength, whereas PGSL has an error
of less than 3%. In all cases, better accuracy is obtained
using the model density. Thus, while QHT-TFvW (QHT-
PGS) and QHT-PGSL give either very good LSP energy or
very good LSP oscillator strength, QHT-PGSLN is the only
functional which gives very good accuracy for both
properties.
Finally, we consider the Feibelman d-parameter

[106], i.e.,

d ¼
R
4πr2ðr − RÞn1drR

4πr2n1dr
; ð25Þ

where R is the radius of the jellium nanosphere, and n1 is
the radial part of the induced density. Equation (25) is valid

for a spherical density, and the real part of d describes the
position of the center of mass of n1 with respect R. The
results are reported in Fig. 10(c) and in the last section of
Table I. While for PGSL the d-parameter is underestimated
(i.e., the induced density is more confined inside the
nanoparticles), TFvW, PGS, and PGSLN give quite accu-
rate results, as also shown in Fig. 9.
The PGSLN is thus simultaneously very accurate for the

LSP energy position, Bennett energy position, LSP oscil-
lator strength, and Feibelman d-parameter for all the
systems considered. This is quite a large test set of
properties and systems, showing the reliability of the q0
parameter and of the PGSLN functional form.

IX. APPLICATION TO SPHERICAL DIMER

Our FEM implementation allows us to calculate absorp-
tion spectra for axisymmetric structures. An important
example of such a system is a nanosphere dimer. The NP
dimer has been widely studied in the literature since it
supports gap plasmons that can squeeze light down to
subnanometer volumes, making it an ideal system for
exploring the quantum and nonlocal phenomena [21,70,
121–123]. Here we consider a dimer of Na jellium spheres
with 1074 electrons each. In Fig. 11(a), we present a
comparison of the absorption cross section as calculated
from the Mod/TFvW, Mod/PGSL, and Mod/PGSLN (the
cross section is normalized to the 2σ0 ¼ πR2 with R being

FIG. 11. Normalized absorption cross section σ=σ0 (in logarithmic scale) and norm of the total field jEj=E0 for dimers of Na jellium
spheres with Ne ¼ 1074 electrons as obtained from the Mod/TFvW, Mod/PGS, and Mod/PGSL. From top to bottom: panel (a) refers to
gap ¼ 1 nm, (b) to gap ¼ 1.5 nm, and (c) refers to gap ¼ 2 nm.

LAPLACIAN-LEVEL QUANTUM HYDRODYNAMIC THEORY FOR … PHYS. REV. X 11, 011049 (2021)

011049-13



the radius of a single sphere). The planewave that excites the
structure is polarized along the z axis, and the input ground-
state density is the sum of model densities [see Eq. (21)] of
two spheres. As we can see, the Mod/TFvW gives oscil-
lations in the spectrum (at approximately 3.9 and 4.6 eV),
which are absent in the Mod/PGSL and Mod/PGSLN
approaches. Our convergence analysis shows that these
oscillations, as in the case of the sphere (see Fig. 3), persist
and depend on the computational domain. These oscillations
should not be confused with the small undulation next to the
main plasmon peak that is more clearly visible in the gap
¼ 1 nm case [Fig. 11(a)]. This undulation comes from
higher-order plasmon resonances and gets higher for smaller
sizes of the gap [21]. For all considered cases of gap size,
Mod/PGSL gives blueshifted plasmon resonance energy
with respect to other methods. On the other hand, Mod/
TFvW and Mod/PGSLN match very well at the plasmon
resonance, with the maximum difference of 0.005 eV, but, as
stated before, Mod/PGSLN does not show the oscillations.
Also, the Bennett peak is observed in the Mod/PGSL
(approximately 5.7 eV), and Mod/PGSLN (approximately
5.1 eV) approaches that is stable to change in the computa-
tional domain size. The respective values of the plasmon
resonance are shown in the map plots of the total field
enhancement in Fig. 11. There we also see that the field gets
more enhanced for Mod/QHT-PGSL as it does for other
approaches, which is more clearly observed in the cut lines
of the field distribution around the z axis. This behavior is
expected sinceMod/PGSLdoes not result in additional peaks
of the absorption spectra as opposed to TFvW, and nowmore
energy is moved to the main plasmon peak. For Mod/
PGSLN, the Bennett peak is more pronounced as opposed
toMod/PGSL, and, consequently, we have less enhancement
of PGSLN calculations at the main plasmon peak. Also,
as Table II shows, more field is concentrated in the gap for
Mod/QHT-PGSL.

X. CONCLUSIONS AND FUTURE
PERSPECTIVES

We extend the quantum hydrodynamic theory to
Laplacian-level kinetic energy functionals. In particular,
we start our investigation considering the PGSL functional,
which is shown to be accurate for OF-DFT calculations of
metals and semiconductors [97]. We analyze in detail Na
jellium nanospheres, and the results are compared to
gradient-level kinetic functional and reference TD-DFT
calculations. The key results obtained are focused on two
main findings:

(i) QHT-TFvW and QHT-PGS that are based on gra-
dient-level KE functionals of electron density, to-
gether with an LSP resonance, give additional
resonances in the absorption spectrum of Na jellium
nanospheres. These resonances have usually an
energy higher than the critical frequency, and thus,
they are very sensitive to the computational domain
size. Well-defined additional resonances are not
present in TD-DFTor in QHT-TFvWwith an infinite
computational domain size. In both cases, only a
shoulder is present at the high-energy side to the
plasmon peak, with the TD-DFT result being much
smaller and at higher energy than in QHT-TFvW. On
the other hand, QHT-PGSLyields only the LSP peak
in the absorption spectrum, with an overall spectrum
and oscillator strength closer to TD-DFT.

(ii) The theoretical and numerical asymptotic analysis of
the induced charge density as obtained from QHT-
TFvW and QHT-PGS shows that the decay slope is
changing at different energies of incident radiation.
Contrarily, QHT-PGSL shows the same decay slope
for all energies, and thus, no critical frequency exists
anymore. This result strongly simplifies the boun-
dary conditions so that a converged calculation
can be obtained with a very small computational
domain size.

Our results thus demonstrate that the convergence of the
QHTabsorption spectra is problematic, andmost of theQHT-
TFvWresults reported so far are thus not accurate enough for
energies above LSP resonance. TheQHT-PGSL, on the other
hand, does not suffer from these problems.
The PGSL functional, which is characterized by a term

proportional to q2, solves some fundamental limitation of
the QHT-TFvW approaches: (i) the presence of the critical
frequency, (ii) the sensitivity to input density and the
computational domain size, and (iii) the underestimation
of the oscillator strength for the LSP peak. On the other
hand, the PGSL results are not very accurate when the LSP
energy position and LSP d-parameter are considered.
Moreover, PGSL predicts a Bennett state too close to
the volume plasmon.
We find that all these shortcomings can be removed if the

q2 term is kept only outside the nanoparticles. We thus
develop a new functional, PGSLN, which combines only

TABLE II. The average value of jEj=E0 in the dimer gap as
calculated from QHTwith different KE functionals (TFvW, PGS,
PGSL, and PGSLN) and the model density.

Method Gap jEj=E0

Mod/TFvW 1.0 nm 33.9
1.5 nm 22.5
2.0 nm 16.5

Mod/PGS 1.0 nm 35.4
1.5 nm 23.2
2.0 nm 16.9

Mod/PGSL 1.0 nm 38.6
1.5 nm 25.4
2.0 nm 18.7

Mod/PGSLN 1.0 nm 36.8
1.5 nm 24.6
2.0 nm 18.2
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the good features of QHT-TFvW (or QHT-PGS) and QHT-
PGSL. Thus, QHT-PGSLN is very accurate for all proper-
ties that are of interest in plasmonics, allowing an efficient
and numerically converged computation of collective
excitations in quantum systems. Clearly, the PGSLN func-
tional is a very simple functional introduced here to show
the power of the Laplacian-level QHT, but further tests and
developments will be required to verify and extend its
applicability.
The Laplacian-level QHT is thus a new platform, very

promising for the future, as the Laplacian ingredient
includes many more degrees of freedom in developing
accurate KE functionals than a more conventional func-
tional based on the density gradient. So far, however, the
development of a semilocal KE functional focused only on
ground-state properties, considering only the total KE and
the KE potential (i.e., the first functional derivatives).
Instead, for the QHT response properties, the KE kernel
(i.e., the second functional derivative) is required, but, so
far, it has not been considered at all in the semilocal KE
functional development [97,99,100,102–105].
In addition, it is crucial to understand the role of static

and dynamic corrections to the energy functional. Although
here we consider only static corrections at the second-order
gradient and Laplacian level, the analysis of dynamic
correction represents another important route to explore.
In particular, a frequency-dependent damping can be
important to further improve the accuracy of QHT-
PGSLN with respect to TD-DFT. Overall, we believe that
our current results will help to better understand the role of
functional dependence on electron density in plasmonic
systems.
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APPENDIX A: ABSORPTION SPECTRUM

In QHT, the absorption cross section is calculated as

σðωÞ ¼ ω

2I0

Z
ImfE · P�gdV; ðA1Þ

with I0 being the intensity for the incident plane wave with
frequencyω. The electric fieldE and the polarization vector
P are obtained solving Eqs. (2a) and (2b). Considering the

very small size of the investigated nanoparticles, only dipole
modes are excited (for spherical nanoparticles).An important
parameter for the shape of the absorption spectra is the
damping parameter (γÞ; see Eq. (2b). If not stated differently,
in all QHT calculations, we use γ ¼ 66 meV.
The normalized absorption cross section (absorption

efficiency) is then obtained by normalizing σ to the geo-
metric cross section of a nanosphere σ0 ¼ πR2 with R
being the radius of the nanosphere.
The TD-DFT absorption spectra are computed with a

finite-difference in-house code (with spherical symmetry)
introduced in Ref. [62]; a radial uniform grid is used to
represent KS orbitals and densities. In TD-DFT, no
retardation effects are included, and only longitudinal
electric fields are considered [19]. The absorption cross
section [124–127] is calculated as

σðωÞ ¼ ω

cϵ0
ImfαzzðωÞg; ðA2Þ

where the polarizability is given by

αzzðωÞ ¼ −e2
Z

drdr0zχðr; r0;ωÞz0; ðA3Þ

with χðr; r0;ωÞ ¼ δnðrÞ=δ(eVextðr0Þ) being the interacting
density-density response function [19], which is obtained
solving the Dyson equation

χ ¼ χ0 þ χ0ðvCoul þ fLDAXC Þχ: ðA4Þ

In Eq. (A4), vCoul is the Coulomb interaction, fLDAXC is the
adiabatic LDA XC kernel, and χ0 is the noninteracting
density-density response function, which is computed
using the Green’s function [125] using occupied KS
orbitals from the ground-state calculation (again using
LDA). The broadening parameter for the Green’s function
calculations is, if not stated differently, Γ0 ¼ 33 meV.

APPENDIX B: FEM IMPLEMENTATION

In order to lower the order of derivatives, we multiply
Eq. (2b) by test function P̃ and integrate by parts, which
give us

Z �
−

e
me

�
δG½n�
δn

�
1

ð∇ ·P̃Þþ 1

n0
½ðω2þiγωÞPþϵ0ω

2
pE� ·P̃

�

dV¼0; ðB1Þ

where we assume that the integral on the boundary goes to
zero. Even after integration by parts, the ðδG½n�=δnÞ1
potential contains derivatives up to the fourth order of
n1 [see the Eqs. (12)], so auxiliary variables should be
added to lower the order of differentiation. By introducing
two variables F ¼ ∇n1 and O ¼ ∇ð∇2n1Þ ¼ ∇2F, we
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have only first-order derivatives. Considering axisymmetry
of considered structures, we adopt the 2.5D technique
[62,113,114], and the dependence of E, P, F, and O on the
azimuthal coordinate is taken in e−imϕ form with m ∈ Z.
The dependence onm for test functions Ẽ; P̃; F̃, and Õ is of
eimϕ form. Thus, instead of a three-dimensional problem,

we can have 2mmax þ 1 problems (with mmax being the
maximum value for m). Moreover, for the dimensions
considered in the current work mmax ¼ 0 is enough for the
convergence of results. Finally, only one two-dimensional
problem needs to be solved. Hence, we come to the
following system of equations:

2π

Z
fð∇ ×Eð0ÞÞð∇ × Ẽð0ÞÞ − ½k20Eð0Þ þ μ0ω

2Pð0Þ� · Ẽð0Þgρdρdz ¼ 0; ðB2aÞ

2π

Z �
−

e
me

�
δG½n�
δn

�ð0Þ

1

ð∇ · P̃ð0ÞÞ þ 1

n0
½ðω2 þ iγωÞPð0Þ þ ϵ0ω

2
pðEð0Þ þ Eð0Þ

incÞ� · P̃ð0Þ
�
ρdρdz ¼ 0; ðB2bÞ

2π

Z
fð∇ · Pð0ÞÞð∇ · F̃ð0ÞÞ þ eFð0Þ · F̃ð0Þgρdρdz ¼ 0; ðB2cÞ

2π

Z
fð∇ · Fð0ÞÞð∇ · Õð0ÞÞ þOð0Þ · Õð0Þgρdρdz ¼ 0; ðB2dÞ

where the (0) superscript denotes the zero-order coeffi-
cients of the vðρ;ϕ; zÞ ¼ P

m∈Z vðmÞðρ; zÞe−imϕ vector field
expansion of cylindrical harmonics. We find that curl
elements for Eq. (B2a) and divergence elements [112]
for other equations of the system (B2) are the best choices
for stable solutions.
For the wave equation (B2), simulation domain radius

Rdom is defined via the Rdom ¼ Rþ 500a0 condition. R ¼
rsN

1=3
e is the radius of the nanosphere, and, for dimers, it is

the radius of one of the spheres. Perfectly matched layers
(PMLs) are used in order to emulate an infinite domain and
avoid unwanted reflections. The PML thickness is set to
tPML ¼ 200a0 for all the considered systems. Also, a zero
flux boundary condition is imposed on the electric field at
the outer boundary of the PML. For Eqs. (B2b)–(B2d),
simulations are done in a smaller domain, considering
faster decay of variables P, F, and O compared to the
electric field. The domain, as depicted in Fig. S1(a) of the
Supplemental Material [110], is a semicircle (consider
the axial symmetry) for the nanospheres, and for the dimers
it is the union of two circles centered at the centers of the
nanospheres. Moreover, to facilitate the calculations, only
the “quarter” of the dimer is simulated with a correspond-
ing perfect electric conductor condition at the intersection
segment of two circles, as shown in Fig. S1(b) of the
Supplemental Material [110]. The radius for the circles is
rdom ¼ Rþ 25a0 for QHT and QHT-PGS, but for QHT-
PGSL, it is in the range rdom ≈ Rþ 12a0. The simulation
domain is smaller for QHT-PGSL because the ν ≈ 1.12
decay slope is bigger in this case (see Sec. VI). Dirichlet
boundary conditions P ¼ 0;F ¼ 0, and O ¼ 0 are set on
the simulation domain boundary. As we state in Sec. VI,
mixed boundary condition with a fixed exponential decay

can be used for QHT-PGSL, so that a very small simulation
domain is enough for converged calculations.

[1] Modern Plasmonics, Handbook of Surface Science Vol. 4,
edited by A. A. Maradudin, J. R. Sambles, and W. L.
Barnes (Elsevier, Amsterdam, 2014).

[2] M. Kauranen and A. V. Zayats, Nonlinear Plasmonics,
Nat. Photonics 6, 737 (2012).

[3] M. Ren, E. Plum, J. Xu, and N. I. Zheludev, Giant
Nonlinear Optical Activity in a Plasmonic Metamaterial,
Nat. Commun. 3, 833 (2012).

[4] M. L. Brongersma, N. J. Halas, and P. Nordlander, Plas-
mon-Induced Hot Carrier Science and Technology, Nat.
Nanotechnol. 10, 25 (2015).

[5] I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and
U. Levy, Locally Oxidized Silicon Surface-Plasmon
Schottky Detector for Telecom Regime, Nano Lett. 11,
2219 (2011).

[6] H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, Spec-
troscopy of Single Hemoglobin Molecules by Surface
Enhanced Raman Scattering, Phys. Rev. Lett. 83, 4357
(1999).

[7] S. Kawata, Y. Inouye, and P. Verma, Plasmonics for Near-
Field Nano-Imaging and Superlensing, Nat. Photonics 3,
388 (2009).

[8] J. Weiner and F. Nunes, Light-Matter Interaction: Physics
and Engineering at the Nanoscale, 2nd ed. (Oxford
University Press, New York, 2017).

[9] C. F. Bohren and D. R. Huffman, Absorption and Scatter-
ing of Light by Small Particles (Wiley-VCH, Weinheim,
2004).

[10] M. Quinten, Optical Properties of Nanoparticle Systems:
Mie and Beyond (Wiley-VCH, Weinheim, 2011).

BAGHRAMYAN, DELLA SALA, and CIRACÌ PHYS. REV. X 11, 011049 (2021)

011049-16

https://doi.org/10.1038/nphoton.2012.244
https://doi.org/10.1038/ncomms1805
https://doi.org/10.1038/nnano.2014.311
https://doi.org/10.1038/nnano.2014.311
https://doi.org/10.1021/nl200187v
https://doi.org/10.1021/nl200187v
https://doi.org/10.1103/PhysRevLett.83.4357
https://doi.org/10.1103/PhysRevLett.83.4357
https://doi.org/10.1038/nphoton.2009.111
https://doi.org/10.1038/nphoton.2009.111


[11] S. M. Morton, D.W. Silverstein, and L. Jensen, Theoreti-
cal Studies of Plasmonics Using Electronic Structure
Methods, Chem. Rev. 111, 3962 (2011).

[12] R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua,
Bridging Quantum and Classical Plasmonics with a
Quantum-Corrected Model, Nat. Commun. 3, 825 (2012).

[13] Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A.
Maier, and J. B. Pendry, Surface Plasmons and Non-
locality: A Simple Model, Phys. Rev. Lett. 111, 093901
(2013).

[14] W. Yan, M. Wubs, and N. A. Mortensen, Projected Dipole
Model for Quantum Plasmonics, Phys. Rev. Lett. 115,
137403 (2015).

[15] S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. A. Mortensen,
Nonlocal Optical Response in Metallic Nanostructures,
J. Phys. Condens. Matter 27, 183204 (2015).

[16] A. Varas, P. García-González, J. Feist, F. García-Vidal, and
A. Rubio, Quantum Plasmonics: From Jellium Models to
Ab Initio Calculations, Nanophotonics 5, 409 (2016).

[17] T. Christensen, W. Yan, A.-P. Jauho, M. Soljačić, and N. A.
Mortensen, Quantum Corrections in Nanoplasmonics:
Shape, Scale, and Material, Phys. Rev. Lett. 118,
157402 (2017).

[18] E. Runge and E. K. U. Gross, Density-Functional Theory
for Time-Dependent Systems, Phys. Rev. Lett. 52, 997
(1984).

[19] C. A. Ullrich, Time-Dependent Density-Functional
Theory: Concepts and Applications, Oxford Graduate
Texts (Oxford University Press, New York, 2012).

[20] P. Zhang, J. Feist, A. Rubio, P. García-González, and F. J.
García-Vidal, Ab Initio Nanoplasmonics: The Impact of
Atomic Structure, Phys. Rev. B 90, 161407(R) (2014).

[21] M. Barbry, P. Koval, F. Marchesin, R. Esteban, A. G.
Borisov, J. Aizpurua, and D. Sánchez-Portal, Atomistic
Near-Field Nanoplasmonics: Reaching Atomic-Scale Res-
olution in Nanooptics, Nano Lett. 15, 3410 (2015).

[22] R. Sinha-Roy, P. García-González, H.-C. Weissker, F.
Rabilloud, and A. I. Fernández-Domínguez, Classical
and Ab Initio Plasmonics Meet at Sub-Nanometric Noble
Metal Rods, ACS Photonics 4, 1484 (2017).

[23] P. Zhang, W. Jin, and W. Liang, Size-Dependent Optical
Properties of Aluminum Nanoparticles: From Classical
to Quantum Description, J. Phys. Chem. C 122, 10545
(2018).

[24] F. Della Sala, M. Pezzolla, S. D’Agostino, and E. Fabiano,
Ab Initio Plasmonics of Externally Doped Silicon Nano-
crystals, ACS Photonics 6, 1474 (2019).

[25] E. Madelung, Quantentheorie in Hydrodynamischer
Form, Z. Phys. 40, 322 (1927).

[26] F. Bloch, Bremsvermögen von Atomen mit Mehreren
Elektronen, Z. Phys. 81, 363 (1933).

[27] H. Jensen, Eigenschwingungen eines Fermi-Gases und
Anwendung auf die Blochsche Bremsformel für Schnelle
Teilchen, Z. Phys. 106, 620 (1937).

[28] S. C. Ying, Hydrodynamic Response of Inhomogeneous
Metallic Systems, Nuovo Cimento Soc. Ital. Fis. 23B, 270
(1974).

[29] R. G. Parr and W. Yang, Density-Functional Theory of
Atoms and Molecules, International Series of Monographs
on Chemistry (Oxford University Press, New York, 1994).

[30] Y. A. Wang, N. Govind, and E. A. Carter, Orbital-Free
Kinetic-Energy Functionals for the Nearly Free Electron
Gas, Phys. Rev. B 58, 13465 (1998).

[31] Recent Progress in Orbital-free Density Functional
Theory, edited by T. A. Wesolowski and Y. A. Wang
(World Scientific, Singapore, 2013).

[32] L. H. Thomas, The Calculation of Atomic Fields, Math.
Proc. Cambridge Philos. Soc. 23, 542 (1927).

[33] E. Fermi, Un Metodo Statistico per la Determinazione
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