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Two-dimensional semiconductors provide an ideal platform for exploration of linear exciton and
polariton physics, primarily due to large exciton binding energy and strong light-matter coupling. These
features, however, generically imply reduced exciton-exciton interactions, hindering the realization of
active optical devices such as lasers or parametric oscillators. Here, we show that electrical injection of
itinerant electrons into monolayer molybdenum diselenide allows us to overcome this limitation:
dynamical screening of exciton-polaritons by electrons leads to the formation of new quasiparticles
termed polaron-polaritons that exhibit unexpectedly strong interactions as well as optical amplification by
Bose-enhanced polaron-electron scattering. To measure the nonlinear optical response, we carry out time-
resolved pump-probe measurements and observe polaron-polariton interaction enhancement by a factor of
50 (0.5 μeV μm2) as compared to exciton-polaritons. Concurrently, we measure a spectrally integrated
transmission gain of the probe field of ≳2 stemming from stimulated scattering of polaron-polaritons. We
show theoretically that the nonequilibrium nature of optically excited quasiparticles favors a previously
unexplored interaction mechanism stemming from a phase-space filling in the screening cloud, which
provides an accurate explanation of the strong repulsive interactions observed experimentally. Our findings
show that itinerant electron-exciton interactions provide an invaluable tool for electronic manipulation of
optical properties, demonstrate a new mechanism for dramatically enhancing polariton-polariton
interactions, and pave the way for realization of nonequilibrium polariton condensates.
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I. INTRODUCTION

Monolayer transition metal dichalcogenides (TMDs)
combine strong light-matter coupling and a large number
of degrees of freedom with which to manipulate photons.
Because of the strong Coulomb interaction, excitons
constitute the elementary optical excitation and dominate
optical spectra in TMDs. Many novel features of linear
optical properties of TMD excitons have been demon-
strated, including the optical control of the valley degrees of
freedom using the helicity of the excitation light [1,2] or
external magnetic fields [3–5], electrical control of the
optical spectrum through injection of itinerant electrons

or holes [6], and the realization of atomically thin
mirrors [7,8]. However, nonlinear optical properties, crucial
for the realization of novel photonic devices ranging from
parametric oscillators to exciton-polariton lasers, have been
largely missing in the reported studies. This is at a first
glance not surprising since nonlinearities typically scale as
the exciton Bohr radius and hence are suppressed in TMD
monolayers where excitons are strongly bound [6,9,10], as
compared to quasi-2D materials such as gallium arsenide
(GaAs) quantum wells. Consequently, an outstanding
challenge for the field is to find ways to enhance the
exciton-exciton interaction strength, or more precisely, its
ratio to the exciton radiative decay rate. Theoretical
proposals to date include the exploitation of large inter-
actions between Rydberg excitons with three-level driving
schemes [11] and the reduction of the exciton radiative
decay rate by placing a monolayer in a high quality-factor
(Q) cavity [12] or, more elegantly, by placing a monolayer
at λ=2 distance away from a mirror [13]. However, experi-
ments have so far only confirmed that exciton-exciton
interactions in neutral TMD monolayers are more than an
order of magnitude weaker than those in GaAs [8,14].
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In this work, we demonstrate that the presence of itinerant
electrons dramatically enhances nonlinear optical properties
of TMD monolayers. In an earlier work, we investigated the
linear optics of doped monolayer MoSe2 and identified
exciton-polarons as the relevant quasiparticles [15–17]. In
TMD monolayers, the exciton has an ultralarge binding
energy that dominates over the electron plasma frequency
and Fermi energy. In consequence, the exciton can be
considered as a robust quantum impurity interacting with
a fermionic bath. The itinerant electrons dynamically screen
the exciton to form new quasiparticle branches—the attrac-
tive and repulsive polaron—each with a renormalized mass
and energy [15,16]. A simple description of the polaron as a
superposition of a bare exciton and an exciton dressed with a
single electron-hole pair [18] was sufficient to accurately
predict the resonances observed in linear spectroscopy. We
remark that optical excitations in the presence of a 2DEG
were previously analyzed both theoretically and experimen-
tally, where the attractive polaron resonance was termed a
tetron [19] or a trion-hole pair [20,21].
Here, we use nonlinear spectroscopy to investigate the

residual quasiparticle interactions in the strong cavity-
coupling regime [22–26] where elementary optical excita-
tions are polaron-polaritons [15]. We find their effective
polariton-polariton interaction strength to exceed that of
their undressed counterparts by up to a factor of ∼50, and
we demonstrate an unexpected but unequivocal amplifica-
tion of polaron-polaritons accompanying the interaction-
induced blueshifts, with gain factors ≳2.
The enhanced nonlinearities can be attributed to residual

interactions between the polaron quasiparticles. Using a
wave function technique, we show how the measured
repulsive interaction shift in the presence of itinerant
electrons can be understood in terms of a phase-space
filling (PSF) effect. Here, the strong correlations between
pump-generated polaritons and electrons, that are associ-
ated with the formation of a polaron dressing cloud, lead to
an effective depletion of the electronic medium. Thus,
additional polaritons created by the probe cannot be
screened with maximal efficiency, resulting in an increase
of their energy. Already at the lowest order, our approach
leads to a remarkable agreement between theory and
experiment: we attribute this in part to the zero-dimensional
nature of the cavity mode which ensures that the lowest-
energy optically excited state of the coupled system—
the lower-polaron-polariton (polaron-LP)—is effectively
gapped from the higher-lying continuum of polaron states,
thereby suppressing higher-order interaction processes.
Residual interactions between polarons and electrons are

also responsible for the observed polariton amplification
[27–31]. A fraction of pump-generated polaritons contrib-
ute to the creation of a high-momentum polaron reservoir.
These polarons then relax into the polaron-LP state [32,33]
by generating additional electron-hole pair excitations in
the electron system. In the presence of a seed population in

the polaron-LP state, this scattering process is Bose
enhanced [34,35], leading to the observed gain.
After describing the experimental setup and reviewing

the linear optical properties in the presence of nonpertur-
bative coupling between excitons and the cavity mode as
well as excitons and electrons in Sec. II, we present
the experimental signatures unveiled in nonlinear spectros-
copy, namely the enhancement of nonlinearities (Sec. III)
and polariton amplification in the presence of itinerant
electrons as compared to the charge neutral regime
(Sec. IV). We then present the theoretical model and
calculations of the scattering rates due to residual inter-
actions in Sec. V. Finally, in Sec. VI, we discuss avenues for
further work.

II. ELEMENTARY OPTICAL EXCITATIONS OF
AN ELECTRON-DOPED MONOLAYER MoSe2

EMBEDDED IN A MICROCAVITY

Our experiments are based on a van der Waals hetero-
structure consisting of a MoSe2 monolayer semiconductor
embedded between 2 hexagonal boron nitride (h-BN)
flakes. A top graphene layer allows us to control the
electron density [Fig. 1(a)]. We place the heterostructure in
a tunable zero-dimensional open cavity [36] consisting of a
flat distributed-Bragg-reflector- (DBR) coated transparent
substrate and a concave DBR-coated fiber facet [Fig. 1(b)]
(Q ≃ 1800). All experiments are carried out at liquid
helium temperature (see the Appendix A).
Figures 1(c) and 1(d) show the white light transmission

spectrum measured for vanishing electron density
(Vg ¼ −30 V) and finite electron density (Vg ¼ 5 V),
respectively, in the strong-coupling regime as a function
of the cavity length. In both cases, the measured spectra
exhibit avoided crossings associated with the formation of
half-light, half-matter quasiparticles termed polaritons
[15,37]. In the charge neutral regime at Vg ¼ −30 V,
we observe an exciton-polariton normal mode splitting
of 14 meV. When the monolayer is electron doped
(Vg ¼ 5 V), dynamical screening of the excitons by elec-
trons dramatically alters the nature of elementary optical
excitations, leading to the appearance of attractive and
repulsive exciton-polaron resonances.
To analyze how the exciton-electron interaction modifies

the ground state of the cavity-coupled system, we start from
the Hamiltonian H ¼ Hxe þHcav, which can be written as

Hxe ¼
X
k

ωkx
†
kxk þ

X
k

ϵke
†
kek

þ v
A

X
k;k0;q

x†kþqxke
†
k0−qek0 ; ð1Þ

Hcav ¼
X
k

νkc
†
kck þ

X
k

Ωðc†kxk þ H:c:Þ: ð2Þ
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Here, xk, ek, and ck are the annihilation operators of the
exciton, electron, and cavity photon of momentum k,
respectively, with ωk¼jkj2=ð2mxÞ, ϵk¼jkj2=ð2meÞ, and
νk ¼ jkj2=ð2mcÞ þ Δ their energy dispersions. The detun-
ingΔ between cavity photons and the excitons is controlled
by changing the cavity length. For numerics we use the
electron mass me ¼ 0.6m0, the exciton mass mx ¼ 2me,
while the cavity mass mc ≈ 10−5m0.
Note that in the absence of doping, the first term in

Eq. (1) describes excitons as elementary excitations in the
MoSe2 that exhibit weak mutual residual interactions
which we have chosen to neglect here. Including the
second and third term takes into account the itinerant
electrons and their effective interaction v with excitons
when the monolayer is capacitively doped, which we model
here as a contact interaction and A is defined as the
quantization area. Equation (2) describes the effect of the
cavity mode: the first term takes into account the cavity
energy and the second term, which is proportional to Ω,
denotes the exciton-cavity coupling.
The contact interaction v between excitons and electrons

is regularized by a UV cutoff Λ. Physically, Λ can be
related to the inverse Bohr radius of the exciton. However,
assuming that the exciton Bohr radius is the smallest length
scale in the problem, one may take Λ → ∞ at the end of the
calculation. Since any attractive interaction supports a
bound state in 2D, the constant v can be related to the
binding energy of the exciton-electron bound state known
as the trion:

v−1 ¼ −
1

A

X
jkj<Λ

1

ET þ ωk þ ϵk
; ð3Þ

where ET denotes the trion binding energy.
It has been shown that the eigenstates of the interacting

polariton-electron system can be accurately described using
the Chevy ansatz [15]:

jΨpi ¼ a†pjΦi

¼
�
ϕc
pc

†
k þ ϕpx

†
p þ

X
kq

ϕpkqx
†
pþq−ke

†
keq

�
jΦi; ð4Þ

where jΦi denotes the ground state of the Fermi sea and the
cavity. Note that we introduced the polaron-polariton
creation operator a†p, which obeys commutation relations
that are approximately bosonic. The attractive polaron
oscillator strength is given by jϕpj2 and grows as ∼EF

for low doping ðEF < ETÞ. The oscillator strength of the
bare exciton is shared among the two polaron branches,
ensuring the coupling of both the attractive and repulsive
branch to the cavity to form polaron-polaritons with a
(reduced) normal mode splitting [Fig. 1(f)].
The deviation of the exciton upper and lower polariton

resonance (UP and LP) line shapes from a Lorentzian,

(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 1. Experimental setup and characterization of the sample.
(a) Contrast-enhanced optical microscope image of the heterostruc-
ture. Theh-BN, graphene, andMoSe2 layers are indicated by dotted
lines. (b) Schematic of the sample inside the cavity. The hetero-
structure sits on a flat dielectric mirror facing a fiber mirror which
together form a cavity. Theh-BNand graphene layer thicknesses are
chosen such that the MoSe2 lies in an antinode while the graphene
lies close to a node of the cavity electric field. Applying a gate
voltage between MoSe2 and graphene provides electron density
control. The cavity mode can be tuned in situ by a z-axis nano-
positionerwhich controls the cavity length.The substrate ismounted
on x- and y-axis nanopositioners which allow for in-plane trans-
lation. (c),(d) White light transmission spectrum for gate voltages
Vg ¼ −30 V and Vg ¼ 5 V, respectively. Nonperturbative cou-
pling between the cavity mode and optical resonances show up as
anticrossings in the transmission spectrum. The faint lines originate
from the higher-order cavity modes. (e),(f) Line cuts taken near the
anticrossing [dashed lines in (c) and (d)] reveal the upper polariton
(red) and lower polariton (green) resonances. (g) Schematic to
illustrate the conduction and valence band structure and optical
selection rules ofmonolayerMoSe2 close to theK andK0 points.An
exciton in theK valley interacts with conduction band electron-hole
pairs in the Fermi sea of theK0 valley to form an intervalley polaron.
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depicted in Fig. 1(e), stems predominantly from interfer-
ence effects and indicates that polariton line broadening is
primarily due to cavity losses [12]. However, the excess
broadening of the polaron-UP as compared to the polaron-
LP hints toward the presence of residual polaron inter-
actions. In the following section, we describe experiments
that probe the transient changes in the transmission
spectrum due to the evolution of a polaron subject to these
residual interactions.
We remark that due to the valley selection rules, a σþ-

(σ−-) polarized photon will excite an exciton in the K (K0)
valley [see Fig. 1(g)]. When the monolayer MoSe2 hosts a
2DEG with a Fermi energy of ∼3.3 meV, only the lower-
energy spin-split conduction band in each valley is popu-
lated. Then, a K (K0) valley exciton gets dressed by
electron-hole pairs formed from the Fermi sea of the K0
(K) valley to form an intervalley polaron described by
Eq. (4). The valley degree of freedom does not play an
important role in the discussion of Sec. III but is relevant
in Sec. IV.

III. ENHANCED POLARITON NONLINEARITIES
DUE TO RESIDUAL QUASIPARTICLE

INTERACTIONS

The time-resolved pump-probe spectroscopy setup is
shown in Fig. 6. We use a spectrally narrow pump field
(1 meV) with pulse duration of τpump ¼ 2.62� 0.01 ps to
inject a majority polariton population up to as high as
nLP ¼ 2 × 1012 cm−2. The probe field is spectrally broad
(12 meV) with a pulse duration of τprobe ¼ 0.3� 0.1 ps and
it injects a minority polariton population in a linear orthogo-
nal polarization unless stated otherwise. We monitor the
pump-induced changes of the probe transmission as a
function of time delay τ. Zero time delay (τ ¼ 0) is defined
with respect to the leading edge of the pump pulse; i.e., the
probe pulse impinges on the sample concurrently with the
leading edge of the pump.We expect the probe transmission
(i) to be unperturbed by the pump for τ < 0, (ii) to show a
nonlinear response due to the presence of pump-injected
coherent polaritons for 0 < τ ≲ ðτpol þ τpumpÞ, and (iii) to be
modified due to interactions with a pump-induced longer-
lifetime high-momentum (incoherent) polaron population
for τ ≳ ðτpol þ τpumpÞ.
Figure 2(a) shows a typical pump-probe measurement of

the probe transmission as a function of τ. Two distinctive
features are observed: a strong blueshift of the polaron-LP
energy and the amplification of the probe transmission.
We discuss the former in this section and the latter in the
next section (Sec. IV). In the first set of experiments,
we compare changes to the probe transmission in two
cases: when the pump field is tuned into resonance with
the exciton-LP (ne ¼ 0) and the polaron-LP transition
(ne ¼ 8 × 1011 cm−2, see Appendix D). The schematic is
shown in the inset of Fig. 2(a).

In Figs. 2(b) and 2(c), we show the normalized trans-
mission spectra of the probe pulse around the exciton-LP
and polaron-LP resonances respectively: here, we compare
the transmission for τ < 0 (see dashed lines) as well as for
τ ¼ 2.3 ps and τ ¼ 2.7 ps (see solid lines), the time delays
at which the maximum blueshift of the exciton-LP and
polaron-LP are observed. From these data, we extract
ΔELP—the magnitude of the maximal LP resonance energy
shift relative to its value for negative time delay. By
monitoring this differential energy shift, we isolate the
anharmonicity of the polariton resonance arising from
interactions with the pump-field injected polaron-polaritons
from cumulative changes in the optical response stemming
from multiple pulse excitations that last for timescales
exceeding the pulse repetition period. In Fig. 2(d), we plot
ΔELP as a function of the polariton density (see Appendix C
for a description of the method used to determine the
polariton density). We find a dramatic enhancement of
the polariton-polariton interaction strength by a factor ∼50
in the presence of itinerant electrons. Specifically, in the case
of the polaron-LP, gpolpp ¼ 0.5 μeV μm2, while for the exciton-
LP, gexcpp ¼ 0.01 μeV μm2. Our experimentally measured

value for gpolpp agrees with the theoretically expected value
discussed in Sec. V. The bare exciton-exciton interaction
strength extracted from this result is gexcxx ¼ 0.08 μeV μm2, in
agreement with earlier measurements [8,14].
For excitons, it is well understood that at low densities,

nonlinearities stem mainly from Coulomb interaction. The
effective exciton-exciton interaction then scales with the
exciton Bohr radius aB, which is small in TMDs compared
to GaAs-based semiconductors. In contrast, for excitons that
form polarons in the presence of an electronic environment,
the effective interaction has two main contributions: PSF
stemming from the finite electron number inside the cavity
area and the exchange of an electron-hole pair between two
polarons. Here, we focus on the former since we expect the
latter to be negligible in the nonequilibrium case which is
relevant for the description of short-lived polaritons in our
experiments (see Sec. V B). The second term of Eq. (4) tells
us the effective number of electron-hole pairs used from the
Fermi sea to dress a single exciton impurity. As the number
of impurities is increased, each successive exciton gets
dressed by an increasingly depleted Fermi reservoir. This
depletion of the electron reservoir has two main conse-
quences: (1) effective blueshift of the resonance, as not as
many electrons can participate in the dressing, and (2) reduc-
tion of the quasiparticle weight. The second effect shows up
as a reduced oscillator strength that results in a reduction of
the normal mode splitting as well as a blueshift of the LP.
Consistent with the two described processes, we indeed
experimentally observe both a blueshift of the polaron-LP
and a reduced splitting.
We emphasize that the saturation behavior of ΔELP is

observed as a function of the polariton density nLP rather
than the incident pump intensity. We estimate nLP in a
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consistent way (see Appendix C) to reflect the changes in
the detuning between the lower polariton resonance and the
pump energy as the intensity is changed. In doing so, we
account for the change in polariton injection efficiency and
remark that the observed saturation of ΔELP for the
polaron-polaritons as compared to the exciton-polaritons
cannot be due to the energy shifts of the polariton
resonance. Rather, we attribute the saturation of the
polaron-polariton energy shift to the breakdown of the
polaron picture as the increasing exciton density becomes
comparable to the electron density [indicated by the blue
region of Fig. 2(d)]. For nLP ≳ 2 × 1011 cm−2, ΔELP
continues to increase but with a gentler slope. In this limit,
we are dealing with a Bose-Fermi mixture consisting of
degenerate electrons and polaritons and we expect the
simple Fermi-polaron model to be invalid.
We note that signatures of aforementioned cumulative

long-timescale changes on polariton spectra are visible in
the data at τ < 0 [dashed lines in Fig. 2(b)]. Remarkably,

while the exciton-LP for τ < 0 shows a significant amount
of blueshift as the excitation power is increased, the
polaron-LP resonance energy remains largely unchanged.
The observed blueshift of the exciton resonance at τ < 0
could originate from optical doping effects due to strong
pump laser illumination, effectively turning the exciton into
a repulsive polaron. In contrast, in the presence of itinerant
electrons, we do not expect to observe significant optical
doping since the carrier density in this regime is fixed by
the applied voltage.
In Fig. 2(e), we turn our attention to the time delay

dependence of ΔELP. Two timescales can be seen to
dominate the behavior. The resonance first blueshifts
monotonically as it follows the excitation pulse shape
and reaches its peak at τ ∼ 2.7 ps before it starts to decay,
consistent with the evolution of coherent polariton pop-
ulation resonantly injected by the pump. Then, a second
mechanism which builds up over ∼12 ps takes over that
eventually decays over a much longer time. The buildup of

(a) (b)

(d) (e)

(c)

FIG. 2. Blueshift of the lower polariton due to interactions. (a) A typical time delay scan of the probe transmission spectrum from a
linear cross-polarized pump-probe experiment. In this case, the polaron-lower-polariton (LP) is resonantly pumped. Inset: An
illustration of the energy level scheme of the upper and lower polariton (UP and LP) branches and the pump and probe fields. The pump
field is spectrally narrow and tuned in resonance to the LP while the probe field is spectrally broad and covers both branches. Yellow
dashed lines show the evolution of UP and LP resonance wavelengths as a function of time delay. (b) Normalized probe transmission
spectrum of the exciton-LP under resonant pumping for various polariton densities nLP ¼ 8, 2.1, and 0.4 × 1011 cm−2. An offset has
been added for clarity. Solid lines are the probe transmission spectrum measured at τ ¼ 2.7 ps. Dashed lines are the average τ < 0 probe
transmission spectrum obtained by taking the mean of the transmitted signal at a given wavelength over 5 different negative time delay
values. (c) Analogous to (b) but for the polaron-LP at polariton densities nLP ¼ 5.7, 2.6, and 0.4 × 1011 cm−2. (d) Energy shift of the
exciton- and polaron-LP at τ ¼ 2.7 ps measured with respect to τ < 0 as a function of pump power. Blue shaded area indicates the
regime where polariton density and electron density are comparable in the system. The error bars are too small to be visible in the plot.
For example, for the points indicated by the red arrows, the error bars are 4 and 9 μeV for the energy shift of the polaron and the exciton,
respectively. (e) Evolution of the LP energy shift as a function of time delay. There is a contribution from coherent polaritons at short
timescales and one from incoherent polarons at longer timescales. Black dashed line indicates the arrival of the pump pulse as
determined in an independent measurement (see Appendix B).
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the second peak grows noticeably more prominent as power
is increased. We tentatively attribute this additional blue-
shift to the feeding of high-momentum polaron states from
higher-energy optical excitations that are either generated
by two-photon absorption or by Auger processes [38].
Since high-momentum polarons contribute to PSF as well,
they also lead to a blueshift of the polaron-LP resonance. In
this scenario, the rise time of the blueshift should be
determined by the feeding time from higher-energy states
populated by two-photon absorption and/or the Auger
recombination rate, while the decay indicates the loss rate
of these high-momentum polarons. For the exciton-LP,
there is no clear evidence of an incoherent contribution
which is likely due to the absence of itinerant carriers (see
Appendix F).

IV. POLARITON GAIN

A second striking feature in Fig. 2(a) is the enhancement
of the polaron-LP transmission for 2 < τ < 6 ps as com-
pared to τ < 0 transmission. The magnitude of the
increased transmission cannot be explained by a simple
change in the cavity-polaron detuning as discussed in the
previous section, but rather suggests an amplification of
polaritons. In Fig. 3(a), we show example line cuts for the
exciton and polaron-polariton spectrum for two different τ
contrasted with the typical spectrum at τ < 0. We define the
net transmission gain at every τ by the ratio of the integral
under the shaded regions to the average integral at τ < 0
(area under the dotted lines). A simple change in the cavity
detuning would not lead to net gain deviating from 1 since
the cavity content of the two polariton branches must
always be unity. Therefore, net spectrally integrated gain
exceeding unity suggests an amplification of the probe
field. In semiconductor-microcavity systems, optical gain
can be observed due to parametric scattering of polaritons
when pumping conditions are fine-tuned such that pump,
signal, and idler conserve energy and momentum [35].
However, the significant gain we observe for the polaron-
LP in Fig. 3(b) considerably outlives the coherent LP
population (black solid line), suggesting a contribution
from a reservoir of long-lived incoherent polarons, and
rules out the possibility of a coherent process as the sole
mechanism.
There are a few possibilities as to how an incoherent

polaron population can be generated. Firstly, due to the
small normal mode splitting of the polaron-polariton, there
is finite overlap of the LP with high-momentum polaron
states which are not coupled to the cavity. Polarons can be
created directly in high-momentum states due to the
presence of disorder. Secondly, as we argued in the
previous section, Auger recombination [38] or relaxation
following direct two-photon absorption can efficiently
populate high-momentum attractive polaron states. These
states are immune to radiative decay since they lie outside
the light cone and cannot recombine radiatively and satisfy

both energy and momentum conservation. We find such
processes to be consistent with the second rise of the
blueshift in Fig. 2(e) which grows in prominence relative to
the first peak as pump power is increased. These high-
momentum polarons can scatter electron-hole pairs from
the Fermi sea of electrons to relax their momentum and
energy into the polaron-LP state. Bose stimulation of this
process due to a seed population from the probe then leads

(a)

(b) (c)

(d) (e)

FIG. 3. Polariton amplification observed in transmission.
(a) Solid lines show the probe transmission spectrum under
resonant pumping of the exciton lower-polariton and polaron-LP
at different time delays τ. Dashed lines show the average τ < 0
probe transmission spectrum obtained by taking the mean of the
transmitted signal at a given wavelength over 5 different negative
time delay values. (b) Evolution of the total gain for polaron-LP
as a function of τ. Gain for a given τ is calculated by dividing
the integrated transmission under both UP and LP branches
by the average integral taken at τ < 0. Black dashed line indicates
the arrival of the pump pulse as determined in an independent
measurement (see Appendix B). Black solid line shows the
expected time evolution of the coherent LP population injected by
the pump. (c) Dependence of the peak gain on the density of LPs
injected by the pump. Blue shaded area indicates the regime
where polariton density and electron density are comparable in
the system. (d) Time delay scan of the probe transmission
spectrum for resonant pumping of the polaron-UP. (e) Time
evolution of integrated gain corresponding to (d). Inset: The
probe transmission spectrum at τ ¼ 1 and 3 ps indicated by
yellow dashed lines in (d).
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to gain. We verified that the gain factors observed for all
pump powers are independent of the incident probe power.
In Fig. 3(c), we plot the power dependence of the peak

gain for the exciton- and polaron-polariton. The saturation
behavior of the gain for the polaron-polariton resembles
that of the blueshift: it first increases sharply and then
continues with a gentler slope as nLP approaches ne. The
maximum gain for the polaron-polariton is ∼1.8 while for
the exciton-polariton it remains constant at 1.1 for all nLP.
We remark that the mechanism underlying weak exciton-
polariton gain and its saturation behavior remain unclear.
In order to understand the polaron-LPgainmechanism,we

studied gain underUP pumping since the population of high-
momentum polarons is expected to be more efficient when
pumping the UP. This is because, while the UP can relax to
lower-energy, high-momentum polaron states via disorder or
generation of additional Fermi sea electron-hole pairs, there
are no available states for theLP to relax into (forT < 10 K),
since it is the lowest-energy optical excitation. In Fig. 3(d),
weplot the probe transmission spectrumat different τ. Gain is
observed to start from the UP wavelength and redshifts with
τ. However, as compared to pumping the LP, the polaron-
polariton splitting collapses into a single amplified mode
[inset of Fig. 3(e)], which at even longer time delays evolves
into the UP resonance [Fig. 3(d)]. It is not obvious if this is
due to a nonuniform gain spectrum or a breakdown of the
strong-coupling regime. The peak gain when pumping the
UP was found to be∼1.8 as compared to 1.5 when pumping
the LP for the same pump power [Fig. 3(e)].
Pumping the UP provides the advantage that both

copolarized and cross-polarized pump-probe experiments
can be done since pump photons can be filtered spectrally
instead of using polarization suppression. The polarization
degree of freedom is important due to valley-dependent
optical selection rules in monolayer TMDs: circularly
polarized photons excite polarons where excitons in a
single valley are dressed by electrons in the opposite valley
(as discussed at the end of Sec. II). Therefore, we expect
that pump-generated reservoir polarons can only be stimu-
lated by probe-generated LPs in the same valley. To verify
this, we pump the UP with circularly polarized photons and
probe with cross- and co-circularly polarized pulses.
Because of spectral filtering, we limit the integration area
to the LP branch when monitoring the gain. Consequently,
changes in the cavity detuning can lead to gain values
deviating from unity. Indeed, for circular polarization, the
cross-polarized probe gain was found to be negligible as
compared to its copolarized counterpart [see Fig. 4(a)].
On the other hand, the copolarized and cross-polarized
probe gain are identical in linear polarization. This suggests
that the gain process conserves the valley population but
not the valley coherence, which is consistent with the
proposed mechanism. The entanglement of polarons with
the electrons during the scattering process leads to a loss
of the phase relation between the valley populations.

The polarization dependence and the long-lived nature of
the gain lends strong evidence for the significance of an
incoherent but valley-preserving reservoir population. We
also note that similar polarization-dependent behavior is
observed when pumping the LP as shown in Fig. 4(c).

V. THEORETICAL MODEL

We now turn to the discussion of the theoretical model
that underlies the interpretation of our experimental results.
In order to model the observed phenomena theoretically,
we use a wave function approach based on the Chevy
ansatz given by Eq. (4). The interaction between the
polarons described by this ansatz arises in our model from
the symmetrization of two polaron wave functions that
accounts for the underlying fermionic nature of the polaron
dressing cloud. Physically this accounts for the PSF and the
related depletion of the electronic medium. As outlined
below, in a similar fashion, we calculate the residual
interactions between polarons and electrons that lead to
the decay of high-momentum polarons to the polaron-LP
state, which could explain the observed gain.
Our experiments probe polariton-polariton interactions

in the nonequilibrium limit where the radiative lifetime of
optical excitations is comparable to or shorter than the
electronic timescales, such as the disorder-induced lifetime.
Since this is intrinsically a nonequilibrium problem, we
have to consider interactions between polaron states that
are not necessarily the lowest-energy optically excited
many-body state. While a full Keldysh Green’s function
approach is a method of choice to analyze such non-
equilibrium problems in the presence of dissipation, we
show here that a wave function approach leads to remark-
ably good agreement between theory and experiment.

A. Fermi polaron-polaritons

The coefficients of the polaron-polariton wave function
given in Eq. (4), ϕc

p, ϕp, and ϕpkq, are determined by the

(a) (b) (c)

FIG. 4. Evolution of lower-polariton gain as a function of time
delay τ for various pump-probe polarization configurations. LP
gain for a given τ is calculated by taking the ratio of the integral
under the LP branch at τ to the average integral taken at τ < 0.
(a) LP gain for copolarized or cross-polarized probe are plotted
when resonantly pumping the polaron-UP with a circularly
polarized laser. (b) Analogous to (a) but for linear polarization.
(c) The polaron-LP is resonantly pumped with either linearly or
circularly polarized laser while the probe is always cross-polarized.
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minimization of hΦjapðH − EpÞa†pjΦi, where the polaron
energy Ep is a Lagrange multiplier ensuring the normali-
zation of the wave function. Performing this minimization
we obtain the following expression for the Fermi-polaron
quasiparticle energy:

Ep ¼ νp þ
Ω2

Ep − ωp − Σxeðp; EpÞ
: ð5Þ

This equation shows that the hybridization with the
excitonic degrees of freedom results in a self-energy for
the photon. The exciton, in turn, acquires a self-energy Σxe
due to its interactions with the electron. These interactions
are renormalized from the contact potential v and deter-
mined by the electron-exciton scattering T matrix that
accounts for effects of the finite electron density:

Tðp;ωÞ−1 ¼ v−1 −
1

A

X
jkj>kF

1

ω − ϵk − ωp−k
; ð6Þ

where p and ω denote the total momentum and energy of
the exciton and the electron. The self-energy is expressed in
terms of the T matrix as

Σxeðp;ωÞ ¼
1

A

X
jqj<kF

Tðpþ q;ωþ ϵqÞ: ð7Þ

The coefficients ϕc
p, ϕp, and ϕpkq can also be expressed

in terms of the self-energy and the T matrix:

ϕc
p ¼

�
1 −

∂
∂ω

�
Ω2

ω − ωp − Σxeðp;ωÞ
�
ω¼Ep

�−1=2
; ð8Þ

ϕp ¼
�
1 −

∂
∂ω

�
Ω2

ω − νp
þ Σxeðp;ωÞ

�
ω¼Ep

�−1=2
; ð9Þ

ϕpkq ¼
TðEpþ ϵq;pþqÞθðjkj−kFÞθðkF− jqjÞ

Ep−ωpþq−k− ϵkþ ϵq

ϕp

A
: ð10Þ

The terms in the square brackets in Eqs. (8) and (9) represent
the photon and the exciton self-energy, respectively.
In the following, we suppress the zero-momentum

label when discussing zero-momentum polarons, such that
ϕc ≡ ϕc

0, ϕ≡ ϕ0, and ϕkq ≡ ϕ0kq.

B. Residual interactions between polarons

For a sufficiently strong laser pump pulse, a finite polaron
density is generated and interactions between the quasipar-
ticles become important. To assess their strength, we focus
here on two polarons of zero total momentum. The inter-
action U is given by U=A ¼ E2 − 2E0, where E2 is the
energy of a system with two polarons of zero total momen-
tum and E0 denotes the energy of a single zero-momentum

polaron; we emphasize that we explicitly introduce the area
factor in this expression to ensure that the interaction U has
units of energy times length squared, as expected for a
momentum-space interaction. To calculate E2 we need
to determine the two-polaron wave function. To first
approximation the two-polaron wave function addressed
by the probe pulse is given by a†0a

†
0jΦi (properly normal-

ized). Higher-order contributions to the interaction can
appear from the coupling to higher-energy states such as
a†k≠0a

†
−kjΦi (k ≠ 0) or states of two polarons and a number

of electrons. Since these states have higher energy, they lead
to attractive interactions within perturbation theory. The
experimental evidence in our case shows that the interaction
between polaron-polaritons is effectively repulsive, sug-
gesting that first-order contributions dominate over higher-
order interaction terms. A reason for this is the ultralow
polariton mass, which ensures a large kinetic energy cost in
coupling to nonzero-momentum states.
In this approximation, the strength of interaction

between two polaron-LPs is given by

U
A

¼ hΦja0a0Ha†0a
†
0jΦi

hΦja0a0a†0a†0jΦi − 2E0: ð11Þ

Here, the overlap hΦja0a0a†0a†0jΦi accounts for the nor-
malization of the two-polaron wave function. If polarons
were ideal bosons, this overlap would be 2. By contrast,
polarons are quasiparticles composed of excitons and Fermi
sea electron-hole pair excitations. In this case, the calcu-
lation of the overlap takes into account the proper anti-
symmetrization of the electrons and holes forming the
polaron. Using Wick’s theorem, it follows that

hΦja0a0a†0a†0jΦi ¼ 2ð1þ Ih þ Ie þ IheÞ; ð12Þ

where we introduced the exchange integrals:

Ih ¼ −
X
kk0q

jϕkqj2jϕk0qj2; ð13Þ

Ie ¼ −
X
kqq0

jϕkqj2jϕkq0 j2; ð14Þ

Ieh ¼
X
kqq0

jϕkqj2jϕkþq0−q;q0 j2: ð15Þ

These sums have direct physical interpretations. To
illustrate this, consider an attractive polaron at some
position in the sample (the zero-momentum polaron state
is a superposition of such states). The exciton attracts the
surrounding electrons, forming a dressing cloud which has
a size roughly given by the trion Bohr radius aT , in the limit
of low electron density. This also depletes locally the Fermi
sea, in a radius roughly given by the interelectron distance
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k−1F ≫ aT . Consider now adding a second polaron in the
same zero-momentum state. The depletion of the Fermi sea
created by the first exciton prohibits the formation of
another polaron in this region, reducing this overlap.
This effect is contained in the (negative) hole exchange
contribution Ih, which reduces the overlap by a factor of the
order of k−2F =A corresponding to the probability that the
two excitons are roughly within k−1F of each other. This
depletion argument does not take into account the electron
density increase in the immediate vicinity of the exciton,
within a radius of roughly aT. This correction is taken into
account by the electron and electronþ hole exchange
contributions Ie and Ieh, which are therefore of the order
of a2T=A. Hence, in the limit of low electron densities, the
hole exchange contribution will dominate the other con-
tributions roughly by a factor of 1=ðkFaTÞ2. To simplify
the derivation, we therefore neglect the smaller contribu-
tions and focus only on the interaction effects due to
hole exchange from now on. With this approximation, we
obtain

hΦja0a0a†0a†0jΦi ≈ 2ð1þ IhÞ: ð16Þ

Substituting this back into Eq. (11), we obtain

U
A

≈
1

2
hΦja0a0Ha†0a

†
0jΦið1 − IhÞ − 2E0 ð17Þ

≈
1

2
hΦja0a0Ha†0a

†
0jΦi − 2E0 − 2E0Ih; ð18Þ

where we used the fact that Ih ≪ 1 and in the second line
we replaced 1

2
hΦja0a0Ha†0a

†
0jΦi ≈ 2E0 in the term propor-

tional to Ih, since corrections to this approximation are of
higher order.
The remaining expectation value can be evaluated by

applyingWick’s theorem once again. In this calculation, the
terms −2E0 and −2E0Ih cancel all the intrapolaron direct
and exchange terms that appear in 1

2
hΦja0a0Ha†0a

†
0jΦi.

Thus, in agreement with the expectation, only the interpo-
laron interaction terms will contribute to the interaction U.
Furthermore, the direct interpolaron interaction is zero due
to number conservation. Keeping only the hole-exchange
terms yields

U
A
≈−

2v
A

�X
kk0q

ϕ�
kqϕjϕk0qj2

þ
X
kqk0q0

ϕ�
kqϕ

�
k0q0ϕkq0ϕk0þq−q0;q−

X
kk0q0q

ϕ�
kq0ϕkqjϕk0qj2

�
:

ð19Þ

To understand the various terms in U=A, it is helpful to
recognize that a single polaron is formed from the super-
position between a bare photon c†0jΦi, an exciton x†0jΦi, and
an exciton entangled with a neutral excitation in the Fermi
sea

P
kq ϕkqx

†
q−ke

†
keqjΦi. The strength of the hybridization

between the latter two states relies on the exciton’s ability to
create electron-hole pair excitations in the Fermi sea. which
necessarily depends on the number of electrons in the
Fermi sea.
However, when the two excitons are close to each

other, and one of the excitons is in the dressed stateP
kq ϕkqx

†
q−ke

†
keqjΦi while the other exciton is in the

state x†0jΦi, then it will be more difficult for the second
exciton to evolve into the state

P
kq ϕkqx

†
q−ke

†
keqjΦi,

because some of the electrons in the Fermi sea are
already correlated with the first exciton. This fact is
captured by the first term in the square brackets. On
the other hand, if also the second exciton is in the
state

P
kq ϕkqx

†
q−ke

†
keqjΦi, this state will have slightly

higher energy because of the Pauli blocking between
the dressing clouds of the two excitons. This repulsion
mechanism is captured by the last two terms, which contain
the exchange corrections coming from the exciton-electron
(second term) interaction and exciton-hole interaction
(third term).
One can check that the last two terms go to zero as

Λ → ∞. Indeed, since jϕkqj ∝ 1=jkj2 for large momenta,
one can check that the first sum in the square brackets
diverges logarithmically with Λ, while the others remain
constant. Therefore, only the first term can compensate the
logarithmic decrease of the interaction strength v as
Λ → ∞, and the interaction is given by

U
A

≈ −
2v
A

X
kq

ϕ�
kqϕ

X
k0

jϕk0qj2: ð20Þ

This expression allows us to make the connection to
the intuitive picture of phase-space filling and the
related polaron-induced depletion of the electronic envi-
ronment. Indeed, the last summation in Eq. (20) quantifies
the depletion of the Fermi sea, since

P
k0 jϕk0qj2 ¼

1 − hΦja0c†qcqa†0jΦi. Therefore, v
P

k0 jϕk0qj2 denotes
the change in the amplitude for creating an electron-hole
pair with momenta k, q due to the presence of the attractive
polaron at zero momentum, again, making explicit the
effect of a depletion-induced interaction.
We can rewrite the above interaction in terms of the

T matrix using the definition for the polaron wave
function introduced in Eq. (10). Using ∂T−1ðp;ωÞ=∂ω ¼
ð1=AÞPjkj>kF 1=ðω − ωp−k − ϵkÞ2, we obtain
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U
A

¼ ϕ4

A

X
jqj<kF

∂T2ðq;ωÞ
∂ω

����
ω¼E0þϵq

: ð21Þ

While this expression has the same form for both exciton-
polarons and polaron-polaritons, the coupling to the cavity
will modify the excitonic weight ϕ and the energy of the
attractive polaron E0, leading to induced interactions of
different strength for polaron-polaritons.
The resulting interaction strength is shown for param-

eters typical for our experiment in Fig. 5. As expected,

polaron interactions increase as we decrease the Fermi
energy, because they arise due to the Pauli blocking
between the Fermi sea holes localized around the polarons.
At the same time, we remark that interactions increase as
the light-matter coupling Ω is increased, suggesting that
photon nonlinearities can be increased even further by
reducing the cavity length.
For a direct comparison to the experiment we choose the

parameters EF ¼ 3.3 meV, Ω ¼ 5 meV, ET ¼ 25 meV.
The cavity detuning in experiments is slightly different
than the detuning chosen Fig. 5. To connect to the
experiments we choose Δ ¼ −25 meV, to ensure that
the photonic weight of the polaron-polariton agrees with
the experimental value of jϕcj2 ¼ 0.43, For these param-
eters, our theory predicts a blueshift of 0.6 μeV μm2, which
agrees remarkably well with the experimental value of
0.5 μeV μm2.
Finally, we note that in the equilibrium limit, exchange

of bosonic (electron-hole pair) excitations would pro-
vide an efficient mechanism to mediate polaron-polaron
interactions [39–44]. While such a generalization of the
Ruderman-Kittel-Kasuya-Yosida interactions [44–47] to
the strong-coupling regime provides a pathway to strong
but attractive interactions, the low energy of these bosonic
excitations ensures that the mediated interactions are
strongly retarded and therefore ineffective in mediating
interactions between short-lived optical excitations.
However, further analysis is necessary to incorporate the
phase-space filling effect into a general nonequilibrium
theoretical framework.

C. Polaron-electron interaction

As we argued in Sec. IV, the observed probe gain
originates from the residual interactions between polarons
and the Fermi sea. For simplicity, we focus here on the gain
in polaron-LP when the polaron-UP branch is pumped. We
envision that the relaxation of the excited polarons to
polaron-LP state takes place in two sequential steps. In
the first step, excitations in the polaron-UP branch decay
into finite-momentum polarons by generating Fermi sea
electron-hole pairs, to form a long-lived reservoir of finite-
momentum polarons. In the second step, these polarons
decay into the polaron-LP state by generating an additional
electron-hole pair. This second process can be stimulated
by a finite population in the final state, leading to net
transmission gain for the probe field. Because of the
complexity of the problem, we will only attempt to
obtain an order-of-magnitude estimate of the gain, by
calculating the rates for the two decay processes mentioned
above.
The residual interactions between polarons and the

Fermi sea can be estimated in an analogous way to the
previous section. To this end we evaluate the matrix
element:

(a)

(b)

FIG. 5. (a) Interaction strength of exciton-polarons in the
absence of cavity coupling. The black dashed line is a guide to
the eye to illustrate the Fermi energy probed experimentally, i.e.,
EF=ET ¼ 3.3=25. (b) Residual interactions between polaron-
polaritons. The thicker blue line denotes the interactions of
Fermi polaron-polaritons as a function of Fermi energy when
Ω ¼ 0.2ET , corresponding to the experimental value. The green
and red solid lines correspond to Ω ¼ 0.5ET and Ω ¼ 1ET ,
respectively. For this plot we choose the detuning of the cavity
Δ ¼ E0 þΩ2=ET , where E0 denotes the energy of the attractive
exciton-polaron, to ensure that the polaron-polariton normal-
mode splitting vanishes at zero Fermi energy. The interaction
strength of exciton-polarons (scaled by a factor of 0.25) in the
absence of cavity coupling has been replotted here for com-
parison. The enhancement of interactions with increasing
cavity-polaron coupling Ω is evident. The black dashed line
is a guide to the eye to illustrate the Fermi energy probed
experimentally, i.e., EF=ET ¼ 3.3=25. Energies are in units
of ℏ2=me.

LI BING TAN et al. PHYS. REV. X 10, 021011 (2020)

021011-10



hΦje†qekapþq−kHa†pjΦi ¼ Spkq
2

ðEp þ Epþq−k þ ϵk − ϵqÞ þ
v
A

�
ϕpϕpþq−k þ

X
k0q0

ϕpk0q0ϕpþq−k;k0;q0

�

−
v
A

�X
k0q0

ϕpk0qϕpþq−k;k0q0 þ
X
k0q0

ϕpkq0ϕpþq−k;k0q0 −
1

2

X
k0q0

ϕpkqϕpþq−k;k0q0 −
1

2

X
k0

ϕpk0qϕpþq−k

−
1

2

X
q0

ϕpkq0ϕpþq−k

�
: ð22Þ

In the above, the term proportional to Spkq ≡
hΦje†qekapþq−ka

†
pjΦi arises because we are working with

a nonorthogonal basis and does not represent an interaction
term. From the other terms, we focus only on the ones that
remain finite in the UV limit Λ → ∞, i.e., the second, third,
and fourth terms in the last parentheses. In the low doping
limit kFaT ≪ 1, relevant for the description of our experi-
ment, the fourth term dominates by a factor of 1=ðkFaTÞ, so
we keep only this term, denoted by Vpkq in the following
analysis. It is given by

Vpkq ≈
v
2

X
k0

ϕpk0qϕpþq−k ð23Þ

¼ ϕpϕpþq−kTðpþ q; Ep þ ϵqÞ; ð24Þ

which agrees with previous calculations using Green’s
functions [48]. This matrix element describes the amplitude
for the emission of an electron-hole pair with momenta
k and q by a polaron of momentum p. We emphasize that
the above matrix element can also describe the residual inter-
action between the upper polaron-polariton and the Fermi
sea, if we replace the coefficients ϕ and energy Ep with the
corresponding values for the upper polaron-polariton.
To calculate the decay rate from the upper polaron-

polariton into finite-momentum polaron states, we use
Fermi’s golden rule:

ΓU ¼
X
p

ΓU
p ≡X

p

2π
X
q

����V
U
0;q−p;q

A2

����
2

× δðEU
0 −Ep − ϵq−p þ ϵqÞθðkF − jqjÞθðjq− pj− kFÞ;

ð25Þ
where EU

0 denotes the energy of the excited upper polaron-
polariton state and we used the superscript U to emphasize
that the interaction V should be evaluated using the
coefficients and the energy of the upper polaron-polariton.
In the above, Γp denotes the decay rate into the polaron
state of momentum p by emission of electron-hole pairs of
total momentum −p. Choosing the same parameters as in
the previous section, we obtain ℏΓU ≈ 2 meV. Since the
radiative lifetime of polaritons is about ℏ=ð1 meVÞ, we
conclude that pumping the upper polariton will create
a sizable reservoir of finite-momentum Fermi polarons.
We remark that Γp is strongly peaked at momenta

jpj ∼ kF=2.5, implying that most polarons in the reservoir
will have this momentum.
We can also calculate the decay rate from a finite-

momentum polaron into a lower-polaron-polariton:

ΓL
p ¼ 2π

X
q

����Vp;pþq;q

A2

����
2

δðE0 − Ep − ϵpþq þ ϵqÞ: ð26Þ

Evaluating the above, we obtain ΓL
kF=2.5

≈ 1 μeV μm2=A.
Assuming that the finite-momentum polaron reservoir has a
population density between n0 ¼ 1011 cm−2 and n0 ¼
1012 cm−2, we obtain a decay rate ℏΓL ≈ N0ΓL

kF=2.5
¼

1 μeV μm2 × n0, which gives a value between 1 and
10 meV. Assuming a polariton lifetime of ℏ=1 meV, our
simple calculation would therefore predict a net gain at
polaron-LP exceeding unity, which agrees well with the
experimentally observed gain.

VI. CONCLUSION

In this work, we have explored polariton-polariton
interactions and Bose-enhanced scattering of polaron-
polaritons in a charge-tunable MoSe2 monolayer embedded
in a zero-dimensional optical cavity. We found polariton-
polariton interactions to be enhanced by a factor of 50 when
the monolayer is electron doped as compared to the charge-
neutral regime. This dramatic enhancement originates from
the restriction of the oscillator strength of polarons formed
within an optical spot with a fixed electron density.
Intuitively, this enhancement is a consequence of the

rearrangement of the polaron dressing cloud to accommo-
date a larger number of optically injected impurities. In an
undoped semicondutor, exciton-exciton interaction scales
linearly with the Bohr radius (aB), implying that strong
light-matter coupling (Ω ∝ 1=aB) is normally associated
with weak nonlinearity. In stark contrast, the new mecha-
nism we identify leads to stronger polariton interactions for
stronger light-matter coupling (Fig. 4). This dependence
suggests that, against expectations, strong exciton binding
may even help to increase polariton-polariton interactions
in electron-doped samples.
Our work further highlights the importance of time

resolution when observing interaction-induced effects on
polariton spectra. In particular, the measurements revealed
spectral features that survive up to timescales far outliving
the coherent polaritons. This observation sheds light on the
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possible existence of an incoherent reservoir which con-
tributes to the blueshift of the polaron-LP resonance that
exists for timescales >10 ps. Residual polaron interactions
also provide an efficient relaxation channel from these
high-momentum reservoir states into the lower polariton
mode, which when stimulated by probe-field injected
polaritons results in optical gain. Our findings suggest that
injection of itinerant electrons into a monolayer TMD could
overcome the relaxation bottleneck and enable the reali-
zation of a polariton laser [34,49].
The signatures revealed by nonlinear spectroscopy

in our work represent an exciting new realm of polaron
physics: prior results in this field are often well described
by the Chevy ansatz which models many-body dressing
in terms of a single electron-hole pair. However, an accurate
description of interactions that arise from the reorganization
of impurity screening by the bath will require a description
of higher-order exciton-electron correlations.
Furthermore, our experiments have also made a first

venture into the exciting regime of degenerate Bose-Fermi
mixtures where the polariton density becomes comparable
to the electron density. Addressing open questions such as
the electron density dependence of the onset as well as
magnitude of the saturation behavior in the observed
blueshift and gain will provide insight to guide theoretical
understanding. While such investigations are limited in the
current sample due to the normal mode splitting of the
polaron-polaritons rapidly diminishing when electron den-
sity is tuned, enhancing the cavity quality factor from
∼1000 to 10 000 should allow a wider range of electron
densities to be explored.
The data that support the findings of this paper are

available in the ETH Research Collection [50].
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APPENDIX A: SAMPLE
FABRICATION AND SETUP

The monolayer MoSe2, graphene, and two h-BN flakes
were mechanically exfoliated onto SiO2 substrates. Then
they were stacked by picking up the graphene, top h-BN,
MoSe2, and the bottom h-BN, in that order, using a
polycarbonate sacrificial layer on a polydimethylsiloxane
stamp. The stack is deposited onto a fused silica substrate

with a distributed Bragg reflector (DBR) coating: ten
alternating layers of NB2O5 and SiO2. This constitutes
the planar mirror of the zero-dimensional cavity. The DBR
was designed to provide >99.3% reflectivity between 680–
800 nmwith an intensity maximum at the DBR surface. The
MoSe2 and graphene flakes were contacted with Au on a
5 nm Ti sticking layer. The concave mirror was prepared by
ablating a dimple of radius of curvature 30 μmonto a single-
mode fiber facet which was then coated with an identical
DBRas the flat substrate. After fabrication of the sample, the
graphene layer was found to be torn and could not provide
reliable doping. Thus, an additional graphene layer was
placed on top which restored gate tunability in the sample.
The planar mirror substrate is mounted on two nano-

positioners which provide in-plane spatial degrees of
freedom. The fiber mirror is mounted on one nanoposi-
tioner which provides an out-of-plane degree of freedom.

APPENDIX B: OPTICAL MEASUREMENTS

The optical setup is illustrated in Fig. 6. The sample sits
in a vacuum-pumped environment which is filled with
20 mbar of He exchange gas at room temperature. It is then
immersed in a liquid He bath at 4.2 K for all optical
measurements.

1. Pulse preparation

The output from a Ti:sapphire femtosecond pulsed laser
with 76 MHz repetition rate is split into two arms: pump
and probe. The pump arm is spectrally filtered with a 4f
pulse shaping setup with a single grating. The 12 meV
broad pulse is first spectrally dispersed using a transmission
grating, and its spectrum selected with an adjustable slit
aperture in front of a mirror and then recombined using
the same grating. The probe pulse is spectrally unfiltered. Its

FIG. 6. A schematic of the pump-probe setup. From right to
left: The output of a mode-locked Ti:sapphire laser (76 MHz
repetition rate) is split into two arms: pump and probe. The pump
is spectrally filtered using a pulse shaper setup. The probe pulse is
sent through an optical delay line to control the time delay τ with
respect to the pump pulse and a pulse compressor to compensate
for linear dispersion in the optical fibers.
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optical path length difference with respect to the pump pulse
is controlled by adjusting the position of a retroreflector. In
this way, the probe can be made to arrive with a variable time
delay τ with respect to the pump. Both pump and probe
pulses are then guided by optical fibers to the excitation arm
of the transmission microscope. To avoid unwanted non-
linear effects in the fibers, we attenuate the laser powers to
<1 mW before coupling them into the fibers. We check the
spectrum of the pulse after traveling through the fiber in
order to ensure such nonlinear effects are not present for the
powers we are interested in [Figs. 7(a) and 7(b)]. In addition,
there are also unwanted linear effects such as group velocity
dispersion. Since the probe pulse is ∼12 meV broad, it is
affected more significantly than the pump pulse (∼1 meV).
We compensate for the dispersion using a single grating
pulse compressor. The pump and probe pulse durations are
then measured using an interferometric autocorrelation setup
in collinear geometry [Figs. 7(c) and 7(d)]. The uncertainty
of the pulse durations arise from the possible deviations of
the amount of dispersive elements (i.e., fiber lengths)
incorporated in the autocorrelation measurement setup from
the pump-probe experimental setup even as this was already
taken into consideration in designing the former. We note
that while we achieved significant compression of the probe,
it remains not transform limited.

2. Pump-probe measurement

After the pulses are prepared, the pump and probe are
coupled into the cavity via the free-space accessible side
and the transmission is detected through the fiber. Using

fiber polarization controllers and a polarizing beam splitter
(PBS) in the detection setup, we can project the signal onto
any two orthogonal polarizations. In a typical cross-
polarized pump-probe measurement scheme, we measure
the signal from the PBS arm that is cross-polarized with
respect to the pump field using the spectrometer and, as a
function of τ, we obtain the following: (i) the transmission
spectrum when only the pump is turned on and (ii) the
transmission spectrum when both pump and probe are
turned on. In (i), we measure the cross-polarized polariton
emission induced exclusively by the pump field and
subtract this from (ii) in order to investigate how the
transmission of the probe is influenced in the presence of
the pump and as a function of τ.

3. Measurement of the zero delay between
pump and probe

After mixing the pump and probe pulses with a beam
splitter, the output from one port is sent to the cavity sample
and the output from the second port is sent to a photodetector
whichmeasures the interfered signal.We note that the pump
and probe travel through a common path after the beam
splitter and, therefore, we can determine the zero delay
between them as the point about which the interfered signal
is symmetrical. Since this measurement is not performed
in situ but typically done right before or after the relevant
pump-probe measurements, we cannot rule out the possibil-
ity of slight drifts in the true zero-delay position over time.

APPENDIX C: POLARITON
DENSITY ESTIMATION

We measure the reflection contrast of the bare cavity
mode of η ∼ 0.13 between resonant and off-resonant
conditions. This gives an estimate of the efficiency of
the coupling into the cavity. The density of intracavity
polaritons per pulse is then given by ðηIpumpε=AℏωfrepÞ,
where frep is the repetition rate of the pulse train, ε is the
spectral overlap of the pump and the lower polariton
branch, A is the area of the excitation spot, and ℏω is
the photon energy. We are interested in the polariton
density within the polariton lifetime τpol, which can be
written as ðηIpumpε=AℏωfrepÞ · ðτpol=τpulse þ τpolÞ.
The spectral overlap εðΔcavÞ is in fact a function of the

detuning between the cavity and the polaron (or exciton)
which determines the cavity content C and the resonance of
the lower polariton (or the mode being pumped) ELP.
Therefore, it is important to take into account the changes
in ε due to blueshifts of the polaron resonance when
calculating the polariton density. We want to compute ε
during the pump-pulse illumination, i.e., at τmax instead of
at τ < 0. However, when there is significant gain, it
becomes difficult to determine the cavity content of the
lower polariton from the area of the transmitted signal. The
method we use is the following.

(a)

(c) (d)

(b)

FIG. 7. (a),(b) A typical spectrum of the pump and probe pulse,
respectively, after traveling through the optical fibers. (c),(d) In-
terferometric autocorrelation signal of the pump and probe,
respectively. Black lines are Gaussian fits to the data from which
the linewidths (a),(b) and pulse duration (c),(d) are extracted.
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(1) From the polariton transmission data at τ < 0, where
there is no gain, we extract C and ELP and calculate
Ecav using the experimentally determined value of
ℏΩ and the expression for the Hopfield coefficient:

jCj2 ¼ 1

1þ ðELP−Ecav
ℏΩ Þ2 ; ðC1Þ

where ℏΩ is the oscillator strength of the polaron.
(2) hen we extract EUP and ELP from the τmax data where

gain is observed. By taking the sum and difference of
the two quantities and assuming that the cavity length
remains unchangedwhen excited by thepump,we can
find the altered oscillator strength ℏΩ0 and E0

pol using

EUP;LP ¼
Ecav þEpol

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEcav −EpolÞ2 þ 4jℏΩj2

q
:

ðC2Þ
(3) Then the cavity content at τmax can be calculated

using Eq. (C1).

APPENDIX D: ELECTRON
DENSITY ESTIMATION

We use a capacitive model to estimate the electron
density. The capacitance per unit area between the top
gate and the sample is given by

C
A
¼

�
t

ϵ0ϵh-BN
þ 1

e2DðEFÞ
�

−1
; ðD1Þ

where the first and second terms are the geometric and
quantum capacitances, respectively. t ¼ ð88� 5Þ nm is the
thickness of the h-BN flake, ϵh-BN ¼ 3.5� 0.5 is the static
dielectric constant of h-BN, m� ¼ 0.5me is the effective
electron mass in the conduction band, and DðEFÞ is the
density of electronic states at Fermi energy EF. For EF > 0,
one can neglect the quantum capacitance and write the
Fermi energy as a function of applied gate voltage Vg as

EFðVgÞ ¼
πℏ2ϵh-BNϵ0

tem� ðV0 − VgÞ: ðD2Þ

In order to calculate the Fermi energy EF and therefore
the electron density ne from the applied gate voltage Vg,
we first need to determine the voltage V0 at which we begin
to dope the monolayer with itinerant electrons. To that end,
we measured the transmission spectrum of the repulsive
polaron-polariton as a function of gate voltage Vg. For
small EF (i.e., Vg < V0), the Rabi splitting Ωrep is given by

ΩrepðEFÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ωrepðEFÞ − ωc�2 þ ½grepðEFÞ�2

q
; ðD3Þ

where ωrepðEFÞ ¼ ωx þ βEF is the energy of the repulsive
exciton-polaron and ωx is the exciton energy; the second
term accounts for the blueshift due to the presence of the
Fermi sea and β was previously found to be 0.8 [15].

grepðEFÞ is the oscillator strength of the repulsive polaron,
which is ∼g0(1 − 1

2
ðEF=ETÞ) for small EF, ET refers to the

trion binding energy, which we take to be 25 meV.
Figures 8(a) and 8(c) show the measured transmission

spectrum of the repulsive polaron-polariton for two differ-
ent cavity detunings as a function of Vg. It is observed
[shown in Figs. 8(b) and 8(d)] that there are two distinct
regimes for the Rabi splitting Ωrep. Ωrep reacts much less
sensitively to Vg when increasing it from −6 to ∼1 V, after
which it starts to decrease sharply. We attribute this
apparent slow increase of EF as a filling of localized states
located in the midgap region resulting in a slight decrease
of Ωrep, which we can represent with a heuristic linear
model. On the other hand, the behavior of Ωrep is governed
by Eq. (D3) as soon as itinerant electrons start to populate
the conduction band (for Vg > V0). In our fits, all param-
eters in Eq. (D3) were fixed except for V0, which remained
a fit parameter. We determine V0 to be 1 V. This implies that
ne ¼ ð8� 1Þ × 1011 cm−2 at Vg ¼ 5 V. We note that the
uncertainty is dominated by that of ϵh-BN.

APPENDIX E: TIME DELAY DEPENDENCE
OF EXCITON-POLARITON BLUESHIFT

We extract ΔELP, the magnitude of the exciton-LP
resonance energy shift relative to its τ < 0 value, as a

(a) (b)

(c) (d)

FIG. 8. (a) Transmission T spectrum of the repulsive polaron-
polariton as a function of Vg at a bare cavity mode energy of
ℏωc ¼ 1643 meV. (b) Black dots with green error bars: Rabi
splitting extracted from Lorentzian fits to the transmission spec-
trum. The red dashed line is a fit of the model detailed in the text to
the data. (c),(d) Analogous to (a),(b) for ℏωc ¼ 1644 meV.
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function of τ in Fig. 9. We do not observe clear
evidence of effects occurring after the decay of coherent
polaritons.

APPENDIX F: LONG-TIMESCALE
PUMP-PROBE

In the pump-probe measurements where we reso-
nantly pump the attractive polaron-LP and the attractive
polaron-UP resonantly in Figs. 2 and 3, we consistently
observed a shift of the oscillator strength from the
attractive polaron-LP to the UP resonance that lasted
long after the gain in the transmission was over. We
conducted follow-up measurements for long time-delay
scans (up to 400 ps) while pumping the attractive
polaron-UP. We find the timescale for the recovery of
the initial conditions to be ∼300 ps (see Fig. 10).
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