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4Service de Physique Théorique, Université Libre de Bruxelles, 1050 Bruxelles, Belgium
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Pseudo-Nambu-Goldstone bosons (pNGBs) are naturally light, spin-zero particles that can be interest-

ing dark-matter (DM) candidates. We study the phenomenology of a pNGB � associated with an

approximate symmetry of the neutrino seesaw sector. A small coupling of � to the Higgs boson is

induced radiatively by the neutrino Yukawa couplings. By virtue of this Higgs-portal interaction, (i) the

pNGB acquires a mass m� proportional to the electroweak scale, and (ii) the observed DM relic density

can be generated by the freeze-in of � particles with massm� ’ 3 MeV. Alternatively, the coupling of � to

heavy sterile neutrinos can account for the DM relic density, in the window 1 keV & m� & 3 MeV. The

decays of � into light fermions are suppressed by the seesaw scale, making such pNGBs sufficiently stable

to play the role of DM.
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I. INTRODUCTION

The astrophysical and cosmological evidence for dark
matter (DM) requires that a new particle be introduced,
with constrained mass and interactions. These interactions
must, in particular, maintain the DM candidate as stable on
cosmological time scales and generate the observed DM
relic abundance. Many candidates can satisfy all con-
straints. Much fewer, though, provide a convincing expla-
nation for the required values of the DM parameters. As
examples, in most models, (i) an ad-hoc symmetry is
postulated to insure stability, and/or (ii) the DM mass is
assumed to be of order (or below) the electroweak (EW)
scale as demanded by the weakly interacting massive
particle (WIMP) paradigm, and/or (iii) new interactions
with strength similar to the EW ones, not motivated by
other means, are just postulated. A scenario which is
potentially predictive, and could provide motivations for
some of these assumptions, consists in identifying the DM
candidate with the pseudo-Nambu-Goldstone boson
(pNGB) of a spontaneously broken global symmetry.

An interesting feature of such a scenario is that the DM
couplings to the standard-model (SM) fields, which could
render the DM candidate unstable over cosmological
times, are suppressed by powers of the spontaneous-
symmetry-breaking (SSB) scale. As a result, provided
this scale is large, the decay width of the particle can be

sufficiently small. Awell-known example is the axion, the
pNGB that is associated with the Peccei-Quinn Uð1Þ sym-
metry, broken spontaneously at the scale fPQ. The axion is

a viable DM candidate when fPQ lies in the interval of

approximately ð1012–1014Þ GeV. Another possibility is to
consider SSB at the seesaw scale, which should be large to
account for the small size of the neutrino masses. One
global symmetry related to the seesaw scale is Uð1ÞB�L.
In the case that it is spontaneously broken by an EW
singlet, coupled to heavy-sterile- (right-handed-) neutri-
nos, the corresponding NGB is known as the singlet
Majoron [1]. Models with a pseudo-Majoron as DM have
been studied [2–7]. More generally, we will consider any
(family-dependent) global symmetry whose spontaneous
breaking contributes to sterile-neutrino masses.
Symmetries associated with the seesaw sector have the
advantage that the pNGB interactions are anticipated to
exist anyway to account for neutrino masses.
Another remarkable property of the pNGB scenario,

relevant for the DM phenomenology, is that the mass and
the scalar-potential interactions of a pNGB vanish in the
limit of exact symmetry. Therefore, when the symmetry is
explicitly broken by a unique (or dominant) term, the
scalar interactions and the DM mass are necessarily re-
lated, and, if the relic density is essentially determined by
such interactions, this implies a one-to-one correspondence
between the DM relic density and the DM mass. For
instance, we will consider a framework in which the source
of explicit breaking generates radiatively a ‘‘Higgs-portal’’
interaction of the form ��2HyH=2, where � is the pNGB
particle and H is the SM Higgs doublet. This coupling
generates a mass m2

� ¼ �v2 with v ¼ 174 GeV and, at the

same time, a relic density from the �-H interactions. We
will show how, given the known thermal distribution of SM
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particles in the early-Universe thermal bath, the Higgs
portal can generate a DM relic density through the
freeze-in mechanism. (See, e.g., Ref. [8].) The observed
relic density is obtained for a unique possible value of the
DMmass, which turns out to bem� ’ 2:8 MeV for a Higgs
boson mass of 120 GeV. There is also a second possibility
for generating the correct relic density: by the freeze-in of
the interaction of � with the sterile neutrinos. These pro-
duction mechanisms differ from those previously consid-
ered for a pNGB candidate for DM.

A third interesting feature of the pNGB setup is that the
DM mass is related to the scale of explicit symmetry
breaking, which can be identified with a physical-mass
scale already present in the theory, analogous to the QCD
scale for the axion. For instance, in the scenario we will
consider below, the neutrino Dirac Yukawa couplings
provide the source of explicit breaking of the global
symmetry. Therefore, the DM mass is proportional to the
EW scale, m2

� ¼ �v2, and this provides a justification for

the presence of a scalar DM particle at or below the EW
scale. Moreover, the coupling � can be computed as a
function of the seesaw couplings. In turn, we will show
that, in this framework, the DM mass can be protected
from quadratically divergent corrections. The mechanism
we invoke to remove these corrections is a variation of the
one proposed long ago by Hill and Ross for very light
pNGBs with both scalar and pseudoscalar couplings [9].
We will consider a Uð1ÞX symmetry such that its explicit
breaking requires several Yukawa couplings at the same
time, thus lowering the degree of divergence of the con-
tributions to the pNGB effective potential. This mecha-
nism has similarities with the collective-breaking
mechanism introduced to protect the EW scale in little
Higgs models, where the SM Higgs is the pNGB. (See
Ref. [10] for a review.)

All in all, we will show that the seesaw interactions
(i) are associated with global symmetries broken sponta-
neously at the heavy-neutrino-mass scale, whose large size
guarantees the stability of the pNGB-DM candidate, and
(ii) have a source of explicit symmetry breaking built in,
and therefore they induce the mass and scalar interactions
of the DM. Moreover, they can lead to (iii) a one-to-one
correspondence between the DM mass and the DM relic
density, with (iv) a justification for the presence of DM at
low scale, and with (v) a DM mass protected from large
radiative corrections.

The paper is organized as follows. In Sec. II, we display
the relevant effective interactions of our pNGB candidate
for DM. In Sec. III, we show how a pNGB relic density of
the order of the observed DM density can be obtained
through freeze-in. In Sec. IV, we present a class of seesaw
models in which the required pNGB interactions are
generated naturally. In Sec. V, we compute the pNGB
couplings to SM particles and analyze the corresponding
constraints on the DM stability. We conclude in Sec. VI.

II. EFFECTIVE INTERACTIONS OF THE PNGB

In this section, we introduce the effective Lagrangian of
a pNGB �, associated with a global symmetry of the
neutrino sector, broken spontaneously at the seesaw scale
f. We postpone to Sec. IV the detailed description of a
class of models where such a light pNGB may emerge
naturally. For the present purposes, it suffices to specify the
effective interactions of � at low energy (below f).
In the class of models under consideration, � couples to

a sterile neutrino �c as follows:

L N ¼ � gf

2
ffiffiffi
2

p �c�cei�=f þ H:c:

¼ �mN

2
�NN þ ig

2
ffiffiffi
2

p � �N�5N þ g

4
ffiffiffi
2

p
f
�2 �NN þ . . . ;

(1)

where g is a Yukawa coupling, and the four-component
Majorana neutrino is defined as usual by N � ð�c�cyÞT .
For simplicity, we consider only one sterile neutrino,

whose mass mN ¼ gf=
ffiffiffi
2

p
is generated by SSB. In this

case, the Lagrangian shown in Eq. (1) is the same as for the
singlet Majoron model [1], where the spontaneously bro-
ken global symmetry is lepton number. However, we will
show in Sec. IV that, in realistic cases with two (or more)
sterile neutrinos, the relevant symmetry is not the ordinary
lepton number; rather, each sterile neutrino carries a differ-
ent charge, and consequently the pNGB � cannot be iden-
tified with the Majoron. We remark that the �� N
interaction is just an example of a NGB interaction with
a heavy fermion charged under the associated global sym-
metry. As a consequence, the implications for dark-matter
phenomenology, discussed in the following sections, hold
qualitatively in a more general set of theories, with heavy
fermions other than the sterile neutrinos.
A nonvanishing potential for the NGB is generated when

one introduces a source of explicit breaking of the global
symmetry. In the models we will consider, this source is
given by a certain set of neutrino Dirac Yukawa couplings,
so that the � effective potential necessarily involves the SM
Higgs doublet H. The relevant, radiatively induced cou-
pling is given by

L H ¼ ��

2
�2HyH ¼ �m2

�

2
�2 � �vffiffiffi

2
p �2h� �

4
�2h2; (2)

where v ’ 174 GeV is the Higgs vacuum expectation
value (VEV), h is the physical Higgs boson, and we adopt
the unitary gauge. Note that the mass of the pNGB � is
proportional to the EW VEV, m2

� ¼ �v2. This relation is

sometimes referred to as the ‘‘conformal’’ limit, since �
has no bare-mass term; rather, the Higgs-portal interaction
� generates both m� and the �� h couplings. We remark
that the phenomenology (e.g., the DM mass, its relic
density, etc.) induced by the Higgs portal in Eq. (2) does
not depend on the details of the underlying physics which
generates � radiatively.
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In the specific seesaw models that we will build, � is
generated by logarithmically divergent neutrino loops, in-
volving both the �� N coupling g as well as neutrino
Dirac Yukawa couplings, denoted generically by y. It turns
out that the relation between the mass of � and the neutrino
parameters can be written schematically as

m2
� ¼ �v2 ’ g2y2v2 logð�2=m2

NÞ
8�2

; (3)

where � is some cutoff scale at or above f. The light-
neutrino-mass scale is given by the standard seesaw rela-
tion, m� ¼ y2v2=mN . It is useful to use Eq. (3) to express
the coupling g as a function of the relevant energy scales in
the theory:

g ¼ 10�3

�
m�

MeV

��
eV

m�

�
1=2
�
109 GeV

mN

�
1=2
�

8�2

logð�2=m2
NÞ
�
1=2

:

(4)

We will take the factor k � logð�2=m2
NÞ=ð8�2Þ to be of

order 1. Then, for a fixed value of m�, mN and also f ¼ffiffiffi
2

p
mN=g are determined as a function of m� and g, which

are basically the only two free parameters. We require the
scale f to be smaller than the Planck scale, MP ¼ 1:22�
1019 GeV. In addition, we assume for simplicity that f is
larger than 1 TeV, in order for the effective theory to
contain only the SM particles, the pNGB, and the sterile

neutrino, while the degrees of freedom involved in the SSB
are decoupled. These two requirements exclude the green-
shaded regions in the m�–g plane shown in Fig. 1. The
dotted lines in Fig. 1 correspond to constant values of the
sterile-neutrino mass, mN ¼ m2

�=ðg2m�kÞ ¼ 102, 106,
1010, 1014 GeV, from top to bottom.

III. RELIC DENSITY FROM FREEZE-IN
OF THE PNGB

We now study the role of the interactions in Eqs. (1) and
(2) for the production of a � relic density, which can play
the role of DM. In this section, we implicitly assume that �
is stable on cosmological time scales. The region of pa-
rameters where this stability is achieved will be analyzed in
detail in Sec. V. There are several mechanisms that can
produce the DM relic density. We begin by briefly recalling
these various possibilities and confronting them with the
parameter space of our scenario.
Awell-known way to produce a cosmological density of

a DM particle species is the usual freeze-out: It requires an
annihilation cross section large enough to overcome the
expansion of the Universe and thermalize the DM particle.
The interactions of � come from the terms in Eq. (1), which
we refer to as the ‘‘sterile-neutrino portal’’, and the terms
in Eq. (2), that is, the ‘‘Higgs portal’’. These interactions
may or may not lead to the thermalization of � in the early
Universe, depending on whether the interaction rate � gets
larger than the Hubble rate H. If it does, later on, �
necessarily decouples from the plasma and, if stable, acts
as DM with a certain energy density ��, which depends in
general on its mass and annihilation cross section.
Before determining �� numerically, it is instructive to

identify the thermalization region in first approximation by
evaluating the � interaction rate � and requiring �>H.
We start with the Higgs portal, considering for simplicity
the h ! �� decay only, because, in our scenario, decays
turn out to dominate with respect to scattering processes.
(See Fig. 2.) The decay rate is

�ðh ! ��Þ ¼ 1

16�
�2 v

2

mh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

m2
h

s
: (5)

This should be compared to the Hubble parameter in the

radiation epoch, which is given by H ¼ 1:66
ffiffiffiffiffiffi
g��

p
T2=MP,

where g�� ¼ 106:75 is the degrees of freedom correspond-
ing to the SM content. (We shall assume such value in the
rest of the paper.) Taking T ’ mh to be the relevant tem-
perature, we find that, for a coupling

� * 6� 10�8

�
mh

120 GeV

�
3=2

; (6)

the decays and inverse decays are able to produce a thermal
population of � particles. In other words, given the m2

� ¼
�v2 relation, one needs m� > 44 MeV, which translates
into the thin vertical line in Fig. 1 [11].

10 9 10 7 10 5 0.001 0.1
10 7

10 5

0.001

0.1

m GeV

g

FIG. 1. The pNGB coupling to the sterile neutrino, g, versus
the pNGB mass, m�, in GeV. We have fixed m� ¼ 0:05 eV and
k ¼ 1. The upper (lower) green shaded region is excluded by
requiring the SSB scale f to be larger than 1 TeV (smaller than
the Planck scale). The four dotted lines correspond to these
constant values of the sterile-neutrino mass, from top to bottom:
mN ¼ 102, 106, 1010, 1014 GeV. The thin diagonal (vertical) line
indicates the lower value of g (m�) that leads to a thermalization
of �. The thick curving line corresponds to a � relic density equal
to the observed DM relic density, as follows from the numerical
solution of the Boltzmann equation (for mh ¼ 120 GeV). Since
� is produced by freeze-in, its relic density grows with its
couplings g and � ¼ m2

�=v
2; therefore, the region below and

to the left (above and to the right) of the thick curving line
corresponds to �� <�DM ð>�DMÞ.
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Similarly, for the interaction with the sterile neutrino N,
the process NN ! �� has a rate

� ¼ h�vrelinN ’ g4

256�

nN
m2

N

’ 2� 10�4g4mN; (7)

where nN is the sterile-neutrino number density, and we
used T ’ mN . This leads to thermal production of � parti-
cles, provided that

g * 10�2

�
eV

m�k

�
1=6
�
m�

MeV

�
1=3

; (8)

where we made use of Eq. (4). This gives the thin diagonal
line in Fig. 1. We do not discuss the effects of the couplings
of � to light fermions because, in the models under con-
sideration, they turn out to be far too small to thermalize �.
(See Sec. V.)

Outside the thermalization region, where � is smaller
than H, one may still have a final �� matching �DM. (As
usual, we define �i � �i=�crit, i.e., the ratio between the
energy density �i and the critical density of the Universe.)
The idea is that in the early Universe a population of �
particles is produced through pair-production-scattering
processes, but with a density smaller than the thermal
one. For appropriate values of m�, one may still reach a
relic density equal to �DM. This process, called freeze-in,
actually happens in our scenario, as we shall describe
below in detail. (For generic properties of the freeze-in
mechanism, see Ref. [8].)

In the rest of this section, we first introduce the ingre-
dients to make a numerical calculation of the � relic
density, and we then apply them to the freeze-out and
freeze-in processes. Afterward, we also discuss some
nonthermal production mechanisms, and we end with a
summary of our results.

A. Boltzmann equation and reaction densities

From the Higgs portal, � particles are created from the
following scattering processes [12]:

�ðhh ! ��Þ ’ �2

32�s

�
s� 4m2

�

s� 4m2
h

�
1=2
�
sþ 2m2

h

s�m2
h

�
2
; (9)

�ðWW!��Þ¼1

9

�2

32�s

�
s�4m2

�

s�4m2
W

�
1=2 s2�4sm2

Wþ12m4
W

ðs�m2
hÞ2þm2

h�
2
h

;

(10)

�ðZZ!��Þ¼1

9

�2

32�s

�
s�4m2

�

s�4m2
Z

�
1=2 s2�4sm2

Zþ12m4
Z

ðs�m2
hÞ2þm2

h�
2
h

;

(11)

�ðf �f ! ��Þ ¼ 1

4

1

nc

�2

16�s

m2
fðs� 4m2

fÞ1=2ðs� 4m2
�Þ1=2

ðs�m2
hÞ2 þm2

h�
2
h

;

(12)

where �h is the total Higgs decay width and nc is the
number of colors of the fermion f.
Similarly, � particles can be created through the scatter-

ing with a sterile neutrino,

�ðNN!��Þ’ g4

256�

1

�2
Ns

�
�N

s

m2
N

þ2log
1��N

1þ�N

�
; (13)

where we neglected m� in front of mN and
ffiffiffi
s

p
, and we

defined �N ¼ ð1� 4m2
N=sÞ1=2.

In the following discussion, it will be convenient to con-
sider separately the effect of the Higgs decay, Eq. (5), which
means that, in order to avoid double counting, the on-shell
part of the scattering processes must be subtracted (when-
ever there is one). In the narrow width approximation, this
means one must perform in Eqs. (10)–(12) the substitution

mh�h

ðs�m2
hÞ2þm2

h�
2
h

! mh�h

ðs�m2
hÞ2þm2

h�
2
h

��	ðs�m2
hÞ�ðs�4m2

i Þ; (14)

for i ¼ W, Z, f. In the following discussion, all scattering
quantities we will consider are meant to be the subtracted
ones, using Eq. (14). To calculate the relic density that one
obtains from these processes, either through freeze-in or
freeze-out, one has to integrate the Boltzmann equation,

zHðzÞsðzÞY0
�ðzÞ¼

�
1�

�
Y�ðzÞ
Yeq
� ðzÞ

�
2
�
ð�Dh

ðzÞþ�annihðzÞÞ; (15)

where z � mh=T is conventionally taken as the evolution
parameter. Here, HðzÞ is the Hubble parameter, sðzÞ is the
entropy density, andY� � n�=s, withn� the number density.
The reaction density �Dh

contains the effect of the Higgs

boson decay, while �annih is the sum of the (subtracted)
reaction densities of the scattering processes in Eqs. (9)–
(13). The reaction densities are given by

0.01 0.1 1 10

10 15

10 12

10 9

10 6

z mh T

neq
H

FIG. 2. The decay thermalization rate, �Dh=ðneq� HÞ (black
curve), compared to the various scattering thermalization rates,
�a
annih=ðneq� HÞ for a ¼ W, Z, h, t, b ( the red, blue, green, orange

and purple curves, respectively), as a function of z ¼ mh=T and
for mh ¼ 120 GeV, m� ¼ 2:8 MeV. For freeze-in these rates
remain always well below 1, which is the thermalization value.
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�Dh
¼ N�

Z
d �phf

eq
h

ZZ
d �p1d �p2ð2�Þ4	4ðph � p1 � p2ÞjMj2

¼ N�n
eq
h

K1ðzÞ
K2ðzÞ�ðh ! ��Þ; (16)

�ðab $ 12Þ ¼ N�

ZZ
d �pad �pbf

eq
a f

eq
b d �p1

�
ZZ

d �p2ð2�Þ4	4ðpaþpb � p1 � p2ÞjMj2

¼ N�

T

64�4

Z 1

smin

ds
ffiffiffi
s

p
�̂ðsÞK1

� ffiffiffi
s

p
T

�
; (17)

involving the Bessel functions K1;2. We have defined d �p �
d3p=ðð2�Þ32EÞ. Here, N� ¼ 2 is the number of � particles

produced per decay or annihilation, f
eq
i ¼ ðeEi=T � 1Þ�1 ’

e�Ei=T is theMaxwell-Boltzmann energy distribution, jMj2
is the amplitude squared summed over the initial and
final spins (with no averaging), smin ¼ max½ðma þmbÞ2;
ðm1 þm2Þ2�, and the reduced cross section is defined by

�̂ðab$12Þ¼gagb
cab

2½ðs�m2
a�m2

bÞ2�4m2
am

2
b�

s
�ðab!12Þ;

(18)

where� is the particle physics cross section ofEqs. (9)–(13),
ga;b is the number of degrees of freedomof the particlesa, b,
and cab is a combinatorial factor equal to 2 (1) if a and b are
identical (different).

B. Freeze-out

As is well known, if � freezes out relativistically, that is,
at T * m�, its relic density is independent of the annihila-
tion cross section, because it decouples when the thermal
number density, Y

eq
� � n

eq
� =s, is still independent of the

temperature. The formula for the relative density �� is
simply

��h
2
0 ’ 78

1

gs�
m�

keV
; (19)

where gs� is the number of degrees of freedom contributing
to entropy at � decoupling. This should match the value

�DMh
2
0 ¼ 0:11� 0:01: (20)

In these equations, h0 is the reduced Hubble constant h0 ¼
H0=ð100 Mpc km s�1Þ ’ 0:70. As a result, the observed
relic density can be obtained only for one DM mass value:
m� ’ 0:15 keV, where we took gs� ¼ 106:75, valid for a
decoupling temperature above 100 GeV. Such a light � can
be only thermalized by the interaction with sterile neutri-
nos, which decouple at a temperature just below mN ,
leading to relativistic �’s. This result corresponds to the
left vertical branch of the thick curve in Fig. 1, which
is obtained by numerically integrating the Boltzmann
equation.

If, instead, � is heavier and thermalizes, it must decouple
nonrelativistically in order to have a small enough relic
density. This decoupling can occur through the Higgs-
portal interaction. In this case, the relic density essentially
depends only on the annihilation cross section, which must
take the value h�vreli ’ 10�26 cm3 s�1. To get a suffi-
ciently small relic density, one needs to go to much higher
values of m�, where the coupling � ¼ m2

�=v
2 becomes

large enough. The observed relic density is obtained for a
unique value ofm� because of the relation betweenm� and
�, which is a consequence of the pNGB nature of �. The
freeze-out through the Higgs portal was considered in
Ref. [14], assuming this restrictive relation, and it was
found that the DM relic density is obtained with m� ¼
50–70 GeV (for mh ¼ 120–180 GeV).
However, as we will see in Sec. V, the freeze-out values

m� ¼ 0:15 keV as well as m� ¼ 50–70 GeV require val-
ues of parameters that are excluded by the instability of �
on cosmological time scales. Therefore, in our scenario,
both relativistic and nonrelativistic freeze-out is not a
viable way to produce DM. Instead, the freeze-in process
turns out to be efficient in an allowed region of the pa-
rameter space, as we now discuss.

C. Freeze-in

In the freeze-in process, � is produced by the annihila-
tion or decay of a heavier particle X, with rates small
enough not to thermalize, leading to a less-than-thermal
DM population, which reaches a plateau at T �mX be-
cause, at smaller T, the number of X particles is Boltzmann
suppressed. If the X particles are the SM particles, as is the
case through the Higgs portal, their number densities are
known as a function of the temperature (simply given by
their thermal distribution down to a temperature well be-
low their mass). As a consequence, the created relic density
depends only on the magnitude of the portal.
Let us first consider a value of the coupling g sufficiently

small to neglect � production at the seesaw scale. (We will
see that this is the case for g & 10�3–10�4, depending on
m�.) In this case, only the Higgs-portal interactions can
account for the observed relic density. As we said above,
this mechanism is extremely predictive since, given the
conformal relation m2

� ¼ �v2, the rates and hence the relic

density depend only on the parameter m�.
Numerically integrating Eq. (15), the observed relic

density in Eq. (20) is obtained for

m� ¼ 2:76–2:86 MeV; (21)

where we tookmh ¼ 120 GeV for definiteness. This result
corresponds to the right vertical branch of the thick curve
in Fig. 1.
An important difference between freeze-in and freeze-

out is that, while the latter is generally dominated by the
off-shell annihilation, the former is naturally dominated by
the on-shell annihilation, i.e., by the decay of the mediator
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involved in the annihilation. For a freeze-out, unless the
mediator has a mass �2mDM, the decay has a small effect
because, when the off-shell annihilation goes out of equi-
librium, it has already decoupled (being more Boltzmann
suppressed). For a freeze-in instead, the DM production
occurs mostly at T of order the mediator mass, or slightly
below, where the Boltzmann suppression is still mild. As a
result, the decay, which involves fewer (small) couplings,
is naturally dominant, �Dh

> �annih. This is shown in Fig. 2

where the various reaction densities are plotted for mh ¼
120 GeV and m� ¼ 2:8 MeV. In the approximation where
only the decay is included, the Boltzmann equation can be
integrated analytically, giving [8]

Y� ’ N�

135gh

8�3ð1:66Þgs�
ffiffiffiffiffiffi
g��

p MP�ðh ! ��Þ
m2

h

; (22)

where gh ¼ 1. This analytic result turns out to differ from
the numerical result by less than 1%.

To understand Eq. (22), let us first discuss why the
freeze-in is infrared dominated, with most of the � pro-
duction occurring at T & mh ( just before neqh gets too

Boltzmann suppressed). The � number density produced
at temperature T is essentially given by the number of
decays per unit time occurring at this temperature,
n
eq
h ðmh=TÞ�ðh ! ��Þ, times the number of � particles

produced per decay, N�, times the Hubble time, 1=H.
Therefore, properly taking into account thermal averaging,
one has Y� ’ �Dh=ðHsÞ, which is nothing but the rate
of thermalization �Dh=ðneq� HÞ shown in Fig. 2, times the

relativistic value of Yeq
� . Thus, one obtains Y� /

MPmh�ðh ! ��Þ=T3, which increases as T decreases.
Hence, one finds Y� ¼ c½N�n

eq
h �ðh ! ��Þ=ðHsÞ�T¼mh

,

where c is a numerical factor which turns out to be
equal to ð3�=2Þ=K2ð1Þ ’ 2:9. It is larger than 1 because,
as Fig. 2 shows, the maximum value of the decay
reaction density occurs at T �mh=3:5, rather than at
T �mh [15]. With this in mind, and taking into account
the dependence �ðh ! ��Þ / �2=mh / m4

�=mh, the DM

relic density from the Higgs decay scales as m5
�=m

3
h, so

that the value of m� needed varies very little with the
exact value of the relic density, and the larger the Higgs
mass is, the larger m� has to be. For example, for mh ¼
140, 180, 300 GeV, one gets the observed relic density for
m� ¼ 3:0, 3.6, 4.9 MeV instead of the 2.8 MeVobtained in
Eq. (21).

It is interesting to discuss the contribution of each scat-
tering channel separately, even though they have a small
effect with respect to the decay. As can be seen from Fig. 2,
among the scattering channels, the W channel (red curve)
gives a contribution slightly larger than the Z (blue curve)
and h (green curve) contributions, and much larger than the
b (purple curve) and t (orange curve) ones. Numerically,
for mh ¼ 120 GeV, the W, Z, h, b, and t scatterings
contribute to the total number of � particles produced in
the proportions 1:0:4:0:4:4� 10�3:10�1, respectively,

while theW scattering alone gives a contribution 500 times
smaller than the decay channel.
Similar to the decay, at a temperature T * ma, a scat-

tering process aa ! �� gives a number density Ya
� ’

�a
annih=ðHsÞ, which is infrared dominated, too. Again, this

is nothing but the thermalization rate �a
annih=ðneq� HÞ, dis-

played in Fig. 2, up to the multiplicative constant Y
eq
� . One

gets Ya
� ¼ ca½�a

annih=ðHsÞ�T¼ma
, where ca is a numerical

factor which, unlike for the decay, does not take a unique
value. It depends on m� as well as on the s dependence of
the scattering cross section (which fixes the position of the
peak of the reaction densities in Fig. 2). For theW, Z and h
channels, ca ’ 2:2, whereas for the fermion channels, ct ’
1:7 and cb ’ 6. One understands consequently why the W,
Z, and h channels, which give contributions Y� /
MP=mW;Z;h, dominate over the b channel, which gives

Y� / m3
bMP=m

4
h. As for the top channel, it is suppressed,

too, because, for s * 4m2
t , it is more threshold suppressed

than the other channels [see Eqs. (9)–(12)], and, for higher
s, it gets quickly suppressed by the m2

t =s
2 asymptotic

behavior of the top cross section (as compared to the 1=s
asymptotic behavior of the W, Z, and h cross sections).
Let us now move to the region m� < 3 MeV, where the

Higgs portal alone would lead to a too-small relic density.
In this case, the N annihilation process can do the job, as
long as the reheating temperature is large enough to pro-
duce a thermal population of sterile neutrinos, which we
assume [16]. The annihilation rate depends on two free
parameters only, g and m�, with the sterile-neutrino mass
mN determined by Eq. (4). From the freeze-in of the
reaction NN ! ��, one obtains as usual Y� ’
½�annih=ðHsÞ�T¼mN

. One then finds that the DM relic den-

sity scales as g6m�=m�, as confirmed by the numerical
integration of the Boltzmann equation.
Our numerical result in them�-g plane is shown in Fig. 1

for m� ¼ 0:05 eV. The diagonal branch of the black thick
line corresponds to a freeze-in through the sterile-neutrino
portal, with the correct value of the DM relic density. The
required value of the �� N coupling is given approxi-

mately by g ’ 2 � 10�3ðm�=MeVÞ1=6ðeV=m�Þ1=6. Above
(below) the line, the relic density is too large (small).
Since the relic density is proportional to the sixth power
of g, the predicted value of g depends very weakly on the
cutoff �, which we fixed in all ournumerical analyses,
k ¼ logð�2=m2

NÞ=ð8�2Þ ¼ 1.

D. Nonthermal production

In general, one may think of nonthermal, more model-
dependent, � production mechanisms. A class of mecha-
nisms is related to the phase transition at the scale of SSB
f. At this epoch, (part of) the energy stored in the scalar-
potential false vacuum may be transferred to the pNGBs.
There could also be cosmic strings produced at the phase
transition, which would decay into pNGBs, but their exact
density depends on model details. Here, we assume that

MICHELE FRIGERIO, THOMAS HAMBYE, AND EDUARD MASSO PHYS. REV. X 1, 021026 (2011)

021026-6



these contributions to �� are negligible. This is the case,
in particular, if the Universe underwent an inflationary
phase at temperatures smaller than f. (Note that the

reheating temperature can still be larger than mN ¼
gf=

ffiffiffi
2

p
, since the coupling g is much smaller than 1 in

our scenario.)
A potential source of nonthermal production of pNGB

dark matter could be provided by the oscillations of the
field � around the minimum of its effective potential, in
case the value of � at high temperature is displaced from
such minimum, a mechanism that has been well studied in
the case of the axion. Let us summarize the axion case: The
axion mass is very suppressed above �QCD; therefore, at

high temperatures, the axion behaves as an exact NGB. In
this case, at the end of the associated Peccei-Quinn phase
transition at scale fPQ, the value of the axion field a can lie

in any of the equivalent vacua described by 0 	 a=fPQ <
2�. Later, when maðTÞ becomes important with respect to
the Hubble parameter HðTÞ, the field a begins to oscillate
around zero, producing a coherent state of particles at rest
with an associated�oscill

a . (For a review, see Ref. [18].) One
may naı̈vely think that this picture also applies to our
scenario, with a negligible m�ðTÞ at high temperature
(where the EW symmetry is restored), and the oscillations
beginning only at T � TeV when m� is generated. If this
were the case, taking the values of f and m� in the range
we considered for the freeze-in production, one would
conclude that �oscill

� overcloses the Universe, unless the

initial value of � is tuned to be much smaller than f, or
unless inflation takes place at temperatures below the TeV
scale.

However, the temperature dependence of m�ðTÞ is very
different from the temperature dependence of the axion,
whose mass is generated nonperturbatively by an anom-
aly at �QCD. In our case, m� is generated, instead, by an

explicit breaking of Uð1ÞX, and therefore it does not
vanish at high temperatures. On the contrary, we expect
m�ðTÞ to receive large thermal corrections. Even if the
EW symmetry is restored for T * TeV, there are contri-
butions to m� that are not proportional to the Higgs VEV
v, such as 	m2

� � g2y2�2=ð16�2Þ2. (See the discussion at

the end of Sec. IV.) These contributions lead to m2
�ðTÞ ’

constant � T2 at high temperature. A quantitative estimate
of a possible nonthermal production of � would then
require a nontrivial study of the thermal evolution of
the field � during and after the phase transition at scale
f. Still, we just notice that m�ðTÞ is typically already
larger than HðTÞ at T � f. Thus, we argue that the
field � does not acquire a random initial value of order
f, but rather it sits in the minimum of the potential
already at high temperature, or, in other words, coherent
oscillations are strongly suppressed. On the basis
of this argument, we assume that �oscill

� is negligible

and that the thermal freeze-in dominates the DM relic
density.

E. Summary

Our results on the � relic density are summarized in
Fig. 1, where we show the line �� ¼ �DM in the m�-g
plane. The behavior of the line with the correct relic
density can be easily understood. For m� ’ 0:15 keV, g
must be larger than (or equal to) the value needed to
thermalize �. For progressively larger m�, the value of g
should correspond to less and less thermalization. For
0:15 keV<m� < 3 MeV, one can see that the required
coupling g is progressively smaller than the thermalization
value, indicated by the thin diagonal line in Fig. 1. When
one approaches m� ’ 3 MeV, g becomes rapidly smaller
as the Higgs portal begins to contribute to the � number
density. Once the Higgs portal produces by itself the
correct amount of � particles, g must be small enough to
make the sterile-neutrino freeze-in negligible.
We conclude that the observed DM relic density can be

obtained thermally for

0:15 keV & m� & 3 MeV; (23)

where the exact upper value depends on the Higgs mass, as
discussed in Sec. III C. Note that this upper bound holds as
an absolute prediction as soon as the Higgs portal domi-
nates the DM production. In particular, this is necessarily
the case if the reheating temperature lies below the sterile-
neutrino-mass scale. More generally, the prediction m� ’
3 MeV holds for any pNGB whose Higgs-portal interac-
tion � gives the dominant contribution to its mass and relic
density, independent of the associated global symmetry
and of the source of explicit symmetry breaking which
induces �. In particular, the SSB scale may be different
from the seesaw scale.
Of course the prediction for m� would change if the

number of DM particles was not negligible already at
temperatures higher than the EW scale. In this case, one
has to produce less of them through freeze-in, which means
that m� has to be smaller. In other words, m� ’ 3 MeV
constitutes an absolute upper bound for the freeze-in
mechanism, and it holds as soon as the freeze-in produc-
tion dominates over the initial population.

IV. APPROXIMATE SYMMETRIES OF THE
SEESAW SECTOR

In this section, we consider the SM augmented with
sterile neutrinos �c

i , with a global symmetry broken spon-
taneously at the seesaw scale, and we discuss in some
detail the generation of a mass for the associated pNGB.
Let us consider the most general Yukawa interactions to

be added to the SM in the presence of gauge-singlet
fermions,

�L�c ¼ l
m
j�
c
j

�
H

v

�
þ 1

2
�c
iMij�

c
j þ H:c:; (24)

where l
 are the lepton doublets and H is the Higgs
doublet, whose neutral component acquires a VEV of
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v ¼ 174 GeV. Here and in the following analysis, the
mass parametersm
j andMij are intended in a generalized

sense as dynamical scalar fields that may or may not
acquire a nonzero VEV. Thus, the above Lagrangian has
a global Uð1ÞL symmetry with the following lepton-
number assignments:

LðlÞ¼þ1; Lð�cÞ¼�1;

LðHÞ¼LðmÞ¼0; LðMÞ¼þ2;
(25)

where we dropped flavor indices. WhenM acquires a VEV,
Uð1ÞL is spontaneously broken, and a massless NGB ap-
pears in the spectrum of the theory: the singlet Majoron [1].
One can write more explicitly

Mij ¼ gij�; � � �ffiffiffi
2

p ei�=f; (26)

where� is a complex scalar with L ¼ 2, the VEV h�i ¼ f
spontaneously breaks the lepton number, and � is the
Majoron.

Various possible sources ofUð1ÞL-explicit breaking come
from other sectors of the Lagrangian. There may be soft
terms in the scalar potential involving � which break the
lepton number; their mass scale, whose size is arbitrary,
determines the induced Majoron mass (see, e.g., [7]).
Another possible source ofUð1ÞL-explicit breaking is quan-
tum gravity effects at the Planck scale MP, which can, in
general, break all nongauge symmetries. Assuming that
these effects are suppressed by powers of MP, they can be
used to generate a Majoron mass at the keV scale [2,3],
which has been extensively studied as aDMcandidate [3–6].

In this paper, we consider a different source of explicit
breaking of global symmetries, provided by the set of the
Yukawa couplings [9]. This source allows us to relate the
size of the pNGB parameters to the fermion mass scales
already present in the theory. We will focus on symmetries
of the Lagrangian in Eq. (24) other than Uð1ÞL, with each
lepton carrying, in general, a different charge. In this case,
the symmetries are respected only by some matrix ele-
ments m
j and Mij, and they are explicitly broken if

some other matrix elements are nonzero. The mass and
couplings of the pNGBs are completely determined by the
seesaw parameters and by the choice of the cutoff, since
they can receive cutoff-dependent quantum corrections.

The pNGB mass is, in general, quadratically sensitive to
the cutoff. In order to understand the origin of quadratic
divergences and the mechanism to remove them, consider
first the explicit breaking of a Uð1Þ symmetry in a theory
with only one sterile neutrino, �c:

�L�c ¼ 1

2
�cðMae

i�=f þMbÞ�c þ H:c:

¼ 1

2
ðMa þMbÞ �NN � iMa

2f
� �N�5N

� Ma

4f2
�2 �NN þOð�3=f3Þ; (27)

where Ma;b are real mass parameters. Here, Ma is gener-

ated by the spontaneous breaking of the Uð1Þ symmetry
associated with the NGB �, whileMb breaks this symmetry
explicitly. It is instructive to compute the fermion loops
generating the pNGB mass term, m2

��
2=2, using the right-

hand side of Eq. (27): If Mb is zero, the two relevant one-
loop diagrams cancel each other, as expected for an exact
NGB. However, in the presence of the explicit breaking, a
nonzero, quadratically divergent contribution is left, which
is given by

m2
� �

1

8�2

MaMb

f2
�2: (28)

The effective theory below the scale f may still contain a
light scalar �, since m� can be parametrically small, but its
NGB nature is obscured by the quadratic dependence on
the details of the ultraviolet completion.
In the presence of more than one fermion family, one can

define several family-dependent Uð1Þ symmetries. In gen-
eral, they are explicitly broken by some mass-matrix en-
tries. However, certain Uð1Þ’s will be broken only when
several entries are nonzero at the same time: This is the key
to reducing the degree of divergence of the radiative con-
tribution to m�, where �’s are the associated pNGBs [9].
This fact can be understood in the language of the effective
potential Veff , considering the full (active + sterile)
neutrino-mass matrix M. The term in the Veff quadratic
in the mass matrix, �TrðMMyÞ�2, is invariant under
certain Uð1Þ symmetries, that is, it does not depend on
the associated pNGBs. Thus, the potential of these pNGBs
contains at most terms quartic in the mass matrix,
�TrðMMyMMyÞ log�2, which are only logarithmi-
cally sensitive to the cutoff. (For an application of this
idea to eV-scale sterile neutrinos, with the pNGB playing
the role of dark energy, see [19].) Of course, non-Abelian
symmetries are also possible, with several NGBs and,
potentially, qualitatively different phenomena, but this ex-
tension is not needed for our purposes and is not considered
in this paper.
To identify the combination of matrix entries that in-

duces a pNGB mass, we rewrite Eq. (24) with the replace-
ment l
ðH=vÞ ! �
, in the minimal case of two sterile
neutrinos, which are sufficient for realistic light-neutrino
masses:

�L�c ¼ �
ðm
1m
2Þ
�c
1

�c
2

 !

þ 1

2
ð�c

1�
c
2Þ

M11 M12

M12 M22

 !
�c
1

�c
2

 !
þ H:c: (29)

Here, a sum over nf ¼ 3 active flavors is understood

(
 ¼ e, �, �). Let us identify the matrix entries whose
phases can be removed. In general, 2nf þ 3 mass terms

have a phase. One can absorb nf þ 2 of these phases by

redefining the nf þ 2 neutrino fields present in Eq. (29). As a
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result, there remainnfþ1 complexmatrixentries inEq. (29).

(There are either nf phases in m and one in M, or, equiv-

alently, nf � 1 phases in m and two in M.) When one sets

thesenf þ 1 entries to zero, there are no physical phases left.

Now, suppose these nf þ 1 complex entries vanish, and

the nonzero entries are generated by a set of scalar fields,

�a � �a � expði�a=faÞ=
ffiffiffi
2

p
, acquiring a VEV of h�ai ¼

fa. Then, by an appropriate redefinition of the lepton fields,
one can remove all the phase fields �a from the Yukawa
Lagrangian of Eq. (29). Thus, these fields will have only
derivative couplings to the leptons, resulting from the
redefined lepton kinetic terms. This means that the
Lagrangian has exact Uð1Þ symmetries, broken spontane-
ously by h�i’s, and that �a are exact NGBs.

When one of the zero-matrix entries is switched on,
however, it is no longer possible to remove all the phases.
This fact means that oneUð1Þ is explicitly broken, with the
associated pNGB � acquiring nonderivative couplings.
Thus, a nonzero m� is generated by neutrino one-loop
diagrams. To estimate m�, consider the set of the (nf þ
3) nonzero-matrix entries. One can check that � could be
rotated away from Eq. (29) if any out of four of these
entries was switched off. This means that a Uð1Þ symmetry
is recovered when any entry is put to zero, and, therefore,
m� must be proportional to the product of the four entries.
As a consequence, quadratically divergent contributions to
m� are absent.

The � mass can be controlled by the entries of M only,
by those of m only, or by both. Let us specify three models
with a Uð1ÞX symmetry, which are representative of these
three generic possibilities:

(i) The symmetry is broken explicitly in the singlet-
neutrino sector. Two independent entries of the
Majorana mass matrix M are allowed by Uð1ÞX,
while the third is forbidden. For example, take
Xð�c

1Þ ¼ 0, Xð�c
2Þ ¼ 1, and one scalar field � with

Xð�Þ ¼ �2. Then, M11 is allowed and M22 is gen-
erated by the VEV of �, while M12 ¼ 0. The NGB
coupling to neutrinos reads M22 expði�=fÞ�c

2�
c
2=2.

(The Dirac neutrino sector is not relevant here: The
m entries may or may not respectUð1ÞX. In any case,
the leading symmetry-breaking effects are controlled
by M.) When M12 is different from zero, neutrino
loops give a nonzero contribution to m� as long as
they contain four appropriate mass insertions:

m2
� �

1

8�2

M11M12M22M12

f2
log

�2

�2
; (30)

where we include a loop-suppression factor and � is
the renormalization scale, which can be taken of the
order of the sterile-neutrino masses. The cancellation
of quadratic divergences as well as the structure of
the nonvanishing contribution to m� are dictated by
our symmetry argument, and they can both be ex-
plicitly checked by computing the loops.

(ii) The symmetry is broken explicitly only within the
Dirac neutrino sector. The entries on a given row of
the Dirac mass matrix m are both allowed, while, in
the other rows, only one entry is allowed. For ex-
ample, take Xð�eÞ ¼ 1, Xð��;�Þ ¼ 3, Xð�c

1Þ ¼ �1,

Xð�c
2Þ ¼ 1, and a scalar field  with XðÞ ¼ �2.

Then, me1 is allowed, me2, m�1 and m�1 are gen-

erated by the VEVof , and m�2 ¼ m�2 ¼ 0. (For

simplicity, we suppose that the scalar fields and�
that can contribute tom and toM belong to different
sets. The singlet-neutrino sector is assumed to re-
spectUð1ÞX: In the present example,M12 is allowed,
thus giving an equal mass to the two sterile neutri-
nos.) This case closely reproduces the scenario dis-
cussed by Hill and Ross [9], which dealt with the
quark Dirac mass matrix. Once the entries explicitly
breaking Uð1ÞX are switched on in m, one obtains

m2
��

1

8�2

m
1m
2m�2m�1

f2
log

�2

�2
; 
��: (31)

(iii) The symmetry is broken explicitly only by the
interplay of the Dirac and Majorana neutrino-mass
matrices. One possibility is thatUð1ÞX allows for all
the entries of M, e.g., taking the charges Xð�c

1Þ ¼�1, Xð�c
2Þ ¼ 1, and Xð�Þ ¼ 2; this symmetry can

allow only one entry between m
1 and m
2, de-
pending on the charge of �
. Another possibility is
thatUð1ÞX allows for all the entries ofm but forbids
two entries of M, e.g., taking the charges Xð�
Þ ¼
Xð�c

1Þ ¼ 0 and Xð�c
2Þ ¼ �XðÞ � 0. As usual, the

mass of the NGB � is generated when one zero
entry is switched on. One finds

m2
��

1

8�2

MijMklm
1m
2

f2
log

�2

�2
; ij�kl: (32)

To roughly quantify the energy scales under discussion, let
us indicate withM ¼ gf (m ¼ yv) a generic seesaw (elec-
troweak) scale, which is possibly suppressed by a small
Yukawa coupling g (y) with respect to theUð1ÞX SSB scale
f (the EW scale v). Let us also introduce the neutrino-mass
scale m� ¼ m2=M. Up to a loop suppression, in the three
cases, m� is of order (i) ðM=fÞM ¼ gM, at or below the
seesaw scale; (ii) ðm=fÞm ¼ gm�, at or below the
neutrino-mass scale; (iii) ðM=fÞm ¼ gm, at or below the
electroweak scale. In the following discussion, we will
concentrate on the last possibility, since we are interested
in scalar DM candidates below the electroweak scale.
Before we move to the other properties of the pNGB

relevant for DM, some comments are in order to assess the
soundness of the above estimate for the pNGB mass m�.
We have seen that, in general, in the presence of explicit
breaking of the associated global symmetry, m� can be
sensitive quadratically to the cutoff of the theory. However,
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if the global symmetry is broken only by the contemporary
presence of several couplings, then m� is proportional to
the product of all these couplings. In this case, the
Feynman diagrams contributing to the pNGB mass will
have a lower degree of divergence, and thus quadratic
divergences vanish. This possibility, often employed in
model building in the past, has recently been extensively
used in the context of little Higgs models, under the name
of ‘‘collective breaking.’’ (See Ref. [10] for reviews.) The
motivation is to stabilize the electroweak scale against
large quantum corrections. In these models, the Higgs is
a NGB of a symmetry broken spontaneously at the scale
few � TeV, whose mass is generated at one-loop level by
two couplings y1;2, whose contemporary presence explic-

itly breaks the symmetry. As a consequence, m2
h �

y21y
2
2f

2
ew logð�2=�2Þ=ð16�2Þ, that is, the sensitivity to the

cutoff � is only logarithmic. However, in general, the
quadratic divergence reappears at the two-loop level,
with a correction to the Higgs mass 	m2

h � y21y
2
2�

2=
ð16�2Þ2, which indicates that � cannot be larger than
approximately 4�few, in order for the theory to remain
natural.

It is instructive to compare this little Higgs scenario with
our scenario, where the DM candidate � is a pNGB asso-
ciated with SSB at the scale f, of the order of the seesaw
scale. In the latter case, the pNGB mass generated at
one-loop can be written schematically as m2

� �
g2y2v2 logð�2=�2Þ=ð16�2Þ. The mass m� is proportional
not to f, but rather to the electroweak scale v. Besides, it
can be much smaller than v because of the four powers of
Yukawa couplings and the loop suppression. This is true
even with a huge cutoff �, since the dependence on it is
only logarithmic. However, at higher orders, the quadratic
divergence may reappear, e.g., through a two-loop diagram
with a virtual Higgs exchanged across the neutrino loop,
leading to m2

� � g2y2�2=ð16�2Þ2. Although this result is

not surprising, since the mechanism we adopted explains
why the pNGB mass is related to the EW scale, it does not
address the stability of the EW scale against radiative
corrections. In other words, as already remarked by Hill
and Ross [9], the Higgs sensitivity to quadratic corrections
also enters in m� at higher order. In order for this two-loop
correction to be negligible with respect to the one-loop
estimate, one needs the cutoff of the Higgs boson loops,
�H, to be smaller than approximately 4�v. (By enlarging
the global symmetry, it may also be possible to remove the
two-loop quadratic divergence; see, e.g., [19], but, in gen-
eral, higher orders reintroduce the problem.) If one wants
to stabilize a theory which includes a scale much larger
than v (e.g., the scale f), one must address the usual
hierarchy problem, e.g., postulating supersymmetry bro-
ken at �susy � TeV, or a strongly interacting sector that

condenses at �c � TeV dynamically generating the EW
scale. In this paper, we assume that the stability of the EW
scale is realized, and thus we can adopt our one-loop

estimates for the pNGB mass and couplings in order to
study the phenomenology.

A. A seesaw model leading to the Higgs portal

Let us consider in some detail a specific Uð1ÞX symme-
try of the neutrino sector, such that the pNGB � radiatively
acquires a coupling to the SM Higgs. Take the sterile-
neutrino charges Xð�c

1Þ ¼ �1 and Xð�c
2Þ ¼ 1, and a scalar

field � with charge Xð�Þ ¼ 2, whose VEV breaks the
symmetry spontaneously. The interaction Lagrangian in-
volving the sterile neutrinos and the pNGB � reads

�L�c�� ¼ l
ðm
1m
2ÞHv
�c
1

�c
2

 !

þ 1

2
ð�c

1�
c
2Þ

M11e
i�=f M12

M12 M22e
�i�=f

 !
�c
1

�c
2

 !

þ H:c: (33)

Here,M12 is a mass term allowed byUð1ÞX, whileM11 and
M22 are generated after SSB. The symmetry is broken
explicitly by either m
1 or m
2, depending on the Uð1ÞX
charge assigned to the lepton doublet l
 [20]. Note that �
can be rotated away by rephasing the neutrino fields if
m
1 ¼ 0 orm
2 ¼ 0. In this case, the symmetry is restored
and � is a true NGB. The dependence on � can also be
removed when two independent entries ofM are vanishing;
therefore, the symmetry-breaking effects must also vanish
in this limit. As we discussed in the previous section, this
need for four different couplings to break the symmetry is
the key to canceling quadratic divergences [21].
The interactions in Eq. (33) generate an effective poten-

tial for the pNGB �. We assumed thatMij and m
i are real

and positive (see discussion in the next paragraph), and we
performed the one-loop computation of the effective po-
tential, which can be written as

Veff ¼ �

2
��HyH þOð�4Þ: (34)

We find that the quadratically divergent contributions can-
cel explicitly, as expected, and the logarithmically diver-
gent contributions give

� ’ 1

4�2

M12ðM11 þM22Þ
f2

P


m
1m
2

v2
log

�2

�2
; (35)

with a renormalization scale ��Mij and up to tiny cor-

rections of higher order in m
i=Mkl. This type of model is
particularly predictive, because the pNGB mass is gener-
ated by the same loops that generate �; that is, m� is
obtained from Eq. (34) by replacing the Higgs with its

VEV,m2
� ¼ �v2. By taking a common valuemN ¼ gf=

ffiffiffi
2

p
(m ¼ yv) for each entry of the Majorana (Dirac) neutrino-
mass matrix, Eq. (35) reduces to Eq. (3), up to a factor 2nf
that accounts for the sum-over-flavor indices. As we saw in
Sec. III, the value of the coupling � has a crucial role for
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the (partial) thermalization of � and thus for the determi-
nation of its relic density.

A comment on the CP symmetry is in order. In general,
the mass terms Mij and m
i may be complex, that is, they

may carry phases that cannot be removed by a redefinition
of the fields. These phases correspond to an explicit break-
ing of CP. In this case, � would have both scalar and
pseudoscalar couplings to the fermions, with characteristic
phenomenological signatures [9]. Moreover, the effective
potential would contain terms odd in �, such as ��HyH
(with� 
 v), that induce a VEV for � and a small mixing
with the Higgs. This oddity may endanger the stability of
�, since it would couple linearly to SM particles. Still,
these couplings can be very small and, in addition, the �
decays may be kinematically forbidden ifm� is sufficiently
small. In this paper, we do not investigate this more com-
plicated CP-violating possibility; rather, we assume that
CP is a good symmetry of the seesaw sector. In this case,
Mij and m
i in Eq. (33) are all real, and � preserves its

pseudoscalar nature, since Eq. (33) is invariant under a CP
transformation with � ! ��. Usually, the DM stability
requires an additional (discrete) symmetry that forbids its
decay into SM particles. In the present scenario, the CP
symmetry itself guarantees that � couples linearly only to
the heavy sterile neutrinos, and we will see in Sec. V that
this circumstance makes � sufficiently long-lived.

V. CONSTRAINTS ON THE PNGB LIFETIME

We first derive the couplings of � to the SM fermions
and gauge bosons, and compare the � decay width into
light SM particles with the lifetime of the Universe.
Subsequently, assuming that � particles account for the
whole DM density, we discuss the more stringent astro-
physical and cosmological constraints that exist on the
decay of � to neutrinos, electrons, and photons.

A. � couplings to the SM particles

The pNGB lifetime is determined by its couplings to
light fermions. These couplings come from the �-N inter-
action, through the �-N mixing induced by the Dirac
neutrino masses. In this way, � can decay to light neutrinos
(at tree level) and to charged fermions (at one-loop level).
In turn, these couplings to SM fermions could induce,
through triangle-loop diagrams, couplings to SM gauge
bosons. These decays should be sufficiently slow to make
the DM lifetime longer than the age of the Universe, �0 ’
5� 1017 s. This provides interesting constraints on the
seesaw parameters, as we now discuss.

Neutrinos.—At tree level, � couples only to light neu-
trinos, as follows:

L��� ¼ i

2

X

�

ð��Þ
�
f

��
�5���;

ð��Þ
� � �X
ij

XijðmM�1Þ
iMijðM�1mTÞj�:
(36)

Here Xij is the power of ei�=f associated with the sterile-

neutrino-mass-matrix entry Mij. In the singlet Majoron

model Xij ¼ 1 for all i, j, therefore, one finds �� ¼ m� �
�mM�1mT , which is the usual seesaw formula. On the
contrary, in our models based on a family-dependentUð1ÞX
symmetry, � couples differently to each entry of M, as, for
example, in the model of Eq. (33). This Lagrangian leads to
a total decay width (into both neutrinos and antineutrinos)
of

�ð�!��Þ¼ 1

16�
g2���m�; g2����

Trð�y
���Þ
f2

; (37)

where we neglected ðm�i=m�Þ2 corrections in the phase
space, m�i being the light-neutrino-mass eigenvalues. In
the Majoron case, one obtains g2��� ¼ P

im
2
�i=f

2. This

width is smaller than 1=�0 for g��� & 3�
10�19 ðMeV=m�Þ1=2. Such tiny coupling is natural for �
because the pNGB couplings are suppressed by the SSB

scale f: One needs f*3�109GeVðm�=eVÞðm�=MeVÞ1=2,
where we use the one-family approximation, g��� ’ m�=f.
To translate this bound in the m�-g plane, we insert the

relation f ¼ ffiffiffi
2

p
mN=g into Eq. (4), which gives

g��� ’ 10�21

�
MeV

m�

�
2
�

g

10�3

�
3
�
m�

eV

�
2
k: (38)

The condition 1=�ð� ! ��Þ> �0 excludes the region
above the blue dashed line in Figs. 3 and 4.
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FIG. 3. The constraints on the DM lifetime in the m�-g plane,
for m� ¼ 0:05 eV. The thick black curve, corresponding to the
correct DM relic density, as well as the dotted vertical lines,
corresponding to constant values ofmN , are the same as presented
in Fig. 1. The curve is dashed for m� & 1 keV, because DM is
warm in this region (see the text), and forg & 10�5, because of the
theoretical bound f <MP, shown in Fig. 1. The blue solid
(dashed) line is the upper bound on g from DM decays into
neutrinos coming from astrophysics and cosmology (from the
Universe lifetime); the blue shaded region is therefore excluded.
The red solid line is the analog bound for DM decays into eþe�;
the red shaded region is correspondingly excluded. Finally, the
brown dash-dotted line is a conservative estimate of the upper
bound on g from DM decays into photons (see the text).
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Charged fermions.—The pNGB � also couples to
charged fermions, through EW one-loop diagrams. This
effect arises because of the mixing between the sterile and
the weakly interacting neutrinos; in particular, it is also
operative in the singlet Majoron model [1,22]. The cou-
pling to quarks is induced by a one-loop �� Z-mixing
diagram, with neutrinos in the loop. The coupling to
charged leptons is generated by an analog Z-exchange
diagram plus a triangle diagram with W exchange. The
resulting coupling can be written in a compact form in the
one-family approximation, as follows:

L�f �f¼ ig�f �f
�f�5f�; g�f �f¼� GF

ð4�Þ2
ffiffiffi
2

p
mN

f
mfm�; (39)

where the sign is þ (�) for up quarks and charged leptons
(down quarks), andGF is the Fermi coupling constant. This
effective coupling can be suppressed taking only a small

g ¼ ffiffiffi
2

p
mN=f, since all the other parameters in g�f �f can be

determined experimentally. The decay width is given by

�ð� ! f �fÞ ¼ 1

8�
g2
�f �f

m�

�
1� 4m2

f

m2
�

�
1=2

: (40)

We remark that all models where the singlet Majoron is
given a mass larger than 1 MeV and plays the role of DM
candidate are constrained (or already excluded) by such
decays into charged fermions.

In our scenario, the requirement 1=�ð� ! f �fÞ> �0
leads to an upper bound g & 2 ðMeV=m�Þ1=2ðeV=m�Þ�
ðMeV=mfÞ, where we have assumed m� � 2mf for

simplicity. This bound excludes the region above the red
dashed line in Fig. 4. As a consequence, taking into account
that g andm� are related by Eq. (3), and that the Dirac mass
m ¼ yv cannot be larger than about TeV, we conclude that
m� close to the EW scale would imply a lifetime shorter
than �0. In fact, even stronger constraints on the decay

width into charged fermions come from astrophysical and
cosmological observations (see Sec. VB), which will lead
to a stronger constraint, m� < 1 GeV. In particular, in this
class of models, � cannot be the approximately 50 GeV
DM candidate produced by the freeze-out of the � inter-
action with the Higgs, discussed in Sec. III B. One is left
with the possibility of a sub-GeV DM candidate, because
in this case the decays into charged fermion pairs are
sufficiently slow (or forbidden kinematically), and the
correct relic density can be generated by the freeze-in
mechanism.
In the realistic three-family case, the coupling g�f �f is

generically of the same order, but with a complicated
dependence on flavor parameters. In particular, one may
argue that some cancellation can take place, to reduce the �
decay width. In addition, we have seen in Sec. IV that the
pNGB-mass generation depends crucially on the interplay
between the flavor structures of the matrices m and M.
Therefore, if one were to study the whole parameter space,
one should know the explicit dependence of g�f �f on the

mass-matrix entries.
For illustration, we display the result for the model in

Eq. (33), considering for simplicity only one lepton dou-
blet. Writing the Dirac mass matrix as m � ðm1m2Þ and
keeping terms up to order ðmi=MjkÞ2, the effective cou-

pling of � to fermions through the mixing with the Z-gauge
boson is given by

L Z
�f �f

¼ i

�
M11

f
F1�M22

f
F2

�
2
ffiffiffi
2

p
GF

ð4�Þ2 mfT3f
�f�5f�; (41)

F1¼m2
1

�
c2s2Kþ c2

M1

þ s2

M2

�
�m2

2c
2s2K

�m1m2cs

�
ðc2�s2ÞK� 1

M1

þ 1

M2

�
; (42)

F2 ¼ m2
2

�
c2s2K þ s2

M1

þ c2

M2

�
�m2

1c
2s2K

þm1m2cs

�
ðc2 � s2ÞK þ 1

M1

� 1

M2

�
; (43)

where T3f is the third isospin component of the left-handed

part of the fermion f,M1;2 are the eigenvalues of the matrix

M, which is diagonalized by a rotation of angle 	, defined
by tan2	 ¼ 2M12=ðM11 �M22Þ, and we denote c � cos	
and s � sin	. Finally, the loop function K ¼ KðM1;M2Þ is
given by

KðM1;M2Þ � �M2
1 þ 4M1M2 þM2

2

M1M2ðM1 þM2Þ

þ 4ðM2
1 þM1M2 þM2

2Þ
ðM1 �M2ÞðM1 þM2Þ2

log
M1

M2

: (44)

Concerning the � decay into charged leptons, one needs to
add the contribution of theW-exchange diagram. The main
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FIG. 4. The same as in Fig. 3, but for a heavier-neutrino-mass
scale, m� ¼ 1 eV. The extra red dashed line is the upper bound
from 1=�ð� ! eþe�Þ> �0. (In the case of Fig. 3, the analog line
lies entirely in the region g > 1 and m� > 1 GeV, which is not
displayed.)
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phenomenological constraint comes from � ! eþe�.
Therefore, in our simplified calculation, we identify the
active neutrino with the electron neutrino �e. Then, the
additional contribution to the effective coupling of � to
electrons is given by

LW
�e �e ¼ i

�
M11

f
F1 �M22

f
F2

�
2

ffiffiffi
2

p
GF

ð4�Þ2 me �e�5e�; (45)

which carries a relative factor �2 with respect to the
Z-exchange contribution. This is why the sum of the two
contributions in Eqs. (41) and (45) gives g�e �e=me ¼
g�u �u=mu ¼ �g�d �d=md, consistent with the one-family re-
sult in Eq. (39). Also, the functions F1;2 are of the order

m2
i =Mj �m�, so the couplings are of the same order as in

Eq. (39). Still, cancellations between the various terms are
possible, leading to a suppression of the � decay width for
special flavor structures. This possibility may deserve a
future investigation, since an appropriate family symmetry
could in principle raise the pNGB lifetime, so that � could
become a viable DM candidate even for m� > 1 GeV, a
region where freeze-out could lead to the observed relic
density. In this paper, we do not invoke a family symmetry
for the suppression of g�f �f to happen; rather, we rely on the

one-family estimate given in Eq. (39).
Gauge bosons.—The last effective coupling of the

pNGB that may have important phenomenological conse-
quences is the coupling to photons. Let us first discuss the
limit of exact global symmetry and then comment on the
effect of explicit breaking. In general, the couplings of a
NGB to gauge bosons are controlled by the gauge anoma-
lies of the associated global symmetry. In the case that � is
the Majoron, the global symmetry can be identified with
B� L, because � can be rotated away from the Yukawa
interactions by rephasing all the SM fermions with a B� L
transformation. Since B� L is anomaly free with respect
to the SM gauge symmetries, this rephasing does not
generate anomalous couplings of the type �F ~F; rather,
the only leftover interaction is derivative, ð�=fÞ@�J�B�L,

which is generated by the redefinition of the fermion
kinetic terms. One concludes that the Majoron has no
anomalous couplings to gauge bosons [23].

This discussion is easily generalized to the Uð1ÞX sym-
metry that we consider in this paper. First, note that the
sterile-neutrino charges are irrelevant for gauge anomalies.
In order to allow for fermion masses, we can take Xðl
Þ ¼
�Xðec
Þ ¼ x
 for 
 ¼ e, �, �, and zero X charge for the
quarks. Then it is easy to check that Uð1ÞX is anomaly free
with respect to electromagnetism and color, and thus �
does not couple to photons and gluons. The anomaly with
EW interactions is proportional to

P

x
 and can also be

taken equal to zero for simplicity. In summary, in the limit
of exact symmetry, our NGB does not couple to gauge
bosons.

It is far more difficult to compute the pNGB couplings to
gauge bosons in the presence of explicit-symmetry-

breaking sources. One expects that such couplings will
arise at some level, since there are no symmetry arguments
to prevent them at all orders. However, the computation of
the lowest-order nonvanishing contribution is nontrivial.
We have shown explicitly above that, in the present frame-
work, � couples at tree level to neutrinos only, while, at
one-loop, couplings are induced to the Higgs boson as well
as to charged fermions. At two-loop, there are a number of
diagrams that connect � to two-gauge bosons. These dia-
grams do not necessarily add up to zero: On the one hand,
they involve the neutrino-mass parameters that break
Uð1ÞX explicitly; thus, they are not expected to respect
the anomaly argument above. On the other hand, however,
these parameters may not be sufficient to induce an opera-
tor �F ~F already at two-loop order.
The computation of these two-loop diagrams is beyond

the purpose of the present paper because we will show that
a decay � ! �� induced at this order would be irrelevant
for phenomenology anyway: Once the constraints from
� ! f �f are imposed, the surviving DM-parameter space
is not further reduced by constraints on photons. To see this
picture, we estimate the size of a two-loop contribution by
taking the effective one-loop couplings in Eq. (39) and
computing the usual fermion triangle diagrams with
two final-state photons. The effective Lagrangian can be
written as

L ��� ¼ 1
8g�������
�F

��F
�; (46)

and the corresponding decay width is

�ð� ! ��Þ ¼ 1

64�
g2���m

3
�;

gestimate
��� ’ 


�

X
f

g�f �f

mf

G

�
m�

2mf

�
;

(47)

where GðxÞ ¼ jarcsin2xj=x2 [24]. Note that even in the
limit of exact NGB, with m� 
 mf and thus GðxÞ � 1,

the sum does not give zero when the sign in Eq. (39) is
taken into account. Therefore, we stress again that this is
just a conservative estimate, and the computation of all the
two-loop contributions may lead to a further cancellation.
Neglecting the mass dependence in G, the requirement
�ð� ! ��Þ< 1=�0 gives the order-of-magnitude con-

straint g & 4� 103ðMeV=m�Þ3=2ðeV=m�Þ. This bound
is weaker than the one obtained below Eq. (40) from
�ð� ! f �fÞ, as long as m� & 1 GeV, which is the region
relevant in the present scenario.

B. Cosmological and astrophysical bounds
on � couplings

In practice, the DM lifetime has to be larger than the
lifetime of the Universe, because late DM decays affect
several cosmological and astrophysical observations. To
derive the corresponding bounds on our scenario, we make
the assumption that � is all the DM in the Universe. For the
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sake of simplicity, here, too, we take the approximation of
one lepton family, barring large cancellations between the
flavor parameters. A sub-GeV particle could decay into
neutrinos, electrons, and photons. We discuss these decay
channels in turn.

Let us first consider the decay � ! ��. As was noted in
Ref. [5], such a decay could affect the expansion history of
the Universe because it represents energy transfer from a
nonrelativistic � to relativistic neutrinos. Using type Ia
supernovae and cosmic microwave background data, one
obtains the bound [25]

�ð�!��Þ<4:5�10�20 s�1 ðor�>700GyrÞ: (48)

Using Eq. (37), the corresponding bound on the coupling
of � to neutrinos is

g��� < 4� 10�20

�
MeV

m�

�
1=2

: (49)

This upper bound can be improved in the range 30 MeV<
m� < 200 MeV [26], using searches for the diffuse-neu-
trino-supernova background by the Super-Kamiokande de-
tector. For masses m� > 200 MeV, the best limit comes
from atmospheric neutrino observations. Since the ob-
served spectrum coincides with theoretical estimates, one
can set an upper bound on g��� [26,27]. We use the relation
in Eq. (38) to translate these constraints in the m�-g plane.
The blue region shown in Figs. 3 and 4 is excluded by the
combination of the observational bounds discussed above.

Let us now consider the � ! eþe� decay. We adapt to
our case the analysis performed in Ref. [27]. For m� 	
20 MeV, the dominant physical process which constrains
the parameter space is annihilation at rest, contributing to
the 511 keV line. The limit is approximately given by�

MeV

m�

�
�ð� ! e�eþÞ< 5� 10�27 s�1: (50)

Using Eq. (40), this limit leads to

g�ee < 9� 10�24

�
1� 4m2

e

m2
�

��1=2
: (51)

For 20 MeV 	 m� 	 1 GeV, the dominant process is in-
ternal bremsstrahlung, i.e., photons that are radiated from
the final electron or positron. One gets a slightly more
stringent bound than the one shown in Eq. (50) [27]. The
predicted value of the coupling g�ee in our model, as
follows from Eq. (39), is

g�ee ¼ g
GF

ð4�Þ2 m�me ¼ 3� 10�23

�
g

10�3

�
m�

eV
: (52)

The corresponding observational bound is plotted in Figs. 3
and 4 as the red shaded region.

Note that the valuem� ’ 3 MeV, predicted by the Higgs
portal, could lead to an excess of 511 keV � rays from the
Galactic center of the Milky Way. As discussed in
Ref. [28], an approximately 1:5 MeV electron or positron,
produced by a � ! eþe� decay, is nonrelativistic enough

to subsequently annihilate at rest in the Galactic center,
leading to a � line at 511 keV. In particular, with such a
mass one can easily obtain a � flux excess of the order of
the one observed by the International Gamma-Ray
Astrophysics Laboratory (INTEGRAL) observatory
[28,29]. However, unless the DM galactic profile is much
more cuspy than the usually considered profiles, a DM
decay gives a flux that is not sufficiently peaked around
the Galactic center [28,30] to be able to reproduce the
morphology of the signal observed by INTEGRAL.
We now discuss the decay � ! ��. For small masses,

m� & keV, the photon’s energy is absorbed by the bar-
yonic gas in the early Universe, and the processes of
recombination and reionization are affected. One can use
the analysis done in Ref. [31] (see also [32]) to bound the
coupling g���. For larger masses, m� * keV, photons are

no longer absorbed and they propagate freely. Their con-
tribution to the isotropic diffuse photon background also
allows one to bound g��� [32,33].

For the region we are most interested in, stronger bounds
can be obtained from the gamma-ray line emission limits
from the Milky-Way central region. Indeed, in the range
40 keV<m� < 16 MeV [33], one obtains

�ð� ! ��Þ< 10�28 s�1

�
m�

MeV

�
: (53)

Using Eq. (47), this corresponds to

g��� < 4� 10�21

�
MeV

m�

�
GeV�1: (54)

Taking the estimate for g��� given in Eq. (47), all these

constraints translate into an upper bound on g, which is
shown in Figs. 3 and 4 by the brown dash-dotted curve.
We should mention that there are astrophysical con-

straints on the couplings g��� [34], g�ee [35], and g���
[35,36], based on stellar energy loss due to � emission,
provided that m� is low enough to be produced in stellar
interiors. These limits are valid without the need to assume
that � is DM. However, these astrophysical limits are, in
general, weaker than the ones mentioned above.
We would also like to note that the region we consider

for pNGB-DM masses includes the keV scale, correspond-
ing to warm dark matter (WDM). Since, at the epoch of
structure formation, WDM has free-streaming lengths be-
low the Mpc scale, having WDM at least as a non-
negligible DM component can alleviate some of the dis-
agreement between the standard cold-DM scenario and a
variety of galactic observations at small scales [37]. The
ideal observation which could place a limit on WDM is the
Lyman-
 forest, i.e., the Lyman-
 absorption produced by
intervening neutral hydrogen in the spectra of light emitted
by distant quasars. Using Lyman-
 observations together
with other cosmological data sets, different groups have
put lower limits on mWDM, assuming that WDM has a
thermal distribution and that it is the whole of DM. The
bounds in the literature [38] differ by factors of a few,
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ranging from 0.5 keV up to 4 keV. In our case, the DM
species is not in thermal equilibrium, and the bounds can
change slightly compared to the WDM thermal relic case.
In addition, if WDM is only a part of the whole of DM, the
bounds are relaxed. We should mention that there are some
potential problems in obtaining these bounds, and they
should be regarded as controversial. On the one hand, there
could be large systematic errors, and, on the other hand, the
Lyman-
 analysis has to be performed at scales that are
already in the nonlinear regime, where calculations are less
reliable. If one disposes of the Lyman-
 data, these bounds
on WDM disappear altogether [39].

VI. CONCLUSIONS

We have proposed a new pseudoscalar gauge-singlet
DM candidate � with mass in the keV—MeV range. Its
couplings to the SM particles are feeble, because they are
mediated by new physics at a large scale f, which we
identify with the seesaw scale. The � relic density can be
produced by the scattering with the heavy particles (the
sterile neutrinos), at temperatures of the order of f, or,
alternatively, it can be generated at the EW scale through
the Higgs portal by the tiny �-H coupling �� 10�10,
which is induced by the seesaw interactions. Today, �
decays into light neutrinos and, if it is heavier than
1 MeV, into eþe�, with rates that can saturate the present
upper bounds.

We have argued that such a candidate is theoretically
well motivated. The heavy new physics sector is generi-
cally associated with several global symmetries. Some of
the corresponding pNGBs may remain light if the explicit-
symmetry-breaking effects are sufficiently small. For con-
creteness, we have demonstrated that a Uð1ÞX family sym-
metry of the sterile-neutrino sector can be broken
collectively by a set of neutrino Yukawa couplings, so
that the pNGB mass m� is proportional to the EW scale
and to the (small) product of the Yukawa couplings. In such
a scenario,m� is not quadratically sensitive to the cutoff (at
leading order); therefore, the presence of a light DM scalar
below the EW scale is justified.

In order to calculate the � relic density, we have com-
puted the rate of the � interactions with a sterile neutrinoN
and, through the Higgs portal, with the SM particles, and
we have studied the Boltzmann equation numerically for
the � number density. In this framework, there are only two
independent parameters: the mass of the pNGB, m�, and
the coupling of the pNGB to the sterile neutrino, g. The
fact that there are only two independent parameters makes
our scenario especially predictive. We find that the Higgs
portal produces the desired DM relic density, through the
freeze-in mechanism, for a unique value of the DM mass,
m� ’ 3 MeV. This prediction relies only on the relation
between the DM mass and its coupling to the Higgs, m2

� ¼
�v2, which is well justified in the case of our pNGB. As
long as the reheating temperature is sufficiently high, the

sterile-neutrino portal can produce the required relic den-
sity by freeze-in for smaller values of m�, from ’ 3 MeV
down to 0.15 keV. These results are summarized in Fig. 1.
The constraints from �ð� ! ��Þ, however, exclude the

region m� & 1ð100Þ keV, for a light-neutrino mass m� ¼
0:05ð1Þ eV. In addition, the constraints from �ð� ! eþe�Þ
put an upper bound on the coupling g in the region m� *
1 MeV: For m� ¼ 0:05ð1Þ eV and g� 10�3ð10�4Þ, the
expected electron-positron flux is close to the present
sensitivity. These results are summarized in Figs. 3 and 4.
In turn, the seesaw scale can be constrained, by requiring

our pNGB to be a viable DM candidate in agreement with
all the bounds above. In the case of freeze-in through
the sterile-neutrino portal, we find 105 GeV & mN &
1010 GeV, and a SSB scale f� 103mN . In the case of
the Higgs portal, one has instead 1010 GeV & mN &
1014 GeV, and, correspondingly, 1013 GeV & f & MP.
Finally, we note that our analysis of the parameter space

was mostly performed in the one-family approximation,
that is, neglecting possible hierarchies among the sterile-
neutrino-mass parameters and the neutrino Dirac Yukawa
couplings. Some of our main results are independent from
this approximation, such as the allowed range for the DM
mass. On the contrary, the bounds on g and mN are ob-
viously sensitive to the flavor structure. A rough idea of
these dependencies can be grasped by comparing the case
m� ¼ 0:05 eV (Fig. 3) with the casem� ¼ 1 eV (Fig. 4). A
more detailed exploration of the flavor-parameter space of
this scenario is desirable, in particular, if one wants to
compare the results with neutrino flavor models.
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