
Critical Torque for Kink Formation in Double-Stranded DNA

Hao Qu, Yong Wang, Chiao-Yu Tseng, and Giovanni Zocchi*

Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547, USA
(Received 11 May 2011; published 11 November 2011)

We measure the bending energy of double-stranded DNA in the nonlinear (sharply bent) regime. The

measurements are obtained from the melting curves of stressed DNA ring molecules. The nonlinear elastic

behavior is captured by a single parameter: the critical torque �c at which the molecule develops a kink. In

this regime, the elastic energy is linear in the kink angle. This phenomenology is the same as for the

previously reported case of nicked DNA. For the sequences examined, we find �c ¼ 31 pN� nm. This

critical torque corresponds to a characteristic energy scale ð�=2Þ�c ¼ 12 kTroom relevant for molecular

biology processes associated with DNA bending.
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I. INTRODUCTION

The elastic energy of long polymers has been discussed
since the dawn of polymer physics [1], but compact poly-
meric molecules such as globular proteins, ribozymes, and
short DNA molecules are likewise deformable. This aspect
is often approached in structural terms, leading to the
fundamental concepts of induced fit and allostery [2],
while less often discussed are the corresponding stresses
and elastic energies, although some of the early work was
in this direction [3,4]. More recently, the elastic energy of
molecular deformations has been invoked as the basis for
conformational proofreading mechanisms [5]. Namely, the
selectivity of ligand binding through the induced-fit
mechanism may be enhanced by the elastic energy of the
protein’s deformation. From a materials-science perspec-
tive, it is in the stress-strain relations rather than the
structural description of conformational motion that one
may expect a degree of universality to emerge. We are
specifically interested in the mechanical response of short
(< 60 bp) DNAmolecules forced to bend substantially, for
two main reasons. First we use these highly bent DNAs as
molecular springs in protein-DNA chimeras [6,7]. The use
of DNA oligomers in highly bent configurations to gener-
ate piconewton forces at nanometer (nm) scales requires a
quantitative understanding of DNA mechanics under such
conditions. Second, the bending elasticity of double-
stranded (ds) DNA at short length scales plays a crucial
role in natural biological systems. For example, in the
cases of viral genome packaging, eukaryotic nucleosome
compaction, and many transcription regulation steps, the
DNA is sharply bent over a range of tens to hundreds of
base pairs. DNA bending therefore has a strong influence
on the energy scales of many biological processes [8,9].

Quantitative knowledge of DNA linear bending elasticity
comes from single-molecule force-extension experiments
on �10 kb-long DNA [10], where kb stands for kilo-base
pair. These measurements are well described by the
wormlike-chain (WLC) model with one microscopic pa-
rameter, the persistence length lp � 50 nm (corresponding

to �150 bp). The bending energy used in the WLC model
is that of a thin rod in the linear-elasticity regime:

EWLC ¼
Z 2L

0
ds

1

2

B

R2ðsÞ ; (1)

where R is the radius of curvature, s the arc length along
the rod, 2L the contour length, and B ¼ kTlp the bending

modulus (B � 200 pN� nm2). This form of the energy
must break down for R sufficiently small, but this is not
seen in the DNA stretching experiments where the high-
curvature configurations are irrelevant [11]. In contrast,
cyclization experiments initially suggested [12] that the
high-curvature states of DNA are much more flexible
than predicted by (1). There is some controversy about
the exact range of validity of (1). If we write this range of
validity as R> Clp=ð2�Þ, whereC is a numerical factor (of

order 1), then the initial suggestion from cyclization ex-
periments [12] was C � 0:7, whereas Du et al. argued that
C is lower [13]; using DNA minicircles the study [14]
found that C � 0:5. Other studies also reported softening
of the DNA at small scales [15]; in particular, the Atomic
Force Microscopy (AFM) study [11] reported that the
measured correlation functions are best described by a
linear (rather than quadratic) dependence of the energy
on the bending angle. The structural transition responsible
for this softening is likely to involve formation of a small
bubble (single-stranded or ss region) in the DNA, as
pointed out by Yan and Marko [16].
Cyclization experiments [12] and AFM imaging experi-

ments [11] rely on thermal fluctuations to realize the high-
curvature states; one difficulty is then that the probability
of these states is small. In our approach, the high-curvature
states are designed into a mechanically constrained
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molecule [17], and the elastic energy is measured by
thermodynamics methods [18,19]. Using the construction
of Fig. 1, we were able to obtain a complete characteriza-
tion of the bending energy from the linear to the nonlinear
(high bending) regime, for the case of nicked ds DNA
[19,20]. Here we characterize the bending energy for the
case of non-nicked (i.e. intact) DNA. This required a
different measurement method, based on melting-curve
analysis. Namely, as the temperature is raised, the DNA
double helix ‘‘melts’’ into two single strands. Because ds
and ss DNA have different UV absorption coefficients, the
transition can be easily characterized spectroscopically in
the form of a plot of UV absorption of the sample vs
temperature. This is called a ‘‘melting curve.’’ The elastic
energy in the stressed DNA shifts this melting curve to
lower values of the temperature. We first summarize our
previous results for nicked DNA, as they are relevant to the
present work.

Our previous study was performed on slightly different
molecules, consisting of two linear strands (as opposed to
one linear and one circular strand), also hybridized as in
Fig. 1. These molecules effectively contain a nick at the
center of the ds part (i.e., in the drawing of Fig. 1, the
backbone of the blue strand is broken at one site). In this
situation, two such molecules can form a dimer (a polymer
formed from two molecules of a monomer) in which the
elastic energy is relaxed. Base pairing in one dimer is
identical to base pairing in two monomers [Fig. 2(a)],
and the elastic energy, Eel, of the monomer can be ex-
tracted from the monomer-dimer equilibrium according to

Eel ¼ 1

2
kT ln

XD

X2
M

; (2)

where XM, XD are the mole fractions of monomers and
dimers at equilibrium. (A small correction is further

applied to this energy to account for stretching of the ss
part in the dimer; this correction is described in [19].) XM,
XD are determined by gel electrophoresis of the equili-
brated samples [Fig. 2(b)]. We performed measurements of
Eel for varying Ns (the number of bases in the ss part of the
molecule) and fixed Nd (the number of bp in the ds part),
which amounts to changing the end-to-end distance (EED)
x of the bent ds part. For increasing Ns, the ss spring in
Fig. 1 becomes softer, the EED x increases, and one obtains

FIG. 2. (a) Sketch of the monomer-dimer equilibrium used to
measure the elastic energy of the monomer in [20]. The mono-
mer is stressed because the ds part of the molecule has to bend
and the ss part has to stretch, but the stress is relaxed in the
dimer. (b) Example of a gel used to determine the concentrations
of monomers and dimers in the dimerization equilibrium experi-
ments [20]. All lanes were loaded with the same sample, at
successive (10 min) intervals. The purpose is to extrapolate back
in time the initial (equilibrium) concentrations of the two species
at ‘‘zero’’ time, since some monomer-dimer interconversion
occurs in the gel. This interconversion produces the ‘‘smear’’
and extra bands visible mostly between the monomer and dimer
bands; it is accounted for by the reaction-diffusion model we use
to fit the intensity profiles and extrapolate the concentrations to
zero time. This method is detailed in [19]. The band in front of
the monomer band is ss DNA and arises because the stoichi-
ometry of the two strands used for the monomer construction is
not exactly 1:1.

FIG. 1. Cartoon of a stressed DNA molecule used in the
experiments. The ds DNA is from the Protein Data Bank
(PDB) structure 1KX5, and the ss DNA is from PDB 1BNA.
The molecule is formed by partially hybridizing a ss DNA loop
(blue) with a linear complementary strand (red). The elastic
energy of this molecule consists of the bending energy of the
ds part and the stretching energy of the ss part.
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the energy curve shown in Fig. 3(a) (reproduced from
[20]). This energy is the sum of the elastic energy of the
bent ds DNA and the stretched ss DNA: Etot ¼ Ed þ Es.
The break or transition in the energy curve corresponds to
formation of a kink in the ds DNA: to the right of the
transition [in Fig. 3(a)], the ds DNA is smoothly bent; to

the left it is kinked. This behavior is captured (solid line in
Fig. 3(a)] by introducing one microscopic parameter (in
addition to the bending modulus B), namely, a critical
torque �c at which the ds DNA develops a kink [20].
This torque couples to DNA bending, not twist, i.e., the
torque in question is perpendicular to the helix axis (not
parallel to it). For a quantitative description, we con-
structed a model where the ds DNA, under increasing
forces applied at the ends, bends smoothly with the thin
rod-bending energy (1) until a critical internal torque �c is
reached. (For zero torque boundary conditions at the ends,
this happens in the middle of the rod.) From then on, the
rod is kinked, and the torque at the kink is constant, equal
to �c (i.e., the elastic energy is linear in the kink angle). We
obtained an approximate analytic expression for the elastic
energy of this model as a function of the EED x of the
DNA [20]:

EdðxÞ ¼
8><
>:
�c arccos

x
2R for 0< x< xc

5B
L

x0�x
2L � T ln

�
2L�x
2L�x0

�
for xc < x< x0;

(3)

where R ¼ Lð1� 2�2=45Þ, � ¼ L�c=ð2BÞ, x0 ¼
2Lð1� LT=ð5BÞÞ, and the contour length of the DNA is
2L ¼ 0:33 nm� Nd. The upper form corresponds to the
kinked solution, the lower to the smoothly bent one. The
critical EED xc is found by equating the upper and lower
expressions. Here and throughout the rest of the paper, we
use units where the Boltzmann constant k ¼ 1.
This energy is plotted in Fig. 3(b) for the case of a DNA

60mer (2L ¼ 20 nm), using �c ¼ 27:0 pN� nm, the re-
sult for nicked DNA [20]. Using the energy (3) and the
Marko-Siggia expression [21] for the stretching elastic
energy EsðxÞ of the ss DNA, we calculate the total elastic
energy of the molecules of Fig. 1:

Etot ¼ EdðxeqÞ þ EsðxeqÞ; (4)

where xeq is calculated from the mechanical equilibrium

condition ð@Ed=@xÞxeq þ ð@Es=@xÞxeq ¼ 0. The solid line in

Fig. 3(a) represents Etot above, and is seen to fit the data
well. From the fit, we obtain the value of the critical torque,
�c ¼ 27:0 pN� nm, for this case (nicked DNA) [20].

II. MATERIALS AND METHODS

A. Sample preparation

The synthetic DNA oligomers were bought from
Integrated DNA Technology, phosphorylated at the 5’
end. The oligomers were then ligated by T4 DNA ligase
(from New England Biolabs) to form a single-stranded (ss)
loop, with the help of a 12mer or 18mer splint (from
Integrated DNA Technology) complementary to the se-
quence around the ligation position. The splint and any
other linear DNA components were removed by restriction
enzymes Exonuclease I and Exonuclease III (from New
England Biolabs), which the circular DNA is immune to.

FIG. 3. (a) The total elastic energy Etot of the nicked molecules
measured using the dimerization equilibrium method vs Ns, the
number of bases in the ss part. The graph shown is for Nd ¼ 18
(the number of bases in the ds part). The solid line is calculated
using Eq. (3) for EdðxÞ with L ¼ 3 nm, �c ¼ 27:0 pN� nm,
B ¼ 50 kT� nm, and ls ¼ 0:764 nm. (b) Plot of the ds DNA
bending energy EdðxÞ vs EED x from Eq. (3) for Nd ¼ 60
(contour length 2L ¼ 20 nm), using �c ¼ 27:0 pN� nm.
(c) The graph of the energy function used in the modified zipper
model from Eqs. (8) and (9) as a function of open bases nþ Ns.
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After that, the circular products passed through an HPLC
Uno Q1 ion exchange column (from Bio-rad) in order to
separate single-loop (product of intramolecular ligation)
and double-loop (product of intermolecular ligation) mole-
cules. The single-loop fraction was collected, annealed
(at�0:065�C=min) with an equimolar amount of partially
complementary strands and diluted to a final concentration
0:1 �M for the melting-curve measurements. The samples
were prepared in a 10 mM Tris buffer with 1 mM ethyl-
enediaminetetraacetic acid (EDTA) , 100 mM NaCl, and
5 mM MgCl2, and pH ¼ 7:9.

B. Melting-curve measurements

UVabsorption measurements at 260 nmwere carried out
on a Beckman Coulter DU 640 spectrophotometer at a
controlled temperature from 25�C to 90�C. The heating
rate was 0:2�C=min, and the reading interval was 0.5�C.
During the measurements, samples were kept in quartz
cuvettes, which were sealed by polytetrafluoroethylene
(PTFE) stoppers to prevent evaporation.

C. DNA sequences

For Nloop ¼ 45, the loop sequence (from the 5’ ligation

end) is: Cloop45: CACACGTGAGAGCAGCAGGCAAT
GACAGTAGACATACGACGACTC. The corresponding
complementary sequences are (the numbers in the paren-
theses are the lengths of the ds and ss tracts in the molecule
which results from hybridizing with the loop sequence):
D30C45 (Nd ¼ 30, Ns ¼ 15): CTGCTCTCACGTGTG
GAGTCGTCGTATGTC. D31C45 (Nd ¼ 31, Ns ¼ 14):
GCTGCTCTCACGTGTGGAGTCGTCGTATGTC.
D32C45 (Nd ¼ 32,Ns ¼ 13): TGCTGCTCTCACGTGTG
GAGTCGTCGTATGTC. D33C45 (Nd ¼ 33, Ns ¼ 12):
CTGCTGCTCTCACGTGTGGAGTCGTCGTATGTC.
For Nloop ¼ 60, the loop sequence is: Cloop60: CAC

ACGTGAGAGCAGCAGCAGGCAATCGATACACACA
CAGTAGACGACATACGACGACTC. The complemen-
tary sequences are: D35C60 (Nd ¼ 35, Ns ¼ 25):
GCTGCTGCTCTCACGTGTGGAGTCGTCGTATGTCG.
D37C60 (Nd ¼ 37, Ns ¼ 23): TGCTGCTGCTCTCACG
TGTGGAGTCGTCGTATGTCGT. D39C60 (Nd ¼ 39,
Ns ¼ 21): CTGCTGCTGCTCTCACGTGTGGAGTCGT
CGTATGTCGTC. D41C60 (Nd ¼ 41, Ns ¼ 19): CC
TGCTGCTGCTCTCACGTGTGGAGTCGTCGTATGTC
GTCT. D43C60 (Nd ¼ 43, Ns ¼ 17): GCCTGCTG
CTGCTCTCACGTGTGGAGTCGTCGTATGTCGTCTA.
D45C60 (Nd ¼ 45, Ns ¼ 15): TGCCTGCTGCTG
CTCTCACGTGTGGAGTCGTCGTATGTCGTCTAC.

III. RESULTS

The purpose of this study is to investigate whether the
quantitative description in terms of a critical torque �c
given in [20] and summarized in the Introduction is still
valid in the absence of the nick (i.e., for intact DNA), and if

so, what is the value of �c for intact DNA. We use the
molecular construction of Fig. 1, now without nick, i.e., the
blue strand is circular and the red strand is linear.
Measuring the elastic energy based on the monomer-dimer
equilibrium is not practical in this case because dimer
formation would now involve a large ‘‘defect’’ in the
structure of the base pairing; this defect suppresses
the dimers and also introduces a large unknown term in
the free energy. Instead, we examine the thermal melting
curve of the molecule of Fig. 1. Compared to the corre-
sponding linear molecule (obtained by cutting the circular
strand of the molecule of Fig. 1 in the middle of the ss part,
i.e., into a linear molecule that has an identical base
sequence as the circular molecule but no built-in stress),
the melting transition of the circular molecule is shifted to
lower temperatures because of the destabilizing effect of
the elastic energy. This is a large effect (Fig. 4), and we use
it to determine the elastic energy of the circular molecule.

A. Experimental melting curves

In more detail, we will compare three different melting
curves, obtained for the circular molecule, the correspond-
ing linear molecule, and the nicked molecule (this last
obtained by cutting the circular strand of the molecule of
Fig. 1 in the middle of the ds part). The nicked molecule
will be used as a control for our melting-curve analysis,
based on the independent measurements of the elastic
energy with the dimerization equilibrium method.
Figure 4 shows two sets of melting curves, each set corre-
sponding to one of the data points of Fig. 5. The melting
curves, obtained by UV absorption spectroscopy, are nor-
malized in the interval [0, 1] to reflect the fraction of open
bp. Each melting curve represents one experimental run
(not the average of several runs); occasionally, a melting
curve was repeated, with essentially identical result. For
each set of three melting curves corresponding to the same
sequence (circular molecule, nicked molecule, linear mole-
cule), we normalized the experimental melting profiles (by
a vertical shift and dilation) as follows.
(1) Even at temperatures beyond the strand-separation

temperature, the UV absorption continues to in-
crease, as is well known, due to unstacking in the
single strands [22]. This high-temperature (strand-
dissociated) part of the three curves is made to
overlap. (Since the sequences are the same, we
expect the ss unstacking transition to be the same.)

(2) There is typically a break in the melting curve at the
strand-dissociation temperature [22]; the corre-
sponding value of the ordinate is set to 1.

(3) The low-temperature plateaus (300 K< T <
320 K) are set to 0 for the linear and the nicked
molecules, while for the circular molecule, the low-
temperature region is set to a value corresponding to
3 open bp. The measurements show that the ds part
of these molecules is kinked, and this normalization
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reflects the likely presence of a�3 bp bubble at the
kink [16]. This normalization improves the quality
of the fits, which we describe next, and is thus, to
some extent, suggested by the experimental data
themselves.

B. Model

To extract the elastic energy of the circular molecule
from the melting curves we of course need a model. The
main consideration is to be able to fit all the melting curves
with a small number of parameters. This is not necessarily
simple because the melting profiles of the stressed mole-
cules have more structure in them than simple S-shaped
curves. For example, a two-states model proves inadequate

FIG. 5. The total elastic energy Etot of the molecules of Fig. 1,
measured from the melting-curve analysis. The measurements
are displayed vs Ns (the number of bases in the ss part
of the molecule) at fixed Nloop ¼ Ns þ Nd (where

Nd ¼ number of bases in the ds part of the molecule), for (a)
Nloop ¼ 60 and (b) Nloop ¼ 45. Squares indicate nicked mole-

cules; circles, intact molecules. Error bars reflect the statistical
error of the fits of the melting curves. The lines are calculated
using Eq. (3) for the bending energy of ds DNA, as explained in
the text, with these parameter values: (a) �c ¼ 27:0 pN� nm for
the nicked molecules (dashed line) and �c ¼ 31:3 pN� nm for
the intact molecule (solid line); (b) �c ¼ 26:3 pN� nm for the
nicked case and �c ¼ 28:8 pN� nm for the intact case; and
identical values for the other parameters: B ¼ 50 kT� nm, ls ¼
0:8 nm. �c is the only adjustable parameter, and it determines
both the level and the slope of the roughly linear behavior of Etot

vs Ns in the regime shown, which is characterized by a kink in
the ds part of the molecule. (c) The total elastic energy Etot

calculated for the case Nloop ¼ 60 using the WLC energy in

Eq. (1) instead of the expression in Eq. (3). More precisely, we
used the approximation in Eq. (3) (lower branch) to the exact
WLC energy, for ease of computation.

FIG. 4. Experimental melting curves and the corresponding fits
(dashed lines) used for measurements of the elastic energy of the
molecules of Fig. 1. The data are UV-absorption profiles at
260 nm and are normalized as described in the text. We show
two sets: (a) Nd ¼ 30, Ns ¼ 15, Nloop ¼ 45 and (b) Nd ¼ 41,

Ns ¼ 19, Nloop ¼ 60. Circles indicate linear molecules; dia-

monds, circular molecules; squares, circular nicked molecules.
The curves are fits using Eqs. (10)–(12), as described in the text.
The destabilizing effect of the elastic energy is evident in the
large shift of the melting profiles of the circular molecules.
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in this case. Even for the linear molecules, the nearest-
neighbor model as implemented in the public domain
servers [23], although predicting quite well the midpoint
of the transition, fails to reproduce the shape of the melting
curve.

We use a zipper model [24] modified to include the
elastic energy term. In the zipper model, the oligonucleo-
tide melts from the ends; the states of the system are
parametrized by the number of open bp n, and there is a
fixed energy cost � and entropy gain � of opening a bp.
These parameters represent average values for the particu-
lar sequence. One could of course introduce base pair
dependent parameters in the zipper model, but a fixed set
of such parameters does not represent different melting
curves well (and the same applies to the nearest-neighbor
model) [25]. Other models such as the Peyrard-Bishop-
Dauxois model do better in this respect [25,26], but it is not
obvious how to couple the elastic energy to them. In the
interest of keeping the number of fitting parameters to a
minimum, we therefore choose average � and � in the
zipper model.

Next we need an expression for the elastic energy EðnÞ
of the state characterized by n (the number of open bp). We
use two branches for this energy function because, as n
increases, the number of base pairs in the ds part of the
molecule decreases (Nd ! Nd � n; see Fig. 1), while the
number of bases in the stretched ss part of the molecule
increases (Ns ! Ns þ n), so at some point the molecule
will make a transition from the kinked to the smoothly bent
state [see Fig. 3(a)]. We therefore write the partition sum
for this model as:

Z¼Xn0
n¼0

ðnþ1Þexp
�
�nð���TÞ

T

�
exp

�
�E1ðnÞ

T

�

þ XNd�1

n¼0

ðnþ1Þexp
�
�nð���TÞ

T

�
exp

�
�E2ðnÞ

T

�
þZN;

(5)

where � and� are the average energy cost and entropy gain
(for this particular sequence) of opening one bp, E1ðnÞ is
the elastic energy in the kinked state, E2ðnÞ the elastic
energy in the smoothly bent state, and n0 the value of n
at which the molecule transitions from kinked to smoothly
bent. The factors (nþ 1) correspond to allowing the mole-
cule to melt from both ends, and ZN is the statistical weight
of the dissociated state:

ZN ¼ exp

�
�Ndð�� �TÞ

T

�
expð�dÞ; (6)

where �d is the dissociation entropy of the two strands (the
only concentration-dependent quantity in these expres-
sions) and T is in units of energy (k ¼ 1) The second
sum starts from n ¼ 0 (instead of from n ¼ n0) because
this simply includes more (high-energy, i.e., improbable)
states in the partition sum, but it introduces no additional
complication and represents a better approximation for
n ¼ n0 (see below). The energy E1ðnÞ, E2ðnÞ has a general
shape similar to the graph of Fig. 3(a). We approximate it
with a heuristic expression:

E1ðnÞ ¼ �ðn0 � nÞ1=2 ðfor n � n0Þ: (7)

The exponent 1=2 leads to good fits of the melting
curves, and n0 in (7) is the same as n0 in (5) in order to
minimize the number of parameters. The physical meaning
of the heuristic form (7) is that in the kinked state the
elastic energy is mostly in the ds part of the molecule, and
thus given essentially by the upper form in (3). With the
appropriate value for n0, (7) is indeed an approximation for
EdðxeqÞ in (3) (upper branch), when xeq is expressed in

terms of (Ns þ n), as we show later. For the energy E2ðnÞ,
we take the approximation that, in this regime (no kink),
the ds part of the molecule is essentially straight (true for
short molecules) and the elastic energy is mostly in the
stretched ss part. We therefore write the stretching energy
of a ss DNA molecule of (Ns þ n) bases held at an EED
x ¼ ðNd � nÞa, which is the contour length of the ds
part (and a � 0:33 nm is the contour length of ds DNA
per bp):

E2ðnÞ ¼ 9Ta2

4l2s

ðNd � nÞ2
Ns þ n

: (8)

ls ¼ 0:8 nm is the persistence length of ss DNA [27], the
above energy being written in the quadratic approximation.
We can now describe the three different cases (circular,

nicked, and linear molecule) with this basic model. For the
nicked molecule, the elastic energy of the kinked state is
E1ðnÞ given in (7). For the circular molecule, the elastic
energy of the kinked state contains the additional cost of
forming a 3 bp bubble at the kink [16], i.e.,

Ecirc
1 ðnÞ ¼ �0ðn00 � nÞ1=2 þ 3ð�� �TÞ ðfor n � n00Þ: (9)

In both cases, the elastic energy of the smoothly
bent state is E2 given in (8). For the linear molecule, E2 ¼
E1 ¼ 0. The partition sums and average number of open bp
hni at temperature T are finally as follows.
For the nicked molecules:
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hninick ¼
�Xn0
n¼0

nðnþ 1Þ exp
�
�nð�� �TÞ

T

�
exp

�
��ðn0 � nÞ1=2

T

�
þ XNd�1

n¼0

nðnþ 1Þ exp
�
� nð�� �TÞ

T

�

� exp

�
� 9a2ðNd � nÞ2

4l2s ðNs þ nÞ
�
þ Nd exp

�
�Ndð�� �TÞ

T

�
expð�dÞ

�
1

Znick

;

Znick ¼
Xn0
n¼0

ðnþ 1Þ exp
�
�nð�� �TÞ

T

�
exp

�
��ðn0 � nÞ1=2

T

�
þ XNd�1

n¼0

ðnþ 1Þ exp
�
�nð�� �TÞ

T

�

� exp

�
� 9a2ðNd � nÞ2

4l2s ðNs þ nÞ
�
þ exp

�
�Ndð�� �TÞ

T

�
expð�dÞ: (10)

For the circular molecules:

hnicirc ¼
�Xn00
n¼0

ðnþ 3Þðnþ 1Þ exp
�
�ðnþ 3Þð�� �TÞ

T

�
exp

�
��0ðn00 � nÞ1=2

T

�
þ XNd�1

n¼0

nðnþ 1Þ exp
�
�nð�� �TÞ

T

�

� exp

�
� 9a2ðNd � nÞ2

4l2s ðNs þ nÞ
�
þ Nd exp

�
�Ndð�� �TÞ

T

�
expð�dÞ

�
1

Zcirc

;

Zcirc ¼
Xn00
n¼0

ðnþ 1Þ exp
�
�ðnþ 3Þð�� �TÞ

T

�
exp

�
��0ðn00 � nÞ1=2

T

�
þ XNd�1

n¼0

ðnþ 1Þ exp
�
�nð�� �TÞ

T

�

� exp

�
� 9a2ðNd � nÞ2

4l2s ðNs þ nÞ
�
þ exp

�
�Ndð�� �TÞ

T

�
expð�dÞ: (11)

For the linear molecules:

hnilin ¼
� XNd�1

n¼0

nðnþ 1Þ exp
�
�nð�� �TÞ

T

�
þ Nd exp

�
�Ndð�� �TÞ

T

�
expð�dÞ

�
1

Zlin

;

Zlin ¼
XNd�1

n¼0

ðnþ 1Þ exp
�
�nð�� �TÞ

T

�
þ exp

�
�Ndð�� �TÞ

T

�
expð�dÞ: (12)

C. Fitting procedure

Using the equations above, we fit the melting curves
using the procedure below. For each set of three melting
curves (linear, nicked, and circular molecule), we perform
the following steps.

(1) Fit the melting curve of the linear molecule [using
Eq. (12)], determining �, �, �d.

(2) Use the value n0 ¼ 26 (the same for all nicked
molecules); use the same �, �, �d determined in
step (1), and Eq. (10) to fit the melting curve for the
nicked molecule, determining �.

(3) Use the value n00 ¼ 19 (the same for all circular

molecules); use the same �, �, �d determined in
step (1), and Eq. (11) to fit the melting curve for the
circular molecule, determining �0.

The elastic energy extracted from the fits (in units of T,
where T ¼ 300 K is room temperature) is then

Eel ¼ �
ffiffiffiffiffi
n0

p
=300

for the nicked molecule, and

E0
el ¼ �0

ffiffiffiffiffi
n00

q
=300þ 3ð�=300� �Þ

for the circular molecule.
To summarize, �, �, �d are determined using the linear

molecule, so that the fits for the nicked and circular mole-
cule are reduced to one-parameter fits, which determine �
and �0 and thus the elastic energies. The values of n0, n

0
0

are chosen once and for all (the same for all molecules in
this study) to produce the best overall fits for all the melting
curves. We observe that the values of the energies obtained
are robust with respect to changes in n0, n00 (if n0
is changed, � changes, but �

ffiffiffiffiffi
n0

p
remains essentially the

same).
There is, however, one difficulty. Step (1) above does not

univocally determine � and �: there is a range of values
which give comparable fits. The reason is that, in the
simple zipper model, the midpoint of the melting transition
is essentially Tm ¼ �=�, so varying � and � (within a
factor�1:5) keeping the ratio fixed produces similar melt-
ing curves. Different �, � values in step (2) then produce a
different value for � and thus the elastic energy; specifi-
cally, relatively small values for �, � produce relatively
small values for Eel. We overcome this problem using the
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independent measurements of the elastic energy of the
nicked molecules obtained through the dimerization equi-
librium method [19,20]. That is, we choose �, � in step (1)
such that the elastic energy obtained in step (2) is consis-
tent with the independent dimerization equilibrium
measurements. Then, as explained above, we use these
values to extract the unknown elastic energy E0

el of the

circular molecule.
The fits using the above functions are stable in the sense

that the extracted elastic energy E0
el does not change too

much (within �0:5 T) if we change parameter values [n0,
n00, the exponent 1=2 in the expressions (7) and (9)] in a

range compatible with obtaining reasonable fits, or if we
add (for example) a loop-entropy term for the bubble in the
first sum of Eq. (11), and other similar modifications that
we explored.

D. Analysis

In Fig. 4(a) we show the melting curves and fits for the
linear, nicked, and circular molecule with Nd ¼ 30, Ns ¼
15. (The base sequence is given inMaterials andMethods.)
The parameter values are: � ¼ 4309, � ¼ 12:35, �d ¼
5:63 for all three cases, and � ¼ 570� 10 for the nicked
molecule, resulting in Eel ¼ 9:7� 0:2 T (identical,
by construction, to the result from the dimerization
equilibrium measurement); and �0 ¼ 300� 20 for the
circular molecule, resulting in E0

el ¼ 10:3� 0:3 T. These
values are the Ns ¼ 15 data points in Fig. 5(b). The values
of �, �, �d are given above for completeness, but they are
effective parameters only for this particular model and
sequences. The error on the value of � (and thus Eel) is
the statistical error of the fit. These are also the error bars
reported in Fig. 5. Systematic errors on the value of Eel due
to the choice of model are harder to evaluate; by varying
the details of the model, as mentioned above, and also by
considering the absolute ‘‘calibration’’ obtained from the
dimerization equilibrium measurements, we estimate that
the systematic error on Eel is probably within �0:5 T. In
Fig. 4(b) we show an example of melting curves corre-
sponding to one of the data points of Fig. 5(a), namely,
Nd ¼ 41, Ns ¼ 19. Here the parameter values are
� ¼ 4233, � ¼ 11:95, �d ¼ 5:90, � ¼ 586� 8, �0 ¼
349� 11, resulting in Eel ¼ 10:0� 0:1 T, E0

el ¼ 11:6�
0:2 T.

The quality of the fits displayed in Fig. 4 may not seem
very impressive, but it is in fact not bad. It is to be
remembered that the circular and nicked curves are one-
parameter fits (determining the elastic energy), and that
the same approach is used for the 30 different melting
curves in the study. The fits of the linear melting curves
systematically underestimate the UV absorption signal in
the low-temperature (’’premelting’’) region: this is a defi-
ciency of the zipper model approach, which fails to ac-
count for ‘‘fraying’’ of individual bp. The fits for the
circular and nicked molecules capture (apart from the

overall temperature shift) the main characteristic feature
of these melting curves’ shapes, which is a steeper rise
before the midpoint compared to the linear curves’ shapes,
due to the release of the elastic energy, which drops
abruptly for n > n0 in the model [Fig. 3(c)] and in the
real system [Fig. 3(a)]. We can now see, a posteriori, the
significance of the values n0, n

0
0 � 20 which we found to

produce good fits. Namely, in the kinked state, most of the
elastic energy is in the ds part of the molecule, given
essentially by EdðxeqÞ in (3). For small xeq, this can be

expressed analytically in terms of (Ns þ n) by expanding
Eq. (3) and using the first term in (13). The result is
EdðnÞ � Edðn ¼ 0Þ½1� ðl2s=�R2Þð�c=9TÞn�, while (7)
gives, for small n: E1ðnÞ � E1ðn ¼ 0Þ½1� n=2n0�.
Comparing, we find n0 � ð�=2ÞðR=lsÞ2ð9T=�cÞ. With our
values �c � 30 pN� nm � 8 T, R � L � 3 nm (for
Nd ¼ 18), this gives n0 � 22.
Referring to Fig. 1, the simplest way to explore the

mechanical properties is to measure the elastic energy for
a series of molecules with increasing Ns, at fixed Nd: this
has the effect of increasing the EED x. We followed this
strategy in [19,20] for the case of nicked DNA (i.e., with
molecules formed by hybridizing two linear strands).
However, in the non-nicked case, this would require pre-
paring a series of circular strands of increasing length,
which is cumbersome. Instead, here we keep the length
of the circular strand fixed and vary the length of the
complementary linear strand, i.e., we measure the elastic
energy for a series of molecules with increasing Ns, but
with fixed Ns þ Nd ¼ Nloop. Figure 5(a) shows the results

for Nloop ¼ 60, for the nicked and non-nicked (intact)

molecules; Fig. 5(b) shows corresponding measurements
for Nloop ¼ 45. As is obvious from the figure, the qualita-

tive behavior is the same for the intact and the nicked
molecules, namely, Etot is roughly linear in Ns in this
regime, which, for the nicked molecules, corresponds to
the kinked state as we have previously shown [19,20]. This
suggests that the non-nicked molecules are also kinked in
the regime shown, and that the kink is similarly described
by a constant torque. We therefore assume that the formula
(3) describes the bending elastic energy of the ds DNA for
both the nicked and the intact case (with different values of
the critical torque �c) and extract �c in the two cases from
the data of Fig. 5 using Eq. (3). We proceed as explained in
the paragraph that follows Eq. (3), i.e., we calculate Etot

from (4), using EdðxÞ given by Eq. (3) and

EsðxÞ ¼ 9T

4Nsl
2
s

�
x2 þ x3

Nsls
þ 3x4

ðNslsÞ2
�
; (13)

which is a polynomial expansion of the Marko-Siggia
expression [21]. The lines in Fig. 5(a) are computed in
this way, and are seen to represent the data well with �c ¼
27:0� 0:7 pN� nm for the nicked molecules and �c ¼
31:3� 0:6 pN� nm for the non-nicked molecules. The
error quoted reflects the range of �c such that the calculated
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curve is, on average, within the error bars of the data
points. A systematic error of �0:5 T in the values of Eel

translates into a similar error for Etot and finally into an
error�1:7 pN� nm for �c. Similarly, the data of Fig. 5(b)
(which represent molecules with a shorter loop and also a
different base sequence around the position of the nick)
give �c ¼ 26:3� 0:4 pN� nm for the nicked case and
�c ¼ 28:8� 0:5 pN� nm for the non-nicked case. From
these values we see the following: (1) If there is a sequence
dependence of �c, it is not very prominent because the
values obtained above with two different sequences are
essentially within errors of each other; (2) The critical
torque �c does capture a materials property of the DNA,
since measurements on two series of different molecules
are well described by essentially the same �c. (For in-
stance, for Ns ¼ 20 in Fig. 5(a), the ds DNA has contour
length�13 nm [Nd ¼ 40], while for Ns ¼ 15 in Fig. 5(b),
the ds DNA has contour length �10 nm [Nd ¼ 30]). The
fits in Fig. 5 are one-parameter fits [�c determining both the
level and the slope of the plateaus in Fig. 5; see Eq. (3)].
That they capture the behavior of the measurements is
evidence that the ds DNA is well described by the upper
form of (3) in this regime, i.e., that the DNA is kinked. For
comparison, we show in Fig. 5(c) Etot calculated for
the case of Fig. 5(a) (Nloop ¼ 60), assuming the ds DNA

bending energy follows the WLC form (1). Clearly the
result is incompatible with the measurements. On the other
hand, the range of the experimental measurements (vs Ns)
is narrower than one would like (especially for Nloop ¼
45). The reason is as follows: We do not choose Ns too
small because we do not know the form of the stretching
energy for very short ss DNA; the persistence length of ss
DNA is�3 bases, and for (13) to hold we need presumably
several persistence lengths. At the other end, as we in-
crease Ns, the melting curves for the linear and circular
molecules eventually become very close in temperature,
i.e., the experimental signal (based on the melting curves)
is small, and we feel the model (5) is no longer adequate to
extract quantitative measurements.

IV. DISCUSSION

In this study we characterize the nonlinear bending
elasticity of short ds DNAmolecules. The measured elastic
energies for sharp bending are quantitatively reproduced
by assuming a kinked state of the DNA in this regime, with
a constant (independent of EED x) torque �c at the kink,
i.e., the elastic energy is linear in the kink angle, as was
suggested in [11]. The same conclusion was arrived at for
the case of nicked DNA [20]. The critical torque measured
for the non-nicked sequences of Fig. 5(a), �c ¼ 31:3 pN�
nm, is only slightly larger than the critical torque for the
same sequences with a nick, which is �c ¼ 27:0 pN� nm.
In terms of energy, the elastic energy of the kinked,
intact molecule is only �2 T larger than the energy of
the corresponding nicked molecule [Fig. 5(a)]. This is

consistent with previous estimates of the effect of a nick
[28] and also consistent with the picture of bubble forma-
tion at the kink [16]. Namely, the difference in the free-
energy cost of forming the bubble for the non-nicked and
nicked cases is essentially the loop entropy, which is�2 T
[16,29].
For the thin-rod approximation considered here (which

is reasonable if the boundary conditions allow free tor-
sional degrees of freedom), the local torque is � ¼ B=R,
where R is the local radius of curvature. Thus the critical
torque �c corresponds to a critical local radius of curvature
Rc ¼ B=�c ¼ ðT=�cÞlp � 6 nm using �c ¼ 32 pN�
nm � 8 T. Writing the range of validity of the WLC
energy (1) as 2�R> Clp (see Sec. I), this corresponds to

C ¼ 2�ðT=�cÞ � 0:7, which is actually exactly the origi-
nal suggestion of Cloutier and Widom [12]. However, for a
quantitative comparison, we should really calculate the j
factors using the bending energy (3). This is a nontrivial
calculation that we propose to leave as an exercise for the
reader. Similarly, the minicircles result [14], which at face
value says C � 0:5, could also very well be consistent with
our value of �c. This is because the critical radius Rc

(defined as counter length=2�) at which a minicircle be-
comes unstable to kinking is, presumably, not simply Rc ¼
B=�c. Instead, this is a rather more complicated problem
because of the different boundary conditions. For instance:
torsional energy must in general be included [14]; the first
instability as R is reduced might not even be kinking, but
out-of-plane bending; further, thermal fluctuations may be
important in determining the threshold for kinking,
whereas the above estimate is purely mechanical. Again,
we propose to leave the quantitative connection between �c
and the minicircles result [14] as an open problem.
Figure 6 makes it clear that, for short molecules, the

nonlinear (i.e., kinked) regime of bending is actually the
dominant regime in the space of EED (this would not be
the case if the critical torque were much larger).
Correspondingly, using the elastic energy (1) for small
EED (continuing the smoothly bent branch of the elastic
energy in Fig. 6 for small x) results in a large overestimate
of the elastic energy. In contrast, it is evident that the
critical torque �c introduces a universal energy scale
ð�=2Þ�c � 12 T in the physics of DNA bending (this is
limx!0EdðxÞ in (3); see Fig. 6), a fact of some consequence
in the molecular-biology processes associated with DNA
bending. We refer to this quantity as an ‘‘energy scale’’
because it is a local quantity, independent of the length of
the molecule; in contrast, there is no such scale for the
WLC energy (1). In more structural terms, this energy
scale is also essentially the cost of forming a localized ss
bubble in the absence of external stresses [16] and must
also be related to the energy cost of untwisting one turn of
the double helix.
Equation (3) was shown to describe the measurements

well in the kinked regime (Fig. 5); in the case of nicked
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DNA, we know experimentally from the dimerization
equilibrium measurements that (3) also gives a good de-
scription around the transition to the smoothly bent state
and beyond [Fig. 3(a)] [20]. For non-nicked DNA, it
proved difficult to obtain measurements in the transition
region because the melting curves of the linear and circular
molecules become very close, and the model (5) seems
inadequate to draw quantitative conclusions. As a general
remark, there is at least one effect missing from the theory
(3) which may be important for non-nicked DNA around
the transition region, namely, the contribution to the elastic
(free) energy of allowing the kink to move. This has been
considered before [30], but it was not introduced in the
description (3) for simplicity; on the other hand, for nicked
DNA, it seems reasonable to assume that the kink is pinned
at the nick, so this effect is probably unimportant.

The model in Eq. (5) used to analyze the melting profiles
has no pretense at physical insight and is merely a data-
fitting tool; however, the melting of mechanically stressed
DNA in various configurations is in itself an interesting
problem [31], and the experimental melting curves re-
ported here may be valuable to those interested in this
problem. A related question is the temperature dependence
of the elastic parameters B and �c in the ‘‘premelting’’
region. (At the melting transition, it is doubtful whether the
elastic energy of the molecule shown in Fig. 1 can be
usefully described in terms of temperature-dependent elas-
tic constants.) Recent measurements by the Vologodskii
group [32] report that the persistence length lp of ds

DNA decreases by about 30% from 5�C to 60�C, which

corresponds to a roughly 15% decrease in B ¼ kTlp. The

present experiment is unsuitable to measure these effects
[and they are not included in the analysis; for instance, � in
Eq. (7) is taken as constant independent of temperature].
However, the temperature dependence of �c can be mea-
sured in the future using the monomer-dimer equilibrium
method.
In conclusion, we show that two materials parameters—

the bending modulus B and the newly introduced critical
torque �c—largely suffice for a quantitative description of
DNA bending elasticity in the linear and nonlinear
regimes.
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