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Recent developments in sensing technologies have enabled us to examine the nature of human social

behavior in greater detail. By applying an information-theoretic method to the spatiotemporal data of cell-

phone locations, [C. Song et al., Science 327, 1018 (2010)] found that human mobility patterns are

remarkably predictable. Inspired by their work, we address a similar predictability question in a different

kind of human social activity: conversation events. The predictability in the sequence of one’s conversation

partners is defined as the degree to which one’s next conversation partner can be predicted given the current

partner. We quantify this predictability by using the mutual information. We examine the predictability of

conversation events for each individual using the longitudinal data of face-to-face interactions collected

from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node,

and conversation events are marked when signals are exchanged between sensor nodes in close proximity.

Wefind that the conversation events are predictable to a certain extent; knowing the current partner decreases

the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-

tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the

contribution of their long-tailed nature. In addition, an individual’s predictability is correlated with the

position of the individual in the static social network derived from the data. Individuals confined in a

community—in the sense of an abundance of surrounding triangles—tend to have low predictability, and

those bridging different communities tend to have high predictability.
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I. INTRODUCTION

Recently, interest in the statistical and dynamical fea-
tures of human social behavior has been growing, enabled
by the development of new devices that allow tracking of
social data in real time, with increasing precision and
duration [1–9]. A remarkable recent finding from the
analysis of spatiotemporal data on cell-phone locations is
that human mobility patterns are highly predictable
[2,10,11], a finding that is in contrast to the traditional
view. For instance, in epidemic models that take the
mobility of subjects into account, subjects are usually
assumed to perform a conventional random walk from
one location to another [12,13]. However, actual traveling
patterns of humans often deviate from such random-walk
models, and the displacement distribution follows a power
law [2,14]. Furthermore, the statistics of the next location
of the individual is affected not only by the current
location, but also by the history of the traveling pattern,
resulting in approximately 90% predictability of the
mobility patterns [10].

In this study, we address a similar predictability question
for a different component of human social behavior:

conversation events. Conversation events mediate the
spreading and routing of diverse contents such as new
ideas, opinions, and infectious diseases in social networks
[15,16]. In models describing these phenomena, it is a
norm that each individual possesses a dynamically chang-
ing state (e.g., opinion A or opinion B in opinion dynamics,
and susceptible or infected state in epidemic dynamics).
The law of transition from one state to another is usually
assumed to be Markovian, i.e., independent of the history
of the process. The Markovian property, which is a type of
unpredictability, is an assumption for simulating such
dynamics based on a static social network [15,16].
However, the plausibility of this assumption is unclear.

Imagine the office that you share with other colleagues
in your company. When you have a question about a
project, you may talk to your boss. After this conversa-
tion event, you may tend to talk to a particular individual
to communicate the instruction of the boss. During lunch-
time, you may chat with your close colleagues in a
particular order that you do not perceive. How predict-
able is your choice of your next conversation partner
given the current partner?
We examine the predictability of conversation events

using two sets of longitudinal data collected from company
offices in Japan. We use the information about the timing
and duration of conversations between each pair of indi-
viduals, but do not use a priori knowledge about status or
other social attributes of individuals. Our data are unique in
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that they are collected from a relatively high number of
individuals (i.e., approximately 200 individuals) over a
long recording period (i.e., approximately three months).
We examine the sequence of conversation events for each
individual. We find that a conversation event has notable
deterministic components. In other words, the uncertainty
about the next partner that you talk with decreases by
28.4% on average, given the identity of the partner you
are currently talking with (see Sec. III B).

It should be noted that our approach is related to, but
different from, the studies of power-law interval distribu-
tions in conversation events. The interval between succes-
sive conversation events for an individual or a given pair of
individuals often follows a power law [1,4–6,8,17–20].
Modeling studies have revealed implications of these em-
pirical results in contagions [4,6,9,21–25] and opinion
formation [26,27]. In contrast to conventional models in
which the Poisson interval distribution is assumed, these
results indicate that the next conversation time, given the
previous one, is relatively predictable in that a conversation
event in the recent past is a precursor to a burst of events
in the near future. We argue that the bursty nature of the
point process largely contributes to the predictability of
conversation events.

We also show that the degree of predictability depends
on individuals. Individuals located inside a network com-
munity, i.e., a dense subnetwork loosely connected to other
parts of the entire network [28], quantified in this study
via strong links and the clustering coefficient, behave
relatively randomly. On the other hand, individuals that
connect different communities by weak links tend to have a
high predictability.

II. DATA AND METHODS

We analyze two sets of face-to-face interaction logs
obtained from different company offices using the
Business Microscope system developed by Hitachi,
Ltd., Japan [29,30]. The data were collected by World
Signal Center, Hitachi, Ltd., Japan. Data set D1 consists

of recordings from N ¼ 163 individuals for 73 days. Data
setD2 consists of recordings from N ¼ 211 individuals for
120 days. Each subject wears a name tag strapped around
the neck and placed at the chest, and each name tag contains
an infraredmodule. The infraredmodules can communicate
with each other if they are less than 3 m apart. An infrared
module only senses the modules situated within a 120�
circular sector in front of the name tag, and the system
detects conversation events only when two individuals are
facing each other. Communication between modules in-
cludes exchanging the owners’ IDs every 10 sec. We regard
two individuals to be involved in a conversation event if
their infraredmodules communicatewith each other at least
once in a minute. In other words, the time resolution of the
system is equal to 1 min. The list of conversation partners
and time stamps is stored in the name tag of each individual
and sent to the central database on a daily basis. The data
transfer occurswhen the individual leaveswork and puts the
name tag on a gateway device connected to the individual’s
computer [29,30]. Each data set contains a list of conversa-
tion events, as shown in Fig. 1. A conversation event is
specified by the IDs of the two individuals talking with each
other, the date and time at which the dialog starts, and the
duration of the dialogue. We are not concerned with the
content of the dialog. Data sets D1 and D2 contain 51 879
and 125 345 events, respectively.
We investigate the predictability of each individual’s

conversation patterns. Our preliminary data analysis re-
vealed that the timing of conversation events lacks sufficient
temporal correlation and is unpredictable. Therefore, we
neglect the timing of conversation events in the data unless
otherwise stated and focus on the partner sequence defined
as follows. To generate the partner sequence of individual 1,
we first sift out all the conversation events that involve
individual 1 from the entire data set [Fig. 1(b)]. Next, we
ignore the time stamp and duration of the conversation
events. The remaining data define the partner sequence,
i.e., the chronologically ordered sequence of the IDs of
the conversation partners for individual 1 [Fig. 1(c)].

FIG. 1. Procedure for generating the partner sequence of individual 1. (a) Original data set. (b) List of conversation events that
involve individual 1. (c) Partner sequence of individual 1. The data set shown in (a) is an artificial one, and is provided for the purpose
of explanation.
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When multiple conversation events involving individual 1
are initiated in the same minute, we determine their order at
random.

To evaluate the predictability of the partner sequence,
we calculate three entropy measures inspired by those used
for the analysis of human mobility patterns [10]. First, we
define the random entropy for individual i as

H0
i � log2ki; (1)

where ki represents the number of i’s partners for the entire
recording. If i chooses the partner with equal probability
1=ki from all the i’s acquaintances in each conversation
event,H0

i quantifies the degree of randomness. Second, we
define the uncorrelated entropy as

H1
i � � X

j2N i

PiðjÞlog2PiðjÞ; (2)

where N i is the set of i’s partners containing ki elements.
PiðjÞ represents the probability that individual i talks with
individual j in a conversation event for i; the normalization
is given by

P
j2N i

PiðjÞ ¼ 1. Compared to H0
i , H

1
i ac-

counts for the heterogeneity among PiðjÞ ðj � iÞ. Third,
we define the conditional entropy as

H2
i � � X

j2N i

PiðjÞ
X

‘2N i

Pið‘jjÞlog2Pið‘jjÞ; (3)

where Pið‘jjÞ represents the conditional probability that
individual i talks with individual ‘ immediately after
talking with individual j. H2

i measures the second-order
correlation in the partner sequence of i. For each individ-
ual, 0 � H2

i � H1
i � H0

i is satisfied. We quantify the
predictability of the partner sequence by the mutual infor-
mation as follows:

Ii � H1
i �H2

i ¼
X

j;‘2N i

Pið‘; jÞlog2 Pið‘; jÞ
Pið‘ÞPiðjÞ ; (4)

where Pið‘; jÞ represents the joint probability that individ-
ual i talks with individual ‘ immediately after talking with
individual j. For each individual, 0 � Ii � H1

i is satisfied.
Ii quantifies the predictability of the partner sequence; it is
equal to the amount of the information about the next
partner that is earned by knowing the current partner.
When the partner sequence lacks a second-order correla-
tion such that H1

i ¼ H2
i , Ii takes the minimum value 0. In

this case, knowing the current partner does not help predict
the next partner at all. When the partner sequence is
completely deterministic, i.e., the next partner is com-
pletely predicted from the current partner such that
H2

i ¼ 0, Ii takes the maximum value H1
i .

Although our primary interest in this study is the tem-
poral properties of partner sequences, we also analyze the
conversation networks (CNs) G1 and G2 constructed by
aggregating all the conversation events in D1 and D2,
respectively, over the entire recording. In a CN, the node
represents an individual, and the weight of the link, de-
noted as wij, represents the number of conversation events

between individuals i and j during the entire recording
period. By the definition of the conversation event, wij ¼
wji (i, j ¼ 1; 2; . . . , N) holds true; the CN is an undirected

network. The degree ki of individual i is equal to the
number of j’s for which wij > 0.

III. RESULTS

A. Properties of the CN

We found that both CNs, G1 and G2, are composed
of a single connected component. The CN G1 is visual-
ized in Fig. 2; we will analyze the relation between
the CNs and the predictability in Sec. III C. The clus-
tering coefficient [31] of the unweighted versions of
G1 and G2 is equal to 0.646 and 0.611, respectively.
The Pearson assortativity coefficient [32] of the degree
of G1 and G2 is equal to 0.169 and 0.296, respectively.
Therefore, the CNs have typical properties of social
networks [33], i.e., high clustering and positive
assortativity.
For the two CNs, we measure the distributions of degree,

node strength, and link weight. The node strength si is the
sum of link weights connecting to node i [34,35], i.e.,
the total number of conversation events for individual i,
defined as

FIG. 2. Visualization of CN G1. For clarity, only the nodes
with strengths larger than 100 and the links among them are
drawn. The darkness of the node color represents the value of Ii;
a darker node has a larger Ii. The thickness of the link is
proportional to its weight. The links with weights larger than
or equal to (smaller than) the median value (i.e., 5) are indicated
by red (blue) lines.
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si �
X

j2N i

wij: (5)

The mean and standard deviation of ki of G1 and G2 are
equal to 26:07� 11:01 and 69:56� 29:47 (mean � stan-
dard deviation), respectively. Because two individuals are
adjacent if there is at least one conversation event for a
few months, the mean ki of both networks is relatively
large. si of G1 and G2 is equal to 636:6� 516:7 and

1188:1� 622:1, respectively. wij of G1 and G2 is equal

to 24:41� 53:69 and 17:08� 45:77, respectively. The
cumulative distributions of the three quantities are shown
in Fig. 3.

B. Predictability of partner sequences

We examine the predictability of partner sequences
using the entropy measures. Because the estimation of
entropy is notoriously biased when the data size is small,

FIG. 4. (a) Histograms of the entropies for D1. (b) Relationship between H1
i and H2

i in D1. The solid line represents H1
i ¼ H2

i .

0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

k i

cu
m

ul
at

iv
e 

di
st

ri
bu

tio
n G1

G2

(a)

si

cu
m

ul
at

iv
e 

di
st

ri
bu

tio
n G1

G2

(b)

0 1000 2000 3000
0.0

0.2

0.4

0.6

0.8

1.0

wij

cu
m

ul
at

iv
e 

di
st

ri
bu

tio
n G1

G2

(c)

100 101 102 103
10−4

10−3

10−2

10−1

100

FIG. 3. Cumulative distributions of (a) degree, (b) node strength, and (c) link weight of the CNs.
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we discard individuals with less than 100 conversation
events (i.e., si < 100). There remain 146 and 210 individu-
als in data sets D1 and D2, respectively, after the thresh-
olding. Because the results for the two datasets are similar,
we report the results forD1 in the following. The results for
D2 are given in Appendix A.

The histograms of the three types of entropies for partner

sequences are shown in Fig. 4(a). For all the individuals,

H1
i is at least 9.94% smaller than H0

i . This implies that

individuals exhibit a preference when selecting partners

from their neighbors in the CN.
The values of H1

i and H2
i for each individual are shown

in Fig. 4(b). The mutual information Ii ¼ H1
i �H2

i is
positive for all the individuals regardless of the value
of H1

i . In general, the finite size effect decreases H1
i and

H2
i by different amounts such that the estimated Ii is

generally inherited with a positive bias [36]. For our
data, the positive values of Ii are not an artifact caused
by the small data size. Through a bootstrap test (see
Appendix B for details), we confirmed that the empirical
values of Ii are significantly (at 1% level) larger than the
values obtained from the bootstrap samples. In short, the
bootstrap samples are randomized partner sequences that
destroy temporal correlation in the data but preserve the
original H1

i and account for the portion of Ii derived
from the finite size effect. It should also be noted that we
determined the order of partners at random when con-
versation events with different partners initiate in the
same minute. This randomization does not make Ii larger
because it conserves H1

i and makes H2
i larger than the

true value. In fact, the Pearson correlation coefficient
between Ii and the fraction of such overlapping conver-
sation events for individual i (1 � i � N, si � 100) is
slightly negative (i.e.,�0:0811). In summary, the informa-
tion about the current conversation partner gives the infor-
mation about the next partner; H2

i is, on average, 28.4%
smaller than H1

i .
The predictability present in the data is mainly ex-

plained by the bursty activity patterns, i.e, long-tailed
distributions of the interevent intervals that have been
observed for various data [1,4–6,8,17–20]. Our data also
possess this feature (see Appendix C for details). Because
the interevent interval for a given pair of individuals
obeys a long-tailed distribution, individual i tends to
talk with individual j again within a short period from
their previous conversation. In the remainder of this sec-
tion, we show that the predictability is mainly caused by
the bursty activity patterns [Fig. 5(a)] and that predict-
ability also exists in the data even if we omit the bursts
from the data [Fig. 5(b)].

We examine the contribution of the bursty activity
pattern to the predictability by calculating the mutual
information Ibursti of the randomized partner sequence.
The randomization of the interevent intervals between
each pair of individuals is realized by swapping interevent

intervals of the original data within each day in a com-
pletely random order (see Appendix D for the precise
methods). Because of the computational cost of the ran-
domization procedure, we obtain the mean and standard
deviation of Ibursti from 100 randomized partner sequences

instead of estimating the confidential interval of Ibursti . The
mean Ibursti accounts for 79.5% of the original Ii on

average [Fig. 5(a)]. Because the randomization procedure
preserves the interevent interval distribution, Fig. 5(a)
suggests that a large Ii is mainly attributed to the bursty
activity patterns. It should be noted that Ibursti is large
partly because the randomizing procedure conserves the
timings of the first and last conversation events of each
pair on any day. Therefore, we may be overestimating the
contribution of burstiness to Ii.
The predictability is not solely determined by the

bursty activity patterns. To clarify this point, we calculate
the mutual information Imerge

i of the modified partner

sequence generated by merging the consecutive conversa-
tion events with the same partner in the original partner
sequence into one event. This merging procedure allows
us to eliminate the contribution of the bursty activity
pattern to the predictability. For example, if individual i
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I i
burst

(a)
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merge

Î i
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FIG. 5. Results of the bootstrap test for D1. The circles repre-
sent Ii and I

merge
i in (a) and (b), respectively. The error bars

represent the statistics for the bootstrap samples. (a) Results of
the shuffling test. Ii and the error bars are plotted in the ascend-
ing order of Ii. The error bars indicate 1 standard deviation
around the mean of Ibursti , which was obtained from 100 shuffled
partner sequences. The ticks at the middle of the error bars
indicate the mean. (b) Results of the merging test. Imerge

i and the

confidential intervals (error bars) are plotted in the ascending
order of I

merge
i . The lower and upper ends of the error bars

represent 0 and 99 percentile points, respectively. The ticks at
the middle of the error bars indicate the mean.
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talks with individual j 3 times without being interrupted
by other partners, we merge the three conversation events
into one. The values of I

merge
i are shown in Fig. 5(b). To

confirm that the positive values of I
merge
i are not an artifact

caused by the small data size, we carry out a bootstrap
test for Imerge

i similar to that for Ii. By definition, no
partner ID appears successively in the merged partner
sequence. Therefore, we generate the bootstrap sample
of the merged partner sequence by sampling from the
merged sequence with a replacement under the condition
that the same partner is not chosen consecutively (see
Appendix D for details). I

merge
i is significantly larger than

the values obtained from the bootstrap samples. Therefore,
the original partner sequence possesses some predictabil-
ity even after removing bursts originating from the bursty
nature.

C. Variation among the predictabilities of individuals

The predictability, quantified by Ii, depends on individu-
als. In this section, we investigate the relationship between
the predictability of individuals and the properties of nodes
in the CN. The results shown in this section are summa-
rized as follows. First, Ii is negatively correlated with
node strength si and with mean node weight defined as
�wi �

P
j2N i

wij=ki (Fig. 6). Second, the CN possesses the

‘‘strength of weak ties’’ structure [Fig. 7(a)]. Third, the

individuals bridging different communities with weak

links tend to have large Ii, and those concealed in a single

community and surrounded by strong links tend to have

small Ii [Fig. 7(b)].
One may speculate that Ii is strongly affected by the

node degree ki because H0
i ¼ log2ki and H1

i and H2
i

comprise many terms if ki is large. However, ki and Ii
are uncorrelated, as shown in Fig. 6(a). We found that Ii
is negatively correlated with si [Fig. 6(b)] and with �wi

[Fig. 6(c)]. Using the bootstrap test, we verified that the
negative correlation shown in Figs. 6(b) and 6(c) is not
caused by the finite sampling size (see Appendix B for
details). The correlation shown in Fig. 6 and the following
results do not qualitatively change if we use the normalized
mutual information [37] Ii=H

1
i (see Appendix E). We also

verified that alternatively defining the link weight by the
total duration of the conversation events for each pair,
instead of the total number of the conversation events,
does not qualitatively change the results described in this
section (see Appendix F for details).
For a fixed ki, both si and �wi decrease with the number of

weak links (i.e., the links with small weight) connected to
individual i. This fact leads us to hypothesize that individu-
als surrounded by weak links select partners in a relatively
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FIG. 6. Mutual information Ii is plotted against (a) degree ki, (b) node strength si, and (c) average node weight �wi, for D1. The
Pearson correlation coefficient R between the plotted quantities is also shown.
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deterministic order. According to Granovetter’s theory of
the strength of weak ties, weak links tend to interconnect
different communities in a social network and bring valu-
able external information to both end nodes, while strong
links tend to be intracommunity links [38]. Therefore, the
individuals bridging different communities with weak links
may have large values of Ii.

We first verify the strength of weak ties hypothesis in the
CN. The network visualized in Fig. 2 appears to be con-
sistent with the hypothesis; weak links tend to connect
communities composed of strong links. To quantify the
extent to which a link is engaged in intracommunity con-
nection, we measure the relative neighborhood overlap of a
link [39], defined as

Oij ¼
jN i \N jj

jN i [N jj � 2
; (6)

where j � j denotes the number of elements in the set. When
Oij ¼ 0, individuals i and j do not have a common neigh-

bor and the link ði; jÞ is considered to connect different
communities. When Oij ¼ 1, individuals i and j share all

of the neighbors and the link ði; jÞ is confined in a com-
munity. The strength of weak ties hypothesis suggests that
Oij is positively correlated with wij [39]. In Fig. 7(a), Oij

averaged over the links with weights smaller than w,
denoted as hOiw, is plotted against the fraction of links
with weights smaller than w, denoted as PcumðwÞ. Because
hOiw monotonically increases with PcumðwÞ, the CN pos-
sesses the strength of weak ties property, as in the case of
mobile communication networks [39].

Because weak links are associated with a large Ii
[Fig. 6(c)] and intercommunity links [Fig. 7(a)], individu-
als with a large Ii are expected to bridge different com-
munities and those with a small Ii are expected to be
shielded inside a community. This concept is consistent
with the visual inspection of Fig. 2. To verify this point,

we show that Ii is negatively correlated with a calibrated
clustering coefficient in the following [Fig. 7(b)]. Note
that, when the clustering coefficient is large, the individual
tends to be inside a community quantified by the
abundance of triangles [40]. When it is small, the individ-
ual tends to connect different communities [41,42].
The clustering coefficient for each node is defined

by Ci ¼ ðnumber of triangles including individual iÞ=
½kiðki � 1Þ=2� (0 � Ci � 1, i ¼ 1; 2; . . . ; N) [31]. In
Fig. 7(b), the Pearson correlation coefficient between Ii
and CiðwthrÞ is plotted against wthr, where CiðwthrÞ is the
local clustering coefficient Ci for the subgraph of the CN
generated by eliminating the links with weights smaller
than wthr. We opted to use CiðwthrÞ instead of the weighted
clustering coefficient defined for weighted networks
[35,43] because the latter quantity is, by definition,
strongly correlated with si and �wi; we already discussed
the negative correlation between Ii and si and between Ii
and �wi in Figs. 6(b) and 6(c), respectively. For wthr ¼ 1, Ii
and CiðwthrÞ are almost uncorrelated. This is because al-
most all the individuals have a large Ci regardless of Ii in
the original CNG1 (refer to Fig. 2 for a visual confirmation
of this statement). For 2 � wthr � 100, Ii and CiðwthrÞ are
negatively correlated [squares in Fig. 7(b)]. Therefore, an
individual with a large Ii tends to bridge different com-
munities as quantified by the clustering coefficient. An
individual with a small Ii tends to be confined within
communities. The circles in Fig. 7(b) represent the partial
correlation coefficient between Ii and CiðwthrÞ, with
kiðwthrÞ and siðwthrÞ fixed. Here, kiðwthrÞ and siðwthrÞ are,
respectively, the degree and strength of individual i, calcu-
lated after eliminating the links with weights smaller than
wthr. Because the Pearson and partial correlation coeffi-
cients behave similarly, the negative correlation between
Ii and CiðwthrÞ is not ascribed to the negative correla-
tion between Ii and si [Fig. 6(b)] or between Ii and �wi

[Fig. 6(c)].
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PREDICTABILITY OF CONVERSATION PARTNERS PHYS. REV. X 1, 011008 (2011)

011008-7



In closing this section, we stress the robustness of our
results against observation failures. The wearable tag used
in our measurement fails to detect a conversation event if
the tag is hidden behind obstacles such as a desk or
partition. For example, suppose that two individuals
chat for five minutes and either of their tags is just under
a desk and is undetected in the third minute. Then, the
single conversation event is split into two spurious con-
versation events, each lasting for two minutes. To exam-
ine the robustness of our results against such observation
failures, we repeat the same analysis after filling short
intervals between successive conversations between the
same pair of individuals. If individual i has two succes-
sive conversation events with individual j and the interval
between the two events is smaller than or equal to m
minutes, we merge the two events into one. The original
partner sequence corresponds to m ¼ 0. The number of
conversation events decreases with m. The interpolation
reduces wij, si, and �wi and conserves ki, H

0
i , and Ci. We

confirmed that our findings are reproduced when we
interpolate the original data with m ¼ 1 and m ¼ 5 (see
Appendix G for details).

IV. DISCUSSION

We have shown that sequences of conversation events
have deterministic components. The entropy in the distri-
bution of the conversation partners of an individual de-
creases by, on average, 28.4% for data setD1 and 34.8% for
data set D2, if we know the current partner. Much of the
predictability of conversation events results from the
bursty activity patterns. In general, daily and weekly
rhythms of human activity can cause bursty activity
patterns [20]. During the night and weekend, the individu-
als are out of the office. Therefore, interevent intervals
are usually longer than those within working hours.
Nevertheless, we consider that the effects of such long
interevent intervals on the predictability of conversation
partners are small. This is because the fraction of long
interevent intervals, i.e., those over five hours, for example,
is relatively small, occupying 4.31% in D1 and 2.95% in
D2. In addition, there is no particular reason to believe
that the last conversation partner in a day and the first
partner in the next day are specifically correlated. In this
study, we did not correct for the effect of the night and
weekend.

The degree of predictability depends on individuals.
In particular, we have shown that individuals connecting
different communities in conversation networks behave
relatively deterministically. We quantified the degree to
which an individual is confined in communities by
the clustering coefficient. In the context of an overlap-
ping community structure, individuals connect different
communities when they belong to multiple overlapping
communities [40]. Such individuals tend to be sur-
rounded by many triangles if we define the community

by 3-cliques (i.e., triangles). This apparently contradicts
our results. This contradiction comes from the difference
in what we mean by connecting different communities.
We regard individuals as bridging different communities
when they are not strongly bound to any community
and they have links to different communities. In this
sense, nodes with small clustering coefficient values
connect different communities in networks with hierar-
chal structure [42,44]. In general, links bridging differ-
ent communities have large betweenness centrality
values [45]. The clustering coefficient of a node tends
to decease with the betweenness centrality [46]. This
lends more support to our view that individuals with
small clustering coefficient values tend to connect differ-
ent network communities. It should be noted that the
strength of weak ties property of the CN and the rela-
tionship between Ii and the individual’s position in the
CN are preserved, if we define the link weight by the
total duration of the conversation events for each pair
(see Appendix F).
We do not have an access to the contents of dialogs for

ethical reasons. Therefore, the understanding of the reason
for the correlation between the individual’s position and
predictability is limited. Nevertheless, individuals that own
many weak links and connect distinct groups may mediate
information flows necessary to coordinate tasks involving
these groups (e.g., project groups in a company). Such
individuals may control the information flow between the
groups in a rigid manner to yield a large Ii. In contrast,
individuals with few weak links may enjoy casual (and
perhaps creative) conversations within their own groups
and choose the partners in a random manner. Such indi-
viduals may tend to have a small Ii. It should be noted that
our data were obtained in company offices. Roles or formal
positions of individuals in the company may affect Ii
and the local abundance of weak links surrounding the
individuals.
Song et al. discovered a remarkable predictability in the

mobility patterns of humans [10]. In terms of the analysis
tools, our methods are similar to theirs. We have applied
the entropy measures and the concept of predictability to
different types of data sets. In our data, the physical loca-
tion of individuals is irrelevant; individuals work in offices
in the companies. It should be noted that although we have
not implemented the prediction algorithm, the predictabil-
ity of the data is implied by the large mutual information
that we observed. This logic parallels that made for human
mobility patterns [10].
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APPENDIX A: RESULTS FOR DATA SET D2

We obtained qualitatively the same results for D2 as
those for D1. The results for D2 are shown in
Figs. 8–11, which correspond to Figs. 4–7 in the main
text, respectively.

APPENDIX B: DETAILS OF THE
BOOTSTRAP TEST

To confirm that the large value of the empirically ob-
tained Ii is not because of the small data size, we carry out

a bootstrap test as follows. First, we make a bootstrap
sample of a partner sequence with length si by resampling
partners’ IDs from the empirical partner sequence of indi-
vidual i without replacement (i.e., shuffling). Then, we use

Eq. (4) to calculate the mutual information Îi for the
bootstrap sample. By resampling 5000 bootstrap partner

sequences, we construct the distribution of Îi, which we

denote as pðÎiÞ. On the basis of pðÎiÞ, we carry out a
hypothesis test for Ii. The null hypothesis of the test is
that Ii is positive just because of the small data size. The
alternative hypothesis is that Ii is larger than the value
expected for unstructured data of a small size. We set the
significance level of the test to 1%. Consequently, the
critical region of the null hypothesis is the half-open inter-

val above the 99 percentile point of pðÎiÞ. In Fig. 12, the
results of the bootstrap test are summarized. Apparently, Ii
is above the 99 percentile point (i.e., the upper end of the
each error bar). In fact, for all the individuals inD1 andD2,
except individual 14 in D1 and 149 in D2, the null hy-
pothesis is rejected with a 1% significance level.

APPENDIX C: LONG-TAILED BEHAVIOR OF
INTEREVENT INTERVALS

Human activity patterns are characterized by long-tailed
distributions of the interevent intervals [1,4–6,8,17–20], a
feature that is shared by our data. We define the interevent
interval � as the interval between the initiation time of two
successive conversation events involving a given individ-
ual. The unit of � is a minute, corresponding to the time
resolution of the recording. As shown in Fig. 13(a), the
distribution of �, denoted by pð�Þ, for a typical individual
in D1 is long-tailed. The tail of the empirical data (solid
line) is much fatter than that of the exponential distribution
whose mean is equal to that of the empirical data (dashed
line). The histogram of the coefficient of variation (CV)
of pð�Þ on the basis of all the individuals in D1 and the
same histogram for D2 are shown in Fig. 13(b). The value
of CV is equal to the ratio of the standard deviation to the
mean and is equal to unity for exponential distribution.
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FIG. 9. Results of the bootstrap tests for D2 on the basis
of (a) shuffling and (b) merging of the partner sequence.
See the caption of Fig. 5 for a description of the data
points.

FIG. 8. (a) Histograms of the entropies for D2. (b) Relationship between H1
i and H2

i in D2. The solid line represents H1
i ¼ H2

i .
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FIG. 11. (a) Averaged neighborhood overlap hOiw as a function of the fraction of links with weights smaller than w for D2.
(b) Pearson correlation coefficient between Ii and CiðwthrÞ (squares) and the partial correlation coefficient between these quantities
with kiðwthrÞ and siðwthrÞ fixed (circles), for D2.
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Figure 13(b) indicates that the CV of pð�Þ is much larger
than unity for all the individuals.

APPENDIX D: COMPONENTS OF
THE PREDICTABILITY OF THE

CONVERSATION EVENTS

A possible mechanism governing the predictability of
the conversation events is the bursty activity patterns.
To examine the effect of the long-tailed behavior of
pð�Þ on the predictability, we carry out a statistical test

based on the shuffling of Ii as follows. Consider the

sequence of conversation events of focal individual i

with individual j. If i and j talk four times in a given

day and the interevent intervals are equal to �1, �2, and �3
in the chronological order, we randomize their order.

For example, the interevent intervals in the shuffled data

are ordered as �2, �1, and �3. We carry out the same

randomization for each day and each partner j. Then,

we combine the randomized sequences (i.e., point pro-

cesses) for different j’s into a one-point process from

which we read out the randomized partner sequence for

i. We define Ibursti as the mutual information for this

randomized partner sequence. In Fig. 5(a), the mean and

standard deviation of Ibursti obtained from 100 randomized

partner sequences are shown for different individuals in

D1. The empirical values of Ii (circles) are significantly

larger than Ibursti for most individuals. However, Ibursti

consistently occupies a large fraction of Ii and increases

with Ii. Therefore, the burstiness is a major cause of the

predictability regardless of the value of Ii.
The burstiness is not the only contributor to the predict-

ability. To show this, we examine the reduced partner
sequence generated by merging all the consecutive events
with the same partner into one event. For example, the
original partner sequence {2, 3, 3, 6, 4, 4, 3, 3, 3, 2, 6, 2}
yields the merged partner sequence {2, 3, 6, 4, 3, 2, 6, 2}.
We calculate the mutual information in the merged partner
sequence, denoted by I

merge
i , which measures the predict-

ability of conversation events that does not result from
the burstiness. We do not directly compare Imerge

i with
the original Ii because the merging procedure shortens
the length of the partner sequence and the amount
of mutual information generally depends on the length
of a sequence [36]. Instead, we carry out a bootstrap test
for Imerge

i . By definition, the partner changes every time
in the merged partner sequence. We obtain bootstrap
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FIG. 13. (a) Cumulative distribution of the interevent intervals of a typical individual inD1 (solid line). The dotted line represents the
power-law fit with exponent �1:52, which was obtained from the maximum likelihood test [47]. The dashed line represents the
exponential distribution with the same mean as that of the data. (b) Distributions of the CV of pð�Þ in D1 and D2.
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FIG. 12. Results of the bootstrap test of the finite size effect for
(a)D1 and (b)D2. Ii (circles) and the confidential intervals (error
bars) of individuals are plotted in the ascending order of Ii. The
lower and upper ends of the error bars represent 0 and 99
percentile points, respectively. The ticks at the middle of the
error bars indicate the mean.
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samples respecting this property as follows. The frequency
with which partner j appears in the merged partner
sequence of individual j is denoted by P

merge
i ðjÞ. We select

the first partner of i, denoted by ‘, randomly according
to Pmerge

i ðjÞ. The second partner is selected according to
P
merge
i ðjÞ=½1� P

merge
i ð‘Þ�, where j � ‘. We repeat the

same procedure until the generated sequence becomes
as long as the merged partner sequence. Figure 5(b) sum-
marizes the results of the bootstrap test for I

merge
i . We

see that I
merge
i is consistently larger than the values ex-

pected for the bootstrap samples for all the individuals.
Therefore, the partner sequence is predictable to some
extent even without the effect of the bursty activity
patterns.

APPENDIX E: USE OF NORMALIZED
MUTUAL INFORMATION

In the field of cluster partitioning, the normalized mutual
information �Ii � Ii=H

1
i is used to quantify the accuracy of

partitioning methods, because the relationship 0 � �Ii � 1
is convenient for comparing different methods [37]. Our
main results are qualitatively the same if we replace Ii by �Ii
(Fig. 14).

APPENDIX F: ALTERNATIVE DEFINITION OF
THE LINK WEIGHT BASED ON THE DURATION

OF THE CONVERSATION

In the main text, we defined the link weight by the
total number of conversation events for each pair. An
alternative definition is given by the total duration
of the conversation events for each pair. This alternative

definition changes wij, si, and �wi and conserves ki, H
0;1;2
i ,

and Ii. For the CN where the link weight is defined
by the total duration, we repeat the same analysis
as that conducted in Sec. III C. As shown in Fig. 15, the
change in the definition of the link weight does not affect
our main results. We observed a negative correlation
between Ii and si [Fig. 15(a)] and that between Ii
and �wi [Fig. 15(b)], the ‘‘strength of weak ties’’ property
[Fig. 15(c)], and a negative correlation between Ii and
CiðwthrÞ [Fig. 15(d)].

APPENDIX G: ROBUSTNESS AGAINST
OBSERVATION FAILURES

To examine the robustness of our results against obser-
vation failures, we analyze the data sets after interpolating
short intervals between successive conversations between
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FIG. 14. Normalized mutual information �Ii is plotted against (a) degree ki, (b) node strength si, and (c) average node weight
�wi, for D1. The Pearson correlation coefficient R between the plotted quantities is also shown. (d) Pearson correlation coefficient
between �Ii and CiðwthrÞ (squares) and the partial correlation coefficient between these quantities with kiðwthrÞ and siðwthrÞ fixed
(circles).
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information Ii is plotted against (a) node strength si and (b) average node weight �wi. The Pearson correlation coefficient R between the
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the same pairs of individuals. Suppose that individuals i
and j talk with each other twice and that i does not talk
with anybody else between the two conversation events
with j. We merge the two conversation events into one if
the difference between the ending time of the first event
and the starting time of the second event is less than or
equal to m minutes.

In Fig. 16, ~si, ~H1
i ,

~H2
i , and

~Ii, which are the quantities
calculated for the data obtained with m ¼ 1, are com-
pared with si, H

1
i , H

2
i , and Ii, respectively. As expected,

~si is smaller than si, and ~H1
i and ~H2

i are generally larger
than H1

i and H2
i , respectively. As shown in Fig. 17, the

important properties of the data sets are not changed
by the interpolation with m ¼ 1. In other words, a
negative correlation between ~Ii and ~si [Fig. 17(a)] and
that between ~Ii and ~�wi [Fig. 17(b)], the strength of weak
ties property [Fig. 17(c)], and a negative correlation
between ~Ii and CiðwthrÞ [Fig. 17(d)] are observed. The
results are qualitatively the same for m ¼ 5, as shown in
Figs. 18 and 19.
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[6] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and

W. Van den Broeck,What’s in a Crowd? Analysis of Face-

to-Face Behavioral Networks, J. Theor. Biol. 271, 166
(2011).

[7] J. Tang, S. Scellato, M. Musolesi, C. Mascolo, and V.

Latora, Small-World Behavior in Time-Varying Graphs,

Phys. Rev. E 81, 055101(R) (2010).
[8] Y. Wu, C. Zhou, J. Xiao, J. Kurths, and H. J. Schellnhuber,

Evidence for a Bimodal Distribution in Human

Communication, Proc. Natl. Acad. Sci. U.S.A. 107,
18803 (2010).

[9] L. Isella, M. Romano, A. Barrat, C. Cattuto, V. Colizza,

W. Van den Broeck, F. Gesualdo, E. Pandolfi, L. Ravà, C.
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