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Ensemble of Linear Molecules in Nondispersing Rotational Quantum States:
A Molecular Stopwatch
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We present a method to create nondispersing rotational quantum states in an ensemble of linear
molecules with a well-defined rotational speed in the laboratory frame. Using a sequence of transform-
limited laser pulses, we show that these states can be established through a process of rapid adiabatic
passage. Coupling between the rotational and pendular motion of the molecules in the laser field can be
used to control the detailed angular shape of the rotating ensemble. We describe applications of these
rotational states in molecular dissociation and ultrafast metrology.
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L. INTRODUCTION

We present a method to create a rotating ensemble of
nondispersing quantum rotors based on ideas of strong-
field rapid adiabatic passage. The ensemble has (J,) # 0
and a definite alignment phase angle ¢, which increases
linearly in time like the hands of a clock or a stopwatch.

A linear molecule with an anisotropic polarizability
experiences a torque when exposed to a strong laser field
[1]. The magnitude and direction of the torque depends on
the direction and strength of the incident electric field, and
the corresponding pendulum potential can be viewed as an
angular trap. We consider the response of an ensemble of
such molecules to a pair of copropagating counterrotating
circularly polarized laser pulses with a fixed frequency
difference. The first pulse in the sequence creates an an-
gular trap with a minimum in the polarization plane,
which distorts the ensemble into an oblate distribution
[see Fig. 1(c)]. The second pulse turns on before the first
pulse turns off, so that the total laser field acquires a slowly
rotating linear polarization. The molecules experience a
rotating angular trap along the polarization direction,
which rotates at half the beat frequency between the two
pulses. The rotational speed of the angular trap is fixed, and
the trap depth increases with the laser intensity. If the
second pulse turns on sufficiently slowly, the ensemble
adiabatically follows the eigenstates of the full
Hamiltonian. This process adiabatically transforms the
planar distribution of molecules into a rotating prolate
distribution aligned along the rotating polarization. The
quantum mechanical origin of this nondispersing rotation
is stimulated Raman couplings among the rotational levels
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of the molecule, where circularly polarized photons of one
rotational handedness are absorbed and the other handed-
ness are stimulated to emit.

The use of strong-field laser pulses to create rotating
molecular distributions was first considered in a series of
papers on the optical centrifuge [2—4]. The optical centri-
fuge creates a rotating ensemble by slowly increasing the
rotational speed of an angular trap. This process was
described semiclassically by Karczmarek [2]. The optical
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FIG. 1. (cos?6,) (blue), (cos?d,) (red), and {(cos’*6,) (green)
(see text) for (a) short times and (b) long time in the laboratory
(solid lines) and the rotating frame (dashed lines). (c) shows the
oblate distribution formed by the first pulse at = 40 ps.
(d) shows the prolate distribution in the rotating frame at time
t ~ 840 ps. In (c) and (d), the composite laser field polarization

Uy —
Vo =573,0 = 158,

is along the x axis. For this calculation,
71 = 40 ps, 7, = 800 ps.
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centrifuge technique has recently been adapted to use
adiabatic passage to create a field-free rotating ensemble
which has been called a “cogwheel” state [5]. Rotating
molecules are also analogous to Trojan wave packets in
Rydberg atoms, first considered by Kalinski [6,7]. The rich
dynamics of driven rotor systems has also been recently
studied by Topcu and Robicheaux [8].

The analysis here presents many interesting properties
of these rotating ensembles that have not been reported for
the optical centrifuge. The orientation of the rotating po-
tential maps to the phase difference between the counter-
rotating laser fields and the rotational speed is directly
proportional to the laser frequency difference, so that this
system can be used in timing and metrology applications.
We present the theory behind the creation of a rotating
ensemble and a full density matrix calculation.

II. METHOD

The effective Hamiltonian for a polarizable linear rigid
rotor subject to an intense laser pulse of arbitrary polariza-
tion is given by

H=H,+V, ()

where
H, = BJ?, (2a)
= - % |Ey |2, (2b)

and we only include the terms relevant to the dynamics of
the rotational state [9]. The angular momentum is quan-
tized along the direction of propagation of the laser pulse,
taken as the z axis. H, is the field-free rotational
Hamiltonian, B is the rotational constant, and V is the
potential induced by the laser electric field E. The differ-
ential polarizability of the rotor is Aaw = (e — ), and
E | is the projection of the electric field along the rotor axis.
Centrifugal distortion terms are absent since the rotors are
rigid.

If we consider two counterrotating circularly polarized
fields, the total field is given by

E= %{[El (1) cos(w 1) + E5(t) cos(w,1)]%

+ [E, (1) sin(w, 1) — Ex(1) sin(w,1) ]9}, 3)

where E;(z) is the electric field envelope of each pulse. This
equation can be rewritten as:

E=E +E, =EX+E}j, 4)

E) = sinf(E, cos¢ + E,sing). (5)

Then Eq. (2b) reduces to

v = 2B eosts
+ |E > + 2|E,||E,| cos¢h sing], (6a)
IE,P — |E,P = |E, (0| Ex(0)| cos(Aw), (6b)
|Ey|2 _ %[|E1§f)|2 n |Ez§f)|2
~ EIE®] o8 | (6¢)
IEIE,| = YE, (0] Ey(0)] sin(Aw), (6d)

where Aw = |w| — w,|, 0 is the polar angle, and ¢ is the
azimuthal angle, and again, the z axis is along the propa-
gation direction of the laser field. In Eq. (6) we have
integrated over the laser period, leaving only the slow
frequency Aw.

It is illustrative to consider the Hamiltonian in a frame
rotating with speed () = AT‘”. This is done through a gauge
transformation, Uy = exp(—ily¢/h), where [, = I and
I is the moment of inertia of the rotor. In this frame the
Hamiltonian in Eq. (1) is still appropriate, but there is an
additional centrifugal term due to fictitious forces,

(Hx=UHUg=BJ*+Vp—QJ.=(Hyp+ Vg, (1)

and the induced potential is greatly simplified to resemble
a simple pendulum:

_ 22
V=200 HE P~ £, Preost s + IE, ],
(82)
IE2 = |E,12 = |E, () Ex0)], (8b)
» ITE(0)? | E(1)?
IE,| —5[T+ 2 |E1<r>||E2(r)|]. (80)

Again in Eq. (8) we integrate over the laser period.

The Hamiltonian for this system is strikingly similar to
that of a Trojan (nonspreading) state first proposed by
Kalinski and Eberly [6,7]. The original works on Trojan
wave packets in Rydberg atoms considered circularly po-
larized microwave fields which create a nonspreading
state.

We now proceed to calculate the dynamical evolution of
the first few eigenvalues and low-lying eigenstates of this
system. For ease of calculation we consider only the turn-
on of the laser fields. The field envelope functions E;() are
sin? pulses described by

E\(1)= EO{[I — (- TI)JSmZ(leII) +O(— 71)}, (92)

Ez(f) = EO{[®(I - 7-on) - ®(t “Ton T TZ)JSinzl:ﬂ-(tz_&:l

T2

+O(— 7 — 7'2)}, (9b)
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where ©O(r) is the Heaviside step function. We perform
calculations in both the laboratory and rotating frames. In
either case the full density matrix p is propagated using a
split operator technique with a ~100 fs step size.

II1. RESULTS

The adiabaticity condition for the first pulse is 7, > 2’—13.
For the second pulse the adiabaticity condition is more
complicated. We find that the turn-on, 75, should take place
over multiple rotations of the linear field. In addition, 7,
must also be slow compared to the energy spacing of the
pendular states in the rotating frame.

Within a single manifold of states with the same J,
quantum number M, the splitting between states increases
linearly with the field strength [10]. However, the splitting
between the ground states in different M manifolds de-
creases with increasing field strength. As the second pulse
turns on, the different M manifolds are coupled by the
sin’fcos’ ¢ operator. This means that the spacing between
ground states of different M manifolds will determine the
adiabatic time scale. In addition to the energy shift caused
by the external field, in the rotating frame the energy of
each M manifold is shifted by the centrifugal term of the
Hamiltonian, Eq. (7). For a given rotational speed, the
manifold with M closest to % — 1 has a ground state
energy near the M = 0 manifold ground state energy.
Therefore, we find the adiabaticity condition for the second
pulse is

h
8(Q, Ey) — hK(Q)Q’
where 8((), E,) is the splitting between the M = 0 and
M=KQ) = Int[% — 1] manifolds of the pendular states
formed by a circularly polarized field in a nonrotating
frame. In this work, 7y = 7., = 40 ps and 7, = 800 ps,
to satisfy the adiabaticity conditions.

The results of the calculations are shown in Figs. 1-3.
These figures show the projection of the ensemble
onto the x axis [{(cos?6,) = Tr(psin*fcos’¢)], y axis
[(cos?0,) = Tr(psin®@sin?})], and z axis [(cos’d,) =
Tr(pcos?6)] in both the rotating and laboratory frames
[9]. Figures 1 and 3 also show the calculated probability
density of molecules, | (6, ¢)|*> = (0, ¢|pl6, ¢) at differ-
ent times during the pulse sequence.

We find that the degree of alignment along the rotating
polarization axis increases linearly with the potential well
depth, Uy = MTE‘Z’, as in the nonrotating, linearly polarized
case. The rotational frequency () has a more complicated
effect on the system: above a critical value of () ~ % =
Q..ii, there is a marked change in the evolution of the initial
state through the adiabatic pulse sequence, which is shown
in Fig. 2. The wave function splits and acquires and addi-
tional node. The exact value of (). does have a slight
dependence on E;, and the value quoted above is for
AaE} ~74B.

T > (10)
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FIG. 2. (cos®6,) (blue), {cos’6,) (red), and (cos’6.) (green)
(see text) as a function of 4/;8; = W. (a) Q=15%

and (b) 0 = 3.5 In both plots, 7; = 40 ps, 7, = 800 ps.
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FIG. 3. (cos®6,) (blue), {cos?6,) (red), and {(cos’6,) (green)
(see text) for (a) short times and (b) long times in the laboratory
(solid lines) and the rotating frame (dashed lines). (c) shows the
distribution at r = 165 ps. (d) shows the prolate distribution in
the rotating frame at time ¢ ~ 840 ps. In (c) and (d), the com-
posite laser polarization is along the x axis. For this calculation,

,/;;;2 =2.45,Q =358, 7, =40 ps, 7, = 800 ps.

IV. DISCUSSION

The quantum behavior for {) > () can be understood
by viewing the system in the rotating frame given in
Egs. (7) and (8). To simplify this discussion we will con-
sider the transformation of a pure state, which we can
obtain by assuming a rotational temperature of 0 K.
Using this simplification, we can now restrict ourselves
to only considering states with even values of the quantum
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numbers J and M, since the potential V [Egs. (6) and (8)]
only couples states with AJ = 0, £2, AM =0, =2 [9].
In the rotating frame we can write the Hamiltonian as

Hy=H, - QJ, (11)

where H, is the pendular Hamiltonian given by
H, = B2 — 2% Gn20[E, () Ex()cos? + |E,(0P]. (12
»= 7s1n (D E,(t)cos“ Y1) (12)

We will expand the solution of Hy in the basis of
solutions to H,,. Figure 4 shows the diagonal matrix ele-
ments of Hp expressed in this basis (the basis of the non-
rotating pendular potential). For ) > (), there is a value
of the electric field for which these two matrix elements
become degenerate. This degeneracy is lifted in the full
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FIG. 4. Diagonal matrix elements of the rotating frame
Hamiltonian, H, Eq. (7), expanded in the basis of eigenstates
of the stationary pendulum, H, Eq. (12) (dashed lines). When
the rotating frame Hamiltonian is diagonalizied, the eigenvalues
exhibit avoided crossing when O > Q. (solid lines).
Q = 1.75 (a), 2.7 (b), and 3.75 (c) in units of %.

Hamiltonian, where the two eigenvalues exhibit an avoided
crossing.

In this calculation, all of the molecules start in the
ground state of the laboratory frame, |J = 0, M = 0).
But, this is not necessarily the ground state of the rotating
frame due to the fictitious forces associated with a non-
inertial reference frame. In fact, when the rotational speed
of the trap is above () the molecules are in the first
excited state of the system in the rotational frame prior to
the turn-on of the second field. Therefore, an adiabatic
transformation will leave the system in the first excited
state of the rotational frame Hamiltonian, after passing
through the avoided crossing described above. This state
has a node in the angular coordinates, which is shown in
Fig. 3. Now the structure of the ensembles shown in Figs. 1
and 3 can be clearly understood in terms of the avoided
crossings described above.

This result is qualitatively different from the previously
reported optical centrifuge, where the system remains in
the ground state of the instantaneous rotational frame
Hamiltonian due to the adiabatic increase of the angular
speed of the trap. However, the method presented here is
truly adiabatic, in that if the distribution begins in the
ground state of the field-free Hamiltonian in the laboratory
frame, then it will be in the ground state of the Hamiltonian
which includes the field that is also in the laboratory frame.
If Q> Q. then the rotational and laboratory frame
ground states are not the same. Also, the sharp nodal
features seen here are suppressed at finite temperature,
where an incoherent superposition of initial M states ef-
fectively fills in the nodes that appear above ;.

In rapid adiabatic passage, the order of operations of
adiabatic transformations is important. For the system
described in this work, there are two parameters (angular
trap depth, U,, and rotational speed, {}) which can be
varied adiabatically. The difference between the method
presented here and the optical centrifuge is in the order of
adiabatic transformations. The optical centrifuge first adia-
batically increases the angular trap depth and then the
rotational speed, which leaves the ensemble in the ground
state in the rotating frame. The method presented here
starts with a rotating polarization and then slowly changes
the rotating angular trap depth. The final state of the system
depends on the rotational speed of the trap. In either
method, the final parameters of the system are the same,
but the final states can be very different. The parameter
space is shown in Fig. 5, along with the paths followed by
both the optical centrifuge method and the method pre-
sented here.

This analysis has focused on the dynamical evolution of
the initial state through the pulse sequence to a final state of
the system where the magnitude of the two counterrotating
fields are equal. If the two pulses have unequal magnitudes,
then the total field resembles a slowly rotating linear
polarization superposed on a residual circularly polarized

011002-4



ENSEMBLE OF LINEAR MOLECULES IN NON- ...

PHYS. REV. X 1, 011002 (2011)

FIG. 5. Energy eignvalues of the rotating frame Hamiltonian,
Hp Eq. (7), in units of B, in the (2, w, = \/?) parameter space.
The x and y axes are in units of %, and the color of the curve
represents the splitting between the eignevalues. Also shown are
the paths followed by the optical centrifuge [2] (green) and the
method described here (magenta). The insets show |¢|> for
different points in the parameter space.

field. This type of field creates two angular traps of differ-
ent strength, one in the € dimension and one in the ¢
dimension. The dynamic evolution adiabatically follows
the ground state of the system throughout the pulse se-
quence, and we notice an interesting behavior of the
ground state of the system when the two fields are unbal-
anced and () > Q. Figure 3 clearly shows that for small
values of E,, the ensemble of molecules localizes around
the unstable equilibrium point of the classical pendulum.
For such small values of E,, the angular well depth in the ¢
dimension, U = %El(t)Ez(t), is much smaller than the
centrifugal term )J, of the Hamiltonian. The presence of
this centrifugal term causes a dynamical stabilization of the
unstable equilibrium point, but as E, grows the stabiliza-
tion is lost and the ensemble migrates back toward local-
ization around the stable equilibrium point of the classical
pendulum.

V. CONCLUSIONS

We have presented a method of strong-field adiabatic
control of linear molecules which results in a nondispers-
ing rotational state with (J,) = I€). This state can be
thought of as rotating at a constant angular speed () in
the polarization plane.

Adiabatic control of molecular rotational wave packets
has already been used to align molecules in the laboratory
frame to facilitate molecular frame measurements. [11,12]

Nondispersing rotational states expand these techniques to
a rotating reference frame. This type of rotating ensemble
will allow investigation into the breakdown of the axial
recoil approximation. By dissociating the rotating en-
semble with a femtosecond probe pulse, the validity of
the axial recoil approximation can be tested for various
rotational speeds.

In addition, a rotating ensemble could be used as a tool
to find the timing between two laser pulses from different
sources. In this application, the rotating ensemble could be
established using a long pulse (~ 4 ns) infrared laser
source. Two other femtosecond laser sources then ionize
and dissociate the rotating linear molecules. The dissocia-
tion products are collected with a position sensitive
detector, and the angular displacement between ion frag-
ments maps directly to the relative time delay between
the two pulses. Relative delays could be measured down
to ~20 fs resolution, with the appropriate choice of target
gas and frequency shift. The nondispersive properties and
uniform rotational speed of the molecular state are not
dependent on intensity, and so spatial averaging over the
laser focus does not destroy these features. The detailed
angular distribution does depend on intensity, and, in par-
ticular, the bifurcation of the wave packet shown in Fig. 2
will only appear in parts of the focused laser beam where
the intensity exceeds a critical threshold. However, if the
focal spot size of the probe is much smaller than the
adiabatic pump laser, the focal volume averaging effects
are minimal.

As a further extrapolation of this technique, we could
envision a pulse sequence which uses the optical centrifuge
method to move the distribution into the ground state of the
rotational frame Hamiltonian, and then turn off the pulse
envelopes, while maintaining the constant frequency dif-
ference, as in the technique described in this article. The
ensemble will now be left in the ground state of the rota-
tional frame field-free Hamiltonian, which is the state
|J =2, M = 2)solong as ) > Q. A subsequent appli-
cation of the same pulse sequence will return the ensemble
to the laboratory ground state, |[J = 0, M = 0). Actually
the ground state of the rotational frame field-free
Hamiltonian changes every time ) = % , so by varying
the frequency difference of the counterrotating pulses, it
should be possible to move the population to any maximal
M-state, i.e., |J, M = J), by choosing the appropriate rota-
tional speed.
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