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I. INTRODUCTION

Issues related to measurement in quantummechanics are
very different from measurements in classical mechanics
and students usually struggle in learning about quantum
measurement within the standard interpretation. In the first
of these two papers (Part I, Ref. [1]), we describe the
investigation of students’ common difficulties with quan-
tum measurement within the traditional interpretation
which is universally taught to students. Based upon the
findings of the investigation, we have developed research-
based learning tools to help students build a better
knowledge structure about quantum measurement. These
research-based learning tools include Quantum Interactive
Learning Tutorial (QuILT) and peer-instruction tools such
as concept tests similar to those popularized by Mazur for
introductory physics courses [2,3]. The QuILT for quantum
measurement uses a guided inquiry-based approach [4] to
learning and helps students in discerning the coherence in
the framework of quantum mechanics related to quantum
measurement. It can either be used as an in-class tutorial on
which two or three students can work together with full
class discussion and instructor feedback as appropriate or
they can be given as homework supplements [5]. The
concept tests can be integrated with lectures and encourage
students to take advantage of their peers’ expertise and
learn from each other.

In this paper, we will describe the development of the
research-based QuILT and concept tests to help students
develop a good understanding of quantum measurement
within the standard interpretation. We will also discuss
preliminary evaluation results of using these research-
based learning tools in class. The QuILT and concept tests
related to quantum measurement were administered to
students in the first semester of a full-year junior-senior

level quantum mechanics course. They strive to build on
students’ prior knowledge, actively engage them in the
learning process, and help them build links between the
abstract formalism and conceptual aspects of quantum
physics without compromising the technical content. To
assess the effectiveness of the QuILT and concept tests, we
administered the same assessment related to quantum
measurement to the experimental group and a comparison
group in different but equivalent classes at two similar
universities. The comparison group only had traditional
lectures and weekly homework in a similar two-semester
quantum mechanics class in which the same textbook was
used. Our prior investigation shows that the students’
performance on surveys given in the upper-level quantum
mechanics courses at the two universities (experimental
group and comparison group) were comparable when tradi-
tional instruction was used at both institutions. We find that
students who use research-based learning tools perform
significantly better than those who do not use them.
Below, we elaborate on the research-based learning
tools that the students used to learn about quantum
measurement.

II. PEER INSTRUCTION AND CONCEPT TESTS

In the peer-instruction approach, students reflect with
peers upon problems. Integration of peer interaction with
lectures has been popularized in the physics community by
Mazur [2]. In Mazur’s peer interaction approach, the in-
structor poses conceptual problems or concept tests in the
form of multiple-choice questions to students periodically
during the lecture. The focal point of the peer-instruction
method is the discussion among students, which is based
on conceptual questions; the lecture component is limited
and intended to supplement the self-directed learning. The
conceptual multiple-choice questions give students an
opportunity to think about the physics concepts and prin-
ciples covered in the lecture and discuss their answers and
reasoning with peers. The instructor polls the class after
peer interaction to obtain the fraction of students with the
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correct answer. Students learn about the level of under-
standing that is desired by the instructor by discussing with
each other the concrete questions that are posed as concept
tests. The feedback obtained by the instructor is also
invaluable because the instructor learns about the fraction
of the class that has understood the concepts at the desired
level. This peer-instruction strategy keeps students alert
during lectures and helps them monitor their learning,
because not only do they have to answer the questions,
they must explain their answers to their peers. The method
keeps students actively engaged in the learning process and
lets them take advantage of each others’ strengths. It also
helps high-performing students, because explaining and
discussing concepts with peers helps students organize
and solidify concepts in their minds.

Our prior research has shown that, even with minimal
guidance from the instructors, students can benefit from
peer interaction [6]. In our study, those who worked with
peers not only outperformed an equivalent group of stu-
dents who worked alone on the same task, but collabora-
tion with a peer led to co-construction of knowledge.
Co-construction of knowledge occurs when neither student
who engaged in the peer collaboration was able to answer
the questions before the collaboration, but both were able
to answer them after working with a peer on a post-test
given individually to each person. For example, in our prior
research [6], introductory physics students first answered
the questions in the Conceptual Survey of Electricity and
Magnetism (CSEM) [7] individually after traditional in-
struction. Then, they paired up and discussed the questions
with their partners and answered the questions again in
pairs. The fraction of responses on each question that went
from both incorrect individually to the correct response
from the pair is 29% and shows evidence for co-
construction. Individual discussions suggest that students
benefited from discussing their doubts with their peers [6].

The classroom at the University of Pittsburgh (Pitt) in
which QuantumMechanics I was taught was equipped with
a clicker system so that students could submit their answers
electronically. Students were actively engaged in the peer
discussion. The distribution of answers was displayed to the
whole class after all the students had made their choices
following discussion with peers. The professor provided
further explanations based upon students’ responses.

In the concept tests related to quantum measurement or
its prerequisite, we designed a sequence of multiple-choice
questions to address similar concepts in different contexts
[8]. For example, some concept tests dealt explicitly with
how the identity operator can be written as a complete set
of eigenstates of an operator corresponding to physical
observable with discrete or continuous eigenvalues (e.g.,P

njnihnj ¼ Î or
R
all jxihxjdx ¼ Î). Students learned how

towrite any state of the system in terms of a complete set of
eigenstates by using this identity operator. They also
learned about calculating the probability amplitude for

measuring a particular value for an observable by project-
ing the state along the corresponding eigenstate of the
operator as in the following concept test question:

� Suppose jc i is a vector in the Hilbert space which
represents the state of the system at time t ¼ 0. jni are
the eigenstates of the Hamiltonian operator Ĥ with
eigenvalues En. Choose all of the following state-
ments that are correct.

(1) jc i ¼ P
njnihnjc i

(2) e�iĤt=@jc i ¼ P
ne

�iEnt=@jnihnjc i
(3) If we measure the energy of the particle in the state

jc i, the probability of obtaining En is jhnjc ij2.
A. 1 only
B. 1 and 2 only
C. 1 and 3 only
D. 2 and 3 only
E. all of the above

All of the options in this question are correct.
Option (2) reviews the necessity of writing the states as
a linear superposition of the energy eigenstates in order
to determine the time evolution of the state. Option (3)
helps students consider the relationship between the
probability of obtaining an energy eigenvalue and pro-
jecting the state vector along the corresponding energy
eigenstate.
The next concept test question helps students to review

similar issues by writing the state vector as a linear super-
position of a complete set of eigenstates of position or
momentum operators. In this case, the eigenvalue spectrum
is continuous. After answering the previous concept test
question, students know that for a complete set of eigen-

states with discrete eigenvalues,
P

njnihnj ¼ Î, so we ask
them to generalize it to the continuous eigenvalue spectrum
cases which is a natural extension via concept test ques-
tions like the following:

� jc i is a vector in the Hilbert space which denotes the
state of a quantum particle at time t ¼ 0. jxi and jpi
are the eigenstates of position and momentum opera-
tors. Choose all of the following statements that are
correct.

(1) jc i ¼ R jpihpjc idp
(2) jc i ¼ R

c ðxÞjxidx
(3) If we measure the position of the particle in the state

jc i, the probability of finding the particle between x and
xþ dx is jhxjc ij2dx
A. 1 only
B. 1 and 2 only
C. 1 and 3 only
D. 2 and 3 only
E. all of the above

The correct answer to the question above is E. As noted
earlier, in this question, we changed the context from the
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energy eigenstates to the position and momentum eigen-
states. Students must think about how to replace a complete
set of eigenstates with discrete eigenvalues as the basis
vectors with a complete set of eigenstates with a continu-
ous spectrum of eigenvalues. Options (1) and (2) can also
help reinforce the wave function in the momentum repre-
sentation or the position representation. Option (2) reminds
students that the wave function in the position representa-
tion is the projection of the state jc i onto the position
eigenstates, i.e., c ðxÞ ¼ hxjc i. Option (3) helps students
consider the probability of position measurement in anal-
ogy with the probability of energy measurement in the
previous question. The comparison between the two ques-
tions can help students understand that for issues related to
the measurement of an observable, it is useful to expand
the state of the system as a complete set of eigenstates
of the corresponding operator and then the absolute square
of the expansion coefficient is related to the probability
of measurement. Another concept test related to measure-
ment given to the students was the following:

� An operator Q̂ corresponding to a physical observ-
able Q has a continuous nondegenerate spectrum of

eigenvalues. jc qi are eigenvectors of Q̂ with eigen-

values q. At time t ¼ 0, the state of the system is j�i.
Choose all of the following statements that are
correct.

(1) A measurement of the observable Q must return one

of the eigenvalues of the operator Q̂.
(2) If we measure Q at time t ¼ 0, the probability

of obtaining an outcome between q and qþ dq is
jhc qj�ij2dq.

(3) If we measure Q at time t ¼ 0, the probability of
obtaining an outcome between q and qþ dq is
jRþ1

�1 c �
qðxÞ�ðxÞdxj2dq in which c qðxÞ and �ðxÞ are the

wavefunctions corresponding to states jc qi and j�i
respectively.

A. 1 only
B. 1 and 2 only
C. 1 and 3 only
D. 2 and 3 only
E. all of the above

As can be seen, this concept test question (with correct
answer E) generalizes what students had learned in the
previous ones. Note that although all three questions listed
above have the answer ‘‘all of the above,’’ this is not the
case for all of the peer-instruction questions. These three
questions were part of a sequence of concept tests given to
students on quantum measurement. The concept tests were
used throughout the semester by the students in the experi-
mental group. We use these three concept test questions
here to illustrate our strategies for designing the concept
tests as a sequence. The students’ understanding of
quantum measurement in the experimental group partly

relied on the effectiveness of using concept tests as a
peer discussion tool.

III. QUANTUM INTERACTIVE LEARNING
TUTORIAL (QuILT) RELATED TO

MEASUREMENT

The goal of the measurement QuILT is to build connec-
tions between the formalism and conceptual aspects of
quantum measurement without compromising the techni-
cal aspects [5]. The measurement QuILT can be imple-
mented in class so that two or three students work together
on it. Or it can also be given to the students as homework or
self-learning materials [9].
The measurement QuILT builds on students’ prior

knowledge and was developed by taking into account the
difficulties found in the written surveys and interviews.
QuILT development went through a cyclical iterative pro-
cess which includes the following stages: (1) development
of the preliminary version based upon theoretical analysis
of the underlying knowledge structure and research on
students’ difficulties, (2) implementation and evaluation
of the QuILT by administering it individually to students,
measuring its impact on student learning and assessing
what difficulties remained, (3) refinement and modification
based upon the feedback from the implementation and
evaluation.
Individual interviews with students were carried out

using a think-aloud protocol [10] to better understand the
rationale for their responses before, during, and after
the development of different versions of the QuILT and
the corresponding pre-test and post-test. During the semi-
structured interviews, students were asked to verbalize
their thought processes while they answered questions
about measurement either as separate questions before
the preliminary version of the QuILT was developed or
as a part of the QuILT. Students were not interrupted unless
they remained quiet for a while. In the end, we asked them
for clarification of the issues they had not made clear
earlier. Some of these interviews involved asking students
to predict what should happen in a particular situation,
having them observe what happens in a simulation, and
asking them to reconcile the differences between their
prediction and observation. After each individual interview
with a particular version of the measurement QuILT (along
with the pre-test and post-test administered), modifications
were made based upon the feedback obtained from the test
results and students’ performance on the QuILT (if stu-
dents got stuck at a particular point and could not make
progress from one question to the next with the hints
already provided, suitable modifications were made).
When we found that the measurement QuILTwas working
well in individual administration and the post-test per-
formance was significantly improved compared to the
pre-test performance, it was administered in the quantum
mechanics class.
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The measurement QuILT uses computer-based visual-
ization tools to help students build a physical intuition
about concepts related to quantum measurement [11–15].
The Open Source Physics program [16,17] was adapted as
needed throughout the measurement QuILT. This program
is flexible and can be easily tailored to the desired situ-
ations. In the measurement QuILT, after predicting what
they expect in various situations, students are asked to
check their predictions using simulations. If the prediction
and observations do not match, students reach a state of
disequilibrium and themselves realize that there is some
inconsistency in their reasoning. At that point the QuILT
provides them appropriate guidance and support to help
build a good grasp of relevant concepts and reconcile the
difference between their predictions and observations.

A. Warm-up exercises for the measurement QuILT

The measurement QuILT begins with warm-up exercises
that students work on before learning from the QuILT. In
our research we found that some students have difficulties
in understanding the basic concepts about eigenstates
of an operator corresponding to a physical observable.
Therefore, we designed the warm up to help students
review the concept of eigenstate and to help them under-
stand that the eigenstates of all physical observables are not
the same. First, we let students differentiate the energy
eigenstates and a possible wave function which was a
linear superposition of the energy eigenstates. Questions
were also designed to help students understand that energy
eigenstates satisfy the time independent Schrödinger equa-
tion (TISE) but their linear superpositions with different
energies do not. In addition to the questions in verbal and
mathematical representations that asked students to con-
sider the differences between the energy eigenstates and
their linear superposition, one question asked them to
select the energy eigenstates from three pictorial represen-
tations as shown in Fig. 1 (in which the first two were
sinusoidal) for a 1D infinite square well.

Pictures (I) and (II) in Fig. 1 correspond to the ground
and first excited state wave functions c 1 and c 2, respec-

tively. Picture (III) is one particular linear superposition of
(I) and (II) (e.g., c 1 þ c 2). The warm-up tutorial helps the
students learn that the energy eigenstates for this system
are even or odd about the center of the well but their
superposition need not be. After the 1D infinite square
well model, similar considerations were reinforced using
the simple harmonic oscillator (SHO) model. From these
two models, students learned that the eigenfunctions of
different Hamiltonians have different shapes in position
space but they satisfy the TISE for the respective systems
because they are states with definite energy. Students were
required to summarize these characteristics of the energy
eigenstates after they studied these two examples in the
warm up.
The position eigenstate was also important in helping

students understand the concept of an eigenstate and the
fact that not all eigenstates are energy eigenstates. Students
were asked to draw a position eigenfunction in the position
spacewith an eigenvalue x0 or a particle interacting with an
infinite square well or a finite square well. The warm up
helps students recognize that unlike the energy eigenfunc-
tions, the position eigenfunctions have the same shape for
all the 1D systems and their shape has nothing to do with
the Hamiltonian of the system. In the warm up, students
also learned about the mathematical representation of a
position eigenfunction as a delta function in position space
and they were explicitly asked to compare the position
eigenfunction and the energy eigenfunction in position
space. In one question, they were asked to consider
the following statement and explain why they agreed or
disagreed:

� ‘‘The position eigenstate and energy eigenstate are
the same for a given system. After all, they are all
eigenstates.’’ Explain why you agree or disagree with
this statement.

The warm up helped students learn about the properties
of eigenstates of the operators corresponding to different
physical observables. Students learned that eigenstates of
different operators are different and they satisfy an eigen-
value equation for that operator. They also learned that if
the system is in an eigenstate of an operator corresponding
to a physical observable, that observable is well defined in
that state and its measurement will yield a definite value
with 100% probability.

B. Outcome of quantum measurement

The main measurement QuILT was divided into two
sections. One deals with outcomes of measurement and
the probability of obtaining those outcomes whereas the
other deals with time evolution after the measurement.
The measurement QuILT begins with the basic model
of a 1D infinite square well. For different states jc 1i,
1ffiffi
2

p ðjc 1i þ jc 2iÞ, and j�i ¼ P
Anjc ni, students predict

FIG. 1. Pictorial question in the warm up testing students’
understanding of the energy eigenstates for a 1D infinite square
well. (I) and (II) are energy eigenstates but their superposition
(III) is not.

GUANGTIAN ZHU AND CHANDRALEKHA SINGH PHYS. REV. ST PHYS. EDUC. RES. 8, 010118 (2012)

010118-4



what value they would obtain and what state the system
would be in after the measurement. After their prediction,
they use a computer simulation (adapted from the open
source physics simulations) to examine their responses. If a
student’s prediction is inconsistent with what they observe
in the simulation, there is a cognitive conflict which pro-
vides motivation to resolve the inconsistency [18]. Then
the QuILT provides guidance to students to help them re-
concile the differences between their predictions and ob-
servations so they can build a robust knowledge structure.

In the simulation, one example of an initial state is

ðjc 1i þ jc 2iÞ=
ffiffiffi
2

p
whose absolute value in position space

is shown in Fig. 2(a). The vertical axis is the absolute value
of the wave function and the horizontal axis is the position.
Our research of students’ difficulties showed that some
students mistakenly thought they may obtain the value
ðE1 þ E2Þ=2 if they measure energy in the superposition

of the energy eigenstates ðjc 1i þ jc 2iÞ=
ffiffiffi
2

p
. In the simu-

lation, students can measure the physical observables of

position, momentum, and energy to examine the possible
outcomes. In Fig. 2(a), students can observe the shape of

the absolute value of the superposition state ðjc 1i þ
jc 2iÞ=

ffiffiffi
2

p
in position space at time t ¼ 0. When the stu-

dents measure the energy of the system, the state of the
system may collapse to the energy eigenstates jc 1i or jc 2i
whose absolute values in position space are shown in
Figs. 2(b) and 2(c) respectively.
The students are also asked to reset the initial state and

repeat the measurement process several times to check
whether the measurement yields the same result (the
probability is 50% for obtaining jc 1i or jc 2i). Since the
state is a superposition of only two stationary states, it is
possible for the students to obtain the same state after the
energy measurements. Therefore, the QuILT asked stu-
dents what could happen if they measured energy in the
state

P
Anjc ni whose absolute value in position space is

shown in Fig. 3, and which is a linear superposition of nine
stationary states jc 1i to jc 9i with equal probability. After

FIG. 2 (color online). Simulation program of the energy measurement on a superposition state [as shown in (a)] with two energy
eigenstate components [as shown in (b) and (c)]. The vertical axis is the absolute value of the wave function (not the probability density
for position measurement) and the horizontal axis is the position x.

FIG. 3 (color online). Simulation program of the energy measurement on a superposition state [as shown in (a)] with nine energy
eigenstate components. (b),(c) Examples of absolute values in position space of two basis energy eigenstates of the superposition state.
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predicting the probability of obtaining different values of
energy, students were asked to measure the energy, reset
the system to the initial state, and measure it again. Since
the probability of measuring the same energy is small for
this superposition, students appreciated this example while
working on the QuILT. To ensure that the students under-
stood the issues related to the energy measurement in
multiple contexts, the QuILT also incorporated questions
for the SHO Hamiltonian.

Since the students have difficulties in differentiating
between the energy eigenstates and the eigenstates corre-
sponding to other operators corresponding to physical ob-
servables, the measurement QuILTalso helps students with
issues related to the position measurement with initial
states similar to those for the energy measurement, e.g.,
1D infinite square well and SHO with the initial states jc 1i
or 1ffiffi

2
p ðjc 1i þ jc 2iÞ. Students first predict theoretically

what state they would obtain after a position measurement
and then they use the simulation to check their prediction.
In an ideal position measurement, the state of the system
would collapse to a delta function in position space at a
position where the probability of measuring the position is
nonzero. As shown in Fig. 4, the initial state jc 1i collapses
to a broad peaked Gaussian packet (absolute value shown
in position space) because of the computational limitations
in constructing a very peaked function. However, the
QuILT uses this opportunity to help students recognize
that a delta function is a theoretical construction and the
position measurement in real world situations, e.g., single
particles in double slit experiment landing on the screen,
would have an uncertainty in position measured.

After predicting what should happen if they perform
position measurements on a large number of identically
prepared systems, students are asked to reset the initial
state of the system and repeat the position measurement.
They observe that the center of the collapsed wave function
is generally different but its shape is always the same. This

notion is verified by the students in multiple contexts, e.g.,
for different quantum systems and different initial states.
Students are explicitly asked to compare and contrast what
they learned from the measurements of position and energy
to help them understand better the outcomes of measure-
ment for different physical observables.

C. Calculating the probability
of measuring different values

In addition to helping students learn about the possible
outcomes of a measurement, the QuILT also teaches stu-
dents how to calculate the probability of obtaining each
outcome, which is a common difficulty for both under-
graduate and graduate students as shown in our research. In
surveys and individual interviews, we found that most
students could find the probability of measuring different
energies by observing the coefficients in an explicit super-
position of stationary states, e.g., 1ffiffi

2
p ðjc 1i þ jc 2iÞ. In the

QuILT, students first learn to interpret these coefficients by
using the projection of the initial state along an eigenstate
of the operator corresponding to the observable measured.
In a guided approach, students learn to calculate the co-
efficients of different energy eigenstates for cases where
the wave function may not be explicitly written as a linear
superposition of stationary states. The QuILT also helps
students make connection between the Dirac notation
form and integral form of the inner product hc nj�i ¼R
c �

nðxÞ�ðxÞdx (a common difficulty with the position

representation is that students do not realize that there is
an integral involved in writing hc nj�i in position space).
Students are asked to infer the dimension (unit) of the inner
product hc nj�i and the physical meaning of jhc nj�ij2.
These abstract inner products are calculated in concrete
contexts, e.g., j�i ¼ 1ffiffi

2
p ðjc 1i þ jc 2iÞ. Students learn that

for this concrete case, for n � 3, the probability of obtain-
ing energy En is zero because the projection of the state

FIG. 4 (color online). Simulation program showing one possible outcome of the position measurement on an energy eigenstate (in
position space). (a) Before position measurement and (b) after position measurement.
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j�i along the eigenstate jc ni is zero, i.e., hc nj�i ¼ 0.
After making sense of the probability for measuring energy
for state jc i ¼ 1ffiffi

2
p ðjc 1i þ jc 2iÞ, students calculate the

probabilities of measuring different energies for a general
state j�i ¼ P

nAnjc ni, which is explicitly written as a
linear superposition of stationary states. They can find
that An ¼ hc nj�i is the probability amplitude and
jhc nj�ij2 is the probability of measuring energy En.

The QuILT then helps the students to understand that
any possible state j�i which is not explicitly written as a
linear superposition of a complete set of eigenstates of an
operator corresponding to a physical observable, e.g., en-
ergy, could be written that way. For example, students are
asked the following question.

� The orthonormal energy eigenfunctions c nðxÞ for a
1D infinite square well satisfy

Rþ1
�1 c �

nðxÞc mðxÞdx ¼
�mn, where �mn ¼ 1 when m ¼ n, and �mn ¼ 0
otherwise. Any state j�i can be expressed as j�i ¼P

nAnjc ni because jc ni form a complete set of vec-
tors for the Hilbert space in which the state of the
system lies. Find An in terms of j�i and jc ni first in
the Dirac notation form and then in the integral form
in the position representation.

If the students did not have the mathematical skills to
answer the question above, hints were provided, e.g., about
how to use the Fourier trick and multiply both sides of the
expression �ðxÞ ¼ P

Anc nðxÞ by c �
mðxÞ and integrate

over all space. Then students calculated the probability
of obtaining En for a concrete example of a triangle-shaped
wave function for a 1D infinite square well for which the
wave function was not explicitly written in terms of a linear
superposition of energy eigenfunctions. Students further
contemplated over these issues in multiple contexts such as
the SHO model.

The QuILT helps students learn that the probability of
measuring other physical observables can be obtained by
projecting the state of the system along an eigenstate of an
operator corresponding to a physical observable. They use
this projection method to analyze the probability density
for position measurement. Earlier in the QuILT, students
had already learned that hc nj�i ¼ R

c �
nðxÞ�ðxÞdx. They

had also been asked to differentiate between an energy

eigenfunction c 1ðxÞ ¼
ffiffi
2
a

q
sinð�xa Þ of a 1D infinite square

well and a position eigenfunction c ðxÞ ¼ �ðx� x0Þ with
eigenvalue x0. In the QuILT, students were explicitly asked
to project the ground state of the system jc 1i onto
the position eigenstate jx0i with eigenvalue x0 and

interpret their result. jhx0jc 1ij2 ¼ jRþ1
�1 �ðx� x0Þ�ffiffiffiffiffiffiffiffi

2=a
p

sinð�x=aÞdxj2 ¼ j ffiffiffiffiffiffiffiffi
2=a

p
sinð�x0=aÞj2 is the proba-

bility density for finding the particle at the position x0.
Moreover, by the definition of wave function, jc 1ðxÞj2 ¼
jhxjc 1ij2 is the probability density for finding the particle
at position x. The QuILT required students to assimilate the

Born interpretation of the probability density for finding
the particle with the method of projecting the state vector
along a position eigenstate.
After students had learned about the probability density

for position measurement using the projection method, the
QuILT explicitly brings up a common difficulty they have
in differentiating between the probability of obtaining a
particular value, the expectation value, and similar looking
expressions. For example, students are asked to consider
the following statement:

� If the initial state is j�i for a particle in a 1-D infinite
square well, jhc 1jHj�ij2 is the probability of obtain-
ing energy when measuring the energy of the particle.
Do you agree with this statement? Explain.

Students are given hints to consider the dimension (unit)
of hc 1jHj�i. They are also asked to consider the physical
meaning of h�jHj�i and h�jxj�i (in terms of the average
of a large number of measurements on identically prepared
systems). The warm-up tutorial had already helped stu-
dents learn that the energy eigenstates jc ni satisfy the

TISE Ĥjc ni ¼ Enjc ni. By decomposing the general state
j�i into a linear superposition of jc ni, students can learn
that hc 1jHj�i ¼ E1hc 1j�i has the dimension of energy.
They also contemplate over the fact that the expectation
value of the energy in state j�i is the average of a large
number of measurements on identically prepared systems,
i.e., h�jHj�i ¼ P

njAnj2En. In an analogous manner, they
interpret the expectation value of position h�jxj�i.
Explicit comparison of the expectation values with the
measurement probabilities is designed to help students
distinguish between these related concepts.

D. Time development of the system after measurement

The second section of the measurement QuILT focuses
on the time development of a quantum system after a
measurement. After an energy measurement, the system
collapses into a stationary state and remains in that state
until another measurement is performed. If one were to
measure, e.g., the position of the particle, the wave func-
tion of the system will subsequently evolve in time to a
state which is not an eigenstate of position. In the QuILT,
the time evolution of a quantum system after energy and
position measurement were explicitly compared to help
students learn about the differences between stationary
and nonstationary states.
In the first section of the measurement QuILT, students

learn about the possible outcomes of the energy measure-
ment in a 1D infinite square well for three different cases
where the states of the system are jc 1i, 1ffiffi

2
p ðjc 1i þ jc 2iÞ,

and
P

nAnjc ni at time t ¼ 0 when the measurements are
performed. At the beginning of the second part of the
measurement QuILT, we ask students about the possible
values of the energy measurement if we started with the
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same three initial states but performed the measurement at
a time t > 0. Also, they are explicitly asked to write the
states of the system right before the measurement in each
case. For example, if the initial state is jc 1i, the wave

function at time t would be jc 1ie�iE1t=@, which is still the
ground state and the energy measurement will yield the
ground state energy E1 with 100% probability. If the initial
state is 1ffiffi

2
p ðjc 1i þ c 2iÞ, the state of the system will evolve

into 1ffiffi
2

p ðjc 1ie�iE1t=@ þ jc 2ie�iE2t=@Þ after a time t. Thus,

the probability of measuring energy is unchanged (in this
case 50% each for the ground and first excited state en-
ergies) even if the system is in a linear superposition of
stationary states. Many students correctly predicted that
the energy measurement at time t > 0 would yield the
same valuesE1 andE2 as at time t ¼ 0, but they incorrectly
justified it by saying that the wave function after a time t is
the same as that at time t ¼ 0. Students were asked to
check their prediction with simulation showing the time
evolution of the absolute value of the wave function with
two energy eigenstate components. After they observed
that the shape of the absolute value of the wave function
changes with time as shown in Fig. 5, contrary to their
initial prediction, they tried to examine the state of the
system at time t > 0 to resolve the inconsistency between
their prediction and their observation.

Students were also asked to repeat the measurement of
energy at different time, e.g., t ¼ 2 or 3 units after resetting
the system to the same initial state after each measurement.
They realized that the system only collapsed into jc 1i and
jc 2i. At this point, the QuILT helped them reason system-
atically about why the probability of measuring different
values of energies does not change with time even though
the shape of the wave function changes with time for the

state j�i ¼ 1ffiffi
2

p ðjc 1ie�iE1t=@ þ jc 2ie�iE2t=@Þ.
Some students held the misconception that the state of

the system after the measurement would eventually go

back to the initial state before the measurement. In the
QuILT, students observed the time evolution of the wave
function after the energy measurement and found that the
system stays in the stationary state in which it collapsed
(jc 1i and jc 2i), as shown in Figs. 6(b) and 6(c) as absolute
values in position space, instead of going back to the initial
state which is a linear superposition of these states.
Students predict and then perform the same sequence of
activities with a more general state j�i ¼ P

Anjc ni in
position space in which more than two coefficients are
nonzero. They learn that the wave function in this super-
position state keeps changing shape with time but the
system collapses to one of the energy eigenstates and
remains there after the measurement of energy. The
QuILT helps the students understand that while the mea-
surement instantaneously collapses the wave function, the
wave function after the measurement evolves in time in a
deterministic manner according to the time-dependent
Schrödinger equation (TDSE). Moreover, comparison of
the time evolution of an energy eigenstate jc ni (after the
measurement) and a general state which is a linear super-
position of stationary states (before the measurement) in
position space helps build intuition about the meaning of
stationary states and nonstationary states.
Many students held the misconception that, after the

position measurement, the position eigenstate does not
change with time and the system is stuck in a position
eigenstate. In the QuILT, students are asked to use the
simulation after their initial prediction of what should
happen when they perform a position measurement starting
from a general state. In an ideal measurement, at the instant
the position is measured, the wave function of the system
will collapse to a delta function �ðx� x0Þ about the mea-
sured value x0 approximated in Fig. 7(a). The position
eigenfunction can be written as a linear superposition of
the energy eigenfunctions, i.e.,�ðx; t ¼ 0Þ ¼ �ðx� x0Þ ¼P

nAnc nðxÞ. Different energy eigenstates will have their

FIG. 5 (color online). Time evolution on a superposition state with two energy eigenstate components. (a) The absolute value of the
initial state wave function (t ¼ 0). (b),(c) The absolute values of the wave function at different times [(b) t ¼ 2:50 units,
(c) t ¼ 5:34 units]. The phases of the wave function are represented by different colors.
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own time-dependent phase factors and the wave function
�ðx; tÞ would not be a delta function �ðx� x0Þ except at
some special times. Figures 7(b) and 7(c) show selected
snapshots of the time evolution of the absolute value of the
position eigenfunction.

Besides the pictorial representation in the simulations,
the QuILT helps students learn to interpret the time evolu-
tion of wave function via the TDSE and discern the central
role of the Hamiltonian of the system in the evolution. The
following is an example of a question that students are
asked:

� Given the wavefunction at time t ¼ 0, why is it useful
to write the state of a quantum system as a superpo-
sition of energy eigenstates to find the wavefunction
after time t?

Students must realize that the Hamiltonian governs the
time evolution of the system according to the TDSE so the

eigenstates of the Hamiltonian are special for issues related
to the time evolution of the wave function. Help is provided
at the end of the QuILT if students are struggling with these
issues.
Though students learn formally that the position ei-

genstate is not a stationary state, some of them still held
the misconception that the position eigenstate after a
position measurement would finally return to the initial

state, e.g., ðjc 1i þ jc 2iÞ=
ffiffiffi
2

p
. The simulation is helpful

in confronting this mistaken belief. The students observe
that the delta function does not remain a delta function
as shown in Fig. 7 (although there is revival of the delta
function periodically for a 1D infinite square well). They
perform a systematic analysis of the time dependence of
the wave function starting with a delta function to con-
vince themselves that the state will never go back to the

state right before the measurement, i.e., ðjc 1i þ
jc 2iÞ=

ffiffiffi
2

p
. Since the delta function �ðx� x0Þ contains

nonzero coefficients An for higher energy eigenstate

FIG. 6 (color online). Energy measurement on a superposition state with two energy eigenstate components after time t > 0. (a) The
superposition state before the energy measurement. (b),(c) The two possible outcomes of the quantum measurement.

FIG. 7 (color online). Time evolution of the position eigenfunction. (a) The position eigenfunction right after a position
measurement. (b),(c) The wave function of the system at later times after the position measurement.
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wave function c nðxÞ (n > 2), the probability of measur-

ing these higher energies jAne
�iEnt=@j2 would never be

zero. Therefore, the system cannot return to the state

ðjc 1i þ jc 2iÞ=
ffiffiffi
2

p
after the position measurement, no

matter how long the wait.
It is important that students learn whether the probability

of obtaining different energies or positions changes

with time. For a general wave function �ðx; tÞ ¼P
nAnc ne

�iEnt=@ at time t, the probability of obtaining En

in an energy measurement is a constant jAne
�iEnt=@j2 ¼

jAnj2 independent of time. However, when position is mea-
sured, the probability density of finding the particle at x ¼
x0 is j�ðx0; tÞj2 ¼ jPnAnc nðx0Þe�iEnt=@j2 which depends
on time. This nontrivial time dependence of the probability
of position measurement can be observed in the simulation
since the absolute value of the wave function keeps chang-
ingwith time. TheQuILT helps students learn to distinguish
between the time dependence of the probability of measur-
ing energy and position through a concrete example of the

wave function 1ffiffi
2

p ½c 1ðxÞe�iE1t=@ þ c 2ðxÞe�iE2t=@�.

E. Consecutive measurements

After students learned about how to analyze the time
evolution of the wave function according to the TDSE after
the measurement of a physical observable, the related
concepts were reinforced by asking them questions about
consecutive measurements. For example, students were
asked about the possible outcomes of an energy measure-
ment after a position measurement in the state 1ffiffi

2
p ðjc 1i þ

jc 2iÞ. Some students incorrectly claimed that one can only
obtain energies E1 or E2. However, since the position
measurement will collapse the system to a position eigen-
state which is a superposition of the energy eigenstates
jc ni (including those corresponding to very high ener-
gies), the energy measurement that follows the position
measurement could yield a very high value En. After the
prediction, students use the simulation in position space to
check their prediction and find that the wave function could
collapse to an energy eigenstate c n with n � 3 as shown in
Fig. 8. Students are also asked to calculate the probability
for measuring different energy values.

FIG. 8 (color online). Energy measurement after a position measurement of the initial state with only two energy eigenstate
components n ¼ 1 and n ¼ 2 as shown in (a). Following the position measurement in (b), the energy measurement yields the energy
eigenvalue with n ¼ 5 as shown in (c).

FIG. 9 (color online). Consecutive position measurement in quick succession (a),(b) and after waiting for some time (c),(d).
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Students are also asked to predict what would happen
if they made two consecutive position measurements
quickly so that the wave function does not have the
time to evolve. In the simulation, they find that when
the second measurement was made immediately after the
first measurement, the particle is found approximately at
the same position since the wave function does not have
the time to evolve. On the other hand, the wave function
would not be a peaked delta function if we waited for
some time before performing the second measurement
and we can find the particle at a different position. The
simulation provides the flexibility of stopping or starting
the time evolution at any point (or even stepping through
time evolution slowly) so that students can note the
differences between the consecutive position measure-
ments performed in quick succession as shown in
Figs. 9(a) and 9(b) versus slowly as shown in Figs. 9(c)
and 9(d).

IV. PRELIMINARY EVALUATION

We designed a pre-test and a post-test to assess some
issues related to measurement after the traditional instruc-
tion, after concept tests related to measurement (pre-test),
and after working on the measurement QuILT (post-test).
To eliminate any possible differences in the difficulty
levels of the pre-test and the post-test, we divided the tests
into two versions, i.e., test A and test B. Test A and test B
both had two multiple-choice questions (Q1 and Q2) and
four open-ended questions (Q3–Q6). We randomly as-
signed tests A and B when we distributed the pre-test and
post-test to students in both the comparison group and the
experimental group. In the experimental group, students
who obtained test A in the pre-test were given test B in the
post-test and vice versa.
The comparison group students only had traditional

lectures in class and regular homework problems from

TABLE I. The pre-test and post-test scores on each question of test A. The concepts involved in each question are shown in italic.

Test A Comparison group (15) Experimental group pre-test (15) Experimental group post-test (15)

Traditional Lecture and Concept Lecture and Concept

Lecture only Test Test and QuILT

Q1 whether a wave function is an energy eigenstate

13% 67% 87%

Q2 energy measurement outcomes of a superposition state

40% 93% 100%

Q3 sketch the shape of a position eigenstate and find the probability

37% 77% 87%

Q4 probability of energy measurement

3% 62% 77%

Q5 consecutive position measurement after position measurement

37% 78% 100%

Q6 consecutive energy measurement after energy measurement

53% 70% 93%

TABLE II. The pre-test and post-test scores on each question of test B. The concepts involved in each question are shown in italic.

Test B Comparison group (10) Experimental group pre-test (16) Experimental group post-test (14)

Traditional Lecture and Concept Lecture and Concept

Lecture only Test Test and QuILT

Q1 what state will the system be in after a quantum measurement

50% 69% 86%

Q2 what is a stationary state

0% 75% 79%

Q3 energy measurement outcomes and probabilities

15% 97% 100%

Q4 sketch the shape of an energy eigenstate

35% 88% 96%

Q5 consecutive position measurement after energy measurement

10% 66% 89%

Q6 consecutive energy measurement after position measurement

0% 66% 93%

IMPROVING STUDENTS’ . . . . PHYS. REV. ST PHYS. EDUC. RES. 8, 010118 (2012)

010118-11



the textbook. Students in the comparison group took the
test at the end of their first semester quantum mechanics
course when all the topics about quantum measurement
had been taught. The class average (25 students) was 26%
including both test A and test B. The experimental group
students had been using the concept tests as a peer-
instruction tool in class since the first day of the semester.
The pre-test was given to the students after the lecture and
the average score for 31 students was 76%. The experi-
mental group students were given the QuILT as homework
after being administered the pre-test in class. When they
turned in the QuILT as homework, they were administered
the post-test. Their post-test average score was 91% for 29
students (2 students absent in the post-test).

To analyze students’ understanding of different concepts
and principles in quantum measurement, we calculated the
percentage of correct responses for each question in test A
and test B as listed in Table I and II. The numbers in the
brackets represent the number of students who answered
that question. The concepts involved in each question are
also shown in Tables I and II.

From Q1 in test A and Q2 in test B, we observe that the
concept tests in class resolved many of the students’ diffi-
culties related to the difference between the stationary states
and the eigenstates of the operators corresponding to any
physical observables. Q4 in test A and Q3 in test B suggest
that after the research-based learning tools, students
can better apply the projection method to calculate the
probabilities of measuring a physical observable. When
answering Q3 in test A and Q4 in test B after using the
concept tests and theQuILT, students also showed improved
interpretation of the shapes of the eigenfunctions for
different operators corresponding to different physical ob-
servables. For the questions related to the time development

of the wave function after a measurement, e.g., Q6 in both
test A andB, the QuILT led students to a better performance
compared to when they used the concept tests only. Also,
the QuILT helped the students have an improved under-
standing of the measurement outcome and the properties of
the corresponding eigenstate. After learning from the
QuILT, more students could correctly answer the questions
related to consecutive measurements such as Q5 in both
test A and B. Because of the limitation of sample size,
individual performance might affect the average score on
each question. However, the effectiveness of the concept
tests and QuILTs in improving students’ performance is
reflected by the difference in the overall performance of
the experimental group and the comparison group.

V. SUMMARYAND CONCLUSION

Students have common difficulties in learning the issues
related to quantum measurement. We have developed the
research-based learning tools such as the QuILT and con-
cept tests to improve students’ understanding of quantum
measurement concepts. Both these learning tools keep
students actively engaged in the learning process. They
provide a guided approach to bridge the gap between the
quantitative and conceptual issues related to quantum mea-
surement, help students connect different concepts, and
build a knowledge structure. Our preliminary results
show that these learning tools are effective in improving
students’ understanding about quantum measurement.
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