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Solving physics problem in university physics education using a computational approach requires

knowledge and skills in several domains, for example, physics, mathematics, programming, and

modeling. These competences are in turn related to students’ beliefs about the domains as well as about

learning. These knowledge and beliefs components are referred to here as epistemic elements, which

together represent the students’ epistemic framing of the situation. The purpose of this study was to

investigate university physics students’ epistemic framing when solving and visualizing a physics problem

using a particle-spring model system. Students’ epistemic framings are analyzed before and after the task

using a network analysis approach on interview transcripts, producing visual representations as epistemic

networks. The results show that students change their epistemic framing from a modeling task, with

expectancies about learning programming, to a physics task, in which they are challenged to use physics

principles and conservation laws in order to troubleshoot and understand their simulations. This implies

that the task, even though it is not introducing any new physics, helps the students to develop a more

coherent view of the importance of using physics principles in problem solving. The network analysis

method used in this study is shown to give intelligible representations of the students’ epistemic framing

and is proposed as a useful method of analysis of textual data.
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I. INTRODUCTION

Numerical problem solving in university physics edu-
cation, including interactive visualizations and simula-
tions, has been a subject of increasing attention during
the past years [1,2]. Increasing computer capacity
together with newly developed modeling and problem-
solving environments have cleared the way for new ap-
proaches in physics education, for physics majors, engi-
neering students, as well as for other physics students. By
using a problem-solving environment such as, for ex-
ample, MAPLE or MATLAB, students can numerically solve
physics problems, create visual simulations, practice
mathematical and physical modeling, and investigate
physics phenomena, rather than just calculating an answer
[3–7]. This approach differs from the traditional way of
teaching and learning physics where problem solving is
generally limited to analytical problems that can be
solved with pencil and paper. Using the computer as a
tool offers possibilities to investigate more complex prob-
lems, which opens the way for a deeper comprehension of
how physics is used to explain phenomena. However, a
problem-solving and simulation environment that requires
extensive programming can also be expected to draw

attention from and interfere with elaboration of the con-
ceptual content of a physics task. The effects of these
types of tasks on students’ cognition therefore need fur-
ther attention in order to design tasks according to their
purposes. This study focuses on investigating university
physics students’ cognitive representations, in terms of
epistemic framing, associated with an assignment about
solving a computational physics problem. Epistemic
framing is here referred to as the cognitive patterns that
are made up of descriptive elements, which I call epis-
temic elements, such as knowledge, skills, beliefs, and
strategies, of how the students experience the learning
situation. Previous studies have approached representa-
tions of cognitive structures using concept mapping [8],
mental models, [9], and schemata [10]. Recent studies
have shown that network analysis can also be a useful
tool in order to measure and visualize mental representa-
tions [11,12] since dynamic characteristics and flow of
information within these representations can be investi-
gated. In this study a network analysis approach is used in
order to build and investigate representations of students’
epistemic framing before and after a task in numerical
physics problem-solving. In what follows, the underlying
conceptual framework for this study is discussed from the
aspects of (a) simulations and modeling in physics edu-
cation and the autonomous characters of these tasks,
(b) cognitive representations within the context of physics
education as epistemic framing, and (c) network analysis
as a method of visualizing and analyzing the complexity
of a cognitive representation.
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II. CONCEPTUAL FRAMEWORK

A. Simulation and modeling in physics education

Previous studies show that students often leave the class-
room with the same novicelike physics knowledge and
beliefs that they had when they entered the classroom
[13]. One reason is that the students are not challenged
with problems and other learning activities that encourage
them to use and develop their physics knowledge towards
being expertlike [14,15]. Hestenes [16] suggests that stu-
dents must practice even more to develop and use models
for specific physics systems and processes in order to learn
the structure of physics. Indeed, computer environments
for simulation, modeling, and problem solving have
shown to be powerful tools in physics education for
developing conceptual understanding [17] as well as for
modeling and problem-solving skills, e.g., PhET simula-
tion [18–20], easy JAVA simulations [4], and VPYHTON [6].
However, these environments may differ significantly with
regard to the learning conditions they provide, representing
different levels of autonomy and requiring more or less
knowledge and skills in modeling, programming, mathe-
matics, or physics. The level of autonomy in a learning
situation constitutes whether a student can choose how,
when, and where the learning should take place but is also
indicated by the student’s perceived competence and con-
trol of the situation [21]. The possibility to autonomous
behavior can thus be considered as being an important
entity in the constructionist learning framework [22] where
tasks are designed to motivate students to use their own
knowledge in order to build things and thus create new
knowledge. Other researchers argue that the level of
autonomy provided by a task must match the students’
epistemological beliefs for the situation to produce positive
effects with respect to cognition and motivation [15,23].
Autonomous behavior can be encouraged by guidance
from teachers as well as the feedback from the results of
their exercises, e.g., computer simulations and visualiza-
tions or a physical product such as a building or a con-
struction. The problem-solving environment used in this
study, MATLAB, requires programming skills but also pro-
vides support concerning functions and graphics in order to
numerically solve a physics problem and visualize the
result in a simulation [7]. The particle-spring model system
together with the MATLAB environment used in this study is
therefore considered to represent a situation which pro-
vides autonomy in the problem-solving process as well as
feedback in terms of visualizations and compilation
messages.

B. Cognitive representation in physics education

Physics is a unique subject field since it involves many
levels of abstractions in different forms of representations
[24], e.g., conceptual (laws and principles), mathematical
formalism, experimental (equipment), and descriptive

(tables, graphs). Hence, what it actually means to under-
stand physics is a challenging question. As argued earlier,
solving computational problems in physics is not only
about physics knowledge but also about skills and knowl-
edge associated with math, programming, and modeling.
There are few studies about how these knowledge and
skills interact and what the students actually learn,
and an important issue is whether students mainly train
programming skills or if they actually learn physics.
The organization of knowledge with a cognitive ap-

proach is described in several ways in the literature about
physics education research. Schema [10,25], scripts [26],
mental models [9,27–29], and frames [30,31] are some of
the constructs that are used in order to describe how
physics knowledge is organized in the human mind.
These constructs have distinctions in meaning and how
they are used, but they have in common an underlying
idea of knowledge as represented by elements that are
connected in some pattern. These elements can have differ-
ent meanings and represent different knowledge or beliefs
about knowledge. Schemas and scripts are rather run
schedules for a particular situation [26] while mental
models can be seen as working models for conceptual
comprehension of a situation [32]. Since frames have
been described to represent a wider representation of
how a learning situation is experienced including knowl-
edge as well as beliefs [33,34], this construct is chosen to
be a part of the framework.

1. Beliefs

The choice of including students’ beliefs as elements
contributing to the cognitive structure in the present study
was based on previous results showing beliefs as an im-
portant actor in the learning process [35,36]. Previous
studies have also shown that beliefs were important pre-
dictors of performance in the context of computational
physics [37,38]. When characterizing student’s epistemo-
logical beliefs in introductory physics, Hammer [36] used a
framework consisting of three dimensions: structure of
physics, content of physics knowledge, and learning phys-
ics. Student beliefs were found to be involved in their work
in the course and were consistent across physics content.
Hammer found, for example, that if students believed that
physics knowledge consisted of facts rather that general
principles, it was reflected in how these students solved
problems and explained phenomena, i.e., relating to iso-
lated facts rather than using physics laws and principles.
Previous research on motivation in learning has also put

emphasis on the importance of student beliefs. The
expectancy-value framework is an important contribution
to research on motivated learning behavior in order to
predict academic achievement [39] and holds expectancy
beliefs, describing self-perceptions of competence, and
value beliefs, referring to the reasons the student may
have for engaging in a task, as the two most important
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variables in achievement behavior. Students may also have
beliefs about how to attribute their achievement outcomes,
e.g., ability, effort, task difficulty, or luck, which has shown
to be connected to beliefs about ability as well as
value [40].

Epistemological beliefs as well as efficacy, value, and
attribution beliefs are therefore expected to provide
important information to students’ framing of this particu-
lar learning situation where the computational physics
context provides scope for autonomous behavior as well
as cognitive challenges.

2. Epistemic framing

The construct of framing as a representation of knowl-
edge has previously been used in linguistics, cognitive
psychology, and anthropology. Tannen and Wallat [41]
defined framing in terms of individual reasoning and sum-
marized the concept of frame as the set of expectations,
based on previous experience, an individual has about a
given situation or, widely spoken, a community of practice.
Minsky [31] used frame when describing the cognitive
structure that a person recalled (remembered) from a simi-
lar situation when entering a new situation. If the frame did
not fit, it was replaced or revised until it fit the situation. In
an educational setting, a student’s framing used for inter-
preting a learning situation could be expected to be based
on cognitive and context-specific experiences concerning,
e.g., prior knowledge, skills, and beliefs but also social
aspects, such as relations to other people, and on what
external tools are available for learning, such as literature
and teachers [26,42]. In previous research epistemological
framing [30,34,43] has been used to describe the network
of activation of epistemological resources, or cognitive
elements, that is present in a learning situation.

In this paper the notation epistemic elements has been
chosen to represent knowledge, skills, and beliefs, and the
notation epistemic framing has been chosen to describe
their organization. A detailed description of how epistemic
framing is represented is found in Sec. III. The notation
epistemic framing has previously been used in several
studies. In order to represent knowledge structure in mathe-
matics and physics problem solving, Bing and Redish [44]
used students’ argumentation in terms of warrants as in-
dicators of epistemic framing. Shaffer [45] described epis-
temic frames as not only containing information about
knowing what and how but also about knowing with,
forming an organizing principle for practices, which was
found useful in interactive learning environments where
students could adapt epistemic frames in educational role
playing in order to help students deal more efficiently with
real-life situations. In another study, epistemological mind-
sets, similar to epistemic framing, of students’ understand-
ing of physics equations were identified in six different
context-dependent epistemological components which
could be present in a student’s frame about physics problem

solving [46]. An important aspect of the epistemic frame is
thus, as argued earlier, not only the collection of epistemic
elements but also how these are interrelated. In the next
section I describe how these interrelations can be inves-
tigated using the features of network analysis.

C. Network modeling

Network modeling makes it possible to visualize and
understand the complexity of a system with many interact-
ing elements. Common applications of network modeling
are, for example, social interactions, biological systems,
information flows, and semantic patterns.
Epistemic framing, as described in the previous section

on cognitive representation, is proposed to correspond to a
knowledge network which is here referred to as an epis-
temic network. Epistemic framing can thus be visualized
using a network analysis approach where organization of
epistemic elements as well as flow of information can be
revealed using a mapping method. Knowledge networks
within a particular context have previously been repre-
sented as semantic networks where the relations, or links,
between concepts relevant for the context, nodes, form
cognitive patterns as mental models [32,47]. In the epis-
temic network the nodes are represented by the epistemic
elements that express conceptual knowledge, skills, be-
liefs, and other personal characteristics of a learning situ-
ation. These elements have relations that besides adjacency
can be dependent on, for example, meaning and causality.
In a study by Shaffer et al. [12] epistemic network analysis
was used for assessing epistemic frames during an activity
of a digital learning system. Shaffer et al. showed how the
interaction between epistemic elements changed during the
learning activity, from showing a loose frame of few inter-
acting elements towards a denser, more complex frame
with more interacting elements representing knowledge
and skills. Network analysis as a method of analysis of
knowledge structures is an exciting and still a new ap-
proach in education research and there is a need for further
investigation of its properties in this context.

D. Purpose of the study and research questions

The purpose of this study was twofold. The primary
purpose was to investigate the character of physics stu-
dents’ epistemic frames, when solving a computational
physics problem. The research questions are as follows:
� What are the students focusing on, in terms of knowl-

edge and beliefs, when describing a numerical
problem-solving task, before and after doing the task?

� What role does physics knowledge take when stu-
dents describe a computational physics problem-
solving situation?

A second purpose was to investigate the use of a network
analysis approach in order to visualize students’ epistemic
framing. Analysis of qualitative data such as interviews
often generates results that could be difficult to survey. A
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concept map or a network could therefore be a useful tool
for presenting results from a qualitative analysis. A third
research question is therefore:

� Are the proposed epistemic networks of the learning
situation in this study useful for describing epistemic
framing?

III. METHOD

A. Participants and context

Students participating in this study were second year
university students at a five-year study program in engi-
neering physics. The assignment that was the subject of
this study consisted of a one-week project as a part of a
seven-week full time course in mathematical modeling of
physics. The students were initially informed about the
study by Email and participation was voluntary. The author
did not have any teaching role. The course had 36 regis-
tered participants and 6 of these were chosen to participate
in the study and contribute to the data set. The selection
was done in order to get representatives with different
beliefs profiles. The Colorado Learning Attitudes about
Science Survey instrument, which was designed in order
to distinguish between expert- and novicelike beliefs about
physics and learning physics, was used for this selection
[48]. It had previously been used in a similar context [38]
and was considered as appropriate for this situation. The
questionnaire was administered to the students right before
the project start and statistically analyzed in order to project
the students’ profiles on an expert-novice beliefs map. Of
the chosen students, two showed novicelike beliefs, two
intermediate expertlike beliefs, and two expertlike beliefs.
The mean age of the participating students was 23 years.

The context of this study was represented by a numerical
problem using particle-spring simulations. At completion
of the project assignment, the students would have built a
simulation of a macroscopic elastic object sliding over a
rough surface in two dimensions, Fig. 1. The particle-
spring model is a fundamental model system in science

and can be used for any science phenomena where vibra-
tions and oscillations are modeled. To understand how to
model a physics problem using a particle-spring approxi-
mation therefore contributes to fundamental knowledge in
science. The purpose of this modeling task was to train
students to build mathematical models of a physics situ-
ation and to create a visual simulation of that situation. The
project consisted of four successive steps. In the first step
the students were introduced to the model system, starting
with a numerical solution of two mass particles connected
by a spring. In the following steps more particles and
springs were added in order to model a larger system until
a macroscopic elastic object sliding over a rough surface
was simulated. The problem-solving environment used for
the project was MATLAB. Prior to this course the students
have had several occasions to practice MATLAB in other
math courses in their study program. The physics that was
needed in order to understand and perform the assignment
was classical mechanics, a course which all students had
completed. An introductory lecture was held before the
MATLAB project started. The lecturer gave a short summary

of the physics that was used in the simulation and made a
short comparison between two time integration methods,
Euler and leapfrog, which would be suitable for this task.
All students were, in order to pass the assignment, required
to submit a written report including answers to a set of
questions, a description of how the simulation was tested,
and the MATLAB code for the simulation.

B. Data collection

Data consisted of individual interviews with the six
students on two occasions. The first set of interviews
took place right after the introductory lecture prior to the
start of the assignment and the second set of interviews was
performed when the assignment was completed. The inter-
views were semistructured and the questions from the first
occasion were followed up at the second occasion. The
interviews in the first round lasted about 15–20 min and the
second round about 25–35 min. The questions were de-
signed with the framework of epistemic framing in mind in
order to attain information about what knowledge, beliefs,
and resources the student used in the problem-solving
process and how they were used. In the first interview the
students were asked to conceptually describe the task and
what problems they were about to solve. They were also
asked about what strategies they planned to use in order to
solve the problem. Another question concerned if the
students could foresee any difficulties and problems with
the task and what they would do to deal with that. An
important question dealt with what expectations the stu-
dents had concerning gaining new knowledge and skills. In
the second interview these questions were followed up in
order to find discrepancies between their expectations and
their actual experience. Special emphasis was put on how
the students troubleshot their solutions and how they had

FIG. 1 (color online). Screen shot of the simulation students
were building by using particle-spring systems to model an
elastic object sliding over a rough surface. This model consists
of 4� 8 mass particles connected with springs, up to eight
springs for each particle. The springs are assigned damping in
order to model the object with different elastic properties.
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overcome the difficulties that arose in the problem-solving
situation. All students experienced errors in their numeri-
cal solutions and the troubleshooting process was expected
to reveal information about what the students focused on,
e.g., debugging the MATLAB code or investigating the
physics principles, such as energy conservation. In addition
to the follow-up questions, the students were in the second
interview asked to demonstrate parts of their simulations on
a computer. This stimulated recall-inspired part of the inter-
view was used in order to find additional comments on the
students’ knowledge, beliefs, and resources they had already
expressed. The interviews were transcribed verbatim.

C. Analysis

The information revealed in the interviews and tran-
scribed to verbal protocols was expected to correspond to
a sample of the information in the student’s mind at the
time of the interview. The structure of that information was
assumed to reveal the organization of the individual’s
knowledge and beliefs in terms of how different epistemic
elements connected to each other. In order to identify
which epistemic elements were present in the verbal pro-
tocol and their relation to each other, a thematic method of
analysis according to Carley’s method of formalizing the
social expert’s knowledge [49] was used. This method is
based on the assumption that information in a particular
context can be separated into discrete units (corresponding
to epistemic elements) and the corresponding knowledge
structure (corresponding to epistemic framing) can be
represented by the relational phenomena connecting these
units of information. The information provided by the
interviews was therefore assumed to be represented as a
network of epistemic elements and their relationships.

The analysis of the transcripts were done in two steps. In
the first step the transcripts were broken down in state-
ments and manually coded into epistemic elements. In the
second step, semantic networks were generated from the
coded transcripts. These steps are described in more detail
below, followed by an illustrative example of how this
process was performed.

1. Coding of the transcripts

The epistemic elements that were used in order to build
the vocabulary were based on the focus of the research and
the educational situation, resulting in a coding scheme that
was unique for this particular context. This coding scheme
was therefore expected to reflect the expert’s knowledge
base [49]. This coding scheme is provided in the Appendix
in Table III. The epistemic elements were defined by
coding the transcripts using a thematic approach where
the interview transcripts were broken down into statements
which were analyzed as knowledge or beliefs. The epis-
temic elements chosen to represent the knowledge base of
the context of this study were categorized into the subject
fields of physics, math, programming, and modeling.

Epistemic elements describing beliefs were categorized
into expectancy orefficacy, value, and attributional as argued
in the conceptual framework. In addition to the knowledge
and beliefs categories, there was also a need for adding a
category which represented the resources that students
used when performing this assignment, e.g., literature, other
students, teachers, or feedback from the visualization. The
coding procedure followed an exploratory, iterative process
where new epistemic elements within these main categories
could be added as they were found to show relevance in the
data set. A total of 77 unique epistemic elements were
identified from the transcripts from the two interview occa-
sions; see the Appendix, Table III.

2. Epistemic networks

From the coded transcripts epistemic networks were
created by using the semantic adjacency between epistemic
elements. The presence of a link between two epistemic
elements was thus determined by closeness in the coded
transcripts, and the value of one link was always equal to
one. All links were bidirectional and the matrices
representing relations between epistemic elements were
therefore symmetric. If the same elements were connected
several times in a coded transcript, the links were
added. The weight of a link between two concepts was
therefore determined by howmany times the two epistemic
elements appeared connected in the transcripts. Epistemic
elements that did not appear in conjunction with another
element were removed from the node set. While creating
the epistemic networks the original transcripts were used
as constant references in order to not lose any important
links between epistemic elements. Each of the interviewed
students generated two epistemic networks, one represent-
ing the epistemic framing before the task and one after the
task. These individual networks were merged into two
networks by adding the matrices that represented each
student’s epistemic framing before and after the task,
respectively. These two networks, one representing the
students’ common framing before the assignment and
one representing the students’ common epistemic framing
after the assignment, were used to compare how students
epistemically framed this learning situation before and
after the assignment.
The comparison was thus done between the students’

common epistemic framings and not between the indivi-
dual students’ framing.

3. Example of the coding process

What follows is an example of how an excerpt from an
interview was coded and how the coded transcript was
transferred to and visualized in an epistemic network. The
excerpt was chosen from one of the students after the task.
What I’ve been checking constantly is the energy level. It

should be constant because if there is no damping no
energy will be lost from the system. So that has been the
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constant check, that is what I’ve been dealing with most.
Then the simulation has to show a fairly reasonable view of
reality, sort of. It is suppose to look good. But, here I
probably have some error in some computation, so there
are icicles on the energy.

The following codes are applied for different sections in
the excerpt. For a list of all codes used in coding the
transcripts, see the Appendix, Table III:

� What I’ve been checking constantly—troubleshoot-
ing (mo_t)

� the energy level. It should be constant—energy con-
servation (ph_ec)

� because if there is no damping—modeling spring-
damper (mo_sd)

� no energy will be lost from the system (ph_ec)
� So that has been the constant check—troubleshooting

(mo_t)
� simulation has to show a fairly reasonable view of

reality—modeling a real situation (mo_rs)
� It is suppose to look reasonable—visualization as a

resource (r_v)
� here I probably have some error—troubleshooting

(mo_t)
� in some computation—numerical solution (ma_ns)
� there are icicles on the energy—energy conservation

(ph_ec)
The coded excerpt is transformed into:
mo_t ph_ec mo_sd ph_ec mo_t mo_rs r_v mo_t ma_ns

ph_ec
This text can be visualized as a semantic network based

on the adjacency between the codes representing epistemic
elements, i.e., codes that are close are linked. The semantic
network thus describes how these codes are related, giving a
map of the epistemic frame, or an epistemic network, given
by the interview excerpt. For the interviewexcerpt used in the
example above, the resulting epistemic network is given by
the adjacency matrix below where the number indicates
whether there is a link between the two concepts, i.e., if
they are adjacent in the coded excerpt. The matrix is sym-
metric, i.e., the direction of the relation is not considered.

mo_t ph_ec mo_sd mo_rs r_v ma_ns

mo_t 2 1 1 1

ph_ec 2 2 1

mo_sd 2

mo_rs 1 1

r_v 1 1

ma_ns 1 1

The visualization of this sample network is shown in Fig. 2.
The size of each node represents its importance in the
network and the width of each link represents its weight.
From this small epistemic network it can be interpreted
that the student had troubleshooting (mo_t) in mind and
connected that with different aspect of which energy
conservation (ph_ec) seems most important. In order to

understand the epistemic network in detail, it is necessary
to return to the original text for a more thorough analysis.

D. Visualization of networks

If a system is small, with only a few nodes and links, it
can generally be visualized as is, e.g., as in Fig. 2. Many
systems, however, are very large and need to be described
in a simplified manner. Depending on what information we
want to draw from a network there are different methods of
analysis. Investigating the formation of a network might
require other methods than investigating the dynamics of a
network. The formation of a network is often studied by a
modularity approach where modules are formed according
to higher density within the modules and a sparser structure
between modules [50]. For a system’s behavior, e.g., how
local interactions between few nodes induce a flow through
the whole system, it is interesting to understand the net-
work’s dynamic structure and how the links regulate the
flow. The map equation [51] is an information-theoretic
algorithm which can optimize the path of a random walker
in a network and describe how information flows in
the network. Groups of nodes cluster into modules where
information is exchanged quickly. For each module a
PageRank [52] and a flow can be calculated. The
PageRank is a measure of the relative importance of a
node or module for a network’s dynamic structure and
corresponds to a eigenvalue centrality of that node or
module, i.e., how many other nodes that node is linked to
weighted by the other nodes’ importance. The PageRank
shows how much of the total flow in the network that is
kept within that particular module. The links between
modules represent information paths which connect the
clusters and reveal the whole network’s dynamic structure.
In previous research the map equation has been used in
citation networks to show the flow of information within
the scientific community by studying cross citations of
scientific journals [53]. The results revealed a bidirectional
structure between basic sciences and a directed flow from
applied sciences back to basic sciences giving information
of how knowledge was flowing among scientists from
different subject fields. The visualization of the epistemic
networks in this study was done using this map equation
algorithm [51] and the corresponding visualization tools: a

FIG. 2 (color online). Sample epistemic network visualizing
the epistemic frame given by an example of an interview excerpt.
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map generator [53] showing the structure of the epistemic
network and an alluvial generator [54] showing changes
between networks. The epistemic networks from the two
occasions, before and after the task, were clustered accord-
ing to the map algorithm trying to minimize a random
walk, which in this case corresponded to a random asso-
ciation path, through the network, finding a pattern of
nodes where a random walker was likely to spend a certain
amount of time before moving to another module. The
modules thus represent groups of nodes that are linked to
each other to a higher degree and where information flow is
concentrated. Changes in structures between the two net-
works representing before and after the task were visual-
ized in an alluvial diagram, a diagram often used for
visualizing Earth layers in geological contexts, where in-
dividual epistemic elements within modules as well as
whole modules could be followed between the two occa-
sions. In order to investigate the stability of the networks’
module structure a significance analysis was performed by
resampling bootstrap networks using the original network
link weights as resampling units [54]. The bootstrap con-
fidence interval was set to 85%, giving that of 100
resampled bootstrap networks, significant nodes are clus-
tered together in at least 85 of the bootstrap networks.

IV. RESULTS

The results are here presented as two compound epis-
temic networks that were generated from the interview

data, shown in Figs. 3 and 4. Each network map constitute
interview data from all six students before and after the
task, respectively. The network data were calculated into
simplified networks according to the map equation [51]
and visualized as maps of modules of epistemic elements.
Each module can be expanded into subnetworks revealing
the structure of individual nodes. The modules have sub-
jectively been assigned with labels in order to indicate
what kind of epistemic elements each module represents.
Tables I and II summarize statistics from the networks.

Table I shows information about which epistemic elements
significantly make up the most important modules in the
two networks, respectively. The size of each module is
proportional to the amount of focus that students put on the
epistemic elements within that module and is indicated by a
PageRank measure [52]. The width of the links between
modules is proportional to how students relate information
between the modules and is represented by a flow measure.
The network generated from the second interview con-

tained more nodes and more links, but the density, i.e., the
number of links divided by the total number of possible
links, is about the same for both networks. Table II shows
data about the frequency of unique epistemic elements
belonging to each of the main categories. Frequency analy-
sis shows that the number of unique epistemic elements
increases with about 25%. This increase is mostly due to
physics elements which increase with more than 100%.

A. Before the task

In the first interview the students focused on descriptive
aspects of the assignment. The epistemic elements captur-
ing most of the flow were clustered in five major modules.
As seen in Fig. 3 the flow between the largest modules was

FIG. 3 (color online). Simplified epistemic networks before
the problem-solving task. The size of each module corresponds
to the importance of the module in the network, i.e., how much
focus students put on associating between epistemic elements
within that module, and the width of each link represents the
information flow between modules. This network captures 97%
of the node flow and 82% of the link flow.

FIG. 4 (color online). Simplified networks after the problem-
solving task. The size of each module corresponds to the
importance of the module in the network, i.e., how much focus
students put on associating between epistemic elements within
that module, and the width of each link represents the informa-
tion flow between modules. This network captures 95% of the
node flow and 83% of the link flow.
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strong (indicated by the thickness of the link). The mean-
ing of each module is described below and data are also
found in Table I.

� Values clustered epistemic elements that described
what students expected and valued. The main epis-
temic elements were beliefs about expectancies of
learning MATLAB. Students also expressed confidence
that this will indeed happen and ascribed this to
knowledge acquired in previous courses. Students
also expressed value beliefs, such as interest, profes-
sion, and real world connection.

� Difficulties represented the second largest module
and clustered how students expected the difficulties
with how to get started with the assignment, i.e.,
understanding how to formulate the numerics.
Within this module were also the students’ sugges-
tions of how to cope with the difficulties. They were
aware that they needed to put out a lot of effort and
they also would take help from each other as well as

from teachers. Students ranked reading the lab in-
struction as important in order to get started.

� Strategies mainly described how students planned to
start with modeling a small system before moving on
to the more complex larger systems that were part of
the assignment. Within this module students de-
scribed the physics involved as oscillations and kine-
matics. Students also, to a certain degree, expressed
the possibilities to visualize the systems, an epistemic
element which was very common after the task.

� Simulation methods. This module clustered the epis-
temic elements the students used when describing
how to select a simulation method and how it worked.
A qualitative comparison between the Euler method
and the leapfrog method were the main content of this
module. Students explained these methods in terms of
errors related to time steps issues.

� Modeling real systems described the relation between
using the particle-spring system to model real

TABLE I. Clustering of selected number of epistemic element into the modules with the
highest flow for each network. For a description of epistemic elements, see the Appendix,
Table III.

Network

PageRank

(%)

In/Out

Flow (%) Significanta Epistemic elements b

Before

Values 23 7.9 yes pr_m be_co bv_l be_s

Difficulties 21 9.4 yes ba_d r_gs r_li r_t

Strategies 18 8.1 no ph_o mo_ls

Simulation methods 13 5.1 yes mo_sm mo_ts

Modeling real systems 11 3.9 no mo_rs ph_sf mo_sps mo_cg ph_f

After

Troubleshooting 34 11 yes r_v mo_t ph_ec mo_sd

Data representation 29 11 no pr_rd ba_d mo_cg mo_cd ba_e

Physics 12 4.7 yes ph_k ph_f ph_c

aModules significantly stand alone, 85% confidence interval.
bEpistemic elements significant within the module, 85% confidence interval.

TABLE II. Comparison of the before and after epistemic networks.

Before After

Density 0.102 0.114

Number of links 350 600

Number of nodes 59 73

PageRank (%) PageRank (%)

Number of nodes

belonging to each

main category

Before After

Physics 9 17 19 24

Math 7 11 7 4

Programming 10 12 11 19

Modeling 13 28 15 24

Beliefs 14 19 14 18

Resources 6 13 7 11
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systems, such as collisions and friction, and the
physics that was needed to describe this in terms of
forces associated with springs and friction.

B. After the task

The second interview revealed a different epistemic struc-
ture than the first interview. More nodes and links were
added. The network, however, was more evenly distributed
and the clustering into modules was not as apparent as in the
first interview. The flow was concentrated to two modules:
one where the epistemic elements relating to troubleshoot-
ing of the simulation could be distinguished, and one where
issues concerning the representation of model data in the
MATLAB environment were interacting. A thirdmodule clus-

tering many physics elements also appeared which was
considered of special interest due to the increase of unique
physics elements in the second interview.

� Troubleshooting. When students described their ex-
periences of the task, the troubleshooting process
caught most of the attention. Students associated
troubleshooting with visualization of energy levels,
and the main flow within this module was concen-
trated to these three epistemic elements expressing
troubleshooting, energy conservation, and visualiza-
tion. Within this module were also physics about
oscillations and the effects on energy levels from
damping the system interacting.

� Model representation captured students’ experiences
about representing the model systems in program-
ming code, something that students experienced as
difficult and demanding a lot of effort. Modeling the
systems’ particles and springs and finding expres-
sions for forces and positions in order to numerically

solve the dynamics were the major epistemic ele-
ments interacting within this module.

� Physics captured many of the epistemic elements
describing conceptual physics and interacts with
both of the major modules. If the module trouble-
shootingmainly described energy conservation, phys-
ics captures physics concepts related to collisions,
kinematics, friction, and associated forces, but also
physics principles such as conservation ofmomentum.

C. Comparison between before and after

The structures of the epistemic networks before and
after the assignment were indeed different. These changes
between the epistemic networks are visualized in an allu-
vial diagram shown in Fig. 5. The modules shown in this
diagram represent exactly the same modules as those in the
networks, Figs. 3 and 4, and their PageRank is represented
by their height. However, in the alluvial diagram no links
between the modules in a network are shown. Eachmodule
is color coded in order to follow what happens with the
structure of eachmodule, i.e., whether themodules are intact
or whether the interaction between epistemic elements
changes between the two occasions. It is clear that the
modules giving the structure of the first network are not
intact. The epistemic elements rearrange into other modules,
showing that the pattern of interaction between epistemic
elements changes between before and after the task. This
represents a change in how students frame the situation based
on the experiences they learn from the task. The largest
module in the after network is represented by epistemic
elements from every module in the before network, indicat-
ing a more complex interaction between the epistemic ele-
ments, possibly showing a more coherent view of the task.

FIG. 5 (color online). Alluvial diagram showing how the modules in the epistemic networks rearrange between before and after the
task.
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It is also interesting to see what actually happens to the
epistemic elements describing physics, math, modeling,
and programming. The most noticeable result is that stu-
dents use more physics concepts after the task. The in-
crease of unique physics concept is over 100%, as shown in
Table II. Also the importance of physics concepts in the
network, indicated by the PageRank measure, increases
from 17% to 24%. Programming aspects do increase as
well even though students do not start using new program-
ming concepts. Students frame the task in modeling as-
pects almost equally before and after the task. Math,
however, is used in students’ framing before the task but
more sparsely after.

In the following section these results are interpreted and
discussed in order to present some concluding remarks.

V. DISCUSSION

Computational problem solving in university physics
education is a challenging field in teaching and learning
as well as in research about physics education. The com-
plex mix of knowledge and skills needed from the subject
fields of physics, math, programming, and modeling,
together with what beliefs and expectations the student
has, puts limitations on how to investigate and interpret
data in order to understand how students frame this field
in epistemic aspects. In this study a thematic analysis of
interview transcripts has generated epistemic elements of
how students express knowledge, expectations, and expe-
riences concerning a computational physics problem. The
interaction between these epistemic elements has been
visualized using a network analysis approach in order to
get a picture of the students’ epistemic frames of this task.

The network analysis approach reveals patterns of inter-
action between the elements that are involved in describing
a particular learning situation, similar to concept maps [8]
and mental models [29]. The epistemic networks presented
here should, however, not be seen as equivalent to previous
mental models but could rather function as a complement to
further understandhowstudents experience a particular learn-
ing situation. The map equation method adds information to
these patterns by calculating clusters of elements and the
corresponding flowbetween the clusters. Themaps generated
from the data in this study have potentials to visualize how
ideas concerning a specific task interact within students’
minds andhow these ideas and the correspondingflowchange
when personal experiences from the actual task are added.

The interaction between epistemic elements indicates
how prior knowledge is used in order to create new
solutions and thus new knowledge. According to the first
network, students do think they possess the conceptual
knowledge needed for solving this task. However, they
have vague ideas about how to use this knowledge and
tend to array concepts without considering how the differ-
ent subject fields are interacting. They fail to present a
coherent view of the task. In the second network, the

rearrangement of epistemic elements into other clusters
of modules shows that this actually has happened.
Students integrate concepts from all fields in order to
describe how they have solved the problem. The results
indicate that students are thus able to use physics, math,
and programming in a new context where the modeling of
the problem drives towards the problem’s solution.
Learning is indeed to figure out how to put prior knowledge
in new contexts and this is suggested to have happened
here. That students troubleshoot their solution by checking
energy conservation rather than debugging program code
shows that students epistemically frame the task as a
physics problem, not just a MATLAB problem. This is also
revealed in the increased number of used physics concepts.
It is thus proposed from this study that students are con-
fronted with a deeper meaning of physics concepts and
thus develop a more coherent understanding of how to use
physics in new contexts. The epistemic network after the
task shows how students emphasize the visual feedback
from the simulation. Previous research has shown that
students who receive their simulated results as visualiza-
tions rather than numerical values tend to use mental
imaginary to solve problems rather than algorithmic think-
ing [55]. This implies that students who solve computa-
tional problems and get feedback from a visual, interactive
simulation during the solution process have more oppor-
tunities to develop a visual mental representation where
physics aspects are interacting rather than an algorithmic
mental representation where the coding aspects are
dominant, which is supported by this study. In numerical
approaches to physics problems students need to use phys-
ics in order to get intelligible results, to just focus on the
math and the programming is not enough.
Students have expectations about this assignment. They

do see difficulties but they still express expectancy of
success. They ascribe this success to their own ability in
math and physics in general but also to the possibility to
cooperate with other students. However, the expectations
of learning are attributed to autonomy, i.e., having the
responsibility to solve the problem themselves. What
they will learn is generally expressed in terms of
MATLAB. Few students express knowledge in terms of

memorizing and learning, except in relation to remember-
ing specific expressions in physics, and do generally strive
for a coherent view of physics as well as problem solving.
In general, students express the same beliefs before and
after the task. Beliefs about expectancies and efficacy,
attributions, as well as about values are present at both
occasions and to the same amount. However, these beliefs’
interactions with other epistemic elements are changed and
difficulties and effort associated with the numerical algo-
rithms are shifted towards being associated with how the
forces and particles are represented in the programming
code. The fact that the module with the largest PageRank
after the task, indicating troubleshooting, hardly contains

MADELEN BODIN PHYS. REV. ST PHYS. EDUC. RES. 8, 010115 (2012)

010115-10



any programming elements indicates that students did have
focus on the underlying aspects on the assignment.

VI. CONCLUSIONS

The findings from this study imply the potential in
giving university students majoring in physics challenging
assignments to work with. An assignment that mixes com-
petencies from different disciplines is suggested to encour-
age students to actually use prior knowledge in order to
create new knowledge, that is, to gain a more coherent
view of a compound problem situation. In this case where
competencies in physics, math, programming, and model-
ing were applied in a computational physics problem
where the output solution was a visualization of the simu-
lation, students did seem to have acquired a more focused
view of the disciplines involved in this task subject, shown
by the changes in network structures. In particular, the
number of physics concepts used in the interviews in
relation to other concepts reveals a deepened focus on
the physics aspects of this task. This is also shown by the
focus on physics aspects when troubleshooting and debug-
ging their numerical solution.

The beliefs and knowledge structures presented here as
epistemic frames and visualized as epistemic networks are
suggested to open up deeper understanding of the complex
relation between beliefs and attitudes and the more

context-dependent knowledge and skills aspects.
Epistemic networks could give useful information about
the beliefs and knowledge that are available for other
learning situations, for example, when developing teaching
and teaching material where it is important to know how
the students’ learning is affected and if students’ focus
coincides with the learning intentions. The network
method gives a novel way of identifying and visualizing
how students conceptualize a task. The work presented in
this study is limited to a special case, but the method is
suggested to complement other methods of measuring
beliefs and knowledge structures in order to understand
students’ behavior in learning situations.
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APPENDIX: CODING SCHEME

Table III lists the coding scheme used for analyzing the
interview transcripts.

TABLE III. Coding scheme used for coding transcribed interviews with students into epis-
temic elements.

Main category Epistemic element Code

Physics ph_physics ph

ph_angular_momentum ph_am

ph_angular_momentum_conservation ph_amc

ph_collision ph_c

ph_classical_mechanics ph_cm

ph_center_of_mass ph_com

ph_energy_conservation ph_ec

ph_friction ph_f

ph_gravity ph_g

ph_kinematics ph_k

ph_kinetic_energy ph_ke

ph_momentum_conservation ph_mc

ph_moment_of_intertia ph_mi

ph_normal_force ph_nf

ph_newtons_laws ph_nl

ph_potential_energy ph_pe

ph_oscillation ph_o

ph_spring_force ph_sf

ph_torque ph_t

Math ma_math ma

ma_algebra ma_a

ma_analytical_solution ma_as

ma_derivative ma_d

ma_differential_equation ma_de
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Main category Epistemic element Code

ma_linear_algebra ma_la

ma_numerical_solution ma_ns

ma_statistics ma_s

Programming pr_programming pr

pr_algoritm pr_a

pr_code pr_c

pr_code_previous pr_cp

pr_datastructure pr_d

pr_error_message pr_em

pr_function pr_f

pr_indexing pr_i

pr_loop pr_l

pr_matlab pr_m

pr_representation_of_data pr_rd

pr_real_time_computing pr_rtc

Modeling mo_constraint mo_c

mo_change_dimension mo_cd

mo_collision_with_ground mo_cg

mo_collision_with_net mo_cn

mo_evaluate mo_e

mo_euler mo_eu

mo_leap_frog mo_lf

mo_large_system mo_ls

mo_making_simplifying_assumption mo_msa

mo_real_situation mo_rs

mo_spring_damper mo_sd

mo_select_model mo_sm

mo_spring_particle_system mo_sps

mo_small_system mo_ss

mo_troubleshoot mo_t

mo_time_step mo_ts

Resource r_get_started r_gs

r_lab_instruction r_li

r_previous_course r_pc

r_paper_and_pen r_pp

r_problem_solving_reflection r_psr

r_students r_s

r_teachers r_t

r_visualization r_v

Expectancy beliefs be_autonomy be_a

be_collaboration be_c

be_coherence be_co

be_equations_and_formulas be_ef

be_failure be_f

be_memorizing_and_learning be_ml

be_success be_s

Value beliefs bv_identity bv_i

bv_learning bv_l

bv_personal_interest bv_pi

bv_real_world_connection bv_rwc

Attribution beliefs ba_ability ba_a

ba_difficulty ba_d

ba_effort ba_e

TABLE III. (Continued)
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