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Numerical problem solving in classical mechanics in university physics education offers a learning

situation where students have many possibilities of control and creativity. In this study, expertlike beliefs

about physics and learning physics together with prior knowledge were the most important predictors of

the quality of performance of a task with many degrees of freedom. Feelings corresponding to control and

concentration, i.e., emotions that are expected to trigger students’ intrinsic motivation, were also

important in predicting performance. Unexpectedly, intrinsic motivation, as indicated by enjoyment

and interest, together with students’ personal interest and utility value beliefs did not predict perform-

ance. This indicates that although a certain degree of enjoyment is probably necessary, motivated

behavior is rather regulated by integration and identification of expertlike beliefs about learning and

are more strongly associated with concentration and control during learning and, ultimately, with high

performance. The results suggest that the development of students’ epistemological beliefs is important

for students’ ability to learn from realistic problem-solving situations with many degrees of freedom in

physics education.
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I. INTRODUCTION

In recent years there has been an increasing interest in
using numerical methods including interactive simulations
and visualizations in university physics education [1–3].
Increasing computer capacity together with a number of
modeling and problem-solving environments offer new
possibilities for physics students to model complex
physics systems as well as to numerically solve physics
problems. Depending on the modeling environment,
students are given different opportunities to numerically
solve physics problems, create visual simulations, practice
mathematical modeling, and investigate the process of a
physics phenomena, rather than just focusing on an answer
[3–7].

There is not, however, much research on how the
students deal with this type of problem solving and
how the computer as a cognitive and computational
tool affects students’ learning. Many, but not all, simu-
lation and modeling environments represent learning
situations that offer many degrees of freedom and
open up avenues for students to take control of their

own learning, an approach which is expected to be
favorable for motivation to learn [8]. Computer environ-
ments that require independence and creativity might,
however, have different effects on different students.
Research shows that the student’s personal features,
such as prior knowledge and beliefs, that are brought
into a specific learning situation affect both learning
process and outcomes of a learning situation [9,10]
and influence the degree to which the student becomes
externally or internally motivated [8]. Emotions have
been proposed to have a central role in the evaluation
and regulation of behavior as well as functioning as
goals or desired end states of behavior [11,12].
Students’ beliefs about utility of science and studying
science have in several studies been suggested to play an
important role [13] which, together with students’
expectancies of success, has been claimed to be one of
the primary predictors of motivation [14]. In this study,
we have focused on investigating the relation between
university students’ personal characteristics (prior
knowledge and beliefs) and perceived emotions and their
effect on learning outcome in terms of performance in a
learning situation involving numerical physics problem
solving and creation of physics simulations in the field
of classical mechanics. In order to describe the back-
ground variables, the conceptual framework in this work
is based on the following research fields: modeling and
simulations in physics education, the role of beliefs on
physics learning, and emotions and motivational aspects
on learning.
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II. CONCEPTUAL FRAMEWORK

A. Modeling and simulations in physics education

Modeling forms the basis for doing physics, i.e., describ-
ing physics phenomena and solving physics problem.
Hestenes [15] suggests that students must train to make
and use models for specific physics systems and processes
in order to learn the structure of physics. Computer envi-
ronments for modeling and simulations have shown to be
powerful tools in physics education for developing
conceptual understanding as well as for modeling and
problem-solving skills [3–7]. However, modeling environ-
ments can represent different levels of autonomous
problem-solving approaches and require more or less
knowledge and skills in modeling, programming, and
mathematics, as well as conceptual physics. A task that
requires advanced mathematical modeling and graphics
programming, e.g., a programming task in C++, is expected
to impose other demands on the student, and give other
learning outcomes, than a task designed for a sandbox
environment where the simulation can be built using a
graphics interface, e.g., ALGODOO [16]. In between pure
programming and sandbox tools, we have environments
that to different degrees provide the scope for intellectual
autonomy, require active participation from the student,
and give possibilities to actually model physics systems
and create interactive simulations. For example, tools like
Easy JAVA Simulation environment [4] and VPYTHON [7]
allow the student to model physics problems by setting up
the physics and mathematics needed to describe the
simulation and create visual interactive simulations.
Problem-solving environments, such as MATLAB and
MAPLE, provide some support concerning functions and

graphics, but also require programming skills in order to
numerically solve a physics problem and visualize the
result in a simulation [17].

The level of autonomy in a learning situation has been
suggested as an important situational variable, depending
on the degree of internalization of instructional goals, and
hence the level and type of motivation to engage in the task
and the quality of learning outcomes [8]. Autonomy is a
multidimensional construct and can take different forms
depending on, e.g., stage of learning and context, but a
general description is the learners’ possibility to take
charge or control of their own learning. The level of
autonomy of a task can be related to the task’s degree of
freedom, i.e., how many choices a student has to take
control of the situation, e.g., when, where, and how the
task can be done, but is also determined by the student’s
perceived autonomy, indicated by the student’s perceived
control and competence. How much control the student is
capable of handling is also dependent on the student’s
knowledge and skills. Benson [18] suggests that autono-
mous behavior is essentially self-initiated rather than gen-
erated in response to a task. Teaching strategies are also
critical and have to be taken into consideration when

providing the student with help and support through tasks
with many degrees of freedom in order to optimize learn-
ing [19]. The level of autonomy characteristics of a task, in
terms of degrees of freedom, might thus affect students’
performance differently depending on students’ character-
istics, in terms of knowledge, beliefs, and motivation.
There is therefore a need to examine the relationships
between these variables more thoroughly.

B. Beliefs about knowledge and learning

An interest in students’ beliefs about the nature of
knowledge, where it resides, and how it is constructed
and evaluated is common in contemporary research on
epistemological beliefs. There are a number of views on
how epistemological beliefs should be defined and
measured, and therefore their relation to learning is still
ambiguous [20,21]. Perry’s [22] work on the intellectual
and ethical development of college students is considered
by many as the starting point for research on epistemo-
logical beliefs. Perry proposed that student’s beliefs about
several aspects of learning could be collapsed into one
single continuous component describing a development
from dualistic, viewing knowledge as absolute and trans-
ferable, to a more relativistic view, where their own
responsibility in the process of learning and the context-
dependent nature of knowledge is acknowledged,
corresponding to a more sophisticated epistemology.
Schommer [23] assumed that the construct of epistemo-
logical beliefs comprised five independent dimensions.
Three of these belief dimensions can be seen as adapta-
tions of Perry’s work: simplicity of knowledge (e.g.,
knowledge consists of discrete facts, right or wrong),
certainty of knowledge (i.e., knowledge is certain versus
tentative and context dependent), and source of knowledge
(from authorities versus constructed by the student). The
remaining two dimensions were pertinent to student’s
beliefs about the speed of learning (quick or not at all)
and the nature of the ability to learn. In physics education
epistemological beliefs are often considered on a novice-
expert continuum where the novice has dualistic beliefs of
seeing physics as isolated pieces of information with no
connection which eventually will develop towards expert,
relativistic beliefs where physics consists of general con-
cepts and principles [24]. Winberg and Berg [25] found
that this dualistic-relativistic, or novice-expert, beliefs
continuum was useful in predicting complexity as well
as correctness of university student’s chemical reasoning.
Hammer [24], using a framework consisting of three
dimensions, structure of physics, content of physics
knowledge, and learning physics, found that students’
beliefs affected their learning in the course and were
consistent across physics content. If, for example, students
believed that physics knowledge consists of isolated
pieces, this was reflected in how students related results
to specific facts rather than general principles.
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Elby and Hammer [26] challenged the consensus that
sophisticated epistemology constitute a tentative, indepen-
dent, and coherent view forming relativistic beliefs about
knowledge and learning, as, for example, described by
Hofer and Pintrich [9] and applied in Schommer’s instru-
ment measuring epistemological beliefs [23]. Elby and
Hammer argue that when assuming a sophisticated epis-
temology it is necessary to also consider the context in
which the epistemologies are measured, e.g., within which
discipline, the particular knowledge, and the intended use
of the knowledge.

Surprisingly little attention has been devoted to the
interaction between students’ epistemological beliefs
and situational factors and how this interaction affects
motivation. One exception is a study by Windschitl and
Andre [10] who found that a constructivist simulation
environment had positive effects on the performance on a
subsequent test on conceptual understanding for students
with relativistic beliefs, while students with dualistic
beliefs were negatively affected. When exposed to a
simulation context that provided less scope for cognitive
autonomy, students with dualistic beliefs instead outper-
formed students with relativistic beliefs on the subsequent
knowledge test. The authors suggested that the mismatch
between the characteristics of the task and the students’
relativistic beliefs about learning affected their motivation
and, eventually, performance. The need for matching the
situational characteristics with students’ beliefs about
learning has also been pointed out by Redish [27], who
argued that the degree of autonomy must be matched to
students’ epistemological beliefs for the situation to pro-
duce positive effects with respect to cognition and motiva-
tion. In a similar fashion, Finster [28,29] argued that a
mismatch between the offered context for learning, e.g.,
complexity and degrees of freedom of the intellectual task,
and the learner’s epistemological beliefs will result in
students becoming either overwhelmed or not challenged
enough, depending on which way the mismatch goes,
but in both cases having negative influence on students’
motivation to learn as well as cognition.

While epistemological beliefs are ideas about the char-
acter of knowledge and the process of learning, beliefs may
also express what value the outcome of the learning activ-
ity has for a student. This value is evaluated in relation to
whether the knowledge or learning activity will lead to the
achievement of a goal, e.g., passing an exam, improve
future job opportunities, enhance self-image, or generate
positive emotional experiences [8,11]. In general, studies
indicate that value beliefs are primarily linked to choice
behavior, i.e., motivation to engage in a task [14].
However, there are indications that perceived usefulness
of physics knowledge for future career goals influences
students’ readiness to realize and resolve cognitive conflict
[30] as well as their goal orientation and learning strategies
[31]. Since engagement in learning, as well as choices of

learning strategies, would involve thoughts about the na-
ture of knowledge and how learning is achieved, value
beliefs could be related to students’ epistemological beliefs
as well as to motivation to engage in the activity of learning
physics. In a work by Adams et al. [32] an instrument was
developed in order to investigate student beliefs about
physics and learning physics and to distinguish between
experts and novices in order to predict performance. The
instrument covers epistemological as well as value beliefs
and is context dependent. The statements assume a more
practical view rather than the dualistic-relativistic view
adapted in previous instruments [23] covering alternative
dimensions of beliefs as suggested by Elby and Hammer
[26]. The statements are empirically categorized, based on
student responses, resulting in test items measuring epis-
temological beliefs, reflecting cognitive aspects, as well as
value beliefs, reflecting attitudes towards physics. In order
to develop the knowledge base about beliefs there is still a
need to further examine the relationship between episte-
mological and value beliefs as well as their correlation with
cognition and motivation.

C. Motivation and emotions

Motivation is commonly viewed as the process whereby
a goal-directed activity is instigated and sustained [33].
Common ways to assess an individuals’ motivation to
engage in a specific activity is to investigate the individu-
al’s behavior, e.g., choice and persistence. However, moti-
vational frameworks frequently describe emotions as
emerging from appraisals of self-competence in relation
to the task [34], locus of causality as well as perceived
importance of successful performance on the task for goal
attainment [12], rate of progress in goal attainment, and to
what extent the situation provides scope for autonomy
[8,11]. Positive activating state emotions, such as hope
and enjoyment, are assumed to lead to more effort, deeper
cognitive engagement, self-regulation, and less irrelevant
thinking in academic settings [35]. In theories pertinent to
the intrinsic-extrinsic motivation continuum, such as self-
determination theory [8], intrinsic motivation is commonly
described as a will to engage in an activity because it elicits
positive emotions, e.g., satisfaction and enjoyment, as a
contrast to extrinsic motivation, which is considered to
emerge from appraisals of the instrumental value of the
activity [36]. Ryan and Deci [8] proposed a more elaborate
model where extrinsic motivation could vary in terms of
the degree of internalization and integration of extrinsic
goals. In this model, an increased internalization of goals is
accompanied by a sense that behavior is self-determined,
i.e., related to autonomy, which in turn is proposed to lead
to increased persistence, more positive emotional
experiences during the activity, and higher quality of en-
gagement. However, Ryan and Deci [8] argued that for
autonomy to lead to more intrinsic forms of motivation, it
has to be paralleled by a sense of competence, or
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self-efficacy, since goals are more likely to be internalized
if the individual thinks he or she has the skills necessary to
attain them. Csı́kszentmihályi [37] proposed that apprais-
als of one’s own skills in relation to the challenges in the
situation cause emotions that in turn regulate behavior.
Flow, an intense feeling of active well-being, corresponds
to the goal and is elicited when skills and challenge are
above threshold level and in balance. If flow is within
reach, emotions like control or excitement function as
activators that encourage the individual to increase their
skills or the level of challenge to achieve balance. If the
discrepancy between skills and challenge are too large,
emotions like boredom, anxiety, uneasiness, or relaxation
interrupt behavior, which allows the individual to attend to
a new goal or activity.

According to Carver and Sheier [11] and their control-
process model, epistemological beliefs could also function
as goals that emanate from a more overriding image of
what kind of student the individual wants to be.
Consequently, epistemological beliefs would not only re-
late to how students approach the task, from a cognitive
aspect, but also the emotional experiences that result from
students’ assessment of how the results of their learning
behavior, i.e., the implementation of their beliefs about
learning, contribute to, or align with, their desired self-
image. Thus, as previously pointed out, the match between
students’ epistemological beliefs, on one hand, and the
intellectual demands of the situation, on the other, is likely
to have correlations with student emotional experiences
and thus motivation to engage in a task.

D. Research questions

In the conceptual framework above we have discussed
the different constructs that have, in previous research,
shown to be important in a learning situation. Personal
factors, e.g., prior knowledge and beliefs, as well as situa-
tional factors, e.g., task characteristics and perceived
emotions, are two dimensions that affect how students
learn, and in order to further understand how these con-
structs affect learning, we have investigated the interrela-
tions between the constructs and the performance of a
physics task which provides autonomy characteristics,
such as extensive mathematical modeling as well as
possibilities to take charge of when and where to solve
the task.

We have thus investigated students’ characteristics, in
terms of prior knowledge and beliefs, and emotional expe-
riences in the context of a learning situation with autonomy
characteristics where university students numerically solve
and simulate a physics problem. The research question is,
What are the relationships between students’ prior knowl-
edge, epistemological and value beliefs, and emotional
experiences (control, concentration, and pleasure) and
how do they correlate with the quality of performance in
a learning situation with many degrees of freedom?

III. METHOD

A. Participants and context

The context for this study was limited to a one-week
assignment which was part of a regular course for physics
students. Students participating in this study were second
year university physics students taking a 7-week full-time
course in mathematics of physical models. The course was
compulsory for the 4.5-year study program in Master of
Science in engineering physics. The students were initially
informed about the study by Email from us and participa-
tion was voluntary. The assignment chosen for the study
was a regular assignment in the course, a scheduled one-
week project which actually lasted for several weeks due to
winter break. We were only researchers in this study and
did not have any teaching roles. The course had 50 regis-
tered participants, of which 33 men and 7 women chose to
contribute to the data set collected in the study. Those who
did not contribute were either not present at the time for
data collection or chose to not contribute to the data set.
The statistical method chosen for analysis (principal com-
ponent analysis) does, however, tolerate missing values at
this level and is described in more detail below. The final
model was based on the 30 students that turned in the lab
report. The mean age of the participants was 23 years.
The assignment consisted of mathematical modeling of

an elastic object sliding over a rough surface using the
particle-spring model. The particle-spring model is a fun-
damental model system in science and can be used to
model many science phenomena with vibrations and
oscillations. The purpose of this simulation task was to
train students to build mathematical models of a physics
situation and to create a visual simulation of that situation.
The project consisted of four successive subtasks. The first
subtask introduced the student to the model used in the
simulation: two mass particles connected by a spring. In
the following subtasks more particles and springs were
added in order to model a larger system. At completion
of the four subtasks, the student would have built a simu-
lation of a macroscopic elastic object sliding over a rough
surface in two dimensions. The problem-solving environ-
ment used for the project was MATLAB. Prior to this course
the students had several occasions to learn about and work
with MATLAB in different courses in their study program.
The physics that was needed in order to understand and
perform the assignment was classical mechanics, a course
that all students had completed. An introductory lecture
was held before the MATLAB project started which was
composed of a short summary of the physics of the simu-
lation and a brief introduction to the simulation methods
that would be suitable for this task. The first milestone
occurred after one week when the students could earn
bonus marks for the exam by delivering a preliminary,
but functioning, code for the simulation. The deadline for
the full report was due four weeks after the project started,
with Christmas holidays between the preliminary report

MADELEN BODIN AND MIKAELWINBERG PHYS. REV. ST PHYS. EDUC. RES. 8, 010108 (2012)

010108-4



and the final deadline. To pass the assignment, students
were required to submit a report including answers to a set
of questions in their instructions, a description of how the
simulation was tested, and the MATLAB code for the simu-
lation. The task allowed the students to create their own
solutions and work at their own pace. The students could
choose whether to use the university computer lab and
support from teacher assistants or do the task at some other
place. The students thus had several possibilities to take
control of their own learning and the learning situation was
considered as having many degrees of freedom.

B. Procedure

Data were collected for four different variables, i.e.,
prior knowledge, beliefs, emotions, and performance.
Students’ responses to questionnaires and lab reports
were the main sources of data in this study. Students’
beliefs and prior knowledge were measured at the time of
the project start. Emotions were measured during the first
week of the project at two occasions. Lab reports were
collected and analyzed after the final deadline, which was
four weeks after the project start. Within these four weeks
there were two weeks of holidays. Each data-collecting
instrument is described in more detail below. Responses
from all tests and questionnaires were analyzed by
multivariate analysis methods to find the main sources of
variation between students and to characterize them from
the aspects reported in the preceding section.

Data collection instruments

Prior knowledge.—The conceptual test was given in
order to map the student’s conceptual prior knowledge in
classical mechanics. The test consisted of 12 multiple-
choice questions, originating from the Force Concept
Inventory test [38] and the Force and Motion Conceptual
Evaluation test [39]. The test items were chosen in order to
represent the basic conceptual knowledge in classical
mechanics needed in order to understand and solve the
task. Thirty-two students responded to this test.

Beliefs.—For measurements of beliefs we used the
Colorado Learning Attitudes about Science Survey
(CLASS), developed from a number of existing surveys,
probing beliefs about physics, and learning physics by
Adams et al. [32]. The CLASS survey is designed in order
to distinguish between expert and novice beliefs about
physics. The original survey consists of 42 statements
that claim either expertlike or novicelike beliefs. The
corresponding responses are collected on a five-degree
Likert scale, ranging from strongly agree to strongly
disagree. From these statements, Adams et al. [32] used
a combination of multivariate analysis and face validity
judgements by expert physicists to identify eight categories
labeled real world connections, personal interest, sense-
making effort, conceptual connections, applied conceptual
understanding, problem solving general, problem solving

confidence, and problem solving sophistication. Before
using the survey in this study we translated all statements
into Swedish. Three questions were omitted since Adams
et al. [32] have questioned their validity, resulting in a
39-item questionnaire. There were 32 students who re-
sponded to this questionnaire. The beliefs questionnaire
was administered once at the start of the project assign-
ment. The purpose was not to monitor changes in students’
beliefs since these were expected to be fairly stable during
the short period of time this assignment lasted.
Emotions.—The items used in this study are based on a

questionnaire constructed by Ghani and Deshpande [40]
measuring flow experiences in human-computer interac-
tion. Thirty-five students contributed to the emotions data.
The items are chosen to assess the flow components control
(control, calm, competent, ignorant, frustrated, stressed),
concentration (concentration, focus, absorbed), and pleas-
ure (interested, amused, motivated, elated). During their
work on the simulation task students were, at two separate
occasions about two days apart, asked to rate to what
degree they experienced each of these 13 emotions on a
five-degree Likert scale, ranging from very much to not
at all. Questionnaires were administered using a web
application.
Lab report.—Each student turned in a written lab report

after completing the assignment. The students were
instructed to provide a well-functioning code for the
simulations, answers to a number of questions concerning
conceptual physics and numerical aspects of the problem-
solving process, and provide graphs with explanations
representing energy calculations from the simulation. The
assignment consisted of four successive subtasks, of which
the last three were treated in the lab report as answers to
questions about conceptual physics as well as about the
numerical solutions. The subtasks corresponded to increas-
ing complexity of the assignment, from modeling of a
small particle-spring system towards large particle-spring
systems including damping. The questions associated with
these steps differ in terms of required answers. In subtask 2,
the answers to explicit questions were required in the lab
report while in subtasks 3 and 4 the students had greater
possibilities to choose scope and complexity when discus-
sing their results. In order to get a measure of the quality of
the reports, we used a SOLO-like taxonomy. The SOLO-
taxonomy was developed by Biggs and Collis [41] as an
instrument for measuring quality of learning, based on how
many arguments, i.e., concepts and ideas, that are used, and
how they are used, when performing a particular task.
Thus, the different stages in the SOLO taxonomy can be
regarded as illustrating an increasing complexity of a
student’s understanding of a subject. The prestructural
stage represents missing the point or avoiding the question;
the unistructural stage means selecting one argument and
close the response with that; in the multistructural stage the
student may include several concepts in their response but
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makes no integration between them; the relational stage
refers to when the student is able to use all relevant
information and integrate it within the context of the
question; and finally in the extended abstract the student
can relate relevant information with abstract reasoning
beyond the context of the question. An example of the
scoring procedure is shown in Table I. Each answered
question in the lab report was treated as a unit of analysis
and graded from 1 to 5 according to the criteria of the
analysis protocol. This resulted in a total of 15 variables
that were weighed together according to their discriminat-
ing ability and linearly combined into one lab report
score, expressing the students’ performance, by the use of
principal component analysis (PCA). The quality of the
programming code was not analyzed. We performed analy-
sis using an iterative strategy in order to get a reliable
measure of the quality of the lab report. Discrepancies in
coding were continuously discussed in order to establish a
common ground regarding the assignment of grades. A
total of 30 lab reports were turned in by the students and
subject for coding. Twenty of the lab reports were coded by
both of us and the Cronbach’s alpha for interrater reliability
was 0.90.

C. Statistical analysis

In order to, to some extent, circumvent the statistical
problems associated with the high degree of multicollin-
earity inherent in matrices that have more variables than
observations and the noise that is usually present in ques-
tionnaire data, we have chosen to use projection methods
such as PCA and its regression counterpart, partial least
squares analysis (PLS), in our multivariate analyses [42].
The statistical software used for these analyses was
SIMCA-P+ [43].

In this study, PCA has been used for reduction of the
rather large number of initial variables (i.e., the individual
test and questionnaire items) into a lower number of con-
structs to facilitate interpretation of the relationships be-
tween the studied variables and to increase reliability and
validity of the instruments. PCA summarizes any number
of original variables by linearly combining them into a
lower number of components. Thus the components can
be viewed as latent variables that express the common

information contained in the original variables. Hence,
questionnaire items that have been designed to measure a
single theoretical construct can be summarized by one or
several (if the construct is multidimensional) components,
and the students’ score on the theoretical construct, i.e., the
principal component, can be calculated from his or her
responses to the original items. The meaning of the com-
ponent is interpreted by assessing the loading pattern of the
original items on the principal component. Items that
contribute much to the meaning of the component have
high loadings while items whose variance is only to a small
part captured by the component, and thus only partly
contributing to the definition of the meaning of the
component, have lower loadings. In the present paper,
questionnaire items were grouped according to the con-
structs or categories previously defined and validated by
Adams et al. [32], and separate PCA models were built in
order to determine the relative scores of students on the
different constructs. In a similar fashion, students’ per-
formance on the different questions in the pretest, their
responses to flow emotion items, and lab scores, were
subjected to separate PCAs (Table II). To compensate for
differences in units of measurement and thus magnitude of
variance, all variables were scaled to unit variance and
centered. Hence, for each variable, e.g., questionnaire
item, responses were expressed as the difference between
the observed and the average response, divided by the
standard deviation for the specific variable. Cross-
validation [44] was used to determine the significance
of the principal components, and hence the number of
components to retain. If not otherwise stated, the cross-
validation limits in SIMCA for retaining a component
correspond to p < 0:05, which means that including the
component leads to a significant increase in the model’s
predictive ability.
Hierarchical PLS analysis was used to investigate the

multivariate covariation structures between different
constructs, such as beliefs and attitude categories and emo-
tional experiences, as well as how all these together con-
tribute to explaining the cognitive outcome of the exercise,
i.e., the lab report score. Put briefly, hierarchical PLS
utilizes students scores on the components in PCA models
of each construct, i.e., base models, rather than their

TABLE I. Example of SOLO analysis of lab score.

SOLO Level Question: Do you get the same score and value if you solve the equation analytically?

1 Prestructural Answer limited to, e.g., analytical value corresponds well with the numerical.

2 Unistructural Answer with either value or plot.

3 Multistructural Answer with value or plot. Comparison between numerical and analytical value.

4 Relational Answer with value or plot. Comparison between numerical and analytical value.

Relates result to previous questions in the lab instruction.

5 Extended abstract Answer with value or plot. Comparison between numerical and analytical value.

Relates result to previous questions in the lab instruction. Extending discussion to

effects of approximations in the numerical solution.
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original responses to the questionnaire and test items. In
PLS, separate PCA models are built on the dependent and
independent variables, respectively, while simultaneously
optimizing the correlation between the components of the
two models. Hence, PLS reveals the correlation structure
between the independent and dependent variables, respec-
tively, as well as how the independent variables together
can explain or predict the dependent variables. Some
information is by necessity lost when students’ responses
to the original items are summarized by a smaller number
of principal components. To check if this affected the
relationships of interest, we also performed a PLS analysis
on the original items (not shown) and compared it to the
PLS top model (Fig. 1). This comparison gave no indica-
tion that data reduction had changed the overall picture. To
further aid the interpretation of the relative importance of
the different independent variables for predicting the out-
come, variable importance for projection (VIP) plots were
made (e.g., Fig. 2). These plots show the relative impor-
tance of the variables for predicting the lab report outcome.
This is calculated by summarizing the loadings of each
variable on the components in the PLS model, weighted by
the proportion of variation in the outcome that is explained
by the respective components.

IV. RESULTS

Despite small sample size, the results support the con-
struct, predictive, and concurrent validity of instruments
used in the study. Patterns of covariation between items are

intelligible from a theoretical perspective. The constructs
used for investigation correspond to the data collection
instruments: prior knowledge, beliefs, emotions, and lab
score. The base models that were made to represent these
constructs are described in more detail below. The relation-
ships between constructs and how they can be used to
predict performance is investigated in the PLS top model
in Fig. 1.

A. Prediction of performance by prior knowledge,
beliefs, and emotions: Top model

Figure 1 displays the PLS top model including base
models of all the measured constructs. It describes the
internal relationships between the different belief catego-
ries, prior physics knowledge, and emotions, and their
correlation with the outcome variable, performance, or
the lab score. The statistical PLS analysis generated one
significant component, displayed as the y axis, describing
42% of the variance, R2y, in lab score, with a predictive
ability, Q2, of 33%. The statistics for this model are shown
in Table II. Constructs that are close, i.e., on the same level
horizontally, are positively correlated, while those that are
on opposite sides of the y axis are negatively correlated.
Variables that are important in the model, and thus also
important for predicting the lab report score, are located far
from the origin of the figure. Thus, prior knowledge, sense-
making effort, problem solving confidence, and concentra-
tion emotions are positively correlated with each other and
are important for the model’s ability to predict students’

TABLE II. Statistics of PLS top model shown in Fig. 1 where outcome (lab score) is predicted by all other constructs, together with
statistics of the PCA base models that represent each construct.

No. of components No. of items R2x a R2y b Q2 c Significantd

PLS top model

Lab score versus all other constructs 1 13 0.43 0.42 0.33 Yes

Construct (PCA base model)

Prior knowledge 1 13 0.37 0.10 Yes

Beliefs: Real world connection 1 4 0.46 0.01 No

Beliefs: Personal interest 1 6 0.33 �0:10 No

Beliefs: Sense-making effort 1 7 0.42 0.15 Yes

Beliefs: Conceptual connections 1 6 0.34 �0:02 No

Beliefs: Applied conceptual understanding 1 7 0.27 �0:10 No

Beliefs: Problem solving general 1 8 0.33 �0:06 Yes

Beliefs: Problem solving confidence 1 4 0.43 �0:07 No

Beliefs: Problem solving sophistication 1 6 0.44 0.15 Yes

Emotions: Control 1 12 0.44 0.26 Yes

Emotions: Concentration 1 6 0.66 0.39 Yes

Emotions: Pleasure 1 8 0.55 0.32 Yes

Lab score 1 15 0.44 0.33 Yes

aVariance in x.
bVariance in y.
cPredictive ability.
dSignificant component if Q2 > limit, with 95% confidence interval. PLS: limit ¼ 0:05. PCA: The limit increases with subsequent
components to account for the loss in degrees of freedom.
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lab scores. The beliefs categories describing problem solv-
ing general, problem solving sophistication, conceptual
connections, and applied conceptual understanding, which
all express novicelike epistemological beliefs (see Table III
in order to see how the items constitute each category), are
also important predictors in the model and are all nega-
tively correlated to lab score. The meaning of each base
model is explained and analyzed in more detail below. This
PLS top model also reveals that control emotions, which in
this case are dominated by negative feelings of stress,
ignorance, and frustration, are important for explaining
performance and correlate negatively with lab score.
Value beliefs, which are represented by real world connec-
tion and personal interest, show little correlation to

performance, especially personal interest, which is surpris-
ing. Pleasure emotions are correlated with beliefs express-
ing personal interest, but show low correlation with how
the students performed on the lab, implying that high
quality performance is not driven by intrinsic motivation.
Figure 2 summarizes the relative importance of the

measured constructs to model differences between students
with respect to the independent variables as well as to
predict the outcome variable lab score. The variables are
presented in descending order; however, they do not in-
dicate positive or negative correlation with performance.
Values larger than 1 indicate important constructs while
values lower than 0.5 indicate unimportant constructs.

B. Description of constructs: Base models

Items belonging to the same predefined construct were
pooled into a base model and the internal dimensionality
was investigated using PCA. The item’s relative contribu-
tion to a student’s score on a specific construct was
weighted by their ability to measure the underlying vari-
able (loading) in the base model. Table II presents a
summary of the statistics of base models representing the
different constructs that are used in Fig. 1.
Prior knowledge.—Students’ responses to the 12 items

in the conceptual physics test, together with the total score,
were represented by a PCA base model expressed in one
statistically significant component. The maximum score on
this test was 12 and the average was 9.8. As shown in Fig. 2,
prior knowledge in conceptual physics is the second most
important variable for predicting performance.
Beliefs.—The responses from this 39-item questionnaire

were categorized in the eight categories determined by

FIG. 1 (color online). PLS top model with one significant
component (y axis) showing internal correlation between con-
structs as well as their relative importance for the models ability
to predict the outcome variable lab score. Constructs that are
close are positively correlated and those that are on the opposite
side of the y axis are negatively correlated. Constructs may
contain positively as well as negatively polarized test items.

FIG. 2 (color online). Variables of importance in predicting
(VIP) lab score. Values larger than 1 indicate important
constructs while values lower than 0.5 indicate unimportant
constructs.
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TABLE III. Contributions (loadings) of beliefs items selected from the CLASS survey [32] to corresponding base models. Expert or
novice indicates whether the base model represents expert or novicelike beliefs and correlates with lab score in Fig. 1.

Categories and items Loading

Expert

or novice

Real world connection Expert

35. To understand physics, I sometimes think about my personal experiences and relate them to the

topic being analyzed.
0.59

28. Reasoning skills used to understand physics can be helpful to me in my everyday life. 0.56

33. The subject of physics has little relation to what I experience in the real world. �0:54
26. Learning physics changes my ideas about how the world works. 0.23

Personal interest Expert

26. Learning physics changes my ideas about how the world works. 0.58

13. I study physics to learn knowledge that will be useful in my life outside of school. 0.52

3. I think about the physics I experience in everyday life. 0.45

24. I enjoy solving physics problems. 0.31

28. Reasoning skills used to understand physics can be helpful to me in my everyday life. 0.26

10. I am not satisfied until I understand why something works the way it does. 0.11

Sense-making effort Expert

30. Spending a lot of time understanding where formulas come from is a waste of time. �0:43
37. When I solve a physics problem, I explicitly think about which physics ideas apply to the

problem.
0.40

34. There are times I solve a physics problem more than one way to help my understanding. 0.38

23. In physics, it is important for me to make sense out of formulas before I can use them correctly. 0.37

39. When studying physics, I relate the important information to what I already know rather than just

memorizing it the way it is presented.
0.37

22. In doing a physics problem, if my calculation gives a result very different from what I’d expect,

I’d trust the calculation rather than going back through the problem.

�0:35

10. I am not satisfied until I understand why something works the way it does. 0.34

Conceptual connections Novice

30. Spending a lot of time understanding where formulas come from is a waste of time. 0.51

12. I do not expect physics equations to help my understanding of the ideas; they are just for doing

calculations.
0.48

6. Knowledge in physics consists of many disconnected topics. 0.45

1. A significant problem in learning physics is being able to memorize all the information I need to

know.
0.40

20. If I don’t remember a particular equation needed to solve a problem on an exam, there’s nothing

much I can do (legally!) to come up with it.
0.27

5. After I study a topic in physics and feel that I understand it, I have difficulty solving problems on

the same topic.

�0:26

Applied conceptual understanding Novice

38. If I get stuck on a physics problem, there is no chance I’ll figure it out on my own. 0.47

1. A significant problem in learning physics is being able to memorize all the information I need to

know.
0.46

20. If I don’t remember a particular equation needed to solve a problem on an exam, there’s nothing

much I can do (legally!) to come up with it.
0.41

6. Knowledge in physics consists of many disconnected topics. 0.40

21. If I want to apply a method used for solving one physics problem to another problem, the

problems must involve very similar situations.
0.35

7. When I solve a physics problem, I locate an equation that uses the variables given in the problem

and plug in the values.
0.35

5. After I study a topic in physics and feel that I understand it, I have difficulty solving problems on

the same topic.

�0:06

Problem solving general Novice

32. I can usually figure out a way to solve physics problems. �0:46
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Adams et al. [32] and analyzed in separate PCA models.
Not all test items in the questionnaire belonged to a cate-
gory and some test items belonged to several categories as
shown by Adams et al. The cross-validation indicated that
the systematic variation among items in the different be-
liefs categories was difficult to predict, as shown by Q2 in
Table II. This could be due to the relatively small sample
size. Given this, and the previous validation of the cate-
gories by Adams et al., we decided to calculate one com-
ponent for each category, provided that the covariation
structure among items within each category was consistent
with theory. In Table III the individual test items belonging
to each construct and their loadings are presented, showing
their relative contribution to the first component of that
particular base model as well as the polarization towards
expertlike or novicelike representation for each base
model.

Emotions.—The flow categories, control (control, calm,
competent, ignorant, frustrated, stressed), concentration
(concentration, focus, absorbed), and pleasure (interested,
amused, motivated, elated), were used when creating the
PCA base models representing emotions. The flow catego-

ries thus gave three base models that all generated one
significant component. In general, students expressed
positive emotional experiences during the simulation.
Averages of students’ responses to the items in the pleasure
and concentration categories were 3.6 and 3.8, respectively,
on the five-degree Likert scale. The control category con-
tained positive as well as negative items. Positive control
emotions (control, calm, competent) have an average score
of 3.3 while negative control emotions (ignorant, frus-
trated, and stressed) had an average of 3.6. For the control
base model, the negative items were more important for
describing the variance among students, thus defining the
negative meaning of this construct (as expressed by the
base model) and explaining the negative correlation with
performance.
Lab score.—This base model, which represents perform-

ance, was generated from students’ responses to the 15
questions in the lab instructions. As described earlier,
students’ responses were scored using the modified
SOLO taxonomy. Analyzing scores with PCA produced
one single significant lab score component. The subtasks
showed an increasing complexity, from modeling of a

Categories and items Loading

Expert

or novice

Real world connection Expert

39. When studying physics, I relate the important information to what I already know rather than just

memorizing it the way it is presented.

�0:45

38. If I get stuck on a physics problem, there is no chance I’ll figure it out on my own. 0.42

24. I enjoy solving physics problems. �0:42
15. Nearly everyone is capable of understanding physics if they work at it. 0.30

25. In physics, mathematical formulas express meaningful relationships among measurable

quantities.

�0:27

12. I do not expect physics equations to help my understanding of the ideas; they are just for doing

calculations.
0.25

14. If I get stuck on a physics problem on my first try, I usually try to figure out a different way that

works.
0.10

Problem solving confidence Expert

32. I can usually figure out a way to solve physics problems. 0.68

38. If I get stuck on a physics problem, there is no chance I’ll figure it out on my own. �0:62
15. Nearly everyone is capable of understanding physics if they work at it. �0:38
14. If I get stuck on a physics problem on my first try, I usually try to figure out a different way that

works.
0.07

Problem solving sophistication Novice

20. If I don’t remember a particular equation needed to solve a problem on an exam, there’s nothing

much I can do (legally!) to come up with it.
0.50

32. I can usually figure out a way to solve physics problems. �0:49
38. If I get stuck on a physics problem, there is no chance I’ll figure it out on my own. 0.47

24. I enjoy solving physics problems. �0:46
5. After I study a topic in physics and feel that I understand it, I have difficulty solving problems on

the same topic.
0.27

21. If I want to apply a method used for solving one physics problem to another problem, the

problems must involve very similar situations.
0.07

TABLE III. (Continued)

MADELEN BODIN AND MIKAELWINBERG PHYS. REV. ST PHYS. EDUC. RES. 8, 010108 (2012)

010108-10



small particle-spring system towards large particle-spring
systems including damping. This increasing complexity,
and hence discriminative ability, is reflected in this base
model (Fig. 3) where responses to questions in the third
and fourth subtasks generate larger variance among stu-
dents, and thus have the highest loadings in the model.

V. DISCUSSION

Numerical problem solving in physics education is,
compared to traditional problem solving, a complex learn-
ing situation where knowledge and skills in several disci-
plines are integrated. Furthermore, as in the present case,
the degree of freedom is often high, allowing students to
plan and conduct their work in accordance with, for ex-
ample, their prior knowledge, own values, beliefs about
learning, and priorities pertinent to their learning needs and
goals. As mentioned earlier, motivation to engage in an
activity, and thus the quality of outcomes, depends on how
well situational factors align with the individual’s goals,
skills, and values. Thus, it is not self-evident that a situ-
ation with a high degree of freedom will appeal to and offer
good learning opportunities for all types of students. To be
able to predict the efficiency of specific learning activities
to motivation and cognition, we need a better understand-
ing of the complex array of variables that are involved in
the appraisal processes and their interactions with motiva-
tion and cognition. In the present study, several of the
measured characteristics play important roles in predicting
the students’ performance of the task. Our results show that
the students’ prior knowledge and epistemological beliefs,
together with control and concentration emotions, are im-
portant variables for predicting performance, while evalu-
ations of the utility of physics knowledge in everyday life,
i.e., value beliefs, or the extent to which students enjoyed
working with the simulation, pleasure emotions, are not
correlated with performance as much.

A. Prior knowledge

Although the task did not actually introduce any new
physics, in addition to the basic-level classical mechanics
that formed the context of the problem and should be
familiar to the students, prior knowledge in physics was
among the most important predictors of performance. This
is not so surprising since there is a well-established link
between structure of prior knowledge and performance on
complex tasks. Students who have well-developed sche-
mata in the subject area not only have better opportunities
to quickly overview the task and identify key issues and
possible strategies to solve the task, but will also experi-
ence a reduced load on working memory, due to informa-
tion chunking, which allows for more creative thinking.
This would certainly be the case in any learning situation,
but we argue that the need for relevant and well-structured
prior knowledge is accentuated in situations with a high
degree of freedom like in the present study. This finding
supports the idea that students with good prior knowledge
to a relatively high extent express feelings of control and
calmness while less knowledgeable students experience
higher levels of frustration and stress, as well as feeling
less competent. Furthermore, the importance of prior phys-
ics knowledge for successful performance in this study
indicates that the task did require significant interaction
with conceptual physics and thus had potential effects on
the development of students’ physics understanding,
although the task was considered by the teachers mainly
as a programming exercise.

B. Beliefs about physics and learning

Because of the short time scales in this study we assume
that students’ beliefs did not change during the time of the
study. Even though previous research has shown that short-
term intervention using a refutational instruction approach
can possibly change students’ epistemologies [45] towards
a more sophisticated view, it is not clear how stable these
changes are. Other studies have shown that possible
changes in students’ epistemologies usually need longer
periods of time, e.g., semester or even years [9,46]. Our
results showed that students’ initial beliefs about physics
did predict performance. In fact, novicelike beliefs that
physics knowledge consists of isolated pieces of informa-
tion that are to be remembered and cannot be developed
further by the student (i.e., beliefs found in applied con-
ceptual understanding) were even more important than
prior knowledge to explain the quality of the lab report.
This belief was associated with low performance on the lab
report, but also a low perceived degree of control over the
situation, low perceived competence, and low scores on the
conceptual pretest. Hence, beliefs indicating a tendency to
solve physics problems without elaboration of links be-
tween formulas and theory, i.e., the novicelike beliefs
found in problem solving sophistication and problem
solving general, have predicted performance as well as

FIG. 3. PCA base model of lab score showing questions with
increasing complexity, using one significant component (y axis).
The x axis indicates item index only and does not carry any
further information about the data set.
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affective experiences negatively in this learning situation,
while an inclination to connect what is learned with prior
knowledge and to understand underlying principles rather
than to mechanically apply formulas (as indicated by
sense-making effort) was positively associated with per-
formance, control, and sense of competence.

In this study, we have measured performance, lab score,
in terms of complexity of student’s reasoning in their
answers to questions in the lab manual. As shown in
Fig. 3, questions that offer, but not explicitly require,
possibilities for more complex answers are those that are
most important for describing differences in student per-
formance, and thus more likely to predict performance.
Since the required level of complexity was not specified in
these questions, we argue that this measure reflects stu-
dents’ choice of level for complex reasoning. Our results
indicate that the choice to engage in a higher-level reason-
ing is not only related to the students’ ability for high
complexity reasoning, i.e., having appropriate knowledge
in the subject area, but also to the students’ beliefs about
how physics should be learned and, implicitly, the nature of
physics knowledge, at least when the situation provides
scope for such decisions. However, the positive correlation
between students’ expertlike beliefs and a high level of
prior knowledge, as shown in Fig. 1, could be interpreted as
students’ beliefs about physics and learning have had
impact on their learning in general, i.e., the character of
the physics knowledge they have developed prior to the
course. Thus, there is a possibility that the predictive
ability of students’ beliefs on performance is mediated by
the level of prior knowledge. Novicelike beliefs were
associated with feelings of frustration, stress, and low
perceived competence, while students with expertlike be-
liefs to a larger extent than others instead experienced a
sense of being in control of the situation and calmness.
This is in line with the assumption that students who
believe that learning physics is about understanding the
large picture, e.g., principles, and interrelations, rather than
memorizing isolated facts, would have developed more
coherent and complex prior schemata in the subject area,
thus reducing risk for cognitive overload by facilitating
overview and processing of the complex physics task [47].

C. Emotional experiences

As mentioned earlier, state emotions have been hypothe-
sized to play several different roles in motivational pro-
cesses [35]. Emotions can serve as indicators of how well
the situation matches the individual’s beliefs, values, skills,
as well as measures of progress and perceived control, and
thus provide valuable information of the efficiency of a
learning situation. In the present study, three different types
of emotions were measured, pleasure, control, and concen-
tration, in order to investigate their relationship with per-
formance and students’ beliefs about physics. These types
of emotions have been used within research on flow but

also have bearing on, for example, the intrinsic-extrinsic
continuum in self-determination theory. Our results show
that students’ emotional experiences during the exercise
are subordinate to students’ epistemological beliefs and
prior knowledge for predicting performance. Only concen-
tration and control emotions had some correlation with
performance, while pleasure emotions were unimportant
for predicting performance.
Internalization and identification of external goals,

norms, and values is considered to result in extrinsic mo-
tivation with a more intrinsic character, whose develop-
ment is proposed to be associated with autonomy and
feelings of competence and control. In this case, we pro-
pose that feelings of competence were achieved in those
cases when situational demands matched students’ per-
sonal characteristics, of which epistemological beliefs
and physics knowledge had most influence. We suggest
that students’ epistemological beliefs did function as goals
(cf. Carver and Scheier’s reference values [11]) that
provided direction for their behavior. According to self-
determination theory, internalization of external goals, i.e.,
expertlike beliefs, would not necessarily lead to enjoyment
emotions. However, when goals are integrated, behavior is
to a high extent perceived as self-regulated and manifested
in a sense of control and competence if goals are adaptive
in the specific situation.
One conclusion that could be drawn from this is that

learning not necessarily has to be driven by intrinsic mo-
tivation, i.e., to be fun. However, since affective memories
are considered as one of the major contributors to attitudes,
and thus future choice behavior, it would be a mistake not
to consider the intrinsically motivating properties of learn-
ing situations if we want the students to enroll in future
physics courses.

VI. CONCLUSIONS

The students’ prior knowledge and epistemological be-
liefs, together with control and concentration emotions,
have been shown to be important variables for predicting
performance, while evaluations of the utility of physics
knowledge in everyday life, i.e., value beliefs, or the extent
to which students enjoyed working with the simulation,
pleasure emotions, do not show the same predictive ability
on performance in the particular context of this study.
An environment for numerical problem solving can be

used for solving challenging and realistic physics prob-
lems, providing a learning situation with high degree of
freedom. The particle-spring model system used in this
study can be used to model and simulate many realistic and
interesting phenomena and thus function as a context for
motivated learning behavior. However, our results indicate
that although a certain degree of enjoyment is probably
necessary, integration and identification of expertlike be-
liefs about learning are more strongly associated with
concentration and control during learning and, ultimately,
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with high performance. In this situation with many degrees
of freedom, participants who believed that difficult
problems can be solved by investing more effort and
acknowledged their own responsibility in learning per-
formed better and experienced less frustration and stress
than those who were more authority dependent and showed
less confidence in their ability to solve problems. This has
two consequences: (1) in order to improve student’s per-
formance, and hence confidence in problem solving, the
situational demands, e.g., in terms of degrees of freedom,
should be adjusted to meet the beliefs of the students, and
(2) in order to help our students to develop their ability to
cope with situations that require them to take charge of
their own learning, it is necessary to also focus on the
development of expertlike beliefs about learning as well
as their content knowledge. We argue that this develop-
ment could be stimulated by using tasks with high degree
of freedom or challenging tasks, such as the numerical
physics problem used in this study, where expertlike be-
liefs are required for successful performance.

It should be pointed out that the study was performed in
one specific setting. Thus, although the data clearly support
the conclusions made, there is a need for further research to
test the relationship between students’ beliefs, emotional

experiences, and performance in other settings before
wider generalizations can be made. The motivational and
cognitive processes that influences learning are multifac-
eted and complex. Hence, to gain a better understanding of
how different learning situations can support learning for
different types of students, studies that simultaneously
consider relationships between many relevant variables
and their relative importance for learning are strongly
warranted.
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APPENDIX: CONTRIBUTIONS OF BELIEF ITEMS

In Table III the individual test items from the CLASS
questionnaire by Adams et al. [32] belonging to each
construct and their loadings are presented, showing their
relative contribution to the first component of that particu-
lar base model as well as the polarization towards
expertlike or novicelike representation for each base
model.
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