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In this paper, we explore the use of isomorphic problem pairs �IPPs� to assess introductory physics students’
ability to solve and successfully transfer problem-solving knowledge from one context to another in mechan-
ics. We call the paired problems “isomorphic” because they require the same physics principle to solve them.
We analyze written responses and individual discussions for a range of isomorphic problems. We examine
potential factors that may help or hinder transfer of problem-solving skills from one problem in a pair to the
other. For some paired isomorphic problems, one context often turned out to be easier for students in that it was
more often correctly solved than the other. When quantitative and conceptual questions were paired and given
back to back, students who answered both questions in the IPP often performed better on the conceptual
questions than those who answered the corresponding conceptual questions only. Although students often took
advantage of the quantitative counterpart to answer a conceptual question of an IPP correctly, when only given
the conceptual question, students seldom tried to convert it into a quantitative question, solve it, and then
reason about the solution conceptually. Even in individual interviews when students who were given only
conceptual questions had difficulty and the interviewer explicitly encouraged them to convert the conceptual
question into the corresponding quantitative problem by choosing appropriate variables, a majority of students
were reluctant and preferred to guess the answer to the conceptual question based upon their gut feeling.
Misconceptions associated with friction in some problems were so robust that pairing them with isomorphic
problems not involving friction did not help students discern their underlying similarities. Alternatively, from
the knowledge-in-pieces perspective, the activation of the knowledge resource related to friction was so
strongly and automatically triggered by the context, which is outside the conscious control of the student, that
students did not look for analogies with paired problems or other aids that may be present.
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I. INTRODUCTION

In this paper, we explore the use of isomorphic problem
pairs �IPPs� to assess introductory physics students’ expertise
in mechanics in a range of contexts. We call the paired prob-
lems isomorphic if they require the same physics principle to
solve them. We investigate a few parameters as potential
factors that may help problem solving and analyze the per-
formance of students on the IPPs from the perspective of
“transfer.”1–11 For example, we examine the effect of mis-
conceptions about friction as a potential barrier for problem
solving and transfer.1–4 Transfer in physics is particularly
challenging because there are only a few principles and con-
cepts that are condensed into a compact mathematical form.
Learning requires unpacking them and understanding their
applicability in a variety of contexts that share deep features,
e.g., the same law of physics may apply in different contexts.
Cognitive theory suggests that transfer can be difficult espe-
cially if the “source” �from which transfer is intended� and
the “target” �to which transfer is intended� do not share sur-
face features. This difficulty arises because knowledge is en-
coded in memory with the context in which it was acquired,
and solution of the source problem does not automatically
manifest its deep similarity with the target problem.1 The
ability to transfer relevant knowledge from one context to
another improves with expertise because an expert’s knowl-
edge is hierarchically organized and represented at a more
abstract level in memory, which facilitates categorization and
recognition based upon deep features.2–9,12,13

Students may find one problem in an IPP easier to tackle
than its pair because context and representation are very
important.2–9,12,13 For example, if two equivalent groups of
students are given only the quantitative or conceptual ques-
tion from an IPP pairing a quantitative and conceptual ques-
tion with similar contexts, one group may perform well on
one of them but not the other. Some studies have shown that,
if students are reasonably comfortable with the mathematical
manipulation required to solve a quantitative problem, the
group given the quantitative problem may perform better on
it using an algorithmic approach than the group given the
corresponding conceptual question.14–16 In a study on student
understanding of diffraction and interference concepts, the
group that, was given a quantitative problem performed sig-
nificantly better than the group given a similar conceptual
question.14 In another study, Kim et al.15 examined the rela-
tion between traditional physics textbook-style quantitative
problem solving and conceptual reasoning. They found that,
although students in a mechanics course on average had
solved more than 1000 quantitative problems and were facile
at mathematical manipulations, they still had many common
difficulties when answering conceptual questions on related
topics. When Mazur16 gave a group of Harvard students
quantitative problems related to power dissipation in a cir-
cuit, students performed significantly better than when an
equivalent group was given conceptual questions about the
relative brightness of light bulbs in similar circuits. In solv-
ing the quantitative problems given by Mazur, students ap-
plied Kirchhoff’s rules to write down a set of equations and
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then solved the equations algebraically for the relevant vari-
ables from which they calculated the power dissipated. When
the conceptual circuit question was given to students in simi-
lar classes, many students appeared to guess the answer
rather than reasoning about it systematically.16 For example,
if students are given quantitative problems about the power
dissipated in each headlight of a car with resistance R when
both bulbs are connected in parallel to a battery with an
internal resistance r and then asked to repeat the calculation
for the case when one of the headlights is burned out, the
procedural knowledge of Kirchhoff’s rules can help students
solve for the power dissipated in each headlight even if they
cannot conceptually reason about the current and voltage in
different parts of the circuit.14,16 To reason without resorting
explicitly to mathematical tools �Kirchhoff’s rules� that the
single headlight in the car will be brighter when the other
headlight is burned out, students have to reason in the fol-
lowing manner. The equivalent resistance of the circuit is
lower when both headlights are working so that the current
coming out of the battery is larger. Hence, more of the bat-
tery voltage drops across the internal resistance r and less of
the battery voltage drops across each headlight and therefore
each headlight will be less bright. If a student deviates from
this long chain of reasoning required in conceptual under-
standing, the student may not make a correct inference.

II. HYPOTHESES AND GOALS

The experiments we describe here can broadly be classi-
fied into three categories. Experiment 1 involves IPPs that
pair a quantitative question with a conceptual question. Ex-
periment 2 involves IPPs in which both questions are con-
ceptual. Experiment 3 addresses the effect of misconceptions
about friction on students’ ability to transfer relevant knowl-
edge from a problem not involving friction to isomorphic
problems involving friction.

We developed several IPPs in the multiple-choice format
�final version shown in the Appendix� with different contexts
in mechanics. The problems spanned a range of difficulty.
The correct solution to each question is italicized in the Ap-
pendix. We administered either one or both questions in an
IPP to introductory physics students. We made hypotheses
H1–H3 related to experiment 1, hypothesis H4 related to
experiment 2, and hypothesis H5 related to experiment 3 as
described below:

Experiment 1 with IPPs in which one question is more
quantitative than the other: Although it is difficult to catego-
rize physics questions as exclusively quantitative or concep-
tual, some of the IPPs had one question that required sym-
bolic or numerical calculation while the other question could
be answered by conceptual reasoning alone. The first five
IPPs in the Appendix fall in this category �although questions
3 and 4 in the second IPP can both be classified as quantita-
tive�. We made the following hypotheses regarding these
IPPs.

H1: Performance on quantitative questions of an IPP will
be better when both the quantitative and conceptual ques-
tions are given than when only the quantitative question is
given.

H2: Performance on conceptual questions of an IPP will
be better when both the quantitative and conceptual ques-
tions are given than when only the conceptual question is
given.

H3: The closer the match between the contexts of the
quantitative and conceptual questions of an IPP, the better
will students be able to discern their similarity and transfer
relevant knowledge from one problem to another.

We note that our study is different from those mentioned
earlier14–16 because our goal is not to evaluate whether stu-
dents perform better on the quantitative or conceptual ques-
tion but rather to evaluate whether giving both questions
together improves performance on each type of question
compared to the case when only the conceptual or the quan-
titative question was given.

Hypothesis H1 is based on the assumption that solving the
conceptual question of an IPP may encourage students to
perform a qualitative analysis, streamline students’ thinking,
make it easier for them to narrow down relevant concepts,
and thus help them solve the quantitative problem correctly.
Prior studies show that introductory physics students are not
systematic in using effective problem-solving strategies, and
often do not perform a conceptual analysis while solving a
quantitative problem.17 They often use a “plug and chug”
approach to solving quantitative problems which may pre-
vent them from solving the problem correctly. The concep-
tual questions may provide an opportunity for reflecting
upon the quantitative problem and performing a qualitative
analysis and planning. This can increase the probability of
solving the quantitative problem correctly. We note that,
since the IPPs always had a quantitative question preceding
the corresponding conceptual question, hypothesis H1 as-
sumes that students will go back to the quantitative question
if they got some insight from the corresponding conceptual
question.

Hypothesis H2 is inspired by results of prior studies that
show that introductory physics students often perform better
on quantitative problems compared to conceptual questions
on the same topic.14–16 Students often treat conceptual ques-
tions as guessing tasks.14–16 We hypothesized that students
who are able to solve the quantitative problem in an IPP may
use its solution as a hint for answering the conceptual ques-
tion correctly if they are able to discern the similarity be-
tween the two questions. Since quantitative and conceptual
questions of an IPP were given one after another, we hypoth-
esized that students would likely discern their underlying
similarity at least in cases where the contexts were similar.
When reasoning without quantitative tools, it may be more
difficult to create the correct chain of reasoning if a student is
“rusty” about a concept.18 Equations can provide a pivot
point for constructing the reasoning chain. For example, if a
student has forgotten whether the maximum safe driving
speed while making a turn on a curved road depends on the
mass of the vehicle, he/she will have great difficulty reason-
ing without equations that the maximum speed is not depen-
dent on the mass. Similarly, a student with evolving expertise
who is comfortable reasoning with equations may need to
write down Newton’s second law explicitly to conclude that
the tension in the cable of an elevator accelerating upward is
greater than its weight. An expert can use the same law im-
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plicitly and conceptually argue that the upward acceleration
implies that the tension exceeds the weight without writing
down Newton’s second law explicitly. Being able to reason
conceptually without resorting to quantitative tools in a wide
variety of contexts may be a sign of adaptive expertise,
whereas conceptual reasoning by resorting to quantitative
tools may be a sign of evolving expertise.18,19

Hypothesis H3 is based upon results of prior studies re-
lated to transfer.1–11 For example, in teaching debugging in
LOGO programming to children and investigating near and
far transfer of debugging skills to other contexts, Carver et
al. found that transfer of relevant knowledge is easier if the
contexts of the problems are similar.11 In the IPPs with
paired questions with different contexts, transfer of relevant
knowledge may be more difficult because students may have
more difficulty discerning their underlying similarity. If the
contexts are very different, discerning the underlying simi-
larity of the problems in each pair can be considered a sign
of adaptive expertise.19 If students had difficulty discerning
the underlying similarity of the IPPs with different contexts,
we explore the aspects of the IPPs that made the transfer of
relevant knowledge difficult. Among the first five IPPs, we
identified the contexts of the questions in the first three IPPs
to be closest, followed by the IPP pairing questions 9 and 10
and then the IPP pairing questions 7 and 8. The main differ-
ence between the contexts of questions in IPP �9� and �10� is
that in one case a person is falling vertically into a boat
moving horizontally and in the other case rain is falling ver-
tically into a cart moving horizontally. The IPP with ques-
tions 7 and 8 was considered to be the one requiring the
farthest transfer of relevant knowledge because the quantita-
tive problem 7 asks about the time for a projectile to reach
the maximum height and question 8 asks students to compare
the time of flight for three projectiles launched with the same
speed that achieved different heights and had different hori-
zontal ranges. In order to transfer from problem 7 to problem
8, students need to know that the total time of flight for a
projectile is twice the time to reach the maximum height.
Moreover, in question 8, students should not get distracted
by different horizontal ranges for the three projectiles, since
the horizontal range is not a relevant variable for answering
this question.

Experiment 2 involves IPPs with different contexts in
which neither question is quantitative: Examples of three
such IPPs are pairs in questions 11–16 in the Appendix. We
made the following hypothesis.

H4: When both questions of an IPP are conceptual, per-
formance will be better when both questions are given versus
when only one is given.

Hypothesis H4 is based upon the assumption that one
question in an IPP may provide a hint for the other question
and may help students in converging their reasoning based
upon relevant principles and concepts.

Experiment 3 involves IPPs or a problem triplet in which
some questions involve distracting features, e.g., common
misconceptions related to friction. IPPs involving questions
18 and 20, questions 24 and 25, and the triplet involving
questions 21, 22, and 23 in the Appendix address this issue.
We made the following hypothesis.

H5: In IPPs or problem triplets where some questions are
related to friction for which misconceptions are prevalent,

performance will be worse on the friction question than on
the question that does not contain friction. Giving such prob-
lems involving friction with isomorphic problems not involv-
ing friction will not improve performance on the problems
with friction.

Hypothesis H5 is based upon the assumption that distract-
ing features such as misconceptions can divert students’ at-
tention away from the central issue and may mask the simi-
larity between questions in an IPP. From the perspective of
knowledge in pieces, problem context with distracting fea-
tures can trigger the activation of knowledge that a student
thinks is relevant but which is not actually applicable in that
context. The student may feel satisfied applying the activated
knowledge resource and may not look further for analogies
to paired problems or other aids. Thus, transfer of relevant
knowledge in these cases may be challenging. One common
misconception about the static frictional force is that it is
always at its maximum value, because students have diffi-
culty with the mathematical inequality that relates the mag-
nitude of the static frictional force with the normal force.21

Students overgeneralize the inequality regarding the static
frictional force and think that, since we so often set static
friction to its maximum value, it must be maximum all the
time. Students also have difficulty in determining the direc-
tion of the frictional force. Another difficulty students have is
in determining when static vs kinetic friction is relevant for a
problem.

III. METHODOLOGY

Students in nine college calculus-based introductory phys-
ics courses participated in the study. The questions were
asked after instruction in relevant concepts and after students
had an opportunity to work on their homework on related
topics. Some students were given both questions of an IPP
�or all three questions in triplet questions 21–23�, which
were asked back to back, while others were given only one
of the two questions. When students were given both ques-
tions of an IPP back to back, the questions were always
given in the order given in the Appendix. For example, in the
first five IPPs, the quantitative questions preceded the corre-
sponding conceptual question. However, students were free
to go back and forth between them if they wished and could
change the answer to the previous question if they acquired
additional insight for solving the previous question by an-
swering a later question. Students who were given both ques-
tions of an IPP were not told explicitly that the questions
given were isomorphic. Students were given 2.5 min on an
average to answer each question.

Not all of the IPPs were used for all of the eight courses
due to logistical difficulties. In particular, instructors of the
courses often were concerned about the time it would take to
administer all of the questions and they ultimately deter-
mined which questions from the IPPs they gave to their
classes. In some cases, depending upon the consent of the
course instructor �due to the time constraint for a class�, stu-
dents were asked to explain their reasoning in each case to
obtain full credit. The questions contributed to students’
grades in all courses. In some of the courses, we discussed
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the responses individually with several student volunteers. In
one of these courses, students were given a survey after they
had worked on the IPPs to evaluate the extent to which they
realized that the questions were isomorphic and how often
they took advantage of their response to one of the questions
to solve its pair. Because the patterns of student responses
are similar for different classes, we discuss the responses
collectively here.

IV. RESULTS AND DISCUSSION

For the isomorphic problems given in the multiple-choice
format in the Appendix, Table I summarizes the numbers of
students who were given both questions or one of the ques-
tions of an IPP �or all three questions 21–23�, and students’
average performance. Table I also shows the results of a �2

test with both the �2 and p values for comparison between
cases when both questions in an IPP �or all three questions
21–23� were given vs only one of the questions was given.
Students can make appropriate connections between the
questions in an IPP only if they have a certain level of ex-
pertise that helps them discern the connection between the
isomorphic questions. Improved student performance when
both questions of an IPP were given vs when only one of the
questions was given was taken as one measure of transfer of
relevant knowledge from one problem to another. Below we
discuss the findings and analyze student performance in light
of our hypotheses H1–H5.

A. Experiment 1: IPPs with quantitative-conceptual pairs

Table I shows that, contrary to our hypothesis H1, student
performance on quantitative questions was not significantly
different when both quantitative and conceptual questions
were given back to back �with the quantitative question pre-
ceding the conceptual question� than when only the corre-
sponding quantitative question was given. In some cases, the
performance on the conceptual question was better than the
performance on the quantitative question �problem pair 9 and
10�, but students could not leverage their conceptual knowl-
edge for gain on the corresponding quantitative problem. As
noted earlier, the two questions in an IPP were always given
in the same order, although students could go back and forth
if they wanted. It is possible that students overall did not go
back to the questions they had already answered, especially
due to the time constraint, even if the question that followed
provided a hint for it. Future research will evaluate the effect
of switching the order of the quantitative and conceptual
questions in an IPP when both questions are given.

On the other hand, in support of hypothesis H2, students
who worked on both questions of the IPPs involving a con-
ceptual and a quantitative problem performed better on the
conceptual questions at least for three of the five IPPs than
when they were given only the conceptual questions. Table I
shows that, for three of the IPPs, if one question in an IPP
was quantitative and the other conceptual �the first five prob-
lem pairs�, students often performed better on the conceptual
question when both questions were given rather than the cor-
responding conceptual question alone. The fact that many

students took advantage of the quantitative problem to solve
the conceptual question points to their evolving expertise.
For example, many students who were given both questions
1 and 2 recognized that the final momenta of the ships are
independent of their masses under the given conditions by
solving the quantitative problem. Written responses and in-
dividual discussions suggest that some students who an-
swered the conceptual question 2 correctly were not com-
pletely sure about whether the change in momentum in

TABLE I. Summary of results. For the isomorphic problems
given in the multiple-choice format �see the Appendix�, the first
column lists the problem numbers, the second column gives the
percentage of students who chose the correct answer when only one
of the questions was given to them, and the third column gives the
percentage of students who chose the correct answer when both
questions �triplet for questions 21–23� were given. The numbers in
parentheses in the second and third columns refer to the number of
students who answered the question. The last two columns for all
questions list the p value and �2 for comparison of student perfor-
mance between cases when only one of the isormorphic questions
was given vs when the question was given with its isomorphic pair.
In experiment 3, we test only for significant differences for ques-
tions involving friction when they were given alone vs with an
isomorphic question not involving friction. Questions 18 and 20 are
isomorphic but they are not consecutive because, for the results
presented in the table, they were given with the corresponding free-
body diagrams �i.e., students who answered both questions 18 and
20, actually answered questions 17–20 in that order�.

Problem no. Only one Both p value �2

1 59 �138� 54 �289� 0.40 0.8

2 31 �215� 58 �289� 0.00 36.0

3 34 �138� 38 �289� 0.45 0.6

4 23 �215� 30 �289� 0.07 3.3

5 81 �138� 76 �289� 0.26 1.4

6 55 �215� 80 �289� 0.00 36.3

7 52 �138� 56 �289� 0.47 0.6

8 44 �150� 51 �289� 0.19 1.9

9 49 �138� 49 �289� 1.00 0.0

10 53 �150� 71 �289� 0.00 13.4

11 53 �81� 65 �289� 0.05 3.9

12 23 �65� 52 �289� 0.00 17.7

13 50 �81� 52 �289� 0.9 0.0

14 33 �65� 58 �289� 0.00 14.2

15 65 �81� 74 �289� 0.16 2.3

16 64 �65� 86 �289� 0.0 16.1

17 90 �479�
19 67 �479�
18 72 �479�
20 20 �81� 28 �479� 0.14 2.4

21 77 �150�
22 24 �190� 30 �150� 0.27 1.4

23 18 �81� 16 �150� 0.71 0.2

24 71 �150�
25 30 �81� 32 �150� 0.77 0.1
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question 1 was given by option �a� or �e�. However, since the
answer in either case is independent of the mass of the ob-
ject, these students chose the correct option �c� for question
2. The students who chose the incorrect option �a� for ques-
tion 1 but the correct option �c� for question 2 often assumed
that both ships in question 2 must have traveled the same
distance, although that is not correct. In individual discus-
sions, several students explicitly noted that the mass cancels
out in question 5 so the answer to question 6 cannot depend
on mass.20 Similarly, discussions with individual students
and students’ written work suggest that solving the quantita-
tive question 9 helped many students formulate their solution
to question 10. Although some students were not able to
solve the quantitative question, e.g., due to algebraic error or
not realizing that, when the conservation of the horizontal
component of momentum is considered, Batman’s vertical
velocity should not be included, it was easier for them to
answer the conceptual question after thinking about the
quantitative one. Most of them realized that the boat would
slow down after Batman lands in it.

Previous research shows that conceptual questions can
sometimes be more challenging for students than quantitative
ones, if the quantitative problems can be solved algorithmi-
cally and students’ preparation is sufficient to perform the
mathematical manipulations.14–16,22 If a student knows which
equations are involved in solving a quantitative problem or
how to find the equations, he or she can combine them in any
order to solve for the desired variables even without a deep
conceptual understanding of relevant concepts. On the con-
trary, while reasoning without equations, the student must
usually proceed in a particular order in the reasoning chain
to arrive at the correct conclusion.14–16,22 Therefore, the
probability of deviating from the correct reasoning chain in-
creases rapidly as the chain becomes long. We note, how-
ever, that our hypothesis H2 is not about whether students
will perform better on the quantitative or conceptual question
of an IPP when the two questions are given separately �es-
pecially because the wording is not parallel for the quantita-
tive and conceptual questions in an IPP�. Rather, our hypoth-
esis relates to whether students will recognize the similarity
of the quantitative and conceptual questions in an IPP, and
take advantage of their solution to one question to answer the
corresponding paired question. Our finding suggests that stu-
dents can leverage their quantitative solutions to correctly
answer the corresponding conceptual questions.

The fact that students often performed better on concep-
tual questions when they were paired with quantitative ques-
tions brings up the following issue. If students could turn the
conceptual questions into analogous quantitative problems
themselves when only the conceptual questions were given,
they may have solved the quantitative problem algorithmi-
cally if they were comfortable with the level of mathematics
needed, and then reasoned qualitatively about their results to
answer the original conceptual question. Almost without ex-
ception, students did not do this. One can hypothesize that
students have not thought seriously about the fact that a con-
ceptual question can be turned into a quantitative problem, or
that a mathematical solution can provide a tool for reasoning
conceptually. Without explicit guidance, students may not
realize that this conversion route may be more productive

than carrying out long conceptual reasoning without math-
ematical relations. However, we find that students avoided
turning conceptual questions into quantitative ones, even
when explicitly encouraged to do so. In one-on-one inter-
view situations, when students were given only the concep-
tual questions, they also tried to guess the answer based upon
their gut feeling. More research is required to understand
why students are reluctant to transform a conceptual question
into a quantitative problem even if the mathematical manipu-
lations required after such a conversion and making correct
conceptual inferences are not too difficult for them. One pos-
sible explanation for such reluctance is that such a transfor-
mation from a conceptual to a quantitative problem is cog-
nitively demanding for a typical introductory physics student
and may cause a mental overload.23 According to Simon’s
theory of bounded rationality, an individual’s rationality in a
particular context is constrained by his/her expertise and ex-
perience and an individual will choose only one of the few
options consistent with his/her expertise that does not cause a
cognitive overload.24

Consistent with hypothesis H3, student performance on
question 8 did not improve significantly when it was given
together with question 7. Discussions with individual stu-
dents who answered both questions 7 and 8 suggest that,
after solving the quantitative problem, some students were
unsure whether the horizontal component of motion was im-
portant or not. Students also needed to know that the time to
reach the maximum height is half of the time of flight. How-
ever, students’ performance on question 10 improved signifi-
cantly when it was given with question 9 rather than alone,
despite the fact that the contexts were somewhat different; in
particular, in one case a person is falling vertically and in the
other case rain is falling vertically. In this case, many stu-
dents were able to transfer relevant knowledge from question
9 to 10.

We note that, for the IPP in questions 3 and 4, the quan-
titative problem itself was very challenging. Most inter-
viewed students and those who wrote something on their
answer sheet did not use conservation of energy correctly
and forgot to take into account both the rotational and trans-
lational kinetic energies in their analysis. Thus, it is not sur-
prising that there is no significant difference between cases
when only one of the questions was given vs both questions
were given.

Some of the quantitative questions asked for numerical
answers while others asked for symbolic answers. Individual
discussions suggest that students were often able to take ad-
vantage of their process for quantitative solution in either
case to tackle the conceptual question more successfully
�e.g., question 1 asked for a symbolic answer whereas ques-
tion 5 asked for a numerical answer� than if they were given
only the conceptual question. Future research will further
investigate the differences in numerical vs symbolic answers
by giving identical questions requiring numerical answers
from some students and symbolic answers from others.

B. Experiment 2: IPPs that do not mix quantitative and
conceptual questions

Table I shows that, in support of hypothesis H4, students’
performance often improved when both questions of an IPP
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were given compared to when only one of the two questions
was given. For example, Table I shows that the performance
on both questions 11 and 12 improved when both questions
were given. Individual interviews and written responses sug-
gest that students sometimes got confused about the distinc-
tion between angular momentum and angular speed. How-
ever, students who answered question 11 correctly were
often able to extend their argument to question 12 and they
were able to identify that the angular momentum does not
change and angular speed increases when the star collapses.
For example, during an interview, a student who answered
both questions 11 and 12 first narrowed down the possible
correct choices for question 12 to �a� or �e�, noting that the
angular momentum does not change here, similarly to the
skater problem. Then the student noted that, since the angu-
lar speed must increase as the star shrinks, the correct choice
must be �e�. This student took clues from the question about
the ice skater and answered the white dwarf question cor-
rectly, explicitly making the comparison between the paired
questions and quickly eliminating options �b�, �c�, and �d� in
question 12, which sheds light on this student’s expertise and
his ability to transfer relevant knowledge from one context to
another.

Similarly, in question 14, in which ball B is unconven-
tional in that the density is not uniform and the inner core is
denser than the outer shell, student performance improved
when it was given with question 13. Individual discussions
and the difference between the correct responses for the
cases where students answered both questions on the IPP vs
only question 14 suggest that students took advantage of the
scaffolding provided by the paired problem. In particular,
question 13 specifically helped students to consider whether
the mass and the radius are the relevant variables, or the
moment of inertia �the distribution of mass�. Many students
appeared to have the expertise to transfer this knowledge to
question 14. On the other hand, question 14 does not provide
any hints for question 13 and appears not to be helpful for
answering question 13 when both questions were given as a
pair.

In the IPP involving questions 15 and 16, students per-
formed significantly better on question 16 when both ques-
tions of the IPP were given. It is somewhat surprising that
students did better on the turntable problem than the bandit
problem when both were given. Some students who were
given both questions 15 and 16 claimed that the speed of the
cart would be unchanged after the bandit lands in it. This
may be due to the fact that students did not recognize the
bandit question as a completely inelastic collision problem,
for which the object slows down after the collision. This is
not surprising considering the subtle fact that, in the bandit
problem, there must be a frictional force between the bandit
and the cart which will slow down the cart and bring the
bandit to the same horizontal speed as the cart. In particular,
after the bandit falls in the cart, the frictional force that the
cart exerts on the bandit’s shoes is equal in magnitude but
opposite in direction to the force that the bandit’s shoes exert
on the cart from Newton’s third law. These forces will slow
the cart down and speed up the bandit so that they both have
the same final horizontal velocity. In a typical inelastic col-
lision problem given to students, objects do not move per-

pendicular �but parallel� to each other before the collision, as
in the case of two cars colliding head on and sticking to each
other. In the bandit problem, some interviewed students and
those providing written explanation reasoned incorrectly that
the vertical motion of the bandit cannot affect the horizontal
motion of the cart. This misconception originates from the
decoupling of the vertical and horizontal motions, e.g., for a
projectile. Interviews suggest that for the turntable problem
students used their intuition and experience about this prob-
lem to predict that the turntable will slow down when the
putty falls on it and did not explicitly invoke conservation of
angular momentum. Future research will involve giving
these problems in the opposite order to evaluate the ordering
effect.

C. Experiment 3: Influence of distracting features and
misconceptions about friction

Consistent with hypothesis H5, students had difficulty in
seeing the deep connection between the isomorphic problems
not involving friction and those involving friction,21 even
though they were given back to back, and in transferring
relevant knowledge to the problem involving friction. The
fact that students did not take advantage of the easier prob-
lems not involving friction to answer the questions involving
friction suggests that the misconceptions about friction were
quite robust.25 Many students believed that �i� the static fric-
tion is always at the maximum value, �ii� the kinetic friction
is responsible for keeping the car at rest on an incline, or �iii�
the presence or absence of friction must affect the work done
by you even if you apply the same force over the same dis-
tance.

In the IPP involving questions 18 and 20, the weight of
the car and the normal force exerted on the car by the in-
clined surface are the same in both problems. The only other
force acting on the car �which is the tension force in one
problem and the static frictional force in the other problem�
must be the same. Consistent with the common misconcep-
tion about the static frictional force that it must be at its
maximum value fs

max=�sN �where �s is the coefficient of
static friction and N is the magnitude of the normal force�,
the most common incorrect response to question 20 was
�sN=11 700 N ��40%�. Giving both questions 18 and 20
did not improve student performance on question 20 com-
pared to when it was given alone.

In order to help students discern the similarity between
questions 18 and 20, we later introduced two additional
questions 17 and 19 that asked students to identify the cor-
rect free-body diagrams for questions 18 and 20. We wanted
to assess whether forcing students to think about the free-
body diagram in each case would help them focus on the
similarity of the problems. Although the performance im-
proved somewhat when students were also asked about the
free-body diagrams �Table I presents data for the case when
students were given questions 17–20�, it is not significantly
different from when they were only asked question 20. The
strong misconception prevented transfer of relevant knowl-
edge from the problem not involving friction to the one in-
volving friction, even when students were explicitly asked
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for the free-body diagrams in the two cases. The most com-
mon incorrect response to question 19 was choice �a�, be-
cause these students believed that the frictional force should
be pointing down the incline. Approximately, 40% believed
that friction had a magnitude �sN and approximately 30%
believed it was �kN. In individual interviews, students often
noted that the problem with friction must be solved differ-
ently from the problem involving tension because there is a
special formula for the frictional force. Even when the inter-
viewer drew students’ attention to the fact that the other
forces �normal force and weight� were the same in both ques-
tions and they are both equilibrium problems, only some of
the students appeared concerned. Others used convoluted
reasoning and asserted that friction has a special formula
which should be used whereas tension does not have a for-
mula, and therefore, a free-body diagram must be used.

In the earlier administration, questions 21 and 22 were
given as an IPP but in the later administration whose results
are given in Table I, either three questions 21–23 were given
together as a triplet, or question 22 or question 23 involving
friction was given alone. Table I shows that the performance
on questions 22 or 23 did not improve significantly when
they were given with question 21. The most common incor-
rect response in question 22 was �sN=600 N ��40%�, with
or without question 21.

Misconceptions about friction were so strong that students
who were given both problems did not fully discern their
similarity and take advantage of their responses to question
21 to analyze the horizontal forces in question 22. An alter-
native knowledge-in-pieces view can also be used to explain
these findings in terms of students activating different re-
sources to deal with somewhat different contexts which ex-
perts view as equivalent. Smith et al.26 argue that student
responses should be considered as “resources rather than
flawed� and note that “Persistent misconceptions, if studied
in an even-handed way, can be seen as novice’s efforts to
extend their existing useful conceptions to instructional con-
texts in which they turn out to be inadequate. Productive or
unproductive is a more appropriate criterion than right or
wrong, and final assessments of particular conceptions will
depend on the contexts in which we evaluate their useful-
ness.” From this point of view, the problem context triggers
activation of knowledge that students think is relevant and
they reach a conclusion that is incorrect but that nevertheless
makes sense to them. Therefore, students do not feel the need
to look further for analogies to the paired problem. In ques-
tion 23, the coefficient of friction was not provided, and
similar to the common misconception in question 20, almost
50% of the students believed that it is impossible to deter-
mine the resultant force on the crate without this informa-
tion.

Similarly, although the frictional force in question 25 is
irrelevant for the question asked, it was a distracting feature
for a majority of students. Common incorrect reasoning for
question 25 was based on the assumption that friction must
play a role in determining the work done by the person, and
the angle of the ramp was required to calculate this work,
even though the distance by which the box was moved along
the ramp was given. Interviews suggest that many students
had difficulty distinguishing between the work done on the

box by the person and the total work done. They asserted that
the work done by the person cannot be the same in the two
problems because friction must make it more difficult for the
person to perform the work.

D. Survey about the effectiveness of the IPPs

In one of the courses in which students were given many
of the IPPs, they were also given a multiple-choice survey
with the following questions.

�1� Did you notice a pairing between the problems on the
quiz? �Choices: �a� Yes, it was obvious, �b� yes, after a while,
�c� a few questions seemed paired, �d� maybe one, �e� not at
all.�

�2� Did the paired problems cause you to reconsider any
answers? �Choices: �a� Yes, all of them, �b� several of them,
�c� a few, �d� maybe one, �e� not at all.�

�3� Were the paired problems helpful? �Choices: �a� The
first problem in a pair helped me with the second, �b� the
second problem helped me with the first, �c� the problems
helped me with each other, �d� they did not help me at all, �e�
they were actually confusing.�

�4� Which type of problems were most helpful, if any?
�Choices: �a� Algebraic answer, �b� numerical answer, �c�
comparison �more/less�, �d� simple question, with a reason,
�e� scaling question, e.g., if you double the radius, . . . .�

�5� You had a chance to explain multiple-choice answers
for partial credit. Did you find that this helped you formulate
the answer better? �Choices: �a� Yes, very much so, �b�
helped somewhat, �c� so so, no effect, �d� didn’t help at all,
and used up time, �e� it was actually confusing.�

The survey data are self-reported and should be inter-
preted with this fact in mind. In response to survey question
1, more than 50% of students chose �a�, claiming to notice
the pairing immediately. In response to survey question 2,
more than 40% of students noted that the paired problems
caused them to reconsider at least a few answers �choice �c��,
and in response to question 3, about 40% of students noted
that the paired problems helped them with each other �choice
�c��. These responses again suggest that students were actu-
ally trying to make sense of the problems to the best of their
ability and taking advantage of the IPPs. In response to ques-
tion 4, choices �a�, �b�, and �d� were all equally popular.
These responses are consistent with the fact that algebraic or
numerical problems gave students some confidence and pro-
vided them with tools to make sense of the paired conceptual
problems. In response to question 5, more than 30% of stu-
dents noted that explaining the multiple-choice answers
helped somewhat in better formulating their responses while
20% noted that it helped very much.

V. SUMMARY

Student performance on the quantitative problems did not
improve significantly when they were paired with the corre-
sponding conceptual questions compared to when quantita-
tive problems were given alone. However, students often per-
formed significantly better on the conceptual questions when
both quantitative and conceptual questions were given than
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when the conceptual question alone was given. Individual
discussions and written responses suggest that many students
were able to recognize the isomorphisms between problems,
reason about their quantitative solution, and transfer that
knowledge to the conceptual solution.

While students often took advantage of the quantitative
problem to answer the corresponding conceptual question of
an IPP, those who were only given the corresponding con-
ceptual question did not automatically convert it into a quan-
titative problem as an aid for reasoning correctly. Examina-
tion of students’ scratch work suggests that they seldom
attempted such conversion by choosing appropriate vari-
ables. One-on-one discussions suggest that students often
used gut feeling to reason about the conceptual questions.
This tendency persisted even when the interviewer explicitly
encouraged students to convert a conceptual question into a
quantitative one. It is possible that converting the conceptual
questions to quantitative ones was too cognitively demand-
ing for introductory students and may have caused mental
overload.

Even in IPPs that did not pair quantitative and conceptual
questions but one question provided a hint for the other, stu-
dents could sometimes exploit the reasoning for one of the
questions to answer the other question when both questions
in a pair were given. The fact that many students could dis-
cern the similarity between the problems and take advantage
of their solution to one problem to answer the other one
suggests that their expertise is evolving. In a survey given to
students in one course, they noted that they often realized the
similarity of the paired problems and sometimes tried to
make a connection between the problem pairs to answer the
question that was more difficult in each pair.

In this research, isomorphic problems were given back to
back, and the more quantitative question always preceded the
conceptual question in an IPP. The three IPPs in questions
11–16 were also always given in the same order. It is pos-
sible that the order in which questions were asked and the
proximity of the paired questions in an IPP are major factors
in whether students recognize their similarity and transfer
relevant knowledge from one problem to another. In future
research, one can explore the effect of spacing the isomor-
phic problems and changing the order, e.g., of the quantita-
tive and conceptual questions, on students’ ability to benefit
from having both questions of an IPP. Changing the order in
future research would also be insightful for the IPPs in which
both questions were relatively conceptual �e.g., the three
IPPs involving questions 11–16�. This research may be help-
ful in understanding whether one question in such IPPs pro-
vides a better hint by explicitly mentioning relevant variables
for answering the corresponding paired question.

From a misconceptions standpoint, strong alternative
views about friction related to the context of some of the
problems often prevented students from seeing the underly-
ing similarities between the problems involving friction and
an isomorphic problem that students found easier to solve.
For example, many students believed that the static friction
is always at the maximum value, or that the kinetic friction is
responsible for keeping the car at rest on an incline, or that
the presence of friction must affect the work done by you
even if you apply the same force over the same distance. In

such cases, students appeared to frame the isomorphic prob-
lems involving friction and not involving friction differently
and traversed different problem spaces while solving them.
From a knowledge-in-pieces perspective, the context when
friction is present and prominent triggers activation of
knowledge that students think is relevant �e.g., the formula
for maximum static friction� and they run with it and reach a
conclusion that makes sense to them but that is not correct.
Thus, there is no need to look further to similarities to the
paired problem or to anything else. This latter view is similar
to Simon’s theory of “satisficing” where individuals will se-
lect only a few of the large number of possible paths in the
problem space that are consistent with their expertise in the
area, which satisfies them and does not cause a cognitive
overload. If an individual is not an expert in a domain, it is
likely that these paths in the problem space are not the ones
that will lead to success. When students satisfice, there is no
need to discern the deep similarity of the paired problems
and transfer their analysis for the problem not involving fric-
tion to the one involving friction, because within their world
view the solution strategy that comes to their mind after
understanding the problem makes sense.

VI. INSTRUCTIONAL IMPLICATIONS

Although student performance on quantitative problems
did not improve significantly when such problems were
paired with conceptual questions, students benefited from
quantitative and conceptual problem pairs in answering con-
ceptual questions. Presenting quantitative and conceptual
isomorphic pairs helped students make conceptual inferences
using quantitative tools. Such problem pairs as part of in-
struction may help students go beyond the plug-and-chug
strategy for quantitative problem solving and may give them
an opportunity to reflect upon their solution and develop rea-
soning and metacognitive skills. Solving these paired prob-
lems can force students to reflect upon the problem solving
process and improve their metacognitive skills. Helping stu-
dents develop metacognitive skills can also improve transfer
of relevant knowledge from one problem to another.

In cases where the strong alternative views about friction
prevented transfer of relevant knowledge, students may ben-
efit from paired problems only after they are provided the
opportunity to repair their knowledge structure so that there
is less room for these alternative views. Instructional strate-
gies embedded within a coherent curriculum that force stu-
dents to realize that the static frictional force does not have
to be at its maximum value or that the work done on a box
by a person who is applying a fixed force over a fixed dis-
tance will not depend on friction may be helpful; students
may be attempting to include all information in a problem
statement to answer a question when only some information
is relevant. Asking students to predict what should happen in
concrete situations, helping them realize the discrepancy be-
tween their predictions and what actually happens, and then
providing guidance and support to enhance their expertise is
one such strategy.27,28

Isomorphic problems can be exploited as useful tools for
teaching and learning. One strategy is to give isomorphic
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problems similar to those in this study and then discuss their
isomorphism later with students to help them learn to discern
the underlying similarities of the problems. Another strategy
is to tell students that the problems are isomorphic and ask
them to justify the isomorphism. Using these strategies with
a variety of isomorphic problems with varying difficulty can
help develop expertise and improve students’ ability to trans-
fer relevant knowledge from one context to another. Also, the
simplest level of isomorphic problems where the same prob-
lem is asked with different parameters can be a useful tool
for teaching students to do symbolic manipulation. Unlike
the expert strategy, some students may trade the symbols for
numbers in the equations at the beginning while solving
problems because they may not recognize the advantage of
symbolic manipulation22 or may not have the mathematical
skills to carry out algebraic manipulations with symbols. One
hypothesis for future testing is that, if students are consis-
tently given homework problems where they have to solve
problems with different sets of numerical parameters and
they are told that, if they obtain a correct symbolic answer,
they will get full credit without inserting each set of param-
eters, they will be motivated to perform symbolic manipula-
tion. Another important issue often is one of extracting
meaning from symbolic manipulations because some stu-
dents can manipulate symbolic equations and yet are not able

to interpret the physical meaning once the answer is reached.
Students can be rewarded for identifying isomorphic prob-
lems in their homework problems, e.g., if they explain why
two problems are isomorphic they can solve only one of
them in great detail and can simply lay out the plan for
solving the other one. Such reward policies can motivate
students to perform a conceptual analysis and planning be-
fore jumping into the implementation phase of problem solv-
ing and can help them extract meaning from mathematical
manipulations.
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APPENDIX: MULTIPLE-CHOICE QUESTIONS

See separate auxiliary material for multiple-choice ques-
tions for the isomorphic problems.
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