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The generation of high intensity, ultrashort x-ray pulses enables exciting new experimental capa-
bilities, such as femtosecond pump-probe experiments used to temporally resolve material structural
dynamics on atomic time scales. Thomson backscattering of a high intensity laser pulse with a bright
relativistic electron bunch is a promising method for producing such high-brightness x-ray pulses in the
10-100 keV range within a compact facility. While a variety of methods for producing subpicosecond
x-ray bursts by Thomson scattering exist, including compression of the electron bunch to subpicosecond
bunch lengths and/or colliding a subpicosecond laser pulse in a side-on geometry to minimize the
interaction time, a promising alternative approach to achieving this goal while maintaining ultrahigh
brightness is the production of a time-correlated (or chirped) x-ray pulse in conjunction with pulse
slicing or compression. We present the results of a complete analysis of this process using a recently
developed 3D time and frequency-domain code for analyzing the spatial, temporal, and spectral
properties an x-ray beam produced by relativistic Thomson scattering. Based on the relativistic
differential cross section, this code has the capability to calculate time and space dependent spectra
of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped
incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser
bandwidth, laser focus, and the transverse and longitudinal phase space of the electron beam were
examined. Simulations of chirped x-ray pulse production using both a chirped electron beam and a
chirped laser pulse are presented. Required electron beam and laser parameters are summarized by
investigating the effects of beam emittance, energy spread, and laser bandwidth on the scattered x-ray
spectrum. It is shown that sufficient temporal correlation in the scattered x-ray spectrum to produce
sub-100 fs temporal slice resolution can be produced from state-of-the-art, high-brightness electron

Three-dimensional time and frequency-domain theory of femtosecond x-ray pulse generation

beams without the need to perform longitudinal compression on the electron bunch.
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L. INTRODUCTION

The use of short laser pulses to generate high intensity,
ultrashort x-ray pulses enables exciting new experimental
capabilities, such as femtosecond pump-probe experi-
ments used to temporally resolve the structural dynamics
of high-Z materials on atomic (femtosecond) time scales
[1,2]. In particular the unique conditions of atomic-
scale interaction have led to a recent experimental
push to develop high-brightness, femtosecond, hard
x-ray sources. The energy levels relevant to the inner-
shell electron properties, which are responsible for the
most fundamental atomic-scale effects, require photon
energies well above those generated by modern ultrafast
laser systems. Furthermore, the short time scales associ-
ated with atomic motion, tens to hundreds of femtosec-
onds, require shorter pulses than those provided by
synchrotron-based x-ray sources. The development of a
system capable of making measurements on these scales
would open up regions of currently underexplored sci-
ence, such as phase transitions in materials under shock
loading and chemical reaction dynamics. The most prom-
ising methods for generating tunable, subpicosecond,
very high-brightness electromagnetic radiation at short
wavelengths (<1 A) rely on either coherent radiation
produced by an x-ray free-electron laser (FEL), such as
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the planned Linac Coherent Light Source [3], or incoher-
ent production through relativistic Thomson scattering,
which has previously been employed for time resolved
diffraction measurements at LBNL [4,5] and is currently
being investigated at several laboratories around the
world [6—11]. Additionally, a growing number of research
groups worldwide are exploring different x-ray produc-
tion mechanisms such as ultrafast, laser driven K,
sources [12] and electron bunch slicing in synchrotrons
[13]. While coherent radiation sources generate higher
power and narrower spectral bandwidths when compared
to incoherent scattering, the Thomson source’s potential
for high peak brightness with a relatively compact and
affordable system makes it an attractive alternative for
many applications.

In this paper, we employ a newly developed three-
dimensional (3D) time and frequency-domain code to
examine in detail the use of Thomson scattering as a
means of producing high-brightness, femtosecond x-ray
pulses, and, in particular, the production of chirped x-ray
pulses. The ability to produce time-correlated (chirped)
x-ray spectra within a single pulse would be desirable for
ultimately improving the resolution of pump-probe time
resolved diffraction experiments. It has previously been
proposed, for example, that chirped x-ray pulses could be
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used to obtain a series of time-correlated measurements
within a single Laue diffraction pattern, while eliminat-
ing the relevance of the timing jitter between the pump
and probe pulses [14]. Slicing of chirped x-ray pulses has
also been proposed as a method of seeding very short
pulses into a two-stage x-ray FEL [15] to produce very
high-brightness, ultrashort pulses. In addition, strained
crystal [16] or grating compressor [17] pulse compression
schemes could be used to compress a chirped x-ray pulse
without suffering the photon losses inherent in pulse
slicing.

While the theory of Thomson backscattered radiation
is well known and has been well documented [18—24],
there remains a need to have a complete three-dimen-
sional time resolved computational capability for the full
determination of the temporally and spatially resolved
spectra and intensity distributions produced from a
Thomson interaction of arbitrary geometry. This capabil-
ity is crucial for both the design of Thomson scattered
x-ray sources, as well as future experiments and applica-
tions utilizing such sources. In this paper, we present a
newly developed fully three-dimensional time and fre-
quency-domain code used for calculations of Thomson
backscattering of a short, intense laser pulse with a rela-
tivistic electron bunch. This is accomplished by employ-
ing the Thomson differential cross section generalized for
relativistic interactions, derived from the standard elec-
tron rest frame differential cross section and employing
appropriate Lorentz transformations of the incident laser
pulse into the rest frame, and of the scattered photons into
the lab frame. The 3D code developed using this approach
was designed to enhance existing computational capabil-
ities, namely, a 3D frequency-domain code developed by
Hartemann ef al [18]. In particular, the new code is well
suited for analyzing time-dependent spectra of the x rays
produced from linear Thomson scattering and hence is
ideally suited for the study of chirped x-ray pulse pro-
duction. To our knowledge, the analysis presented in this
paper is the first detailed investigation of chirped x-ray
pulse production through Thomson scattering.

The remainder of this paper is divided into five sec-
tions. In Sec. 11, a derivation of the relativistic differential
cross section is presented for the case of a single photon
incident on a single electron for arbitrary interaction
geometries. While considering only a single electron
and photon, the treatment is made as general as possible
for easy inclusion of the 6D phase space of both the laser
and the electron beams later in the paper. In Sec. III, a
brief overview of the properties of Thomson backscat-
tered radiation is presented, and simple approximate
forms of the x-ray intensity angular distribution are in-
troduced for clarity. In Sec. I'V, the treatment is expanded
to include the spectral broadening resulting from the
finite laser bandwidth, perpendicular k-vector distribu-
tion resulting from the finite laser focus, the electron
beam energy spread, and the finite electron beam emit-

060703-2

tance. In Sec. V, an overview of the time and frequency-
domain code developed from the theory presented in
Secs. II, III, and IV is presented. Finally, in Sec. VI,
simulations of chirped x-ray pulse production and slicing
are presented. Two different methods for the chirped x-
ray pulse production are contrasted: (1) collision of a
chirped electron bunch with a bandwidth-limited laser
pulse in a head-on geometry and (2) collision of a mono-
chromatic electron bunch with a chirped laser pulse in a
side-on geometry. It is shown that sub-100 fs x-ray pulses
can be produced utilizing pulse slicing techniques,
showing promise as a powerful method for achieving
atomic time scale resolution in dynamic diffraction ex-
periments. In a companion paper, the 3D theory is bench-
marked against experimental data obtained at LLNLs
PLEIADES facility.

IL INTRODUCTION TO THOMSON SCATTERING

Thomson backscattered photons are produced when an
electron beam collides with a photon beam (i.e., laser). In
the Thomson limit, the incident photon has a very small
energy compared to the electron rest mass, and hence, the
scattered photon has the same energy as the incident
photon in the electron rest frame. For the case of an
electron distribution at rest, the total number of scattered
photons per unit time is simply the overlap integral of the
product of the total Thomson cross section multiplied by
the flux of incident photons, leading to

N = f conl(r, Ol (x, dPrd, (1)

where c is the speed of light, o is the total Thomson cross
section, and n/,(r, #) and n,(r, #) are the photon and elec-
tron density in the electron beam rest frame, respectively.
To generalize this for a relativistic electron beam, it can
be noted that the total number of scattered photons is
Lorentz invariant, and that the above expression can be
expressed covariantly as the integration of the product of
the electron four current, J# = ecn,(1, B,), and the pho-
ton four flux, ®* = cn, (1, ck/w) resulting in [19]

: k%)ne(r, O (r, Odrdr. ()

For scattering from a single electron, n,(r, 1) =
8[r,(1)], where r,(r) is the position of the electron at
time ¢. Thus, the rate of scattered photons from a single
electron becomes

dN,

P = 0'c<1 -B.-k )ny[re(t), t]. 3)

c
w

Likewise, the rate of photons scattered into a given solid
angle is given by

060703-2



PRST-AB 7

WINTHROP J. BROWN AND FREDERIC V. HARTEMANN

060703 (2004)

aN, _ (1 _p k< do
40d _C<1 Be kw>ny(re’ t)er (4)

while the rate scattered per unit frequency is given by

dN c do
5 _=cl1- k= -
do,dQdr C< B. w>”y dQdo,

= 1= Bk Yy G5 0L, — wgl0)])
(5)

where do/dQ) is the differential cross section for
Thomson scattering, w, is the angular frequency of the
scattered photon, and g(#) is the relativistic Doppler up-
shift of the scattered photon, which is dependent on both
the angle, 0, between the observation direction and the
electron direction, as well as the angle between the elec-
tron direction and the incident photon. Equation (5) de-
scribes the complete temporal, spectral, and spatial
properties of the scattered x-ray distribution and is the
basis for the time and frequency-domain code presented
in this paper. The validity of Eq. (5) requires the scatter-
ing remain linear, which means the normalized vector
potential within the laser pulse, given by a, = eA/mec,
where m is the rest mass of the electron, is much less than
unity. In addition, it is assumed there is no recoil of the
electron, implying the incident photon energy in the
electron’s rest frame is much less than the electron rest
mass. It is also noted that the calculations presented in
this paper assume the background motion of each electron

through the incident laser pulse is ballistic, which is a
good approximation provided the two above conditions
are met, and the plasma oscillation period (1/w),) of the
electron beam is much longer than the interaction time,
which implies that space-charge effects can be neglected.

A. Derivation of rest frame differential cross section

A general expression for the differential cross section
in Eq. (5) can be derived by first transforming the wave
vector of the incident photon into the electron’s rest
frame. The corresponding rest frame differential cross
section can then be transformed back into the lab frame.
We begin by considering the rest frame as depicted in
Fig. 1. If we represent the incident laser polarization
vector as @/, then the differential cross section is given
by [25]

do
dQ’
where 1’ is the scattered photon polarization vector, and
ro is the classical electron radius. n’ can be separated into
two perpendicular components. One, 1}, is in the plane
defined by the observation vector, n’, and photon wave

vector k(. The other, 5}, is in the plane perpendicular to
both kj, and #n/, where [25]

=rgln’ - a'l?, (6)

1| = cosb, (e} cosd, + e|sing;) — e, sind, (7)

and
N5 = —esing, + e cosd,. )

FIG. 1.
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FIG. 2. (a) Illustration of laser incident direction and polar-
ization. e is the direction of the polarization vector of the laser,
where ¢, represents the rotation angle of @ about the z; axis.
(b) Illustration of the electron incident direction. The electron
beam is incident along the z axis, but the direction of each
electron deviated by the angles specified by £,, and &,,.

Using Egs. (6)—(8) and summing over final polarization
states yields the nonrelativistic Thomson cross section for
an arbitrary linearly polarized incident photon, resulting
in

To make Eq. (9) practical for relativistic beams, it is
desirable to express the components of the rest frame
incident laser polarization vector in lab frame coordi-
nates. We consider a stationary lab frame (x, y, z) in which
an electron beam is traveling in the +z direction and a
laser beam is incident at an angle 6, with respect to the
—z direction in the x-z plane (6, = 0 corresponds to a
head-on collision). To generalize the interaction for arbi-
trary linear polarizations, the laser polarization vector is
defined by its azimuthal angle ¢, about the laser wave
vector kg, defined in a rotated coordinate system (x;, y;,
z1), where z; is chosen to be antiparallel to the laser
wave vector Kg. For ¢, = 0, the laser is polarized in
the x-z plane.

To facilitate the inclusion of three-dimensional effects
resulting from the electron and laser focus, the directions
of the individual electrons and incident photon wave
vectors are assumed to deviate slightly from the average
directions defined above. As shown in Fig. 2(a), the
direction of each incident photon wave vector will be
specified by an additional rotation &, about the y axis,
and a rotation ¢, about the x;, axis. Likewise, an electron
lab frame (x,, y., z.), defined such that the z, axis is
collinear with the individual electron direction, will be
specified by a rotation £,, about the y axis and an angle
¢, about the x, axis [Fig. 2(b)].

Further, to simplify the Lorentz transformations to and
from the electron rest frame, our approach will be to first
calculate the differential cross section in the electron lab
frame and then rotate back to the stationary lab frame. We
begin by calculating the components of the electric field
from the laser polarization in the rotated electron lab
frame. In the laser frame, the polarization vector has
nonzero components in the x; and y; directions only
such that

E,; = Eycosg,,
cB,, = Epsing,,

E,, = Eysing,,

10
cBy, = —Ejsing,, (10)

1 do n e n o) o where E is the magnitude of the laser electric field. It is
TR (1 = cos®¢esin®6,) + (1 — sin”Psin”6 ) straightforward to perform the consecutive coordinate
0 n 50 rotations to obtain these components in the electron lab
+az(l — cos*6e) frame, resulting in
— 2ala)(cosd, sinb,)(sing), sinby,)
— 2a’al coshl,(cos¢l, sind?) E, = R,R,R;] RZ;)EL’ (11)
— 2a'al cosh,(sing/, sinf). 9)
| where
cos(fy + £,)  —sin(fy + £,)siné,  sin(fy + &,) cosé,
R;! Rzyl = 0 cosé, siné, , (12)
—sin(y + &) —siné,cos(fy + £,) cos(y + &) cosé,
and
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cosé,, 0 —siné,,
R.,R, = ( —sing,, siné,, cos&,, —cosé,, siné,, ) (13)
sing,, coséy,  sin§,,  cos,, cosé,,
Defining 0, = 6, + £,, Eq. (11) leads to
Dre _ (6, — £..) — Eysin, sing, sin(6, — £,,)
E, cos¢ , cos(f, e o sing, sin¢, sin(6, o)
E—“‘ = cos¢, sin(f, — &) siné,, + sing [cosé, cosé,, + siné, siné,, cos(0, — &,.)], (14)
0
E
E—Ze = —cos¢, sin(f, — £,,) cos,, — sing [sin€ cosé, cos(f, — £,,) — cosé, siné,, ],
0
and correspondingly, for the magnetic field,
cB,, . . .
= singy , cos(6, — £,,) + cosp, siné sin(0, — £,,),
. )
CBve . . . . .
EV = sing, sin(0, — £&,,) siné;, — cos¢ [cosé, cosé,, + siné siné,, cos(f, — &,.)], (15)
0
B
CE” = —sing, sin(f, — £,,) cosé,, + cos¢ [siné, cosé,, cos(0, — &,,) — cosé,siné,, |,
0

where E, represents the magnitude of the incident electro-
magnetic wave.

The E and B fields can now be transformed to the
electron rest frame to find the polarization vector a'.
Since the electron beam direction is defined to be in the
+z, direction, this requires only a one-dimensional
boost, leading to [25]

Eﬁc = ')/(Ex - CBBy);
E.=E.,

E, = y(E, + cBB,), (16)

where the prime denotes the electron rest frame. The rest
frame polarization vector can now be calculated using the
expression
/
|EG]

. a7

a;

The normalization factor in Eq. (17) is easily determined
by employing the invariance of the normalized vector
potential magnitude (a;, = ay), leading to

7(1 - < ﬂ ’ k())E gl(exr gyr gxer fye):
Wy
(18)

!
Ey _wp _

T
E wo

where the transformation of the laser wavelength from
the lab frame to the rest frame has been employed, and the
quantity g’ has been defined to be the ratio of the incident
photon energy in the rest frame to the photon energy in
the lab frame. In terms of the rotated electron and photon
coordinate angles, g’ is expressed as

gl = 7[1 + B{COS(&X - 'fxe) COS(é‘:y - gye)
+ Sinfy Singye[l - cos(0x - é:xe)]}]' (19)
Combining Eqs. (14), (15), and (17)—(19) results in the

following expressions for the laser polarization vector in
the electron’s rest frame:
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a, = 5lcosd feos(0, — £,)(1 + Bsing, sing,.
+ Bcosé, cosé,, | — sing, sin(0, — &,,)(siné,
+ B Sinfye)}’ (208_)
ay, = ;/{cosqb,, sin(0, — &,,)(siné,, + Bsiné))

+ sing [cos(f, — £,.)(B + siné, siné,,)

+ cosé, cosé, I}, (20b)
and
a’ée = _—ll{COS(ﬁp Sin(ax - gxe) Cosé:ye
Y8
+ sing ,[sin€| cosé, sin(6, — &,,)
— coséy siné,, |} (20¢)

Equations (20a)—(20c) express the normalized compo-
nents of the polarization vector in the electron beam
rest frame in terms of the laser and electron direction,
the electron beam energy, and laser polarization. It is
interesting to note that & approaches zero as y becomes
very large. Thus, for v > 1, the photon will be incident in
the —z/, direction, irrespective of the incident angle in the
lab frame. It is also worth noting that Eqgs. (20a)—(20c)
can be simplified significantly in the plane-wave approxi-
mation (§, = &, = 0), resulting in

c%zgww¢M%—mﬂww%J

- B Sind)p Sinfye Sin(ex() - gxe)}y (21a)

a, = 2yleosd sin(0 — £,)sing,,
+ sing, [Boos(By — ) +cosy T Q1)
060703-5
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and
, —1 . . .
al, =~ y_gl[cos¢p sin(f,9 — £,.) cosé,, — sing, siné .

21c)

B. Transformation of incident and scattered photon
wave vectors

Equations (20a)—(20c) and (21a)—(21c) in conjunction
with Eq. (9) express the differential Thomson cross sec-
tion in the electron rest frame in terms of the interaction
geometry in the lab frame. The next step is to transform
this expression to the electron lab frame (x,, y,, z,). To
accomplish this, we consider the transformation of the
incident wave vector (wq/c, k() from the lab frame to the

rest frame:
/
Zo — 7(@ -8 ko>, (22)
c C
w
ko = vl kot — B=2), (23)
c
and
ky, = ko, (24)

where @ is the electron velocity normalized to the speed
of light. The lab reference frame is once again defined
with respect to the electron beam direction [see Fig. 2(b)],
such that Eq. (22) can be rewritten as

% = g0y &, €rer E30), (25)

0

where g’ is the quantity previously defined in Eq. (18).

Within the rest frame, the scattered photon direc-
tion will be defined by the wave vector ki =
(w'/c)(sinf’, cosp’ &, + siné, sing. P’ + cosh.z.), where
0., and ¢/, specify the scattered photon direction about
the positive z, axis (see Fig. 1). Since only the Thomson
limit is being considered, the scattered photon frequency
is taken to be equal to the incident frequency wj. The
scattered photon energy in the rest frame, w, is expressed
in terms of the photon energy in the lab frame, w,, by
once again using the Lorentz transformation from the lab
frame to the rest frame:

@5 _ y(ﬁ -B- ks)= ﬁy(l — Bcosh,),  (26)
c ¢ ¢

cos*(¢p,)sin?(6,)
y*[1 = Bceos(6,)

do [1—Bcos(B) _ o,
d—Q(Be, %)W —af(l

—2ala

(1 geos(a P
COS(Q{)L,) Sin(¢e)5in2(06)

where 6, is the angle of the scattered photon with respect
to the z, axis in the electron lab frame. Applying the
Thomson limit approximation and inserting Eq. (25) into
Eq. (26), leads to

s g/(ex’ 'fy’ fxe’ fye)

w
(2}

y[1 — Bcos(6,)] =80, €y Exe Eye 0.)

~ 2‘yg/(0x’ fy’ fxe’ fye)
RV

27)

For a head-on collision (0, = ¢, = &,, = &,, = 0), it
is seen that the energy of the scattered photon is maxi-
mally up-shifted by a factor of 42, while for a side-on
collision, the up-shift is 2y2. It is also seen that the
scattered photon energy distribution is the familiar
Lorentzian function of observation angle 6, with a
FWHM equal to 1/7.

The scattered photon direction in the rest frame can be
expressed in terms of lab angles by transforming k back
into the rest frame. Using the analogs of Eqgs. (23) and
(24) we obtain

w, cosd, — B
cosf, = w—gy(cosﬁe - B) = W’ (28)
sinf, cos¢
in6’ = 29
sinf/, cos¢’, S0 = Boost) (29)
and
00 si
sinf), sing/, = sinf Sing. (30)

v(1 — Bcosb,)’

where ¢, is the azimuthal angle about z, in the electron
lab frame. Equations (28)—(30) can be inserted into
Eq. (9) to obtain the rest frame differential cross section
in lab frame coordinates. To get an expression for the lab
frame differential cross section, we have

do  do dQ)  do d(cosd))
40 dQ'dQ  dQ dcosh,
_do 1—p?
- aq ([1 — Beos(6,)] )
Here, dQ = sin(0)dfd¢ = —dcos(f)d¢p, and we have
used the fact that d¢p = d¢’. This expression, along

with Egs. (9) and (28)—(30), lead to the expression for
the lab frame differential cross section, given by

sin?(¢,)sin?(8,) ol [ cos(8,)— B\
Jre| - pemn) |
,[cos(8,) — Blcos(¢,)sin(8,)

3D

—2ala

— 20«

Y~ Beos(0,)
cos(@,) — Blsin()sin(6,)

) y[1 = Beos(6,)F

/
y&z
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Note that while the cross section has been expressed as
a function of only the observation angles 6, and ¢,,
the dependence on the initial interaction geometry
(0y, &)y Exes §ye) 18 implicit in the components for the
polarization vector [Egs. (20a)—(20c)]. Finally, we wish
to express this cross section in the stationary lab frame
coordinate system (x, y, z). To accomplish this, we con-
sider the transformation from the electron lab frame (x,,
Ve, Zo) to the stationary lab frame (x, y, z). Noting that
r, = r,and

X = rcos¢ siné, y = rsing siné, Z = rcosd,
(33)
and performing the transformation
r,= (ReyRex)rr (34)

we have the following expressions for the relevant trigo-
nometric terms in the rotated electron frame used in
Eq. (32) in terms of the stationary laboratory frame
coordinates (0, ¢) and the relative electron direction

(é‘:xe’ g)'e):

cos¢, sinf, = cos¢ sinf cosé,, — cosfsiné,,, (35)

sing, sinfl, = sin¢ sinf cos§,, — cos¢ sinf sin§,, cosé,,
— cosf cosé,, siné,, (36)

and

costl, = cost cos¢,, cos§,, + sing sinf siné,,
+ cos¢ sinf siné,, coséy,. (37

Equation (32) combined with Egs. (20a)—(20c) and (35)—-
(37) completely describe the probability distribution of
scattered photons in the lab frame for the collision of a
relativistic electron with a photon at arbitrary incident
angle and polarization.

III. GENERAL PROPERTIES OF THOMSON
SCATTERING

The cross section described by Eq. (32) can be used to
present a brief review of the basic properties of Thomson
scattering. We consider the case of a single electron (£, =
£,.=0) colliding with a plane-wave (£, = &, =0) inci-
dent at an angle 6, with respect to the electron direction.
As discussed in Sec. I, the rate of scattered photons per
unit solid angle will be proportional to do/d{) such that

dN,
dQdt

where F, represents the incident photon flux and is given
by [see Eq. (4)]

Fon(t) = c(l ~Zp.- ko)ny[rem, 1 (39

Figures 3 and 4 illustrate the characteristics of the differ-

0.8) = Fo, (055 6.6) (9
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Photon Density (arb. units)

-3.14 -1.57 0 1.57 3.14

0 (rad)
FIG. 3. Scattered photon density vs scattering angle (8) from

the z axis in the x-z plane (solid line) and the y-z plane (dotted
line) for the case of an electron at rest and an x polarized
photon incident along the negative z axis.

ential cross section for the case of a head-on collision
(6y = 0), with polarization in the x direction. To illustrate
the differences between the cross section for a nonrela-
tivistic and relativistic electron, two cases (y = 1 and
v = 2) are illustrated. For the case of the nonrelativistic
electron, the scattered photon density follows that of a
dipole radiation pattern, with the density being uniform
in the plane perpendicular to the incident polarization
vector (y-z plane), and with the density falling to zero in
the direction of the polarization vector in the x-z plane.
For the relativistic case, the scattered photon density is
collimated in the direction of the electron beam in a cone
of angular FWHM roughly equal to 1/y. However, the
probability distribution is broader in the plane perpen-
dicular to the plane of polarization than in the plane

Photon Density (arb. units)

D

-3.14 -1.57 0 1.57 3.14
0 (rad)

FIG. 4. Scattered photon density vs scattering angle (6) from
the z axis in the x-z plane (solid line) and the y-z plane (dotted
line) for the case of a relativistic electron (y = 2) traveling
along the z axis and an x polarized photon incident along the
negative z axis.
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parallel to it, with the intensity in the parallel plane
having both a central strong intensity peak on axis,
corresponding to the scattered photons from the forward
direction in the rest frame, and the much smaller side-
lobe intensity peaks corresponding to the photons in the
backward direction in the rest frame. Note that in Figs. 3
and 4, 6 is plotted from — 7 to 7, where negative values
of @ correspond to a 180° rotation of the ¢ coordinate.

While Figs. 3 and 4 provide detailed information on the
photon density, it is often desirable to express the scat-
tered x-ray beam in terms of the energy density, since this
is often what is directly measured. To this end, the scat-
tered x-ray intensity distribution can be obtained by
simply multiplying Eq. (38) by the energy of the scattered
photon, resulting in

du,

) d
o 0.8,0) = ﬁwog(e)Fwomd—g(e, $).  (40)

The scattered energy density is plotted in Fig. 5 for the
case of a relativistic electron with y = 2. The intensity
profile is somewhat narrower than the photon probability
distribution due to the fact that lower energy photons
correspond to the photons with the larger divergence
angles from the electron direction. It is also worth noting
that the outside lobes evident in the x-z plane of the
photon probability distribution are less significant in the
energy intensity distribution.

For the case of an off-axis photon incident angle (e.g.,
side-on collision), the differences in the intensity/proba-
bility profiles are minor for a sufficiently relativistic
electron. This fact is obvious when considering that in
the rest frame of the electron, the incident angle of the
incoming photon scales roughly as 1/7, closely simulat-
ing a head-on collision for a sufficiently relativistic beam.
However, if the photon is polarized in the plane of in-

Energy Density (arb. units)

-3.14 -1.57 0 1.57 3.14
0 (rad)

FIG. 5. Scattered energy density vs scattering angle (6) from
the z axis in the x-z plane (solid line) and the y-z plane (dotted
line) for the case of a relativistic electron (y = 2) traveling in
along the z axis and an x polarized photon incident in the
negative z direction.
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cidence, there will be a slight offset in the photon/inten-
sity distribution in this plane. This is seen in Fig. 6. On the
other hand, it can be seen from Eq. (32) that if the photon
polarization is perpendicular to the plane of incidence of
the collision (i.e., a) = a. = 0), then the photon proba-
bility distribution is independent of incidence angle for
all electron beam energies.

By utilizing the approximate independence of the scat-
tered photon probability distribution on the incident pho-
ton polarization in the high y limit, a greatly simplified
expression for the cross section can be obtained. If we
take the case a, = a, = 0, and we once again assume
Exe = Eye = & = &, = 0, then for y > 1, Eq. (25) be-
comes

d70' ~ 2 4y |: _ 4(6%y%)
dQ (1 + 62y?)? (1+ 62y%)?

sin2(¢)} 41

while the scattered intensity distribution becomes

dU; 8v*[1 + Bcos(y)]
a0d: o) 1+ 6292
4(6%y?)

X [1 — msmz(qb)} (42)
Equations (41) and (42) will be approximately correct for
an arbitrary linear laser polarization provided the coor-
dinate axis is defined such that ¢ = /2 corresponds to
the plane of polarization, and 7y >> 1. In this case, the
scattered intensity profile in the plane perpendicular to
the laser polarization is described by a cubed Lorentzian
with intensity FWHM of 1/y. In the plane parallel to the
laser polarization, the intensity profile is described by a
superposition of a cubed Lorentzian and a Lorentzian to
the fifth power, where the scattered intensity will go to
zero at 6§ = 1/, and the FWHM will occur at 6 =
0.635/y.

Photon Density (arb. units)

0.7

6 (rad)

FIG. 6. Scattered photon density from a relativistic electron
(y = 5) in the x-z plane produced by an x polarized photon for
the case of head-on interaction (solid line) and a side-on
interaction (dotted line).
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IV. SPECTRAL BROADENING FROM THREE-
DIMENSIONAL EFFECTS

The strict correlation between scattering angle and
wavelength implies that, in principle, the spectrum
produced from Thomson backscattering can be very nar-
row at a given observation angle. However, the three-
dimensional aspects of the interaction geometry will, in
reality, lead to significant broadening of the spectrum at a
given observation position. In Sec. IVA, the spectral
broadening due to the finite bandwidth in the laser pulse
will be introduced into the theory. In Sec. IV B, the
effects from the perpendicular k vector components
within the laser focus will be considered. Finally, in
Sec. IVC, the spectral broadening due to the energy
spread and transverse emittance in the electron beam
will be considered.

A. Laser bandwidth

Thomson scattering is often performed with a short (ps
to fs) laser pulse. Consequently, the amount of bandwidth
in the incident laser pulse can become a significant quan-
tity. For the case of a Fourier-transform limited laser
pulse, the 1/e? width of the photon frequency distribution |

dN,

will be given by the Fourier limit relation

AwyAty =2, (43)
where Az, and Aw, are the 1/e? temporal and spectral
widths, and a Gaussian distribution has been assumed. To
generalize to the case of chirped pulses that are not
Fourier-transform limited, both the center wavelength
of the laser pulse and the spectral width can be expressed
as a function of the longitudinal position within the laser
pulse, £(z), with the time-dependent spectral density dis-

tribution given by
2 1
o060 Tl o= 0T
w A [Oh)
(44)

where ((t) = z; + ct, where z; is measured along the
rotated laser frame corresponding to the average k vector
of the laser pulse, and n,, is the probability distribution
for a photon within the laser beam having a wavelength
corresponding to w. The time-dependent photon spectral
density flux for the scattered x rays [Eq. (5)], now be-
comes

2[60 - wo(év)]2
Awj(¢)

0

10de di [ wo(f) (9 dIn,(w; Awy)dlw, — w;g(0)]dw;. (45)
This expression can be integrated using the relation
Olw, — w,/g(0
o, — wig®)] = /80)] (46)
lg(0)]
resulting in
a0, 9) 255 — @oOF
g2 exp(~ = ). @7)
de dt Aw,lgO]° Awj(£)
Similarly, the time-dependent energy spectral density flux is given by
du, \[ (9, qs) 2[5 — @o(OF
F - . 4
Tded = oo OF o) goo( - ) @)

Thus, the percent bandwidth of the scattered x rays due to
the above mechanism is equal to the percent bandwidth of
the incident laser pulse, such that
Aw, Aw,
W wo .

(49)

B. Laser focus effects

Equations (47) and (48) contain the spectral and tem-
poral information for the Thomson scattered radiation
from a single electron colliding with collimated photons
(or an electromagnetic wave in the plane-wave approxi-
mation). To include nonplane wave effects in the calcu-
lation, we consider the distribution of perpendicular

060703-9

| k-vector components within the laser pulse focus as rep-
resenting the spread in the direction of the incoming
photons, while representing the laser focus within the
paraxial approximation [26,27].

We begin by considering the spatial distribution of
photons near the laser beam focus. In so doing, a central
laser frame (x;, y;, z;) is defined such that the z; axis
corresponds to the direction opposite the direction of the
average wave vector in the laser pulse, k. Recalling that
the laser pulse is assumed to be incident at an angle 6 in
the x-z plane, we have

kj

—ko2;, = —ko[sin(8y)% + cos(6y)Z]. (50)

The expression for the photon density in the paraxial
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approximation is given by

N’y exp(*2(0t+zL)2

AP
(2P 2cAwgwyoy1 + 23 /2hf1 + 22 /7R,
_94,2
2x7

WxO(1 + Z%/Z%x)

n,(r, 1) =

ool b7)
P\ w1+ 22/, )
(51)

where N, represents the total number of photons in the
pulse, zz, and zg, represent the Rayleigh range of the
laser focus in the x and y dimensions, respectively, and n,,
is in units of photons/(unit length)?. In Eq. (51), it is
assumed that the laser focus occurs at z; = 0. To convert
the expression from the laser frame to the unrotated lab
frame, we simply replace x;, y;, and z; with the follow-
ing relations:

X exp(

x;, = xcos(6y) — zsin(6y), yL =Y (52)

and

7z, = zcos(fy) + xsin(6y).

The Rayleigh range of the laser focus is given by the
expression [26]

2
Wo

—, 53
T (53)

IR =T

where wy is the 1/e? intensity radius in x or y, A is the
average wavelength of the laser pulse, and M? > 1 deter- |

mines how close the focus is to being diffraction limited.
Using the analogy of the Rayleigh range to the beta
function of a particle beam focus, it is possible to express
an effective 1/¢2 “emittance” of the laser beam as [26]

M2,
& =

= wow, (54)
where wjy = A¢ is the 1/¢* width of the divergence of the
laser beam, and, consequently, the 1/e*> width in the
distribution of photon directions at the focus. For a suffi-
ciently soft focus, Aé, = (Ak,/ky) and A¢, = (Ak,/k),

and

—2&
A&

fru(€y &) = ) (55)

2
TAEAE, ex"(
where A€, = (e /wq,). The distribution is normalized
such that

|[ risten gnagae, = 1. (56
It should be noted that for a coherent beam, the distri-
bution of k| represents the spread in the direction of each
photon in the beam, rather than simply the collective
spread of all the photons. This differs from the physical
interpretation of the electron beam divergence (next sec-
tion), in which it is relatively accurate to assume that each
electron in the bunch has a well-defined direction in
comparison to the ensemble average of the electron
beam direction as a whole.
Integrating over all incident k|, the expression for the
photon spectral density flux becomes

dN, ) 2 _
dewsdt - FwO(t) ]]fkl(fx’ ‘fv)\/:TAwO(é,)lg(gx’ fy, 9)' exp{

Note that for the case of a plane wave, A, = A§, =0,
and Eq. (57) reduces to Eq. (47). The primary effect of the
nonzero spread in k| is to broaden the spectrum of the
scattered X rays at a given observation direction. This is

do (& &0, 2 — @olOF
if e £ 9. 9) RN, }dfxdfv. (57)
Awo(g) .
| Fig. 8. For this case
e Y . (59)
@5 |90 W0

apparent from Eq. (19), which shows the dependence of
the up-shift of the photon frequency in the electron beam
rest frame on the relative direction between the photon
and the electron. For the case of a head-on collision, this
broadening will scale quadratically with &k , making this
effect small, and in many cases, negligible compared to
the spectral broadening from other causes, such as laser
bandwidth (see Fig. 7). In terms of the focal spot size, this
broadening can be expressed as
<7T Wo )

Aw, | A& 1

a)S
for a head-on collision, where w is the 1/e? intensity
radius, and M? was assumed to be equal to unity. On the
other hand, for a side-on collision, the scattered x-ray
energy is much more sensitive to k|, as is illustrated in

(58)

00
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As will be demonstrated later, however, even if the inter-
action geometry is not head on, the spectral broadening
induced by the spread in k; will for most cases be
insignificant compared to that induced by the finite elec-
tron beam emittance. Thus, except for the cases of an
extremely strong laser focus or a very low emittance
electron beam, a plane-wave approximation is generally
adequate for determining the Thomson x-ray spectrum.

C. Spectral broadening from the electron beam

Until now, only scattering from a single electron has
been considered. In reality, Thomson scattering is per-
formed with a beam containing many electrons. In this
treatment, we assume the x rays are incoherently scattered
from the electron bunch. Consequently, the calculated
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total x-ray spectrum will simply be a linear superposition
of the spectrum produced by each individual electron.
Spectral broadening of the x rays will occur from (i) the
spread in energy of the electrons in the bunch, and (ii) the
finite divergence of the beam at the interaction.

Since the scattered x-ray energy scales as the square of
the electron beam energy, the spectral broadening at a
given observation angle due to the electron beam energy
spread can be expressed as

Noy0) Ay
~=2— 60
50 7 (60)

where @, is the average scattered x-ray energy at the
observation angle # and ¥ is the average relativistic
Lorentz factor of the electron beam. For a high quality
electron beam, the rms energy spread is typically on
the order of 0.1%. Consequently, the effect will most
likely be comparable to smaller than the spectral broad-
ening due to the laser pulse bandwidth for collisions with
short (<1 ps) laser pulses.

A potentially much more significant contribution to
the spectral broadening of the x-ray pulse is the finite
electron beam emittance. The small value of the Thomson
cross section dictates that both the electron bunch and
the laser pulse be focused to a very small spot size
(<100 pwm) to produce a large number of backscattered
x rays. For an electron beam of rms geometric emittance,
€,, the rms divergence of the electrons at the beam waist
will be given by

e A
Oexl = - Eﬁ: (61)
T oy 2
25000
0
S 20000 -
g
< 15000 -
=
s
c
& 10000 -
[
@ 5000
o
(/2]
0 T T T T
615 617 619  62.1 62.3 625
os (keV)

FIG. 7. (Color) On-axis x-ray spectrum produced by a y = 100
electron colliding head on with an 800 nm laser pulse with a
bandwidth corresponding to a 0.5 ps 1/e? pulse width for the
case of a plane wave (dots), 20 um laser focus (dark blue line),
10 wm laser focus (green line), and 5 wm laser focus (light
blue line).
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where o, is the rms spot size in the x dimension at the
electron beam focus, and A€, is the 1/e? divergence of
the electron beam (assuming a Gaussian distribution).
Equation (61) is directly analogous to Eq. (54) describing
the spread in k| for the laser focus. However, the effect on
the scattered x-ray spectrum is quite different. In the
relativistic limit, the x rays are scattered primarily in
the direction of the electron, and not that of the incoming
photon. Thus, while the spreading due to Ak is primarily
a result of a shift in the maximum scattered photon
energy due to the slight change in the relative incident
angle between the electron and the incident wave vector,
the primary broadening mechanism from the electron
beam divergence results from a shift in the center direc-
tion of the scattered x-ray distribution for each electron,
resulting in a corresponding spread in x-ray energies at
any given observation point. From Eq. (27), the on-axis
spectral broadening can be estimated for small electron
beam divergence angles for the case of head-on interac-
tion geometry by replacing 6 with A&7, + AéZ,, and
expanding to first order in y*(A¢2, + A£3,) to obtain

Aw, _ YA, + AL

W | 6,,=06=0 2

. (62)

Including the effects of the laser bandwidth and diver-
gence, as well as the electron beam energy spread, we
have for the on-axis spectrum for a head-on collision:

1000
900 A
800 -
700 A
600 -
500 A
400 A
300 A
200 +
100 - A

0 : A ‘

30.5 30.7 30.9 31.1 31.3 31.5

s (keV)

Spectral Density (arb. units)

FIG. 8. (Color) On-axis x-ray spectrum produced by a y = 100
electron colliding side on with an 800 nm laser pulse with a
bandwidth corresponding to a 0.5 ps 1/e? pulse width for the
case of a plane wave (dots), 200 um laser focus (dark blue
line), 100 wm laser focus (green line), and 50 wm laser focus
(light blue line).
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A
Wy 4

Ay

+ A‘f%L + Af)zce + Ag%e

_ \/y“(Aﬁe AL |
0,0=0,0=0 4

Wy

Y

2

(63)

2 A &2
+( fo g

2 Aw}
+ 7
wy

More rigorously, the effect of the electron beam focus on the differential cross section, and hence, the scattered
photon spectral density flux, can be obtained by integrating over all the electrons in a given 6D distribution,
feléxer €yer Ve X.(0)]. The photon spectral density flux now becomes

dNT(G’ ¢’ W, t) —
dQdw.dt

where N,, represents the photons scattered by a single
electron [Eq. (57)], N, is the total number of electrons in
the bunch, and f,[£,., &,., V. T.(0)] is the 6D phase space
probability distribution.

The time and frequency-domain code presented in this
paper represents f,[£.., €yer Ve T.(0)] with a group of
macroparticles rather than an analytic expression. This
allows more general electron distributions to be consid-
ered, as well as enabling the simulation of electron beams
produced from particle dynamics codes. The total num-
ber of photons per unit solid angle per unit photon energy
for an electron bunch colliding with a laser beam can then
be calculated by summing Eq. (57) over all the electrons
in the bunch, such that

dNT(H) ¢) ws; l) _ Z q€
P e

dQdwdt
where ¢, is the charge represented by the macroparticle,
and the subscript e has been employed to denote each
macroparticle in the calculation.

dNSE(é:)CC, ‘fye, 0’ ¢’ wS’ [)
dQdw,dt

, (65)

V. TIME AND FREQUENCY-DOMAIN CODE
DESCRIPTION

Equation (65) represents the basic algorithm of the 3D
time and frequency-domain code. In its most general
form, the program calculates the number of photons |

ste(gxe, gye, 0, (ﬁ’ Wy, t)

NB jfe[‘fxe’ ‘fye’ ’Ye,re(t)]

92 (€ vor Eyer 0, )

dNSe(er, gye, 0’ ¢’ w S t)
dQdw,dt

dfxedgyedyed3 T, (64)

| scattered into a given solid angle and range of w, at each
time step by summing over all incident k; within the
laser pulse. This will be performed for all the electrons in
the bunch, which are represented by a series of macro-
particles with charge equal to ¢,. The background motion
of the electron through the laser pulse is assumed to be
ballistic. The temporal information of the x-ray pulse is
determined by calculating the time of flight of the scat-
tered photon to a detector at a specified distance to the
interaction at each time step in the simulation. Spatial
information of the scattered x-ray pulses is determined by
performing this calculation for several different observa-
tion directions specified by # and ¢. To review the as-
sumptions inherent in the 3D time and frequency-domain
code, we state that (i) the normalized vector potential of
the incident laser pulse, eA/mc, is much less than 1, (ii)
the incident photon energy in the electron’s rest frame is
much less than the electron rest mass (i.e., fiw| <K mc?),
and (iii) the scattered x-ray wavelength is much shorter
than the size of the electron bunch (i.e., incoherent
scattering).

There are a few simplifications that can be made under
some circumstances to significantly reduce the amount of
computation. One is to make the assumption that the
incident laser pulse is a plane wave. For this case, no
integration of the incident k vectors is performed, and
Eq. (57) becomes

dQdw,dt

2
= Fa)O(t) : \/:
k=0 w

Aw()({(t))lg(gxe’ gyw 0)' o

2[m — wo({ ()]
Awj(£(1) }

p{—

(66)

Another simplification is the assumption that there is no temporal dependence of the average wavelength of the

incident laser pulse (i.e., it is bandwidth limited in time). Under this circumstance, rather than calculating everything at
each time step, the time integration can be separated out of the calculation of the spectral and angular dependence of the
scattered x-ray distribution, resulting in only one required evaluation of the cross section for each scattered frequency
and solid angle for each electron in the bunch. In this case, the time integration of Eq. (57) will result in

la.az,

d s é é 0, (ﬁ, w 2 _d éx 5 é ves é > S‘ 0 0, (25 2[
N e( xe, > ye, g) f wo(t)dl ﬂ‘fk_]_(fx; é‘:y) d!!( e ye X Y ) {

e
dea)S Awolg(gxer fyer fx’ fy’ 0)'

where the time dependence of the central laser frequency w, and the bandwidth Aw, has been removed. Under this

assumption, the temporal information of the scattered x rays is obtained by assuming all the photons scattered into a

given direction by a single electron arrive at the detector at the same time.

s 2
it B 5 @0l
Aa)(z)
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For many cases, both the plane wave and bandwidth-limited approximation are valid, which can reduce the
computation time by 2 to 3 orders of magnitude. In this case

_6(§xe’ fyer 0, ¢)

(63)

ste(fxe’ fye’ 0, QS; ws) f \/j
= F _
dews wO(t)dt

Note that for the purposes of the output of the code, 6 and
¢ are defined to be the angle specified by the transverse
position of the detector and the distance of the detector
from the interaction “point,” which is defined to be the
origin of the lab frame coordinate system. Because of the
finite interaction size, this does not strictly correspond to
the exact direction of all the scattered photons character-
ized to be at this observation angle. For most cases,
however, the detector will be far away from the source
(on the order of a meter), so the source size, which is
usually less than 100 wm, will have a negligible effect on
the observed spectrum.

As an illustrative example, we consider the case of a
50 MeV (y = 100)electron beam focused to an rms spot
size of 20 um colliding head on with an 800 nm laser
pulse in the plane-wave approximation. The laser pulse
has a 1/e? pulse width of 1ps, and the energy spread of the
electron beam is assumed to be negligible. Figure 9 shows
the calculated on-axis spectrum for the case of both
&, = 1 mmmrad and ¢,, =2 mmmrad, where g,, is
the normalized rms emittance of the electron bunch.
For the 1 mm mrad case, the width of the x-ray spectrum
is dominated by the laser bandwidth, and hence the shape
of the spectrum is a symmetric Gaussian about the peak.
For the 2 mm mrad example, the emittance of the beam is
beginning to take over, characterized by the low energy
tail in the distribution. Fig. 10 presents a more complete
picture of the scattered x rays. A false color image of the
case of spectral energy density [energy/(mrad”eV)] is

Spectral Density (arb. units)

k‘i

(&)
o

55
0 (keV)

65

FIG. 9. On-axis x-ray spectrum resulting from a head-on
collision of a 50 MeV electron beam with an 800 nm laser
pulse for the case of an rms normalized emittance of
1 mm mrad (line) and 2 mm mrad (dots).
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7Aw0|g(§xe’ fyw 09)'

w _ 2
Aszizos — @l ‘J[

exp{— A2

| plotted vs scattered x-ray energy, w,, and divergence
angle, 6, in the plane perpendicular to the laser polariza-
tion. Note that the scattered spectrum is significantly
narrower on axis. This fact, in conjunction with the larger
number of photons scattered on-axis, leads to a much
larger spectral brightness in this direction than in the
off-axis directions.

VI CHIRPED X-RAY PULSE PRODUCTION AND
FEMTOSECOND PULSE SLICING

The capability to provide complete temporal and
spectral information of the x-ray beam produced in a
Thomson interaction makes the 3D time and frequency-
domain code ideal for the study of chirped x-ray pulse
production. The production of chirped x rays would be of
great benefit to ultrafast dynamic diffraction experi-
ments, enabling fs x-ray pulse production. This can be
accomplished through either pulse slicing or compression.
Pulse slicing involves the selection of a small temporal
fraction of the x-ray pulse. With a chirped x-ray pulse,
this can be accomplished with either Bragg and/or multi-
layer monochromators [15]. The temporal portion of the
x-ray pulse that has a spectrum within the bandwidth of
the monochromator will be selected, while the rest of the
x-ray pulse will be discarded. Pulse compression, on the

|
60 - F——-'-‘.\ 107 keV/(mrad? eV)
- 2.4
50
S 404 0.7
3
» I 03
3 301
20 A
104
-10 -5 0 5 10

0 (mrad)

FIG. 10. (Color) False color plot of the spectral density of
scattered x rays in the y-z plane resulting from the head-on
collision of a 50 MeV electron bunch with &,, = 1 mm mrad
focused to an rms spot size of 20 um with an 800 nm, 0.5 ps
bandwidth laser pulse polarized in the x direction.
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FIG. 11. Longitudinal phase space of a chirped x-ray pulse.
other hand, utilizes dispersive optics to cause photons of
different wavelengths to travel different distances. If
these distances are properly matched to the chirp in the
x-ray beam, the x-ray beam can be compressed, without
necessarily discarding photons. Methods of compressing
chirped x-ray pulses using strained crystals [16] and
grating compressors [17] have been proposed. In addition
to enabling ultrashort x-ray pulse production, chirped
x-ray pulses could also be used to obtain a series of
time-correlated measurements within a single Laue dif-
fraction pattern, while eliminating the relevance of jitter
between the pump and probe pulses [14].

The maximum temporal resolution provided by a
chirped pulse is determined by the ratio of the uncorre-
lated spectral bandwidth Awy,, defined to be the mini-
mum spectral width for a single temporal slice within the
pulse, to the time integrated, or correlated, spectral
bandwidth, Aw,,. (see Fig. 1). While Aw,, results from
the emittance of the electron beam, the bandwidth of the
laser, and the uncorrelated energy spread of the electron
beam, Aw,, is determined by the larger time integrated
energy spread of the electron bunch resulting from the

< h— —a»

Chirped e beam

Short Laser Pulse

energy chirp. For the case where Aw,. > Aw,,, Aw,,
can be roughly equated with the total time integrated
energy spread of the x-ray beam, as depicted in Fig. 11.
In this case, the minimum x-ray pulse length achievable
through slicing or compression, At;.., will be given by
Awy,

~ 20 Ay, (69)

A tslice Aw
sc

where At is the 1/e? intensity width of the total x-ray
pulse.

Two possible methods for producing chirped x-ray
pulses through Thomson scattering are (1) preparing an
energy chirped electron bunch, and (2) preparing a
chirped laser pulse (Fig. 12). In the first method, the
electron bunch can be chirped by passing it through an
accelerator section near the zero crossing of the rf wave.
In this case, the average energy gain through the section
will be zero, but a linear correlation between time
and energy will be induced in the electron bunch.
Subsequently, when the electron bunch collides with the
laser pulse, the x rays, which are automatically time
correlated with the electrons, will also receive a chirp.
Since the scattered photon energy scales as the square of
the electron beam energy, the correlated energy spread of
the x rays, Aw,., will be given by

Ose 5 A%

Wy Y

Aw,,

(70)

where 7 is the average electron beam relativistic Lorentz
factor, @, is the average scattered photon energy at a given
observation direction, and Ay, is the correlated energy
spread of the electron bunch.

For the second case (chirping of the incident laser
pulse), Aw,., will depend on the interaction geometry.
For a head-on collision, each electron will sample the
entire laser pulse (assuming the laser pulse is short com-
pared to the Rayleigh range), and hence will radiate the
entire Doppler up-shifted spectrum of the laser pulse.
However, if the interaction occurs at 90°, different elec-
trons will sample different temporal positions within the
laser pulse, and if the laser pulse is chirped, will radiate
different spectra. To maximize this effect, the width of

Chirped Laser

a»—

e beam

FIG. 12. (Color) Methods for chirped x-ray pulse production.
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the laser focus should be small compared to its duration so
as to minimize the longitudinal range sampled by each
electron in the bunch. However, the spectral broadening
due to the laser focus becomes more significant in a side-
on collision [see Sec. IV B], which will limit how small
the interaction spot size can be without significantly
increasing the uncorrelated spectral width of the scat-
tered x rays.

A. Chirped x-ray production with an energy chirped
electron bunch

To produce a chirped electron beam, the electron bunch
is first accelerated to relativistic energies in an rf accel-
erator. Subsequently, the bunch, with pulse duration
specified in terms of rf degrees, A¢g,, is injected at the
zero crossing of the rf wave in a later accelerator section.
This will impart a correlation between the energy of the
electrons and the phase, which corresponds directly with
time. Since the electron bunch is already relativistic, the
output pulse length will be largely unaltered from the
input pulse length, resulting in a chirped electron bunch.
If the maximum energy gain by the accelerator section is
represented by Avy,,, and the input electron beam energy
is represented by ¥, then the fractional correlated energy
spread at the output of the accelerator section will be
given by

fizﬁ'~fégﬁﬁzk¢e,
Y Y
where Ag, is typically a few rf degrees. If we assume a
typical accelerating gradient of 10 MV /m for a standard
S-band (2.85 GHz) accelerator, a chirp of 0.17 MeV per
meter of accelerator per picosecond of electron bunch
duration will be achieved.

Ideally, the electron beam energy chirp expressed in
Eq. (71) will result in the corresponding x-ray energy
chirp expressed in Eq. (70). For this to actually be
achieved, however, the competing spectral broadening
effects resulting from the uncorrelated energy spread of
the electron beam, the laser pulse bandwidth, and the
electron beam emittance must be minimized [see
Eq. (63)]. It can be expected that the maximum reason-
able value for Ay, will only be a few percent of the
average electron beam energy due to constraints of the
chromaticity of the final focus optics, as well as the
limited accelerator length available to perform the chirp-
ing. Thus, to maximize the x-ray beam chirp, which will
be characterized by the ratio of the correlated x-ray
spectral width, Aw,,, to the uncorrelated spectral width
Awy,, these competing spectral broadening effects should
be much less than 1%, i.e.,

Aoy Ao

— —~ ~1%. (72)
wS wS

(71)

The uncorrelated electron beam energy spread is typi-
cally less than 0.1%, and the broadening due to the laser
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bandwidth should meet the requirement of Eq. (72), pro-
vided the bandwidth-limited pulse length is longer than
about 1 ps, which is still within the Rayleigh range of a
typical laser focus. Thus, the primary challenge to sat-
isfying Eq. (72) is the minimization of the spectral broad-
ening due to the electron beam emittance. In order for this
to be achieved, the transverse divergence of the electron
beam at the interaction point, A¢,,, must be much less
than overall x-ray beam divergence, given approximately
by 1/, or, using Egs. (62) and (72),

2 Aw
A€, < > <.

(73)

N

Assuming an electron beam of energy 50 MeV with a 1%
rms energy chirp, an rms divergence angle of much less
than 2 mrad will be required to achieve adequate spectral
sharpness to resolve the x-ray chirp. In terms of the
normalized rms emittance and the final focus spot size,
Eq. (72) becomes
Awsu ~ 28%X << , (74)

—_ 2 _
@ Ty W

where o is the rms size in x of the electron beam focus.
Assuming an rms spot size of less than 50 um is desired
for the Thomson interaction, it is seen from Eq. (62) that
an rms normalized emittance of much less than
10 mm mrad will be required. While challenging, the
electron bunch parameters required to produce a highly
correlated x-ray spectrum should be achievable. For ex-
ample, electron beam emittances as low as | mm mrad
with bunch charges of several hundred pico-Coulombs
have been demonstrated at Brookhaven National
Laboratory [28].

For the calculations presented here, the particle dy-
namics code PARMELA was used to simulate the electron
bunch production at the PLEIADES facility at LLNL [11].
The accelerator consists of several major components,
including an S-band photocathode rf gun and four 2.5 m
S-band accelerator sections. The accelerator sections run
at gradients up to 10 MV/m. In the simulation, the elec-
tron beam is accelerated through the first three sections
up to an average energy of 50 MeV, while the last section is
used to induce an energy chirp in the electron beam by
injecting 90° ahead of the rf crest. In addition, for this
particular case the electron beam was also injected near
the zero crossing in the first accelerator section, resulting
in additional chirping and some longitudinal compression
of the bunch. The longitudinal phase space and time
integrated transverse phase space of the simulated elec-
tron beam at the interaction location are shown in Fig. 13.
The rms bunch length is 0.7 ps, and the correlated rms
energy spread is 1.3%, while the uncorrelated energy
spread is 0.014%. The normalized rms emittance is
0.7 mm mrad. The electron beam focus was simulated
using a 25 cm focal length quadrupole triplet, indicating
the beam could be focused to an rms spot size of 35 um
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FIG. 13. (Color) Simulated transverse and longitudinal phase
space of the electron beam at the interaction point.

with an rms divergence angle of only 0.25 mrad. The
electron beam parameters are summarized in Table I

To simulate the production of Thomson x rays, the
macro-particle coordinates from the PARMELA simulation
were loaded into the time and frequency-domain
Thomson code. The interaction geometry was taken to
be that of a head-on collision, with the laser pulse having
a 1/e? intensity pulse duration of 0.5 ps, and focused to a

TABLE I. Summary of the simulated electron beam parame-
ters at the interaction.
Parameter Description Value
E Average beam energy 50 MeV
(0] Bunch charge 0.1 nC
Ex rms normalized emittance 0.7 mm mrad
Oyf rms spot size 35 um
oy rms duration 0.7 ps
Ay, 1/e? correlated energy spread 2.6%
Avy, Uncorrelated energy spread 0.028%
Aé,, 1/€? divergence 0.5 mrad
060703-16
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FIG. 14. (Color) Simulated on-axis x-ray spectrum of the
chirped Thomson scattered x rays before (top panel), and after
(bottom panel) spectral filtering.

1/¢€? radius of 36 wm. Because of the insensitivity of the
x-ray spectrum to the laser focus parameters in the head-
on geometry, the plane-wave approximation was invoked
in the calculation to speed up computation time.

The results of the calculations are summarized in
Table II. The total x-ray dose is about 107 photons, with
an average on-axis x-ray energy equal to about 60 keV.
The calculated on-axis x-ray spectrum is shown in
Fig. 14. Tt is seen that excellent time/energy correlation
is present, with a ratio of the correlated to uncorrelated
spectral width equal to about 20:1. The longitudinal
structure in the x-ray intensity is due to the longitudinal
dependence of the focal spot position within the electron
bunch.

Also shown in Fig. 14 is the result of a simulation
of pulse slicing by spectral filtering of the x-ray pulse.
This can be accomplished through Bragg reflection with
a bent crystal monochromator. This process was simu-
lated by multiplying the scattered intensity at each wave-
length by a Lorentzian attenuation factor with a FWHM
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TABLE II. Chirped Thomson x-ray beam parameters.
Parameter Description Value
N, Total x-ray dose 107
w (6 =0) On axis x-ray energy 60 keV
Aw,, 1/e? correlated spectral width 4.9 %
Awyg, Uncorrelated spectral width 0.32 %
At, 1/e?* duration 1.4 ps
Aty Minimum sliced duration 70 fs
Ny Photons in sliced pulse (0.1 mrad) ~20
Aw, 1/e? source size 36 um
B Brightness of source 10" ph. /(s mm? mrad? 0.1% b.w.)

of 0.1% about the center frequency of 60 keV. This corre-
sponds roughly to a Bragg reflection from a LiF crystal
(200) tilted at 3.0° to the x-ray beam direction. The
resulting FWHM pulse duration for the filtered x-ray
pulse, assuming sufficient radial collimation, is only
about 70 fs, about a factor of 20 down from the initial
duration of 1.4 ps. Note that the increase in uncorrelated
spectral width due to the finite radial collimation of the
x-ray beam scales as roughly (y6,)?/2, where 0, is the
angular half-width of the collimation cone. For the ex-
ample under consideration, where Aw,,/w, is equal to
0.3%, and y is about 100, the radially integrated spectrum
should be about the same as the on-axis spectrum for
6, < 0.5 mrad, implying only a modest increase in the
duration of the sliced x-ray pulse. This effect is illustrated
in Fig. 15.

The collimating and slicing process required to pro-
duce the short, monochromatic x-ray pulses will typically
reduce the number of photons in the x-ray pulse by a
factor of about 10*-10°, depending on the percentage
acceptance of the slicing optic used (typically
1073-10"%) and the acceptable radial width of the colli-
mation. For the cases studied above, the photon dose will
vary from approximately 10'-10* depending on the ini-
tial collimation imposed on the x-ray pulse, highlighting
the inherent inefficiency of the pulse slicing method.
However, due to the extremely small pulse duration,

low angular divergence, and narrow bandwidth, the
brightness of the source is still very high, about
10" photons/(s mm? mrad® 0.1% b.w.). More efficient
methods of pulse compression, like pulse compressions
with strained crystals [16] or grating compressors [17],
could potentially lead to even higher brightness x-ray
pulses.

B. Simulation of chirped x-ray production with a
chirped laser pulse

Chirped x rays can also be produced by colliding an
electron bunch with a chirped laser pulse. This can be
performed in a side-on (6y = 90°) collision geometry, in
which case the portion of the laser pulse seen by each
electron will depend on the longitudinal position within
the electron bunch. The minimum spectral width radiated
by each electron will be determined by the slice band-
width of the chirped laser pulse, defined to be the band-
width at a given longitudinal position in the pulse, given
approximately by

AC()OM ~ Atmin . 2

At.  AwAr,’

Ao (75)

where Awy, is the total bandwidth of the laser pulse, At;,
is the bandwidth-limited pulse length, A¢, is the chirped
pulse length, and Aw, is the slice (or uncorrelated)
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FIG. 15. Simulation of pulse slicing by Bragg reflection showing the spatially averaged intensity vs time for the case of radial
collimation widths of 0.1 mrad (left panel), 0.25 mrad (middle panel), and 0.5 mrad (right panel), corresponding to FWHM pulse
durations of 70, 80, and 100 fs, respectively, and total photon counts of 19, 113, and 420.
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bandwidth of the laser pulse. For cases where the chirped
pulse length is much greater than the bandwidth-limited
pulse length, the center frequency as a function of time, ¢,
within the laser pulse can be expressed as

L Aoy, (76)

(1)0([) = Wy x A[C

where the sign indicates a positive or negative chirp. The
fractional bandwidth seen by each slice of the electron
bunch will be proportional to the ratio of the laser beam
waist to the bunch length. Thus, the larger the focal spot
of the laser, the larger the uncorrelated spectral width of
the scattered x-ray pulses. However, if the focal spot
becomes too small, the spectral broadening due to the
perpendicular k vectors in the laser focus will become
significant (see Sec. IV B), which will place a limit on
how small the laser focus can be made. The total uncorre-
lated width of the scattered x-ray spectrum, neglecting
broadening effects of the electron beam, can be estimated
to be

Rt | Coved | ol e e I ol
@ ety ) \cAt, W mcAt. )’

)

where w, is the 1/e? intensity radius of the laser pulse at
the focus, and Awy, is the uncorrelated bandwidth of the
x rays scattered by a single electron. The first term in
Eq. (77) represents the broadening due to the transit of the
electron through the finite laser focus spot, the second
term is the broadening from Ak, while the last term
represents Awg,. In addition to minimizing Awg,, in
order to maximize the total x-ray dose it will be neces-
sary to limit Az, to about the same pulse duration as the
electron bunch. Combining these three effects places
relatively severe limitations on the ability to produce a
chirped x-ray pulse. The minimum sliced pulse duration
can be estimated from Egs. (69) and (77) to be

Al‘slice ~ \/( wo >2+<Atminc >2+<Atmin )2’ (78)
Aty cAt, wy At,
where it has been assumed that the laser pulse duration is
less than or equal to the electron bunch duration, and
hence, the total x-ray bandwidth radiated by the electron
beam is comparable to the Doppler up-shifted bandwidth
of the laser pulse. Note that Eq. (78) represents the mini-
mum sliced pulse duration assuming a zero emittance
electron beam with zero spot size at the interaction. In
reality, the sliced pulse duration will be larger than that
specified by Eq. (78), since the uncorrelated bandwidth of
the scattered x-ray pulse will be increased by both the
electron beam emittance and the energy spread. In addi-
tion, the finite spot size of the electron beam will result in
electrons within the same longitudinal slice of the elec-
tron bunch sampling different regions of the incident
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laser spectrum, ultimately leading to a larger uncorre-
lated bandwidth of the x-ray pulse, and hence, longer
minimum pulse duration.

We consider a 100 fs bandwidth-limited laser pulse
stretched to a 1/e? pulse length of 1.5 ps. The pulse is
taken to collide side on with a 50 MeV electron beam of
identical pulse width, emittance, and focal spot as pre-
viously considered (Table I), though in this case the
electron bunch is not chirped. To minimize the spectral
broadening described by Eqs. (77) and (78), the 1/¢? spot
size of the laser focus was chosen to be 100 um. After
simulations with several spot sizes, this was determined
to be close to the optimum for minimizing the sliced
pulse duration. Figure 16 shows the on-axis time resolved
x-ray spectrum before and after pulse slicing. While a
clear correlation between the x-ray energy and time is
apparent, the uncorrelated spectral width is much more
significant in this case than with the previous example. As
a result, the effectiveness of pulse slicing through spec-
tral filtering is diminished, with only a modest short-
ening of the rms pulse duration from about 0.53 to 0.33 ps.
Additionally, both the photon flux and the brightness
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FIG. 16. (Color) Simulated on-axis x-ray spectrum for the
chirped Thomson scattered x rays produced by colliding a
chirped laser pulse side on with an unchirped electron bunch,
before (top panel) and after (bottom panel) spectral filtering.
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are decreased from the previous example by about a
factor of 20.

It should be noted that further optimization of the
interaction parameters can lead to a smaller pulse dura-
tion than shown in the example here. By stretching a laser
pulse with a larger bandwidth, the correlated spectral
bandwidth in the resulting x-ray pulse will be proportion-
ally larger, potentially resulting in a shorter sliced x-ray
pulse. However, the finite spot size of the electron bunch,
which is limited by the electron beam emittance, will
place a limit on the minimum uncorrelated bandwidth of
the x-ray pulse, essentially limiting the minimum sliced
pulse duration to the time of flight across the electron
beam waist. In addition, the larger correlated bandwidth
of the x rays will result in a smaller number of photons in
the sliced x-ray pulse. If we reconsider the case of the
1.5 ps stretched laser pulse discussed above assuming a
25 fs bandwidth-limited pulse length, we find the opti-
mum 1/e? laser spot size to be about 50 xm, resulting in a
minimum sliced pulse duration of about 0.21 ps. This is a
35% reduction in pulse duration from the case involving
the 100 fs bandwidth-limited pulse, but the total photon
flux is also reduced by more than half.

Based on the cases discussed above, it is apparent that
colliding a chirped electron beam with a laser pulse is a
significantly more effective method for producing
chirped x-ray pulses for ultrafast pulse slicing and/or
compression than utilizing a chirped laser pulse.
However, it is seen that a moderate time/energy correla-
tion can be achieved by the use of a chirped laser pulse in
a side-on geometry. In some circumstances this may be
useful for providing moderate pulse slicing or compres-
sion of Thomson scattered x-ray pulses. For example,
when the electron bunch is sub-ps in duration, energy
chirping may not be practical, and the use of a chirped
laser pulse may be the most beneficial approach for pro-
ducing a chirped x-ray pulse.

VIL. CONCLUSIONS

The development of a femtosecond, hard x-ray source
capable of probing inner-shell electron properties on
atomic time scales would open up regions of currently
underexplored science, such as phase transitions in mate-
rials under shock loading and chemical reaction dynam-
ics. Thomson backscattering of an intense laser pulse with
a high-brightness electron beam is a promising means of
meeting the demanding specifications of such an x-ray
source. In this paper, a recently developed 3D time
and frequency-domain code for simulations of linear
Thomson scattering for arbitrary interaction geometries
has been applied to the study of chirped x-ray pulse
production and ultrafast pulse slicing. The code employs
a generalized relativistic Thomson differential cross sec-
tion and was designed to enhance existing computational
capabilities. It will be beneficial for both the design of

060703-19

Thomson scattered x-ray sources, as well as future ex-
periments and applications utilizing such sources. In
particular, the new code is well suited for analyzing
time-dependent spectra of the x rays produced from
linear Thomson scattering, and hence is ideally suited
for the study of chirped x-ray pulse production. Spectral
broadening of the scattered x-ray pulse resulting from the
incident laser bandwidth, laser focus, and the transverse
and longitudinal phase space of the electron beam were
examined. While chirped x-ray pulse production using
both a chirped electron beam and a chirped laser pulse
were presented, it was shown that the most promising
method for producing chirped x rays capable of sup 100 fs
time resolution involved the used of an energy chirped
electron beam at the interaction. The primary limitation
on the ability to produce chirped x-ray pulses using this
method is the uncorrelated spectral broadening due to the
electron beam emittance. Generally, it can be expected
that the normalized rms emittance of the electron bunch
should be on the order of 1 mm mrad if both a well-
defined temporal x-ray energy correlation and a sizable
photon flux are desirable. Simulations of the x-ray
production from a collision of an energy chirped,
50 MeV, 0.1 nC, 0.7 mmmrad electron bunch, and
an 800 nm, 500 mJ laser pulse resulted in an x-ray
pulse with excellent temporal energy correlation,
with a minimum sliced pulse duration of about 70 fs
FWHM, and a peak spectral brightness in excess of
10" photons/(s mm? mrad® 0.1% b.w.). Such an x-ray
source would provide significant improvement over the
time resolution provided by other tunable, hard x-ray
sources. While the total photon dose resulting from the
slicing process is modest, the application of x-ray pulse
compression schemes could lead to a much larger peak x-
ray flux. Additionally, it is conceivable that a sliced x-ray
pulse from a Thomson source could be used to seed and
x ray FEL, in congruence with proposed two-stage FEL
schemes. Finally, we note that the theory and computer
code described in this paper have been benchmarked
against experimental data obtained at LLNLs
PLEIADES facility. These results are described in detail
in a companion paper.
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