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Space-charge effects in high brightness electron beam emittance measurements
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The measurement of emittance in space-charge dominated, high brightness beam systems is investi-
gated from conceptual, computational, and experimental viewpoints. As the self-field-induced collective
motion in the low energy, high brightness beams emitted from photoinjector rf guns are more important in
determining the macroscopic beam evolution than thermal spreads in transverse velocity; traditional meth-
ods for phase space diagnosis fail in these systems. We discuss the role of space charge forces in a tradi-
tional measurement of transverse emittance, the quadrupole scan. The mitigation of these effects by use
of multislit- or pepper-pot-based techniques is explained. The results of a direct experimental comparison
between quadrupole scanning and slit-based determination of the emittance of a 5 MeV high brightness
electron beam are presented. These data are interpreted with the aid of both envelope and multiparticle
simulation codes. It is shown that the ratio of the beam’s b function to its transverse plasma wavelength
plays a central role in the quadrupole scan results. Methods of determining the presence of systematic
errors in quadrupole scan data are discussed.
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I. INTRODUCTION

There exists an emerging class of very high brightness
electron beams, which are created through photo-
emission from cathodes embedded in high field radio
frequency guns, and driven by picosecond lasers. These
systems, termed rf photoinjectors [1,2], produce high
brightness beams by creating high charge beams with the
time structure of the driving laser, and preserving both the
temporal extent and the transverse phase space quality,
despite the presence of extremely large space-charge
forces. The preservation of the electron beam pulse length
is accomplished by application of large amplitude rf accel-
erating fields, while the transverse phase space quality is
controlled and optimized by judicious balancing of space
charge defocusing and externally applied focusing forces.
Perhaps one of the more remarkable aspects of the beam’s
evolution is that the transverse emittance can be greatly
expanded and subsequently diminished during one plasma
oscillation occurring under optimized beam transport
conditions. This process, termed space charge emittance
compensation, has been studied in detail in theoretical,
computational, and experimental investigations [3–6].

As a result of the advancement in the understanding
of the emittance compensation process in these beams,
new photoinjectors are designed specifically to use exter-
nal focusing and acceleration to balance the extreme space-
charge forces in the bunch [7]. The same care must be
taken in the implementation of diagnostics for photoinjec-
tor beams. In particular, measurement schemes that deduce
a beam’s properties from its behavior in a drift region need
1098-4402�02�5(1)�014201(12)$15.00
to take into account the space-charge forces in the beam,
as these forces usually control the beam’s behavior. In
addition, space charge can change the property one is at-
tempting to measure in the region of measurement. For
example, the emittance compensation process relies on the
fact that the emittance changes (oscillates) in a drift re-
gion after a solenoid. Another issue in the measurement
of photoinjector beams is the stability of the photocath-
ode drive laser. Fluctuations in the energy and size of the
drive laser cause shot-to-shot fluctuations in the beam size
and emittance both directly and indirectly (by changing the
space-charge forces and the emittance compensation pro-
cess.) For this reason, in photoinjectors single shot mea-
surements are preferable to those requiring many shots.

In the remainder of this paper, we review and examine
the effects of space charge in two different emittance mea-
surement techniques — the multislit-based and quadrupole
(quad) scan systems. This paper builds on previous work
on the subject of emittance measurement systems [8] and
measuring the emittance of photoinjector beams [9]. We
discuss here some of the relevant issues in Refs. [8] and
[9] and clarify some key differences between this work
and those. We then describe an experiment performed
at the LLNL Thomson source photoinjector where these
two techniques were used to measure the emittance of a
highly space-charge dominated beam. The results of this
experiment, which show that the emittance found with
the quadrupole scan is in disagreement with that mea-
sured with the multislits (the quad scan results are consis-
tently higher), are compared with simulation and analytical
models.
© 2002 The American Physical Society 014201-1
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II. MULTISLIT-BASED EMITTANCE
MEASUREMENT

The first purpose of a phase space measurement system
based on multislit collimation [10] is to slice up the beam
into physically separated linelike sources, or beamlets, as
shown in Fig. 1. This slicing combined with a drift, which
reveals the spread in velocities as spatial information at
an intensity-sensitive detector, allows a full reconstruction
of one of the beam's transverse phase planes, e.g., �x, px�.
This technique is especially useful when implemented as
a single-shot diagnostic in photoinjectors, where shot-by-
shot beam parameter fluctuations may dominate multishot
measurements. Multishot variants of the slit-based method
involving one or two slits, as well as the pepper-pot method
(the 2D analog of the multislit system, which can give the
four-dimensional transverse phase space), are discussed in
detail in Ref. [8].

The method of determining the phase space from the
multislit technique is reviewed below. After introduction
of the technique, we discuss the use of the multislit ar-
ray to mitigate collective effects in space-charge dominated
beams which can be large enough to invalidate the mea-
surement. While these effects have been mentioned in pre-
vious analyses [8–10], in this paper they are the focus of
our concern. They are therefore examined in depth, not
only in the context of the multislit method, but also in the
quadrupole scan measurement.

The beamlets are created by the multislit mask at a con-
stant spacing w, which is much larger than the slit width
d. The beamlet distribution is then detected downstream of
the multislit mask, and the beamlets resolved. The width
of each beamlet gives a measure of the width of the trans-
verse momentum distribution at each slit, and the centroid
of the beamlets gives the correlated offset of the momen-
tum distribution at each slit. Assuming a drift length L
between the multislit mask and the detecting plane, the
measured trace space distribution is approximated by a
series (m � 1, . . . , N) of distinct angular distributions at
regularly spaced spatial (we take this dimension to be x)
intervals. The beamlets yield the correlated beam diver-
gences

x0
m,c � �xm 2 xm,c��L � �xm 2 mw��L , (1)

SlitsSpace-charge
Dominated Beam

Emittance Dominated
Beamlets Beamlet Intensity

Profile

x’m σ’m

FIG. 1. (Color) Illustration of the multislit-based emittance mea-
surement scheme.
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and the rms spreads in divergence

s0
m �

q
�x2

m��L2 2 �x0
m,c�2 , (2)

where the average � � is performed over the distribution
in the mth beamlet. Here we have assumed that the final
spread in detected beamlet size is much greater than the slit
width. Once these parameters are extracted from the data,
a graphical trace space distribution can be constructed, as
illustrated in Fig. 2.

Note that the trace space distribution is centered in both
x and x0, by subtracting off the overall value of the cen-
troids,

xm,c � �xm,c 2 xc�jold � mw 2

PN
m�1 ImmwPN

m�1 Im
,

(3)
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FIG. 2. (Color) (a) Beam trace space constructed from the beam-
let intensity profile illustrated in Fig. 1. Each point represents
the position of a beamlet in trace space and the error bars in-
dicate the thermal spread of the beamlets. (b) Contour plot
representation of the same data. Here the relative weights of the
beamlets are resolved.
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and

x0
m,c � �x0

m,c 2 x0
c�jold � �x0

m,c�jold 2

PN
m�1 Imx0

m,cPN
m�1 Im

,

(4)

where Im is the integrated detected intensity of the mth
beamlet.

The second moments of the trace space distribution are
obtained from the above determined parameters as

�x2� �

PN
m�1 Imx2

m,cPN
m�1 Im

, (5)

�x02� �

PN
m�1 Im�x02

m,c 1 s02
m �PN

m�1 Im
, (6)

and

�xx0� �

PN
m�1 Imxm,cx0

m,cPN
m�1 Im

, (7)

where in obtaining the moment �x02� we have assumed
that the beamlet distributions are symmetric about their
centroids. From the second moments, we can construct
the rms emittance

´x �
q

�x2� �x02� 2 �xx0�2 , (8)

as well as the other rms Twiss parameters [11],

bx �
�x2�
´x

, ax � 2
�xx0�
´x

,

gx �
�x02�
´x

�
1 1 a2

x

bx
.

(9)

The slits serve a secondary purpose which is of cen-
tral importance in the discussion of beams emitted from
rf photocathode guns since these beams are space-charge
dominated for almost all relevant energies and beam sizes.
The notion of space-charge dominated flow is quantified
by comparing the space charge and emittance terms in the
rms beam envelope equation for an ultrarelativistic beam
(g ¿ 1, b � n�c � 1) in a drift space [12]

s00
x �

´2
n

g2s3
x

1
I

g3I0�sx 1 sy�
, (10)

where I is the peak beam current, I0 � ec�re is the charac-
teristic current, ´n � bg´x � g´x is the normalized rms
emittance, and, of course, an analogous equation exists for
sy . Now, taking the ratio of the second to the first terms on
the right-hand side of the envelope equation, and assuming
a round beam (sx � sy � s0), we have a measure of the
degree of space-charge dominance over emittance in driv-
ing the evolution of the beam envelope,

R0 �
Is

2
0

2I0g´2
n

� 2k2
pb2

x . (11)

In order to illustrate the relationship between the two ef-
fects driving the beam envelope, we have rewritten this
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ratio in terms of the plasma wave number associated with
the beam density nb , kp � vp�c �

p
4prenb�g3, and

the rms beta function bx .
As an example, we take parameters typical of the present

experiments: a 5 MeV electron beam with current of
100 A, rms beam size of 1 mm, and normalized rms emit-
tance of 4 mm mrad. This yields a ratio of R0 � 75, and
one can see that this beam cannot be emittance dominated
until it is focused down to small sizes, s0 , 100 mm.
Thus linear transport theory cannot be used to measure
the emittance with this type of beam, as we will discuss in
detail in our evaluation of the quadrupole scanning tech-
nique. Collimation with slits mitigates this situation, how-
ever, by creating low current, small sx beamlets that have
the same uncorrelated transverse momentum spread as the
original beam. Noting that the rms size of a uniform beam-
let created by a vertical slit of width d is sx � d�

p
12,

and assuming sx ¿ sy , we have a space-charge domi-
nance ratio for the beamlets,

Rb �

s
2

3p

I
gI0

µ
d
´n

∂2

. (12)

For the beam parameters of our example, and the choice
in our experiments of d � 50 mm, we see that Rb �
0.042 ø 1, implying that the beamlets which pass out of
the slits are emittance dominated. This process can also be
understood in terms of the plasma frequency of the beam
and the beta function. Since the beamlets have the same
density as the beam before the slits, kp is unchanged by
collimation. On the other hand, the beta function of each
beamlet is much smaller than that of the beam before colli-
mation, bx � sx�sx0 ) �d�

p
12 ��sx0 , and for the beam-

lets the ratio Rb � 2k2
pb

2
x,b can therefore be made much

less than unity.
There are many further technical and physical con-

siderations which must be taken into account in order
to arrive at an optimized design for a slit-based phase
space measurement system. Since the main point of this
article is the overall effect of space charge on the results
of emittance measurements, these ancillary concerns are
discussed in the Appendix, which is specific to the multi-
slit system implemented in these experiments. Further,
more general material on the optimization of this type
of instrument is found in the comprehensive review of
emittance measurement techniques given in Ref. [8].

III. QUADRUPOLE SCANNING EMITTANCE
MEASUREMENTS

The quadrupole scanning technique for measuring emit-
tance is well known and widely used in the accelerator
physics community [13]. A brief description of the pro-
cess is given here in order to show its limitations when
applied to space-charge dominated beams. One can under-
stand the measurement by considering the evolution of the
014201-3
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beam’s rms Twiss parameters by differentiating Eqs. (9) in
a drift length after a thin focusing lens (of focal length f )

b0
x � 2

�xx0�
´x

� 22ax ,

a0
x � 2

�x02� 1 �xx00�
´x

� 2gx , (13)

g0
x � 2

�x0x00�
´x

� 0 ,

where we used the fact that there are no external forces
and ignored the space charge force to set x00 � 0. Using
Eqs. (13) and applying the thin lens (ax0 becomes ax0 1

bx0�f ) gives

bx�z� � bx0 2 2

µ
ax0 1

bx0

f

∂
�z 2 z0�

1

∑1 1 �ax0 1
bx0

f �2

bx0

∏
�z 2 z0�2. (14)

We notice that the b function is quadratic in z as ex-
pected. Upon rearranging this equation in terms of 1�f
and multiplying it by the emittance, we obtain an equation
for the square of the beam size as a function of the focus-
ing strength of the lens,

s2
x �z� � 	s2

x0 2 2ax0´x�z 2 z0� 1 gx0�z 2 z0�2


1
2s

2
x0

f

∑
ax0

bx0
�z 2 z0�2 2 �z 2 z0�

∏

1
s

2
x0

f2 �z 2 z0�2. (15)

If we then identify the coefficients of � 1
f �i with the letters

mi , the emittance can be extracted as

´2
x�z 2 z0�4 � m0m2 2

m2
1

4
. (16)

With this analysis in mind, the emittance can be obtained
by measuring the beam size at a given drift length �Ld�
after a quadrupole magnet, scanning through a range of
focusing strengths. The same result could have been de-
rived by solving the envelope equation for a drifting beam
without space charge:

s00
x �

´2
x

s3
x

. (17)

It is important to stress here that the quad scan formal-
ism is based on rms quantities. That is, Eq. (15) holds
(without space charge) for arbitrary, evolving beam distri-
butions provided that we are measuring the rms value of
the beam size. When considering the effect of space charge
in the remainder of this paper, we are looking for gross dif-
ferences in the rms beam size. This point is seen also in
the envelope equations including space charge. In these
equations the space-charge term is derived assuming lin-
ear self-fields, but extends to other distributions in the rms
sense using the concept of equivalent beams [14,15]. This
014201-4
work expands on that of Ref. [9], which points out that the
assumption of a Gaussian transverse profile and measure-
ment of full width at half maximum (FWHM) spot sizes
is incorrect for nonthermalized, photoinjector beams. For
these reasons, all experimental spot sizes quoted in this
paper are determined using rms measurements of the dis-
tribution, thus avoiding potential problems Gaussian fitting
and FWHM-based analyses of the data.

We can now examine how a quadrupole scan behaves in
the other extreme, namely the one where we assume the
beam has space charge but no emittance. In that case, the
envelope equations in x and y become

s00
x �

I
g3I0�sx 1 sy�

,

s00
y �

I
g3I0�sy 1 sx�

.

(18)

These equations have no exact solution, but we may
do an approximate analysis by making the assumption
sx 1 sy � const. This approximation is acceptable
while kpLd , 1. In that case we get, through a change of
variables (S � sx 1 sy , D � sx 2 sy),

S00 �
2I

g3I0S
� 2k2

pSi � const ,

D00 � 0 .
(19)

This set of equations is easily solvable and we find

Sf � Si 1 S0
iz 1 k2

pSiz
2,

Df � D0
iz .

(20)

Using sx �
1
2 �S 1 D�, and assuming an initially axisym-

metric beam (sx,i � sy,i), allows a solution of the x en-
velope equation,

sx,f � sx,i 1

µ
s0

x,i 2
sx,i

f

∂
z 1 k2

pz2sx,i . (21)

We see from this that the rms beam size is linear with the
focusing strength of the lens, and so the square is quadratic
in 1�f, just as in the case where space charge is ignored.
If one attempts to compute the emittance using the coef-
ficients of powers of 1�f , as in the emittance dominated
case, the result is zero. This is understandable in the sense
that one would expect the beam size to remain linear with
1�f all the way down to zero thickness for a beam with no
emittance.

For the measurements described below, neither of these
limiting cases is applicable as both the emittance and space
charge terms are important in the evolution of the rms beam
size. What we have shown here, however, is that one can
expect the qualitative outcome of the quadrupole scan to
be the same in either regime. In particular, it is notable
that, even in the case of space-charge dominated beam dy-
namics, the algorithm used to extract the emittance from a
quadrupole scan [based on Eq. (16)] gives a well-behaved
result, and there is no a priori reason that data from these
014201-4
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scans would be rejected as unphysical. The experimen-
tal data shown below demonstrate quad scans that indeed
yield good fits to Eq. (16), but which have systematic er-
rors in the resulting calculated emittance. The basis for
these errors, which is dependent on the interplay between
space charge and emittance forcing of the beam envelope,
is discussed below, in the context of the experimental data
and modeling.

IV. EXPERIMENTAL SETUP AND PROCEDURE

The quadrupole scan and multislit-based emittance mea-
surement techniques were compared using the Thomson
scattering photoinjector at Lawrence Livermore National
Laboratory. The beam line configuration used for these
measurements is shown in Fig. 3. The accelerator in this
setup was a 1.6 cell, S band, BNL-SLAC-UCLA-LLNL rf
photocathode gun [16]. The gun produced a 5 MeV beam
whose charge, transverse, and longitudinal spot sizes var-
ied as given in Table I and described below. An emit-
tance compensating solenoid after the gun was used to
control the rf defocusing at the gun exit and allowed us
to select a reasonable beam size at the emittance slits and
quadrupole. The magnetic field at the cathode was nulled
with an identical bucking solenoid placed upstream of the
cathode. The charge was measured using an integrating
current transformer. The laser injection phase was mon-
itored during the experiments by mixing the low level rf
derived from the laser oscillator with that from a probe in
the gun full cell. Long time scale drifts in the rf phase
were corrected for all measurements with a manual phase
shifter.

A Ti:sapphire-based laser system was used to produce
the UV pulses necessary for photoelectron emission in the
gun. As the injector is intended for integration with an
rf linear accelerator (linac) and a multi-Joule short-pulse
laser system [17,18], the beam produced by the photo-
injector must be synchronized with the high power laser
pulses. The photoinjector laser system (PLS) is seeded by
stretched pulses from the Falcon laser system so that the
linac can be synchronized to the Falcon master oscillator.
The seed light is introduced into the regenerative amplifier
014201-5
Quadrupole

Slits

YAG Screen

FIG. 3. (Color) Schematic of the LLNL Thomson scattering beam line used in the emittance measurements.
TABLE 1. Electron beam parameter range used for emittance
measurements.

Parameter Range

Electron beam charge 50–300 pC
rms laser spot size 0.5–2 mm
rms laser pulse length 2.5–6 psec

(regen) of the photoinjector system via single-mode,
polarization-preserving fiber that runs from the Falcon
stretcher output to the basement laboratory containing the
PLS. The timing for the Falcon, linac, and PLS derive
from the Falcon master oscillator. In addition to the light
pulse, timing signals from the Falcon timing rack are
sent to the PLS to trigger the yttrium-aluminum-garnet
(YAG) pump laser and regenerative amplifier Q switch.
The PLS consists of a fiber-seeded regenerative amplifier,
a multipass power amplifier, a pulse compressor, and
frequency conversion crystals for frequency tripling the
800 nm laser pulse. The two laser amplifiers, regen and
multipass, are pumped by a single, frequency-doubled,
Q switched YAG laser that puts out 300 mJ of 532 nm
light in an 8 nsec pulse. The output beam of the multipass
amplifier is expanded and sent to the grating compressor.

We measured the pulse width at the output of the grating
compressor using a single-shot autocorrelator. The desired
pulse length of the UV pulse is a few psec, which can be
obtained by varying the distance between the gratings in
the compressor. We attempted to directly measure pulse
width vs grating separation but found that the autocorrela-
tor gives good results for only pulses �1 psec or less. Con-
sequently, we estimate the pulse width for DT . 1 psec
using various techniques. For pulse lengths ,1 psec the
autocorrelator appears to give accurate results. The short-
est pulse we measured was 150 fsec, which corresponds to
a time-bandwidth-limited pulse.

By varying the difference in grating separation from the
minimum pulse length position Db between the gratings in
the pulse compressor we can continuously adjust the pulse
length in the IR from 184 psec to 150 fsec. This variation
014201-5
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was used to change the beam intensity as it was launched at
the photocathode, thus also varying the plasma frequency
of the beam. Three separate methods of modeling the com-
pressor all give the same result, which is that the grating
separation tuning DT�Db � 0.2 psec�mm, at 1v. The
3v intensity is proportional to the 1v intensity cubed,
and, as a result, a Gaussian-shaped pulse narrows up in
time, i.e.,

DT3v �
DT1vp

3
. (22)

Based on this calculation, we expect the pulse width of
the 3v light to be given by

DT3v � �0.11 psec�mm� 3 Db �mm� . (23)

For the multislit-based emittance measurements we
chose, based on the arguments given above and in the
Appendix, a set of stainless steel collimating slits with a
50 mm slit width, 0.75 mm separation, and 5 mm depth.
The drift length from the slits to the measurement screen
was approximately 50 cm. For a beam size of 1–2 mm
on the slits and at 5 MeV, this allowed us to measure a
maximum normalized emittance of 12 mm mrad using the
slits. The slits were mounted on an insertable, rotatable
actuator powered by stepper motors. This allowed us
to align the slits to the beam, insuring the proper angle
for maximum acceptance of the slits. A 0.5 mm thick
YAG:Ce crystal was used as the intercepting screen for
both types of measurements. The beam images produced
at the crystal were captured by a video camera and
digitized by a computer controlled frame grabber. Once
captured, the beam images were analyzed on-line in the
case of the multislit measurements, and saved for latter
analysis in the case of the quadrupole scan.

Given the apparatus described above, the experimental
procedure was to set the compressor gratings to a given
separation distance and measure the dimensions of the
laser and electron beams as well as the charge and in-
jection phase. This was important because it allowed us
to calculate the plasma frequency of the beam in order
to compare our measurements with simulation and ana-
lytical models. Once these parameters were known, the
beam emittance was measured using both the multislit and
the quad scanning techniques. Table I lists the range in
beam parameters over which the emittance measurements
were done.

V. EXPERIMENTAL RESULTS

The quad scan and multislit measurements were per-
formed for seven different electron beam pulse lengths.
Figure 4 shows one image of a beam horizontally focused
by the quadrupole. The horizontal rms size of the beam
is 140 mm. The figure also shows a representative re-
sult of one of the quadrupole scans. Figure 5 shows the
014201-6
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FIG. 4. (Color) (a) False color image of a beam image used
in a quadrupole scan. (b) Result of one quad scan. The
normalized horizontal emittance found from the curve fit is
9.6 6 1.1 mm mrad.

data found using the slits for the same grating separation
as used in Fig. 4. The emittance calculated via the quad
scan measurement is higher than with the emittance slits.
This pattern was repeated in all of the measurements we
performed.

As we argued above, we expect the result of a
quadrupole scan to depend not only on the emittance but
also the strength of the space-charge defocusing forces
encountered by the beam through the drift region. For this
reason we plot in Fig. 6 the results of the measurements
as a function of the plasma wave number of the beam
at the quadrupole multiplied by the drift length between
the quadrupole and the screen. The plasma wave number
is determined through simulation, using the measured
properties of the laser and the total charge launched, as
discussed further in the following section [5]. For this
range of beam parameters, the quad scan gives consis-
tently higher values for the emittance than the multislit
measurement.
014201-6
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FIG. 5. (Color) (a) False color image of the beam passing
through the collimating slits. (b) Intensity graph found by
summing the vertical pixel values at a given horizontal position.
The normalized horizontal emittance calculated from this plot
is 6.9 6 0.7 mm mrad.
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FIG. 6. (Color) Plot comparing the different emittance measure-
ment techniques for varying beam intensities. The strength of
the space-charge forces is parameterized in the scan by the prod-
uct of the drift length between the quadrupole and detector and
the plasma wave number at the quad.
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VI. ANALYSIS

The recording of laser spot size, length, and energy for
each set of emittance measurements allowed us to accu-
rately simulate the acceleration and focusing of the beam
through the 1.625 cell gun. These simulations were done
using PARMELA [19], a multiparticle code which includes
collective (space-charge) forces. In these simulations, a
beam derived from injection of a Gaussian longitudinal
and transverse laser pulse shape was used. The purpose
of these simulations was both to get a base line expec-
tation value for the emittance of the beam and to find
the spatial dimensions of the beam at the position of the
quadrupole. The results of the PARMELA simulations are
shown in Fig. 7. We see from the figure that the emittance
predicted by PARMELA is generally slightly lower than that
of the multislit measurements, but follows the same trend
from measurement to measurement. This indicates that the
small variation in the multislit emittance values at differ-
ent beam densities is due, at least in part, to changes in the
emittance compensation process caused by different beam
densities at the cathode, as could be expected.

At this point we simulated the quadrupole scan proce-
dure with space charge included in the simulation. This
was done in three different ways. The first was to use the
PARMELA beam distributions from the previous simulations
at the position of the quadrupole and iteratively simulate
their propagation in the drift region between the quad and
the measurement screen for different quad strengths. In
these PARMELA runs, we changed the space-charge routine
to a point-to-point Coulomb method, which is much less
accurate than the standard radial mesh algorithm, but was
needed to model the beam when it becomes highly asym-
metric after quad focusing. In order to avoid the noise
inherent in the point-to-point calculations, we also em-
ployed HOMDYN, which is an envelope code that has been
successfully benchmarked against multiparticle codes [20].
Finally, we also simulated the quad scans by numerically
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FIG. 7. (Color) PARMELA simulations of the emittance at the
quadrupole and the measured emittance using both measurement
methods.
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integrating the 2D rms envelope equations for the beam
including space charge,

s00
x �

´2
n

g2s3
x

1
I

g3I0�sx 1 sy�
,

s00
y �

´2
n

g2s3
y

1
I

g3I0�sx 1 sy�
.

(24)

In the case of both the HOMDYN and envelope equation
simulations, the emittances ´n [cf. Eq. (24)] were taken
to be that measured by the slits, the initial beam sizes were
taken from PARMELA, and the beam currents taken from
measurement data. In all three cases the simulations gave
similar results, and the less noisy (but still three dimen-
sional, and sensitive to differential slice dynamics [4,5])
HOMDYN results are shown in Fig. 8. In order to avoid con-
fusion about the meaning of the emittance term in Eq. (24),
we specify at this point that the symbol ´n will indicate the
normalized thermal emittance. The thermal component
to a full measured emittance is due to uncorrelated mo-
tion, as opposed to the apparent emittance observed from
residual correlations between longitudinal and transverse
phase space in poorly compensated beams. Thus we are
assuming in the integration of Eq. (23) that the measured
multislit emittance is roughly equal to the so-called slice
emittance. This point is physically meaningful, as an emit-
tance which was entirely based on longitudinal-transverse
phase space correlations, with vanishing slice emittance,
would not give rise to effects we have observed.

As we see from Fig. 8, the emittances derived from the
simulated quad scans are indeed higher than the actual
emittances used in the simulations, as expected. In ad-
dition, they agree reasonably well with the results of the
quad scan measurements.

The parameter kpLd was chosen to plot against the emit-
tance results because it describes the degree to which the
plasma nature of the beam influences its motion in the ex-
periments. In cases where the beam evolves in a purely
space-charge dominated way (such as the emittance com-
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FIG. 8. (Color) Simulation of the quadrupole scan plotted with
the PARMELA simulations and the measured emittance data.
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pensation process), kpLd�2p would be the number of
plasma oscillations that the beam undergoes. However,
in the case of the quad scan, the beam’s size at the end
of the drift is also affected by emittance, especially at
points where the beam has gone through a tight waist. In
that case, the relative strength of the emittance and space-
charge terms (R0) in the envelope equation are of interest.
The ratio of these forcing terms can be characterized by the
beta function times the plasma wave number, and Eq. (11)

shows that kpb �
q

R0

2 . In Fig. 9 we plot the path of the
experimental data in the plane defined by kpb and kpLd .
The background of the plane is a contour plot of simu-
lated quad scan emittances using the envelope integration
model, with a constant thermal emittance for each point in
the plane. We see from the figure that some data points
that happen to be close together in kpLd have significantly
different values of kpb. This effect explains in part the
drastic difference in emittance between close data points
in Fig. 8. Note also that the lower right-hand corner of the
graph has values of emittance that are lower than the value
that was used to integrate the envelope equations. This
point will be discussed further below.

It is instructive at this point to look again at the quad
scan procedure to see why the data shows and simulations
predict erroneous numbers for the emittance. In particular,
we can see both in the data and in simulations that there is
an asymmetry in the curves about their minima. In Fig. 10
the quad scan data from Fig. 4 is replotted, and the data
points on either side of the minimum are fitted to different
curves. We see from the figure that the points before the
minimum spot size follow a path with less curvature than
the points occurring after the focus. The second part of
the figure shows this effect more dramatically. In that case
the plot points come from a simulation of a quad scan
assuming conditions similar to the experiment, but with
a higher beam current of several hundred amps.
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FIG. 9. (Color) Contour plot of the simulated quad scan emit-
tance over a range of both kpLd and kpb. The white plot
points locate the positions of the experimental data. The normal-
ized emittance used as input to the simulations was 5 mm mrad,
while the output emittance values range from 4 (deep blue) to
12 mm mrad (red).
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FIG. 10. (Color) (a) Quad scan data as shown in Fig. 4(b). Here
we apply different fits to the data before and after the focus.
(b) Simulation of a quad scan with an extremely space-charge
dominated beam. Again, we show the two fits on either side
of the beam waist to illustrate the asymmetry in the simulation
points.

This asymmetry in the data about the minimum spot size
is a manifestation of the fact that the evolution of the beam
through the drift is very different for data points on oppo-
site sides of the minimum. For points on the right-hand
side of the curve (weaker focusing) the beam size is de-
flected appreciably only by space charge. For points in
the curve at and to the left of the waist (stronger focusing)
there occurred at some position a thermal emittance domi-
nated beam waist. In the region of that waist, the emittance
force “turns on” and applies an extra kick to the beam size
that deflects it away from the path it would take due only to
space charge. The stronger the quadrupole focuses (larger
1�f ), the stronger this thermal emittance kick will be and
the further upstream of the measurement screen it occurs.
Figure 11 illustrates this behavior, by showing the results
of a simulation with and without the emittance term in-
cluded in the envelope equations. We see here that for
points on the left-hand side of the minimum, the simula-
tions with and without emittance agree very well, indicat-
ing that the integrated motion of the beam is indeed purely
dominated by space charge. However, the points at and
after the minimum diverge rapidly from the path that the
014201-9
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FIG. 11. (Color) Simulations of a quad scan with and without
emittance. The solid line represents a simulation without the
emittance forces, while the data points show a simulation of the
full envelope equations.

simulation with space charge alone predicts even though
the beam is space-charge dominated over most, but not all,
of its trajectory.

It is interesting to note that both a purely thermal emit-
tance dominated and a purely space-charge dominated scan
would produce a �s2

x , 1�f� curve which is symmetric about
the minimum sx . The asymmetry observed in the mostly
space-charge dominated quadrupole scan is a result of both
space-charge and thermal emittance effects asserting them-
selves in the measurement.

Given this problem, in which points on one side of the
curve are space-charge dominated, while on the other side
they are affected by emittance, it is certainly no surprise
that the emittance computed from these curves is not cor-
rect. In addition, the asymmetry of the curve introduces a
problem in the consistency of the result. That is, since the
computation of the emittance requires us to fit a parabola
to a curve that is of higher order, the fit parameters will
depend on the portion of the curve used for the fit. To il-
lustrate this point, consider a single quad scan simulation
as shown in Fig. 12(a). The range of focal lengths we use
for the fit is in principle arbitrary; however, it is reason-
able to impose the conditions that the simulation points are
equally spaced in 1�f and that the end points give the same
beam size, which is about 1 mm. These are the conditions
we used for simulations in this paper. We can see how the
computed emittance varies when we change the start and
stop point of the fit. Figure 12(b) shows the emittances
calculated from the simulation data of Fig. 12(a) with the
horizontal and vertical axes representing the starting and
stopping points of the fit, respectively.

There are two noteworthy features in Fig. 12(b). The
first is that it shows both regions above and below the in-
put value of the emittance. In fact, the violet regions in the
upper half of the plot represent points where the computed
emittance is imaginary [this happens if the right-hand side
as determined from the scan parameters of Eq. (16) is
negative]. The other point is that the upper left corner of
014201-9
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FIG. 12. (Color) (a) Quad scan simulation used to perform the
fitting in (b). The emittance used in the simulation is 4 mm mrad.
(b) Contour plot of the emittance calculated by fitting the data in
(a). The portion of the graph below the diagonal is unused (this
half would be the mirror image of the upper half.) Here, red
represents an emittance of 10 mm mrad and violet is imaginary
(the square of the derived emittance is negative).

the graph is the region where the gradient in emittance val-
ues is the steepest. This is also the region that we initially
assumed to be the most reasonable. The lower left-hand
corner of the plot seems to be a stable region, but it is not
an accurate solution. Points in this corner fit only the first
part of the curve, and that part gives only information about
space charge, as shown in Fig. 11. This strict dependence
of the computed emittance on the range of fit points is
another factor that may help to explain the inconsistency
in the quad scan measurements. This effect was not con-
sidered at the time the measurements were performed, and
for the majority of them slightly more data points were
taken before the minimum of the curve than after.

VII. CONCLUSIONS

Two different emittance measurement techniques were
discussed in this paper: the multislit-based measurement
and the quadrupole scan. For the highly space-charge
dominated beams of interest here, we reviewed how the slit
collimation of the beam into beamlets reduces the quantity
kpb sufficiently to allow the beamlets to expand under the
influence of emittance and not space charge. In the ex-
014201-10
periment preformed at the Thomson source photoinjector
at LLNL, we found that the emittances measured with the
multislit system were reasonably independent of the beam
intensity, and agreed well with the PARMELA simulations.

In contrast, we found that the quadrupole scanning pro-
cedure was ill-suited to measuring the emittance of these
beams. In addition to the issues associated with multishot
measurements in systems with notable shot-to-shot charge
fluctuations, the fundamental problem with the quadrupole
scan is that the beam evolves under the influence of both
space-charge and emittance effects. In the Livermore ex-
periments we found that the emittance measured with the
quad scan was consistently higher than the multislit mea-
surements and PARMELA predictions. In addition, simu-
lations of the quad scan for the beam parameters of the
measurements also show higher values for the emittance,
and reproduce the systematic dependence of the measured
emittance on the quantity kpLd .

Simulations show that when kpLd is of the order of
unity or greater, space-charge forces are large enough to
significantly alter the evolution of the beam in the drift
region of the scan. Further, when the quantity kpb is
larger than unity (indicating the degree to which the space-
charge forces are dominant over the emittance effects), the
quadrupole measurement of the emittance will have no-
table errors. For kpb ¿ 1, the emittance measurement is
no longer valid at all, but is really only a measure of the
intricate interplay between the space-charge and emittance
effects during the focused trajectory. Thus the conditions
kpLd . 1 and kpb . 1 are theoretical tools for determin-
ing the range of parameters over which the validity of the
quadrupole scan is no longer guaranteed. Perhaps an even
more useful method that can test for possible problems in a
quadrupole scan is the examination of the scan data itself.
When the �s2

x , 1�f� curve is no longer symmetric in 1�f
about the minimum in s2

x , this is a clear signature that the
combined space-charge/emittance dominated beam evolu-
tion produces an unreliable emittance measurement. It is
both inaccurate and imprecise, as the exact value of the
emittance derived from the �s2

x , 1�f� curve depends on the
number of points on either side of the minimum that are
used in the fit.

It may be noted that, as experimental progress is made in
lowering the beam emittance obtained from rf photoinjec-
tors, the problems noted here with quadrupole scans will
be exacerbated. In recognition of such difficulties, most
laboratories use slit-based measurements for low energy
�,10 MeV� emittance diagnosis. The present results im-
ply that quadrupole scans may be problematic at energies
much higher than 10 MeV.
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APPENDIX

We survey in this Appendix a series of design consider-
ations which impact the choice of slit parameters one de-
ploys in the phase space measurement system, and which
dictate the resolution of the device. Many of the issues
discussed here are also examined in Ref. [8], but since
Lejeune and Aubert do not analyze the slit array in par-
ticular, a review of the technical considerations one needs
to implement the slit-based system is given here. We be-
gin by examining those parameters that have to do with the
angular acceptance of the slits. The depth of the material
used to intercept the beam is dictated by our desire to ei-
ther stop the beam or scatter it sufficiently so that it does
not affect the measurement of the nonintercepted beamlets.
The stopping distance of the beam is approximately

Ls �
E
dE
dx

�
E �MeV�

1.5 �MeV cm2 g21�r �g cm23�
(A1)

for an initially minimum ionizing particle. It is straightfor-
ward to stop a 5 MeV beam, such as is encountered in this
paper, but with an energy much above 10 MeV, the length
of the slits for total stopping may become impractical. In
order to deal with this we rely on multiple scattering ef-
fects in the slit material. The beam scatters off of nuclei
as it slows down from ionization losses, and the final rms
angle associated with the beam after propagating a distance
L in the stopping material is approximately

usc �
21

E �MeV�

s
Ls

Lr

µ
1

Ls 2 L
2 1

∂

�
21

E �MeV�

s
L
Lr

, (A2)

where Lr is the radiation length in the material, and we
assumed the stopping distance is much larger than the ma-
terial thickness. In order to reduce the background signal
from scattered (but not stopped) electrons, it is useful to
conservatively require a multiple scattering angle in excess
of 0.5, or approximately,

Ls � Lr

µ
E �MeV�

42

∂2

. (A3)

Once the slit depth L has been chosen, one can examine
the angular acceptance of the slits. The first step is to
specify an rms beam angle associated with the finite beam
emittance which, assuming we place the slits at a waist, is

f �
´n

gs0
. (A4)

The assumption of a beam waist is invariably a good ap-
proximation, as one must be careful not to introduce a large
correlated beam angle in order to make sure that all off-
sets x in the beam pass the slit aperture well. Thus we are
left to consider the uncorrelated angles given by Eq. (A4),
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which must be chosen to be less than one-fourth the angu-
lar aperture of the slits, f , d�4L, and preferably even
smaller.

The slit separation w is chosen to be much larger than
the slit width d and smaller than the beam size to ensure
that we can resolve the beam. In our case, the slit width is
taken to be 0.75 mm. This width must also be consistent
with not allowing the beamlets to overlap at the detection
plane, a condition that depends on the distance of the drift
to the screen Ld . The ratio to the beamlet widths to their
separation, which should be smaller than unity, is

Rws � 2
Ldf

w
, (A5)

while the ratio of the beamlet rms size at the phosphor to
its size at the slit, which should be larger than 1 to achieve
resolution of the uncorrelated angular spread in the beam,
is

Rsp �
p

12
Ldf

d
. (A6)

Since one of these ratios should be small and the other large
compared to unity, if we set their geometric average equal
to unity (RspRws � 1), we can optimize the drift length
to be

Ld �
p

dw
31�42f

, (A7)

which for the example parameters given above yields Ld �
50 cm. This optimum is of course quite broad, so one is
free to choose a more convenient value if one desires to
measure larger or smaller emittances, as discussed below.

Once the drift length is specified, there is another cri-
terion which should be examined for the diagnostic to
give unambiguous results: the contribution to the mea-
sured emittance from the residual space-charge forces be-
tween beamlets is smaller than that due to the true uncorre-
lated angular distribution at the slits. Again assuming the
slits are at a waist (this gives the highest estimate of the
space-charge effect), we have

R0
b �

2I
g2I0

dLd

w´n
. (A8)

Again, this quantity must be much smaller than 1. For our
present design it is about 0.25, but it should be noted that
for Hartman’s measurements it was in fact greater than 1.

The subject of slit scattering is a bit complicated, but a
detailed calculation using EGS [21] is not necessary if esti-
mates that the signal-to-noise due to slit scatter is not of the
order of 100 or less. Theoretical guidelines in this calcula-
tion have been developed by Courant [22] and Burge and
Smith [23]. Modifying Courant’s criterion for energy dis-
crimination, we pick the effective depth of the maximum
of the relevant slit scattered flux to occur when the mul-
tiple scattering angle is equal to the acceptance half-angle
of the slits,
014201-11



PRST-AB 5 S. G. ANDERSON et al. 014201 (2002)
leff � Lr

µ
21d

E �MeV�2l

∂2

(A9)

and the increase in effective slit width is given by

deff �
2

p
3p

l
3�2
eff

wc
, (A10)

where

w2
c �

A
Z2pNAr

µ
E

2e2

∂2

ln�181Z1�3�21, (A11)

and NA is Avogadro’s number. The minimum signal-to-
noise for the detected beam intensity at the phosphor is
therefore

S
N

$

p
3p dwc

2deffl
3�2
eff

. (A12)

For most cases of interest, Eq. (A12) gives a value much
in excess of unity. It should be noted, however, that a
misalignment of the slits can generate anomalously large
slit scattering effects, and thus care must be taken to avoid
this situation.

Once the general layout of the slit system is specified
by the above-listed optimization, one may examine the
resolvable emittances in the measurement device. The
maximum emittance one may measure is obtained in the
situation where the angular aperture of the slits is entirely
filled (assuming that the requirement of the ratio Rsp , 1
is satisfied), so that

´n,max �
gs0w
p

12 Ls
. (A13)

Note that this maximum emittance is proportional to the
beam size, and thus the total number of slits in the mask
Ns. On the other hand, the minimum emittance which can
be resolved is given by

´n,min �
gs0d
p

12 Ls
. (A14)

As a practical matter, it should be noted that great care
needs to be taken in the machining specifications for the
slits, to ensure that they are flat over the entire surface par-
allel to the beam propagation. This is accomplished in the
present experiments by electron discharge machining. The
slits are mounted on a precision insertable-rotatable (2000
014201-12
steps per rotation) actuator which is driven by a stepping
motor. This level of precision is needed to eliminate un-
wanted angles between the beam centroid propagation and
the slit normal directions.
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