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I. INTRODUCTION

The powerful sources of x rays are now becoming
indispensable tools in science, technology, and medicine.
Nowadays, high-quality x-ray and extreme ultraviolet
(XUV) light is delivered by synchrotron radiation (SR)
sources. These installations are typically large scale and
include a radio-frequency electron accelerator, combined
with an undulator assembled from permanent magnets,
and devices for beam manipulation (quadruples, chicanes,
steerers, etc.). The SR sources of the last generation—the
x-ray free electron lasers (XFELs)—have reached record
GW powers for the ångström wavelengths operating in the
coherent regime [1]. This regime is provided by the high
stability of the beam-undulator interaction, when individu-
ally emitting electrons get progressively involved in the
process of stimulated scattering and amplify the light in a
collective fashion [2].
The wavelength of the radiation produced by an indi-

vidual electron is λs ≃ ð1þ K2
0=2Þλu=2γ2e, where λu and

K0 are the undulator period and its strength parameter,
respectively, and γe is the electron Lorentz factor. The
parameter K0 defines the undulator efficiency, i.e., its
capability to deviate the particle transverse momentum.
K0 is typically proportional to the field amplitude and the
period, e.g., for a conventional linear magnetic undulator
K0 ¼ 0.93B0½T�λu½cm�. Therefore, the maximal x-ray pho-
ton energy 2πcℏ=λs is limited by the minimal λu and the
energy of the electron. In conventional SR sources, the size
of the undulator magnet which provides a sufficiently
strong magnetic field is around a centimeter, which makes

it difficult to reach the sub-ångström radiation wavelengths,
requiring larger and more expensive accelerators.
Alternatively, a number of currently explored schemes

propose to collide the electron beam with an intense
optical laser radiation [3,4]. Such Compton sources can
provide a very short, micrometer undulation period with
sufficiently large K0 values. The rate of the amplification
in FELs is typically determined by the parameter
ρ ∝ γ−1b j1=3e ðK0λuÞ2=3, where je ¼ Ie=σ2⊥ is the peak flux
defined by the current Ie and the transverse size of the
electron beam σ⊥, and the beam Lorentz factor γb is defined
by the average energy of electrons [5]. Since amplification
decreases with λu, the efficient operation of the optical-
based XFELs requires a relatively long interaction distance,
which imposes severe limitations on the beam quality. As a
consequence, while such an idea is being discussed in a
number of theoretical works [6–8], any practical realization
remains beyond current expectations.
One possible solution to improve the concept of the

optical-based XFEL is to replace the conventional rf linac
with the laser plasma accelerator (LPA) [9,10]. The
technology of the LPA has already proved its capability
to deliver pico-Coulomb femtosecond beams of MeV
electrons [11] and has now reached the GeV level
[12,13]. The incoherent undulator radiation produced by
the laser-accelerated electrons was recently observed
experimentally [14,15], and the prospects for coherent
amplification of this radiation were discussed [16].
Although the laser plasma accelerators now provide the
necessary high electron flux, the level of collimation and
monoenergeticity required for the x-ray amplification yet
remains challenging.
In our work, we tackle this problem by considering a

scheme based on a specific configuration of the optical
undulator—the optical lattice. The lattice results from the
overlap of two identical side laser beams and represents a
spatially, transversally modulated electromagnetic field
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structure. The interest for such a structure and its interaction
with electron beams originates from the works of Kapitza
and Dirac back in 1933 [17] and was later revised in a
number of works [18,19]. At the same time appeared the
idea to use the electron slow motion in the optical lattice
as a low-frequency light source [20,21]. Recently, we have
focused our attention to electron light scattering in the
lattice for coherent amplification of short-wavelength
radiation [22,23].
A major advantage of the transverse optical lattice is that

both it wiggles the electrons in the varying laser field and
its spatial modulations act on the electrons via the ponder-
omotive force, thereby trapping them in the potential
channels [24,25]. On one hand, such electron guiding
prevents electrons from diverging along one direction
[26], thus partially preserving the electron flux. On the
other hand, potential channels affect the collective behavior
of the electrons, predisposing them to a new mechanism of
amplification similar to the stimulated Raman scattering
[23]. Practically, such a scheme involves the traveling-
wave technique which has been proposed and discussed
in the context of the optical lattice in Ref. [22] and in
Refs. [27,28] for the Thomson scattering mechanism. The
traveling electromagnetic waves can copropagate with
electrons for a long distance and, therefore, may provide
a stable amplification.
In the present work, we revise the physics of x-ray

amplification in the electron beam trapped in the optical
lattice. For this we develop a self-consistent kinetic model
in Sec. II and with its help describe the growth of the
electromagnetic signal in the analytical approach and by
using a simple numerical integration (Sec. III). In Sec. IV,
the theoretical results are compared to the three-
dimensional numerical modeling performed with the
unaveraged spectral free electron laser code PLARES [29].
The concluding remarks are given in Sec. V.

II. THEORETICAL MODEL

We describe the interaction of the relativistic electrons
with the optical lattice and the scattered radiation. The
theoretical model is based on the Vlasov kinetic equation
and the equation for electromagnetic potential:

∂tf þ ðv∇Þf þ ð∂ta − v ×∇ × aÞ∂pf ¼ 0; ð1aÞ

ð∂2
t −∇2Þa ¼ −

Z
vfdp: ð1bÞ

In the present study, we normalize frequencies and wave
numbers to ω0 ¼ 2πc=λ0 and k0 ¼ ω0=c, where λ0 is the
wavelength of the laser. The distances and time in Eq. (1)
are measured in units c=ω0 and ω−1

0 , the electron velocities
and momenta are normalized to the speed of light c
and mec, respectively, and the vector potential is in units
of mec2=e. In this convention, the electron distribution

function (EDF) is normalized as
R
fðr;p; tÞdp ¼ ne, where

the electron density ne is in units of its critical value,
nc ¼ ðmeω

2
0=4πe

2Þ.
The beam of electrons travels at a relativistic velocity

vb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ−2b

q
≃ 1 in the overlap of two identical laser

pulses incident symmetrically with the angle θ (see Fig. 1).
The vector potential a ¼ aL þ as in Eq. (1) accounts for the
lattice field

aL ¼ 2a0ey sinðx sin θÞ cosðt − z cos θÞ; ð2aÞ

and the signal wave as, associated with the scattered
radiation. This signal copropagates with electrons:

as ¼ asey cos½ksðt − zÞ�; ð2bÞ

and its amplitude as is assumed to be small, so in our
analysis we retain only linear terms on as. Note that for an
electron propagating along the z axis the undulation period
provided by the lattice field is

λu ¼ λ0=ð1 − vb cos θÞ: ð3Þ

One approximation commonly used to describe the
motion of charged particles in a strong laser field is to
divide this motion into “fast” and “slow” parts. The fast
reaction of an electron is to follow oscillations of the
electromagnetic field directly. On the other hand, the
particles are also driven by the period-averaged ponder-
omotive force, defined by the field spatial gradients. The
optical lattice field in Eq. (2a) has the transverse gradient,
which creates the ponderomotive force along the x axis:

Fð0Þ ¼ −exγ−1b a20∂xj sinðx sin θÞj2 ð4aÞ

FIG. 1. Optical lattice scheme.
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and produces a series of potential channels with widths
Lx ¼ π=2 sin θ.
In the presence of the signal wave (2b), its interference

with the lattice produces a beat wave in the longitudinal
direction. This wave acts on the electrons via the ponder-
omotive force:

Fð1Þ ¼ eza0asγb½ksð1 − vbÞ þ vb − cos θ� sinðx sin θÞ
× sin½ð1 − ksÞt − ðcos θ − ksÞz�: ð4bÞ

which is calculated in the reference frame of the electron
beam (cf. [30]) and then translated to the laboratory system.

A. Unperturbed beam in the lattice

The unperturbed state of the electron beam trapped in the
lattice potential is defined only by the transverse ponder-
omotive force Eq. (4a). The characteristics of the kinetic
equation (1a) in this case can be written as

dx
vx

¼ dpx

Fð0Þ ; dt ¼ dz
vz

; ð5Þ

and they define the particle trajectories, along which the
initial EDF remains constant. The first equation of Eq. (5)
represents the energy conservation condition

p2
x=2a20 þ sin2ðx sin θÞ ¼ ξ2; ð6Þ

and, neglecting the variations of the electron Lorentz factor,
we may calculate the orbits of the electrons as

sinðx sin θÞ ¼ snðξΩ0tþ Θ; ξ−2Þ; ð7Þ
where snðu;mÞ≡ sinðϕÞ is a Jacobi elliptic function
defined as the inverse of elliptic integral u ¼R ϕ
0 ð1 −msin2θÞ−1=2dθ. Here we have also denoted a
normalized excursion ξ, and Ω0 ¼

ffiffiffi
2

p
a0 sin θ=γb is a

frequency of the small-amplitude oscillations. The phase
Θ is defined by the initial coordinate and momentum of
the particle.
If ξ < 1, the electron is trapped, and it oscillates in a

channel of the optical lattice with the frequency

Ω ¼ πΩ0

2KðξÞ≃Ω0

�
sin πξ
πξ

�
1=6

≈Ω0ð1 − ξ2=3Þ; ð8Þ

where KðmÞ ¼ R π=2
0 ð1 −msin2ϕÞ−1=2dϕ is the quarter

period of the elliptic integral.
The first approximation in Eq. (8) was previously

presented in Ref. [26], and its accuracy is better than
99% for ξ < 0.999. The alternative expression in the
leftmost part of Eq. (8) is derived by expanding
sin2ðx sin θÞ into the series, and it retains a 98% accuracy
for ξ < 0.85. The latter is more convenient for analytical
developments, and we will use it further with the electron

orbits Eq. (7) approximated by sinusoids. Finally, the set of
electron trajectories in the ðx; zÞ phase plane will read

X ¼ ½x0 cosðΩtÞ þ px0=ðΩγbÞ sinðΩtÞ�;
Px ¼ ½ðpx0 cosðΩtÞ − x0Ωγb sinðΩtÞ�;
Z ¼ z0 þ vzt; vz ¼ const: ð9Þ

For a simple analytical model, one can assume homo-
geneous electron distributions in the transverse phase
plane, where the particles are trapped, and in the longi-
tudinal direction, which is not affected by the lattice field.
The electron distribution function in this case reads

f ¼ n0
4

ffiffiffi
2

p
a0ξ0δγb

ηðξ20 − ξ2Þηðδγb − jpz − pbjÞ; ð10Þ

where ηðxÞ is a unit-step function, n0 ¼ neðx ¼ 0Þ is a
maximal electron density, and δγ is a longitudinal energy
spread of electrons. The maximal excursion is limited by
the potential scale ξ0 ≤ 1.

B. Interaction of the electron density perturbations
and the signal electromagnetic wave

The force (4b) associated with the signal wave acts on
the particles and rearranges their longitudinal positions,
thus generating the perturbation of EDF f → f þ δf. In
turn, this perturbation acts back on the signal field through
the electron current along the y axis in the right-hand side
of Eq. (1b). Such coupling may provide a resonant
interaction between electron and electromagnetic modes
resulting in their amplification or damping similarly to the
stimulated Raman scattering [31].
During the early, linear stage of interaction, the ampli-

tude of the signal wave and the EDF perturbations are small
as ≪ a0, δf ≪ f. The current

R
vfdp, associated with the

resonant interaction in Eq. (1b), includes the generating
term aLδn=γb and the term asne=γb, which is responsible
for the dispersion of the signal resulting from its interaction
with the space-charge plasma waves. In the simplest case,
we may neglect this dispersion as well as the diffraction of
the amplified wave, therefore, assuming a plane transverse
profile. Keeping only the first-order resonant perturbation
terms, we write the signal wave equation as

∂tas ¼ i
a0n�

γbks
sinðx sin θÞ; ð11Þ

where n� is related to the electron density perturbations as

δn ¼
Z

δfdp ¼ Re½n�eiðcos θ−ksÞz−ið1−ksÞt�:

To study the interaction of an electromagnetic field with
relativistic electrons, it is convenient to introduce the
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coordinates which follow the center of the electron beam
z → zþ vbt. The Doppler-shifted frequencies of the lattice
and the signal wave are ~ωe ¼ ð1 − vb cos θÞ and ~ωs ¼
ð1 − vbÞks, respectively, and the interaction is resonant
when ~ωe ≈ ~ωs (we will discuss the resonance condition in
detail in Sec. III B). The ponderomotive force Eq. (4b)
and the density perturbations in the moving coordinate
system read

Fð1Þ ¼ a0asks
γb

sinðx sin θÞ sin½Ωstþ ksz�;

δn ¼ Re½n�e−iðΩstþkszÞ�; ð12Þ

where we have assumed ks ≫ cos θ, andΩs ¼ ~ωe − ~ωs is a
frequency of the slow oscillations of longitudinal ponder-
omotive force. Note that it is the force Fð1Þ which produces
the modulations of electron density—the bunched struc-
ture. These modulations propagate with the velocity
−Ωs=ks, and the sign of Ωs defines the propagation
direction. In the case of Ωs < 0, the modulations copro-
pagate with the electron beam and accelerate the particles,
thereby draining the energy of the electromagnetic field.
Otherwise, if the signal is downshifted, ~ωs < ~ωe, the
electrons give the energy to the wave amplifying it. In
what follows, we will consider only this growing mode,
always assuming Ωs > 0.
Let us describe the dynamics of n� by perturbing the

kinetic equation (1b) and averaging it over the lattice field
period:

½∂t þ vx∂x þ vz∂z þ Fð0Þ∂px
�δf ¼ −Fð1Þ∂pz

f; ð13Þ

where only the first-order terms are retained. The operator
in the left-hand side is simply the time derivative dδf=dt
calculated along the trajectories (9). Substituting these
trajectories into Eq. (13) and considering the model EDF
Eq. (10), the integration of Eq. (13) over the momenta may
be simplified as

n� ¼ a0n0k2s
4γ4bξ0

sin χ
Z

t

−∞
dt0asðt0ÞGðt0 − tÞ; ð14Þ

where we denote χ ¼ x sin θ and the function

GðtÞ ¼ sinðksδvztÞ
ksδvz

Z
ξ2
0

0

dξ2
eiðΩ−ΩsÞtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − sin2χ

p

describes the dynamics of the electron density perturbations
driven by the ponderomotive forces. The longitudinal
energy spread of electrons is represented here by the
parameter δvz ¼ δγ=γ3b. As we have mentioned before,
the nonresonant upshifted mode exp½−iðΩþΩsÞt� is
neglected.

III. ANALYSIS OF THE STIMULATED
SCATTERING

Equations (11) and (14) describe the evolution of the
coupled electron and electromagnetic perturbations. The
conditions, at which the signal wave may be amplified, are
defined by the dispersion properties of the electron beam
mode. For simplicity, in the following analysis, we will
assume that electrons fill completely the lattice channel, so
that ξ0 ¼ 1.
In our model, the electron mode is described by the

function GðtÞ in Eq. (14). If we neglect the dependence of
Ω on ξ, the electron mode would be harmonic and the
integral in the function G may be simplified as

B ¼
Z

1

0

eiΩ0tdξ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 − sin2χ

p ¼ eiΩ0t cos χ: ð15Þ

The dependence of Ω on ξ results in a deformation of
the electron mode with respect to the x coordinate.
Considering the second approximation in Eq. (8), one
may qualitatively expect that the electron mode spectrum
after averaging will depend on x as B ∝ eiΩ

0t, where
Ω0 ¼ Ω0ð1 − sin2χ=3Þ. More accurately, the mode can be
calculated as

B ¼
ffiffiffiffiffiffiffiffiffi
6π=t

p
½CðαÞ − iSðαÞ�eiΩ0t; ð16Þ

where SðαÞ and CðαÞ are the Fresnel integrals and
α ¼ cos χ

ffiffiffiffiffiffiffiffiffiffiffiffi
2t=3π

p
.

The numerically calculated spectral-spatial map of the
electron beam modes given by Eqs. (15) and (16) is
shown in Fig. 2. The deformated electron mode Eq. (16)
is shown in red, and it corresponds to a wider spectral
region, where the signal wave interacts resonantly with
the electrons.

FIG. 2. Electron beam mode frequency as a function of the
x coordinate for the elliptic (red) and the harmonic (green)
electron orbits.
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A. Interaction parameters

For the following analysis, let us consider the optical
lattice field which is produced by two plane waves
corresponding to the pulses of a Ti:sapphire laser with
the wavelength λ0 ¼ 800 μm and the intensity
2.16 × 1016 W=cm2. The incidence angles of the laser
waves to the electron propagation direction are chosen
to be θ ¼ 10°.
We assume a 100 pC beam of electrons with moderate

energies of 40 MeV, which can be delivered either by a
laser plasma accelerator or by a compact linear accelerator.
The scheme with LPA electrons is all-optical and, thus, can
be driven by a single laser system. Such a design is
advantageous for synchronization of the traveling optical
lattice with the electron beam, and at the same time it allows
one to place the lattice at a short, millimeter distance from
the accelerator. In this case, one can benefit from the
initially high flux and the small size of the electron beam
and avoid beam transport issues typical for LPA [32].
Moreover, such a scheme can be conveniently comple-
mented with the plasma lens technique, which has recently
shown the capability to significantly reduce the electron
beam divergence [33]. Alternatively, a compact linac with a
photocathode gun can provide an electron beam with the
low emittance and energy spread [34]. The stability and
quality of the linac-produced electrons give the advantage
to such sources, however, the time jitter in such a
design may present a challenge for the lattice-beam
synchronization.
For the numerical tests, the electron beam can be

considered as a homogeneous cylinder with the corre-
sponding duration 3.75λ0=c and the radius Rb ¼ 1.3λ0,
which fits the width of the lattice channel. The initial spread
of the electron transverse momenta is chosen to also fit the
trapping condition, δpx ¼

ffiffiffi
2

p
a0. In physical units, this

corresponds to 1 mrad of rms angular divergence or
normalized emittance ϵx ¼ 4 mmmrad, and the divergence
along the nontrapped y direction can be assumed to be
lower—0.36 mrad, which corresponds to ϵy ¼
1.5 mmmrad. The spread of electron energies in our tests
varies from the monoenergetic case δγ ¼ 0 to a more
realistic one δγ=γb ¼ 0.03. In dimensionless units, the
chosen electron density and laser amplitude are n0 ¼
0.0352 and a0 ¼ 0.1, respectively. Such parameters are
closer to the LPA electrons, but the model can be applied to
the case of a linac beam.
Note that in the present analysis we do not consider the

effects of the electrostatic fields, which act to inhibit the
development of electron density modulations. Partially,
this is justified by the fact that the Coulomb repelling
for the relativistic beams decreases with the electron
relativistic factor γb. Nevertheless, for a sufficiently long
interaction time these effects may become important. A
qualitative way to estimate the importance of the space-
charge effects is to compare the wavelength of plasma

oscillations, λp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ3b=n0

q
, with the typical interaction

scales. For the chosen parameters λu=λp ≃ 10−2, which
means that the space-charge field does not affect the beam
during a single electron oscillation. In the following
section, we consider such a comparison with the gain
length, while the rigorous account for the space-charge
fields we leave for future studies.

B. Harmonic electron mode

Let us first study amplification for the case of the
harmonic electron mode Eq. (15), assuming all electrons
oscillating with the same frequency Ω0. In this case,
Eqs. (11) and (14) may be linearized analytically with
the help of the Laplace transform or by reducing Eq. (14) to
the differential form and performing the time-domain
Fourier transform:

½ðω − Ωs þΩ0Þ2 − k2sδv2z �hn�iω ¼ hasiω
a0n0k2s
2γ4b

sin χ cos χ:

ð17Þ

The Fourier component hasiω can be found from Eq. (11),
and substituting it to Eq. (17) we obtain the dispersion
equation:

ω½ðω −Ωs þ Ω0Þ2 − k2sδv2z � ¼
a20n0 ~ωe

γ3b
sin2χ cos χ: ð18Þ

The dependence on the transverse coordinate in the right-
hand side of Eq. (18) corresponds to the modulation of a
coupling between the electron and electromagnetic modes.
Physically, this means that the signal wave interacts with
electrons more efficiently around the coupling maxima
χ ¼ �1=

ffiffiffi
3

p
, which tends to produce an amplified wave

with a profile modulated along the x axis. For the one-
dimensional analysis, we consider an effective mode
coupling by averaging hsin2χ cos χi ¼ 2=3π.
The coupling of the electromagnetic and electron modes

in Eq. (18) allows a resonant energy transfer from the
particles to the electromagnetic field. If the solution ω has a
negative imaginary part, it corresponds to the modes which
grow exponentially. It is easy to see that, for a mono-
energetic beam with δγ ¼ 0, the maximal growth occurs for
Ωs ¼ Ω0, and it defines the FEL parameter [5]:

ρ0 ¼
�

a20n0
12πγ3bð1 − cos θÞ2

�
1=3

; ð19Þ

which corresponds to the power gain length Lg0 ¼
λu=ð4π

ffiffiffi
3

p
ρÞ.

The finite electron energy spread strongly decreases the
amplification rate and modifies its spectral structure by
narrowing the resonance bandwidth and downshifting the
central wavelength as
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ωs ≈ 2γ2bð ~ωe −Ω0Þ=ð1þ 2δγ=γbÞ: ð20Þ

The maximal FEL parameter in this case decreases with the
energy spread, and when δγ=γb ≳ ρ0, it can be estimated
as ρ ≈

ffiffiffiffiffiffiffiffi
2=3

p ðδγ=γbÞ−1=2ρ3=20 .
The dependence of the FEL parameter on the energy

spread and signal frequency is presented in Fig. 3, where
the resonance condition Eq. (20) is shown with the dashed
white line. The maximal FEL parameter corresponding to
the chosen interaction parameters is ρ0 ¼ 4.38 × 10−3,
and this defines the gain length Lg ≃ 10λu. Comparing
this value with the plasma wavelength, we find that
Lg=λp ≃ 0.18, which allows us to consider that the
space-charge fields produce only a second-order effect
for the linear amplification.

C. Account for the ellipticity of electron orbits

For a more accurate analysis, one has to account for the
dependence of electron oscillation frequency on the excur-
sion parameter ξ, which may be approximately described
by Eq. (16). In this case, the analytical linearization of
Eqs. (11) and (14) would require further approximations
and affect the accuracy of such a description. Alternatively,
these equations may be solved numerically on a finite time
interval via iterations. For this, we write Eqs. (11) and (14)
for the normalized functions NðnÞ ¼ a0n�=ð2γ3b ~ωs ~ωeÞ and
AðnÞ ¼ as=a0 in the following form:

NðnÞ ¼ −12πρ30w sin χ
Z

τ

0

dτ0AðnÞðτ0Þ ~Gðτ − τ0Þ; ð21aÞ

Aðnþ1Þ ¼ i
π

Z
τ

0

dτ0
Z

π=2

−π=2
dχNðnÞ; ð21bÞ

where τ ¼ ~ωet, w ¼ ~ωs= ~ωe, O ¼ Ω0= ~ωe,

~G ¼ sinwδgðτÞ
wδg

eið1−wÞτBðO; τ; χÞ;

δg ¼ 2δγ=γb, and the function B is defined by Eq. (16).
Considering a small arbitrary “seed” Að0Þ ¼ const, we
calculate the corresponding Nð0Þ over the time interval
ð0; τ0Þ from Eq. (21a) and then integrate Eq. (21b) to obtain
Að1Þ. The solution to Eq. (21) can be obtained by con-
sequently repeating this procedure till the system con-
verges: jjAðnÞ − Aðn−1Þjj ≪ jjAðnÞjj.
In practice, this algorithm converges rapidly and can be

efficiently used for parametric studies with complicated
electron modes. Let us test the numerical model for the
case of the elliptic electron mode (16). In Fig. 4(a), we plot
the evolution of the signal wave amplitude depending on
the frequency for the same parameters as in Fig. 3 and the
energy spread δγ=γb ¼ 0.01. As expected, the amplified
mode grows exponentially and is downshifted due to the
electron thermal motion. One can also see excitation of the
nonresonant mode upshifted due to the electron thermal
motion.
In Fig. 4(b), we reproduce numerically the map of the

FEL parameter as a function of the frequency and energy
spread for the same parameters as in Fig. 3. One may see a
remarkable agreement in Figs. 3 and 4(b) in most of the
features, and the maximal FEL parameter ρ ¼ 4.21 × 10−3

in this calculation agrees with ρ0 given by Eq. (19). The
feature observed along

~ωs ≃ ð ~ωe −Ω0Þ=ð1 − 2δγ=γbÞ

corresponds to a nonresonant upshifted electron mode,
and it is shown with the white dashed curve in Fig. 4(b).
The center of the resonant region is slightly shifted, which
results from the fact that the frequency of elliptic electron
oscillations Ω0 averaged over the distribution is lower
than Ω0.
This model also allows one to include the nonlinear

effects, e.g., the divergence of the electron beam along the
nontrapped direction or the dynamics of the lattice ampli-
tude. In the present analysis, we account for the electron
beam divergence by adding the factor

n0ðtÞ=n0ð0Þ ¼ ½1þ ðδvyt=σyÞ2�−1=2 ð22Þ

to the integral in Eq. (21a). This factor describes a
progressive decrease of electron density caused by the
divergence and will be used later when comparing with the
three-dimensional numerical tests.

FIG. 3. Normalized FEL parameter ρ=ρ0 as a function of
longitudinal temperature and signal frequency given by
Eq. (18). The white dashed line corresponds to the resonance
condition Eq. (20).
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IV. SIMULATIONS WITH THE FREE ELECTRON
LASER CODE

The theoretical model developed in the previous section
describes the amplification at the linear stage, when the
main electron distribution is not affected by the growth of
electron density perturbations. Therefore, such a model
cannot describe the instability saturation, which occurs
when a significant part of the electrons are trapped in the
longitudinal potentials and stop transferring energy to the
signal wave. Near the saturation, the resonance properties
of the electron beam mode (e.g., electron energy spread)
may also be significantly modified.
To account for the nonlinear effects, a self-consistent

description is required. For this, we use the free electron
laser code PLARES [29]. In this code, the relativistic
electrons are presented by the macroparticles, and their
unaveraged three-dimensional motion is coupled with the
electromagnetic field calculated with the spectral Maxwell
solver. The code may operate in the Cartesian or axisym-
metric geometries, and for the present study we use the
Cartesian solver, which allows one to model the asym-
metric radiation profiles.
The general parameters in the numerical simulations are

described in Sec. III A. In addition, for a simple model of
the injection, we consider that electrons first enter a
300λ0 ¼ 4.5λu region, where the lattice field amplitude
grows linearly along the z axis before reaching its maximal
value a0 ¼ 0.1, which then remains constant during the
simulation. The shot noise in the system is completely
suppressed, and, to avoid effects of the spontaneous
emission amplification, the simulations are seeded at the
resonant wavelength of 4.4 nm with a 10 kW pulse. In the
three-dimensional case, the transverse profiles of the seed
are Gaussian and correspond to 1.7 μm waist.

Let us first present the steady-state simulations, where
the radiation field is considered as a single-frequency
infinitely long wave and it interacts with a small fraction
of the electron beam assuming the periodic boundary
conditions. This case is close to the theoretical description
developed in Sec. III; however, it accounts for the dynamics
of the electron distribution and includes all related non-
linear effects. The results for the case of the monoenergetic
electron beam in one-dimensional (blue solid curve) and
three-dimensional (green solid curve) simulations are
presented in Fig. 5. The results of PLARES simulations
are compared with the description provided by the ad hoc
model (21) (dashed curves), where the three-dimensional
model also accounts for the beam divergence equation (22).
For the one-dimensional case, we see a good agreement for

)b()a(

FIG. 4. (a) Temporal dynamics of the signal wave as a function of its frequency calculated numerically. The color scale is logarithmic.
(b) Normalized FEL parameter ρ=ρ0 as a function of the longitudinal temperature and the signal frequency calculated numerically for the
elliptic electron mode.

FIG. 5. Steady-state simulations. Radiation power as a function
of time for the one-dimensional (blue lines) and three-
dimensional (green lines) cases modeled by PLARES (solid lines)
and with help of ad hoc iterative model (21) (dashed lines).
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the early stage of amplification, while during the main stage
the growth rate is reduced by approximately 15% due
to the modification of the electron beam distribution
function. In the three-dimensional simulation, the ampli-
fication decreases even more due to the signal wave
diffraction. The saturation occurs at the distances Lsat ¼
1 and 2 cm and reaches relatively high powers at the level
of 1 GW and 200 MW for the 1D and 3D simulations,
respectively.
The transverse profile of the radiation at the end of the

3D simulation is shown in Fig. 6. One may clearly observe
that the resulting signal is stretched along the nontrapped
direction due to the divergence of the electron beam and is
also affected by the diffraction. The intensity modulations
along the x axis correspond to the χ dependence of coupling
between modes in Eq. (18).
To study how the amplification is affected by electron

energy spread, we run a series of one-dimensional time-
dependent simulations. The “time dependence” here means

that the spectral dynamics of the signal wave is modeled,
and the longitudinal profiles of the electron beam and of the
seeding pulse are considered. In this model, the resonance
condition appears naturally corresponding to the dominant
mode. The 1.5 fs seed pulse with the Gaussian longitudinal
profile is used in the simulation, and its length is chosen to
be much shorter than the length of the electron beam.
In Fig. 7, we plot the FEL parameter as a function of

δγ=γb for the analytical model (dashed curve), ad hoc
numerical model (solid curve) and PLARES simulations
(dots). The results indicate a good qualitative agreement in
the instability behavior and demonstrate the quantitative
difference of about 20% in the values, which is also
observed in Fig. 5. The central wave numbers correspond-
ing to the growing mode in the simulations are shown in the
inset in Fig. 7 (dots), and it confirms that the resonance
follows the condition (20), shown with a dashed line.
The results presented in this section prove the good

quality of the theoretical model. The cases of more complex
electron distributions can be considered in the same way.
The three-dimensional analysis indicates the importance of
the divergence of electron beam and the diffraction of the
amplified radiation.

V. SUMMARY

We have presented a kinetic theory of the linear regime of
the x-ray or XUVamplification in the electron beam, which
travels in a laser-induced transverse optical lattice. The
theory accounts for the energy spread and angular diver-
gence of electron beam. For a simple realistic model of
electron distribution, the analytical expressions describe the
amplification rate and its dependence on the longitudinal
energy spread of electrons. This point has a crucial impor-
tance for the practical realizations of such a SR source. The
presented results are confirmed by numerical simulations
with the spectral FEL code PLARES, where the electron
distribution is modeled via particle methods and the dynam-
ics of electromagnetic field is modeled in a consistent way.
The presented analysis indicates that the amplification of

the XUV light in the optical lattice is possible for electron
parameters typical of the state-of-the-art laser plasma
accelerators. The account for the three-dimensional effects
evidences that the electron guiding in the optical lattice
plays an important role by preserving the electron flux.
This opens a path for practical realizations of the optical
lattice XFEL without additional components for electron
focusing.
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FIG. 6. Steady-state simulations. The intensity profile of the
x rays at the end of the interaction in three-dimensional
simulation. The color scale is in W=cm2.

FIG. 7. Dependence of the FEL parameter on the energy spread
of the electrons for the analytical (dashed line) and numerical
ad hoc (solid line) models (21) and in the PLARES simulations
(dots). The inset shows the dependence of the normalized
resonant wave number on the energy spread in the simulations
(dots) and according to condition (20) (dashed line).
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